B

Number

A

November 83j

'Computer Graphic Design by
Catherine Del Tito

i

ik

(R 4

ISSN 0739-1900

b3
aSe

TPL
The Tewt Processing Language. A
iext-file runoff program con-

sisting of a set of texi-processing
primitive commands from which
more compleyn commands
(macros) can be built (as in Logo).
Features include:
* Complete customization of
text provessing through
macro definition and expan-
f) sion, looping structures. and
conditional statements;
* Adapis 10 any printer;
* Pagination:
¢ Text justitication and center-
ing;
¢ Indexing and tables of con-
tents;
® Superscripts and subscripts:
* Bolding and underlining:
* Multiple headers and footers:
* End notes and footnotes:
* Widow and orphan suppres-
slon;
® Floating table< and ‘keeps.”

$50

mentation

er s,

tures @ a'\g.onl.h?\‘

smlcn modification-
ur own

software development.

ms, witht
istings; }
edcsoduerc(‘zengsc‘lor§1piled code:

de ‘hem .“‘ yo
them.

ware tools you'll find hard

ZED

Full-screen text editor. devigned
to be used esther with TPL or b

et

-

1$§$\.

DBX

Biocked Keved Data Access
Module. Maintains disk files of
keved data. Can be used for
bibliographies, glossaries, multi-
key data base constructuion. and
many other applications.

* \ariable-length kevs:

® Vanable-length data;

¢ Sequential access and rapid
keved access;

* Single disk access per opera-
tion (store, find, delete) in
moSst cases;

* Multiple files:

* Dynamic memory allocation
for RAM-resident index and
current “page” of entries:

* Includes demonstration pro-
gram and testbed program.

$50

s’

\"?‘*\".
Sq‘:‘%ﬁ .
) CHROME

Chromatography data

program:

data:
basehne calculauon:

* Sinip charts on (
EPSON printers.

$100

* Graphic display of analog

® Panning and zooming:
¢ Automatic peak-finding and

e Full interactine peak editing:
s (ompulalion of peak arcas:
Itoh and

analysis

v PLANE

Plamimetry program:

* Bit-pad entry of cross sec-

tons:

¢ Real-time turtlegraphics

display:
o Calculation of areas.

¢ Saves calculations to text

file.

$100

PDMS
The Pascal Daia Management
Swvstem. A user-oriented data
management svstem in which

numernic and alphanumeric data
are stored in tables with named
columns and numbered rows.
Currently being used for dosens
of ditferent khinds of business and
scientific applications, tfrom in-
ventory management to laborato-
rv data analvsis. Includes over 20
Pascal programs. more than
10,000 lines ot code. Main
teatures include:

* Maximum of 32,767 row. per
file;
* Maximum of 400 characters
per row. and 40 columns per
table;
Full-screen editing of rows
and columns, with scrolling,
windowing, global search
replace, and other editing
features:
e Sorting, copying, merging,
and reducing routines;
Mailing label program;
Reporting program generates
reports with control breaks,
totals and subtotals, and
selects rows by field value:
many other reporting
features;
Cross-tabulation, correla-
tions, and multiple regres-
sion;
Video-display -handiing
module;
¢ Disk-file-handling module.

Many other features. UCSD tor-

mats only.
$250

itself.

® Full cursor control:

¢ Insert mode with word wrap:

¢ ‘Paint’ mode;

® Single-kevstroke or dual-
keysiroke commands;

* Command synonvms;

* Global search and replace;

¢ Bloch move, block copy, and
block delete.

$50

sV ®

)
b

SCINTILLA

A log logit curve fitting program
for radio-immunologic data; must
. be used with PDMS (described
above).
* Multiple protocol files:
e Quality control files:
e Four-parameter non-linear

curve fit,
$250

UCSD formats only.

W ®
f‘%ﬁq&

MINT

A terminal emulation program for
communication between com-
puters of any size.
¢ User-configurabie uploading
and downloading of files;
* X-ON/X-OFF and
EOB/ACK protocols;
® Interrupt-driven serial input
(for Prometheus Versacard in
Apple });
* Printer-logging.

$50

T

l

For more information, call 919-942-1411. To order, use form below or call our toll-free number: 1-800-X-PASCAL.

~ Check appropriate boxes:

{In N.C. use 1-800-642-0949;

RMAT PRODUCT PRICE .
m

8 UCSD S$SSD DBX $ 50 ame
5% " Apple Pascal PDMS $250
54" UCSD IBM PC 320k TPL $50 —e
8 CP/M SSSD ZED 5 50
5% " IBM MS.DOS MINT $ 50
51~ CP/M Osborne SCINTILLA $250

CHROME $100

PLANE 5100

Apple and Apple Pascal are irademarhs of the APPLE Computer Corp. IBM and IBM PC are trademarks of International Business

E MasterCard

(Please include card #
and expiration date)

O visa [J Check U co.p.
SUBVERSIVE A division of Pascal & Associates.
SOFTWARE

Machines UCSD Pascal is a trademark of the Regents of the University of California. Osbarne is a trademark of Osborne Com-

puter EPSON is a trademark of EPSON America’ inc (. ltoh is a trademark of C. itoh Electronics

. 7
135 East Rosemary St., Chapel Hill. NC 2

514

About the cover:

The cover computer graphics were created by
computer artist Catherine Del Tito. The pro-
gram was written for an Apple Ile and a Vec-
trix computer system.

Formerly Pascal News

Serving Pascal Users Group and the Modula-2 Users Group
November 1983 ‘ Number 27

3 — EDITORIAL
5 — OPEN FORUM

8 — Two Pascal Devices
by Harley Flanders, Florida Atlantic University

9 — Zuse User’s Manual _
By Arthur Pyster, University of California

33 — ANNOUNCEMENTS
37 — MODULA-2 ANNOUNCEMENTS
41 — ORDER FORMS

UCSD p-SYSTEM"
with UCSD PASCAL"
"FOR THE

VICTOR 9000°

Standard Features
* System Foundation:

Operating System - Single key commands * Native Code Generator - For faster execution
Filer - For tile management ¢ Turtlegraphics - 800 x 400 pixel access
Screen Editor - Powerfut text editor * RAMDISK Capability - For RAM above 128K
Utility Library - Fast development tools * Assembler - 8086 with macros

¢ UCSD PASCAL Compiler - Only requires 128K * Documentation:

¢ Utilities for the Victor: Owner's Manual
Keyboard Editor - Define your own keyboard User Manual/Suppiement
Character Editor - Design character sets Architecture Guide
Config - Define machine parameters Installation Guide Excerpts
Diskutil - Disk copy/format DEMODOC diskette - On line tutorial for
Remote . - File porting p-System overview

Optional Features

* Hard Disk Support Software - For internal hard disk * 8087 Support Software

* FORTRAN 77 Compiler - Only requires 128K * Advanced Systems Editor

* BASIC Compiler * Xenofile™™ - Convert CP/M files
* Applications Software (call for information)

TDI SYSTEMS, INC. TDI LIMITED

620 Hungerford Drive 29 Aima Vale Road
Suite 33 Bristol, U.K. BS8 2HL
Rockville, Maryland 20850 0272 742 796

(301) 340-8700

UCSD p-SYSTEM and UCSD Pascal are trademarks of the Regents of the University of California
Universal Operating System and Xenofile are trademarks of SofTech Microsystems, Inc.
Victor 9000 is a trademark of Victor Technologies, Inc.

4
1
i
1

Announcing a $10,000 Contest for the Best
Article or Application Voted by the Members

Dear Member:

By now those of you in the United States
have received a questionnaire and announce-
ment concerning “Pascal News.” The reader
survey is a very important element in our abili-
ty to contain the cost of this newsletter. When
we solicit advertisers, they want to know about
the members: Who we are, What we do, How
much we spend. I realize these are very prob-
ing questions and you may feel they are too
personal. To separate your name from your in-
formation, the subscription card is a self mailer
and the return envelope for the survey will
assure your anonymity. Thank you in advance
for your help.

Let me explain the announcement of our
name change from “Pascal News” to “Pascal
& Modula2.” Pascal has encouraged and en-
dorsed rational programming. The language
aids in the segmentation of a job into small
parts through procedures and functions. I have
enjoyed learning and using this language, but
Pascal does have limitations.

Many limitations are part of the design of a
teaching language. Pascal is a very nice base, a
core, to which extensions have been added by
every implementor. We have accepted this and
published reports of large extension packages,
UCSD Pascal, Concurrant Pascal and Path
Pascal.

These extensions were added to a language
created for teaching programming principles.
This design goal allows a general purpose
language, but not an all purpose language.
Nicklaus Wirth recognized these limitations
and created a language that would contain
Pascal’s good features and satisfy the goal of
an all purpose language.

Modula-2, created in 1977, is that language.
In this issue, you will read Modula-2 product
announcements. In these announcements, and
in other articles, claims are made that Pascal is
finished, that Modula-2 should replace Pascal
in all cases. Maybe. I believe Pascal can and
should remain in the position for which it was
designed. The premier teaching language is

Pascal. The easy transition from Pascal to
Modula-2 makes Modula-2 an excellent second
year language. Restrictions are necessary in
the introduction to programming and Modu-
la-2’s flexibility does not focus a student to
basic principles.

Of course | may be “all wet,” but I believe
Pascal should remain.

Pascal’s teaching tool strength, Modula-2’s
all purpose ability, and the relatively painless
transition between them make Pascal and
Modula-2 proper subjects for the Pascal Users
Group. Pascal News should reflect this wider
interest in content and name. The new name,
“Pascal & Modula?2,” keeps Pascal as the first
name and can be found in the same place in
periodical indices as “Pascal News.” This
should make the libraries happy.

The new logo places Pascal within Modu-
122, a reference to Modla-2’s ability for operat-
ing system programming, above Pascal, and its
ability for machine specific programming, be-
low Pascal. 1 hope you welcome the change
and contribute to the discussion and promotion.

This brings me to the contest for $10,000. It
really is a promotion. There are many ways to
promote this newsletter and [have tried a few.
One way is to keep the members we have now.
I have promised four issues per year and this is
the fourth of 1983. A renewal notice was sent
out in January and I thank you for your sub-
scription. In October the reader survey and
subscription card were mailed and [hope you

renew promptly. I placed a small ad in “PC"

magazine. It is in their Blue Book section and
will run from September 1983 through March
1984 and should attract new members. An-
nouncement of our name change and subscrip-
tion information was sent to fifteen magazines.
Unfortunately there are many Pascalers who
do not know of the Pascal Users Group.

I am now very familiar with the costs of this
newsletter and can say that income closely
matches costs. [also know that if membership
exceeds 5,000, we will have a surplus. What
would we do with this money? Well, I propose
that it be used for a promotion, and I cannot

think of a better promotion than to vote for
the best article or application published in
“Pascal & Modula2.”

1 do not know whether the prize will be win-
ner take all or first, second and third place divi-
sion of the money. Your letters will help me
form the rules.

The first rule is we must have 5000 mem-
bers. Fewer members and we cannot afford
this contest.

Now, you may recognize a little circularity
here. The promotion attracts members and in-
creased membership allows the promotion.
Because of my other responsibilities (wife,
home, job and country) I need your help to an-
nounce this contest in all quarters. If all 4000
members will send one letter (i.c. to friends, to
users groups, to fellow students, to magazines)
to announce this contest and one new member
joins per letter, well, I think yo'* get the idea.

Rule number two—all contestants must be
members.

One more idea. If this contest generates
enough material and money the newsletter will
be published more often. Please send your
ideas.

A typesetting program called TeX, created
by Donald Knuth, is available for the cost of
distribution. 15,000 lines of Pascal code puts
TeX in the nontrivial category.

Basic information is available from two
sources. The book “TeX and METAFONT” is
available for $12. Digital Press, 12A Esquire
Road, North Billerica, MA 01862. A new
book, “TeX Book,” should be in print by the
end of 1983 from Addison-Wessley.

Continuing information is provided by the
TeX Users Group (TUG). Membership is $30.
TeX Users Group, c/lo American Mathemati-
cal Society, PO Box 1571 Annex Station,
Providence, Rhode Island 02901, USA.

“Small Talk,” a language from the Xerox
Palo Alto Research Center was revealed in the
August 1981 issue of “Byre” magazine. The
Small Talk virtual machine, a software inter-
face to the real machine, was given to four
companies. They agreed to debug the virtual
machine and share information.

1 found it interesting that Tektronics imple-
mented the virtual machine in Pascal. | under-
stand that Tektronics internal programming
uses Pascal or Modula-2. The papers regarding
the Small Talk research are assembied in the
book “Small Talk-80 Bits of History, Words of
Advice.” This book and “Small Talk-80 The
Language and its Implementation” are avail-
able from Addison-Wessley.

Andy Michel informs me of a version of
“C,” the Bell Labs language implemented in
Pascal. Very interesting.

A large part of this issue is devoted to a com-
piler creator. With a language specification
this program will write the compiler. I have
been told this program is very valuable. Using
it, a contract for a compiler was satisfied and a
handsome profit gained. (Sounds good to me.)

Robert Gustafson in a letter complains about
the typesetting of this newsletter. Expense,
time and typographical errors are his concern.
When printing more than 2500 copies, typeset-
ting reduces overall expenses. Typesetting con-
sumes 3 weeks’ time, not an unreasonable
amount for a quarterly.

Typographical errors are a problem and pro-
grams are photographed from originals to
avoid them. A better way to assure correct in-
formation and dark, clean type is to capture
the author’s original keystrikes. Floppy disks
and mag tape will do the job, but I would have
to convert the many magnetic formats to one
the typesetter could use.

Computer networks may be a better solution.
Networks force all submissions to a common
format. From this, the typesetter will make on-
ly one conversion to his format. If there is a
consensus, | will establish a bulletin board and
file system on the most popular network.

Please send your ideas. This is a one-man
operation and | appreciate and need your help.

I 'hope you enjoy this issue.

Charlie

2903 Huntington Road
Cleveland, Ohio 44120

Publisher and Editor:
Charles Gaffney

General Consultants:
Studio Graphics Advertising

Production Manager:
Spence Coghlan

National Sales Representative:
John Bachmann

The Pascal & Modul.-2 is published for the
Pascai Users Group and Modula-2 Users
Group, 2903 Huntington Rd., Cleveland, Ohio
44120. Pascal & Modula? is a direct benefit of
membership.

Membership dues are $25.00 U.S. regular,
other forms of membership please inquire. In-
quiries regarding membership should be sent
to the above address. Magazine correspon-
dence and advertising should be sent to the edi-
tor at the aforementioned address. Advertising
rates are also available from the above address.

v

et

mghe

pety

Fors™

August 22, 1983
Dear Charlie:

1 have been a subscriber to Pascal News for
a long time. According to the date on my mail-
ing label, it looks like I will continue to be a
subscriber well into the distant (85) future.

1 agree with many of the notes published in
PN #26 concerning your contributions to the
well being of Pascal News, particularly the
general management and timely publication.

However, I believe that PN is doomed to die
because of one change you have made. Previ-
ously, the magazine was printed using the orig-
inal letters submitted by PN correspondents.
This was an inexpensive method of getting the
information out to the readers. Your current
system of rekeyboarding all of the correspon-
dence can only be costing you dollars without
increasing the utility of the information. Also,
as people decide they can do without PN for
$25/year, your circulation will decrease. One
of the previous attractions of PN was that
since it was so cheap, it reached everyone. A
reduced circulation will cause contributors to
look for other distribution media. I realize you
are saving money on postage, but since PN is
sent out bulk rate, the savings are only a small
fraction of the cost of typesetting. Since these
typesetting costs are the same whether you
send out | copy or 3000 copies, I predict that
you will not be able to compete with other
publications in the ficld and PN will die.

If you return to direct printing of correspon-
dent copy you will be in good company. The
DECUS special interest group newsletters
(RSX SIG for example) are printed from yechy
LA 36 printer copy. I read them cover to cover
as soon as they arrive. There are also a lot of
expensive stock market newsletters which are
printed from typewriter copy. These sell for big
bucks because the buyers are interested in
TIMELY information, not typography and art
work suitable only for decorating a coffee
table.

By concentrating on quick publication, I be-
lieve you will find advertisers willing to pay for
space in PN. Also, when it comes to selling ad-
vertising space, 3000 subscribers are much bet-
ter than 300! Another important criterion for
an advertiser is knowing that what is sent to
you will appear unchanged in the publication.

I have noticed that there are a number of
typographical errors in the typeset issues of
PN. These are inevitable in a keyed-once,
proof-read-once publication (I know the statis-
tics, one of our programming systems typesets
approximately 40% of the municipal bond is-
sues in the U.S. Errors here are a no-no. Asa
consequence, we have done quite a bit with
automatic proofreading and word processor
telecommunications). f you use advertiser
copy directly, there can be no problems later
with omissions of important parts of the copy
or inadvertent changs to prices, etc.

You might consider including a question-
naire in the next issue of PN. I'm sure that the
majority of your current subscribers would be
much more enthusiastic about paying $9/year
for the latest information from your corre-
spondents and advertisers printed “as is” than
$25lyear for the present “remassaged” format.
If you choose an even lower price, advertisers
will pay more for the resulting increased cir-
culation. Simple economics!

Sincerely,

Robert D. Gustafson
President

Simulation Specialists Inc.
609 West Stratford Place
Chicago, IL 60657

June 29, 1983
Dear Editor:

1 enclose a short article, Two Pascal De-
vices, for publication in Pascal News. | shall
appreciate your acknowledgement and. if you
use the article, a copy of the issue in which it is
printed.

Sincerely yours,

Harley Flanders

Professor of Mathematics
Florida Atlantic University
Boca Raton, FL 33431

PS. May I humbly suggest that you do not
print the output of line printers or dot matrix
printers. It is just too hard to read.

July 5, 1983
Dear Mr. News:

This is to request address correction from

that found on the label:

Jeff Davis [81]

135 Turtle Creek

#1 Roper Mt. Rd.
Greenville, SC 29603

to the following:

Jeff Davis

6549 Quiet Hours Apt. #201
Columbia, MD 21045

I am entering this using an editor found in
“Software Tools in Pascal,” one of the best
books on toolbuilding I've ever read, and print-
ing out using a copy of “Prose” from an early
copy of Pascal News recompiled on an Apple
/It As you see, my interest is in learning by
building tools in Pascal.

By the way, there is a local bulletin Board
system (my next tool may be a speiling check-
er') called Magus which is actuaily an operat-
ing system written in Pascal by Craig Vaughn
that is worthy of note. I'll suggest that he sub-
mit an article describing it and see what his
reaction is.

As a last comment, I had been out of the
country for a few years and only recently re-
subscribed. How’s Modula-2 doing in the
states? I’'ve ordered their documentation but
version for my computer (Apple /) somewhat
tardy.

Thanks and it’s great to be back in touch
with Pascal reality again'

Sincerely,
Jeff Davis

May 31, 1983
Dear Mr. Gaffney:

We have purchased a Motorola EXORciser
development system for developing 6809 based
products. We contracted to an outside vendor
for the initial software development on a new
product. All software was written in HP64000
Pascal. We will be doing all software mainte-
nance and enhancement in house and we are
reluctant to do this in assembly language.
Therefore, I am attempting to find a Pascal
compiler to run on the 6809 EXORCciser which
is as compatible as possible with the HP Pas-
cal. | would appreciate any help you can give
me on this.

We also have a Texas Instruments DS 990
minicomputer with a Pascal compiler which
we would like to use for electrical and clec-
tronic engineering support and development.
Any information on available Pascal electron-
ics packages would be helpful.

Very truly yours.

MILLER Electric Mfg. Co.
Bruce A. Casner

Project Engineer

P.O. Box 1079

Appleton, W1 54912

et

porw™®

June 2. 1983
Could you send me any information you
have on Apple and JRT Pascal? Also, I would
be very appreciative if you could recommend
any books for someone who knows BASIC and
6502 Asembier.
Thank you.

Larry Houston
169 West 8th Street
Peru, IN 46970

December 10, 1982
Mr. Gaffney:

I read about Pascal News from a UNIX
NetNews (a network of UNIX installations
sharing news) article. Could you send me the
back editions containing the Lisp compiler-
interpreter (written in Pascal)? Enclosed is $15
for the year of back issues containing the Lisp
compiler. Send me a bill for shipping if $15
does not cover it all. I am glad to see you con-
tinuing this magazine.

Respectfully, -
Fred R. Finster

8549 Evanston Ave. N.

Seattle, WA 98103

December 20, 1982

Dear Charles Gaffney (Charlie),

I have been infomed that PUG (Australia)
has distributed its last issue (#24) of Pascal
News, and that the subscription list and
balance of funds has been transferred to the
us.

According to my records, I was paid up
through 1984 (renewed for 3 years mid-1981).

However, I understand that there will prob-
ably need to be an adjustment, so please could
you apply my outstanding subscription toward
whatever extension is appropriate.

Please. if possible, inform me what the final
position is; | am very keen to maintain my con-
tinuity of membership, as I think PUG is very
worthwhile.

Thanks a lot.

Yours sincerely,

G. A. Foster

5/138 Clarence Road
Indooroopilly

Queensland, Australia 4068

February 15, 1983
Dear Mr. Shaw:

I know that your job keeping going the
PUG is a great one. As we create the Mexican
Wang Users Group with 200 members now,
after 4 years about 4 people do the whole work.

Our company wii.. 32 people has an obliga-
tion to use an accumulative half hour daily to
do some investigation; that is why we are in-
terested in implementing the Pascal in our
machine, a Want 2200-VS-80.

I believe that our specifications were wrong
when we asked for the Portable Pascal P4, be-
cause we have not been able to get started.

Dr. Niklaus Wirth wrote me that the PUG
has an 360 IBM compiler. [would like to know
how can we be able to get it, because our com-
puter with very little modification can run
IBM assembler programs.

If I can do anything to help the PUG please
let me know.

Thanking you in advance for all the trouble
I may cause. looking forward to your answer.

Sincerely,

Miguel M. Soriano Lopez
Technical Director

Data, S.A.

Av. Homero No. 1425-1201
Mexico 5, D.F.

June 5, 1981
Dear Mr. Soriano,

It was a pleasure to hear from you after so
many years. | fondly remember that stay in
Mexico in 1963.

I guess the best way to “get in touch” with
me is by writing, as you did. However, | do not
see a chance for me to visit Mexico in the near
future, as | am quite committed and busy at
my position here at ETH.

Good luck for your Pascal compiler project.
Are you aware of the compiler for the 360, al-

so available from PUG? Perhaps it wouid be

easier to use that compiler instead of the P, be-
cause your machine is—as you write—similar
to the 360.

Sincerely yours,

Prof. Niklaus Wirth

Eidgenossische Technische Hochschule
Instit fur Informatik

ETH-Zentrum

CH-8092 Zurich

August 31, 1983
Dear Charlie:

I use Pascal at the National University of
Mexico in a Burroughs 7500 or on a PDP-11,
and at my work I am trying to install the Pas-
cal-P you send me last year.

Several doubts | had, I asked Dr. Wirth.
who answer me and recommended that will be
easy to implement the IBM-370 version, which
is more similar to my Wang 2200-VS-80
machine. i

On the 25th Pascal News is a report about
an IBM-370 Pascal. 1 will like to know if
Joseph A. Minor of Cornell Computer Services
would like to work together with me, to give to
the PUG a Pascal compiler for the Wang VS.
Only in Mexico there are more than 200 in-
stallations; | believe that at the USA are
several hundreds who may be Pascalers, if the
PUG will have it.

1 hope to hear from you soon. thanking you
for the trouble I may cause you.

Sincerely,

Miguel M. Soriano Lopez

May 26, 1983
Dear Editor:

1 would appreciate it if you would publish
the enclosed announcement of the availability
of the Edison System Report entitled “Pro-
gramming a Personal Computer” in the Pascal
News.

Yours sincerely,

Per Brinch Hansen

Henry Salvatori Professor of Computer Science
University of Southern California

University Park

Los Angeles. CA 90089

L - "

6

e, .

A

A e e e

Press Release

FOR IMMEDIATE RELEASE: October 11, 1983

Cleveland, Ohio: The ten year old publication, Pascal News is changing
its format and name to Pascal and Modula 2, according to publisher,
Charles Gaffney.

For those unfamiliar with computer terminology, Pascal is a small and
general purpose computer programming language, originally designed 10

years ago by Professor Niklaus Wirth of Switzerland as a teaching

language. Because Pascal is easy to learn and read, and can be efficiently
translated by computers, it was adapted for use in business. However,

it does have certain restrictions. To meet the increased demand for an

all purpose programming language, Wirth designed Modula 2. The

structure of Pascal is included in Modula 2, affording simple and quick
transition for programmers.

Pascal News was origninally established to be a forum of correspondence
for the Pascal Users Group (PUG). Because of the close linkage between
these languages, and the rapid growth in the day to day use of computers,
Gaffney expanded the publication to include articles and correspondence
about Modula 2.

"Modula 2 is a newer language on the cutting edge of computer science,"
said Gaffney. ''Its design allows Pascal to settle into original standards,
and removes the pressure to be all things to all people."

Modula 2, sold only under license, will be protected from incompatible
revision. The new availability of Modula 2 from at least 4 vendors
demands a forum for new users as well as Pascal users. Pascal and
Modula 2, sponsoring the Pascal Users Group and organizing the Modula 2
Users Group, will provide that forum.

Pascal News has over 4,000 subscribers in 41 countries, according to
Gaffney who is confident the new publication will continue to serve
these user groups. Pascal and Modula 2 will provide application
software, software tools, articles on programming philosophy, the use
of Pascal as a teaching tool, the promotion and application of each
language, as well as an important open forum where users contribute
informal correspondence of general interest to the group.

P.O. BOX 538, CHESTERLAND, OHIO 44026 + (216)729-3227

By Harley Flanders

Florida Atlantic University

1. THE FORWARD DECLARATION

It was brought to my attention by H. S. Wilf
that the reserved word forward is not neces-
sarily included in all versions of Pascal. If we
examine Jensen and Wirth !, we find forward
discussed on page 82 of the User Mannal, but
not in Appendix C, Syntax, pages 110-115, nor
in the railroad diagrams, pages 116-118; how-
ever, in Appendix E, Error Number Summary,
page 120, while nowhere in the Report, pages
133-167.

Suppose we have a program in which several
procedures call each other recursively. The
usual way to handle this is via a series of for-
ward declarations. It is possible to accomplish
the same thing without using forward at all.
Suppose, for cxample, that we have the
declarations

procedure B: forward;
Procedure C; forwvard;

Procedure A;
<declarations>
in

<statements Al>; B; <statementt A2>
end:

procedure B;
<declaraticns>
in
<statements Bl:; C; <statexents B2>
end;

procedure C:
<declaraticns.
in

‘staterents Clv; BR; <statements C2»
end;

The following single procedure declaration
does the same.

var CONTECL: Char:

Procedure hEC;
“decleraticns.
begin
case CONTFOL of
‘A': begin -‘staterents All;
CONTPOL := B; ABC:
sstaterents A2, end;
'B': begin ‘statements Bl.;
CONTFOL := C: BABC;
‘staterentt B2. end;
'C': begin ‘statement: Cl.;
CONTFUL := A: ABC;
‘statexents C2, end
end i case !
ond; i ABC }

The statement calling ABC must initialize

CONTROL to the first entry value. Clearly,
many variations on this theme are possibie.

et —————— —

2. THE EXIT PROCEDURE

UCSD Pascal restricts the goto statement so
it only allows jumps within a block. Hence
goto cannot be used to exit a nested sequence
of procedures. The Exit procedure was intro-
duced into UCSD to make up for this short-
coming: however, it fails to do the job if the
nested sequence happens to include recursive
calls of a procedure. This can be quite inconve-
nient at times. Suppose, for example, one is
searching an array, and the search proceeds by
testing an element then, if unsuccessful, it par-
titions the array and tests the pieces recursive-
ly. Of course, once the sought element is
found, the search should be stopped. But the
search procedure may be deeply nested at that
time.

A clumsy way out is to introduce a Boolean
variable FOUND and rewrite the body of the
search procedure as follows:
procedure SEARCH:

<declarations>

begin

if mnot FOUND then <(statements of SEARCE>

end;

The f(external) call of SEARCH must be
replaced by

FOUND := False; SEARCH

This is costly because it adds an extra test to
each call of SEARCH. The following is an
alternative using Exit. Assume that we are
searching for X and that A denotes a test
value.
procedure DUMMY;
procedure SEARCH;

begin

<statements of SEARCH>

if A = X then Exit(DUMMY) else ... SEARCH

end;
begin SEARCH end;

Remember the UCSD rule is that Exit (PROC)
is 2 jump to immediately after the most recent
call of PROC, passing through all more recent-
ly called procedures along the way, and doing
some incidenta! housekeeping, like closing files
those procedures opened.

Reference

1. K. Jensen and N. Wirth, Psscal User

Mannal and Report, 2c, Springer-Veriag,
1978.

...
8

(¢ %’\A,Se”

A Compiler Writer

)

o T P BEIAS

P

|

ZUSE USER’S MANUAL
Unix Implementation
Version 1.0

by
Arthur Pyster

Department of Computer Science
University of California at Santa Barbara
Santa Barbara, CA 93106

copyright (c): Regents of the University
of California, May 1981

A
This work was in part supported by a grant from the Instructional
Development Program of UC Santa Barbara.

1.0 Iatroduction
4
1.1 Background

Zuse is a translator writing system written in Pascal which
produces translators which are themselves written in Pascal. It
is quite simple to use and alleviates much of the tedium inherent
in writing a translator from scratch. It is named after Konrad
Zuse vhose visionary work on the programming language Plankalkul
in the mid 1940s should be an inspiration to everyonme.

This user’s manual assumes that you are already familiar
with the principles of translator writing and syntax-directed
translation. Such terms as "BNF grammar" and "LL(1) parser”" are
used freely without explanation. If you lack this background,
you should refer to one of the standard texts on translator writ-
ing (Aho and Ullman, "Principles of Compiler Design”, Addison-
Wesley 1977; Lewis, Rosenkrantz, and Stearns, "Compiler Design
Theory", Addison-Wesley 1976; Pyster, "Compller Design and Con-
struction”, Van Nostrand Reinhold 1980).

Zuse has been designed to be highly portable across dif-
ferent Pascal implementations. Only a handful of lines of code
have been written using implementation-dependent features; e.g.,
Zuse presumes that type char is the ascii character set. This
manual describes Zuse as it is implemented on Unix. A separate
document describing any deviations from this manual should be ob-
tained from whoever is responsible for Zuse’s installation at
your computer center.

1.2 How to use Zuse

Zuse actually consists of two programs: generate.o - an exe-
cutable program which accepts a translation grammar as input and
generates several files which will be needed for the translator
eventually produced; and skeleton.p - a partial translator writ-
ten in Pascal which must be augmented by files produced both by
you and by generate.o in order to become a complete Pascal pro-
gram which can be compiled. Figure 1 shows the creation of a
translator, skeleton.o. Figure 2 shows the execution of that
translator to translate source string x. When creating a trans-
lator, all of the files except for the user-defined translation
grammar, and LLsup.i are part of or generated by Zuse. When exe-
cuting the translator, only the source string which is to be
translated needs to be provided by the user. Llgram is produced
by Zuse. The particular manner in which Zuse creates the neces-
sary files is described in later sections of this manual.

Zuse’s two programs are used in the sequence tisted below to
create a translator:

1) Write a context-free grammar which specifies the syntax of the
source‘Xanguage. The grammar shoald be preparcd as a file us-
ing any text editor. 1t can be stored under any file name.
Because of the parsing method supported by Zuse, the grammar
must be an extended LL(1) grammar. The permissible extensions
are specified in later sections. This grammar will eventually
be used to produce a top~down left-to-right parser.

2) Embed action code into the grammar which specifies the steps
to be taken by the translator during parsing. A language de-
finition with both a syntactic specification and action code
{s referred to as a "translation grammar". The translation

grammar specifies the actions to be taken during the parsing

user—defined ————
translation ==} |generate.o| ==> Ligram
grammar ——
I
\/
user—-defined LLact.i
LLsup.1i skeleton.p Livar.i
Llconst.1
I H LLtype.i
] I LLfile.1
I tl i
\/ \/ \/

I
\/
skeleton.o

Fig. 1 Creating a Translator

Llgram source
string
I x
| H
\/ \/
| skeleton.o |
1
\/
translation
of x

Fig. 2 Executing a Translator

of a string. These actions produce a translation of the
source string.

3) Prepare Pascal code which defines all supporting routines
which will be called by the action code, including the lexical
analyzer -- LLNextToken. These routines, which will be needed
when skeleton.p 1is compiled, should be stored in the file
LLsup.i.

4) Execute generate.o on the translation grammar just prepared.
Generate.o expects the grammar to come from the standard iaput
file 8o you must redirect your file:

generate.o < MyFile

Any errors it uncovers will be reported on the standard output
file. Generate.o creates several Pascal text files which smust
be embedded into skeleton.p along with LLsup.i. Skeleton.p
has been peppered with "include" directives so that these
files will automatically be included during its compilation.

One additional file will be created - Llgram. It is a
modified version of the grammar specified in step 2, which has
been compressed to facilitate use by skeleton.o, the compiled
form of skeleton.p. Skeleton.o reads LLgram before transla-
tion begins.

5) Compile skeleton.p. If you are using the Pascal compiler
"pi", then just type:

pl skeleton.p; mv obj skeletomn.o

If you have another Pascal compiler, then invoke it im the
standard way. Assuming there were no errors in the specifica-~

L ___.
9

tion of the grammar and the definition of the routines in
LLsup.i, the resulting object code, skeleton.o, will be a
working translator. If there are errors in the grammar, then
all the steps just listed will have to be repeated. If the
translation grammar is correct, but the support routines are
incorrect, then they must be corrected and skeleton.p must be
recompiled. You must repeat this process until you are satis-
fied that the translator is correct.

6) Add error processing capabilities. Skeleton.o will detect any
E;;tactic error in & source string. The detection and pro-
cessing of semantic errors is left entirely in your hands as
the translator writer. Skeleton.o’s default error recovery is
to terminate the translation, causing an appropriate message
to be printed. Zuse also supports optional sophisticated er-
ror processing facilities which allow you to specify a number
of possible recoveries when a parsing error is detected.
These are explained in section 7.

1.3 Manual organization

This user manual itself is organized into sections based on
the steps just listed in section 1.2. A running example is used
throughout to illustrate concepts as they are introduced.

For further information about Zuse, the reader is wurged to
contact the author at the Department of Computer Science, Univer-
sity of California, Santa Barbara, California 93106, phone: (805)
961-3236 or x-4321.

2.0 Write A Context-Free Grammar

The first step in generating a tramslator .is to prepare a
context-free grammar which specifies the syntax of the language
to be translated. A context-free grammar G classically has four
components:

e nonterminals - the grammatical categories

. terminals - the alphabet of the language

e axiom -~ a nonterminal which begins all derivations
L] productions - the rewriting rules

In fact, Zuse uses a somewhat different structure dictated by the
need to distinguish between different types of terminals. Two
classes of terminals will be defined: "groups" and "literals".
Details about them are presented in section 2.3.

The grammar specification is divided into declarations and
productions. Each vocabulary symbol used in the grammar must be
declared, indicating what type of symbol it is. Just as in Pas-
cal, a symbol must be declared before it can be referenced. But
before describing how to write the grammar, the language which
will be the basis for a running example throughout the manual
will be described.

2.1 The language EXPRESSIONS

At this point the language which will serve as the running
example throughout the manual will be introduced. The language
EXPRESSIONS contains possibly empty sequences of arithmetic ex-
pressions terminated by semicolons. Its grammar is called
G_EXPRESSIONS. The operators are four basic arithmetic opera-
tions on integer values:

+ -/

Operands are unsigned integer literals. Some sample strings of
EXPRESSIONS are:

(3+4)%*(5-6); 4=6; &4 / 6;
12/ 3;
3;

The arithmetic operators follow common precedence rules; i.e., *
and / are performed before + and -, with operations being per-
formed left to right within precedence. Parenthesization can
override any default precedence.

The translation of a member of EXPRESSIONS will be its

numeric value. Hence, the translator in this csse will be an ex-

pression interpreter. For the three examples above, the transla-
tions are:

You will type in an expression from the terminal, and your inter-
preter will print its value immediately below your input. If you
type an invalid expression, then an appropriate error message
will be printed just below the incorrect input. Hence, in this
case there really is no "object code"” for the translation, since
the display of the expression’s value on the terminal is the only
desired output.

2.2 Lexical structure of Zuse grammars
2.2.1 Tokens

Zuse grammars have much the same lexical structure as Pascal
programs. Within a grammar a "token" is a sequence of printable
characters which has no embedded blanks, tabs, or newlines. In
certain cases it may be necessary to surround a token with single
quotes:

.

.. token ..

because the unquoted token is part of the metalanguage used by
Zuse to specify the grammar. For example, each production ends
with a semicolon. Hence, it is impossible to have a literal
semicolon as a terminal symbol on the right-hand side of a pro-
duction unless it is surrounded by quotes:

.o
X= .00 '3 eee H

In other contexts where there is no ambiguity, the semicolon can
be used without quotes.

Tokens may start in any column. Blanks, tabs, and newlines
are token separators. Blank lines may be freely inserted any-
where in a grammar. For convenience in later discussion, the
word "spacer” will be uniformly used to mean any positive number
of blanks, tabs, and newlines.

Zuse is sensitive to upper and lower case letters. For ex-
ample, the following three symbols could all be declared as dis-
tinct nonterminals in your grammar:

PROGRAM program PrOgRaM

80 be very careful, especially if your Pascal compiler does not
make such distinctions for fdentifiers declared in Pascal pro-
grams. Even if your compiler would treat the three symbols writ-
ten above as the same identifier, Zuse will not.

The maximun permissible length of a symbol is 12. If you
write a symbol longer than the permitted maximum, generate.o will
print an error message and disgard all charactérs of that symbol
beyond the maximum.

2.2.2 Comments |

A comment may be inserted anywhere a spacer is allowed. In
Zuse comments have the form:

(* .. comment ., %)

Thie is one of the two formats for comments used in Pascal. The
other form of Pascal comment, { .. }, is not allowed in Zuse be-
cause the curly brackets are used for other purposes as described
later.
2.3 Declarations

Every symbol used in the grammsr must be declared, & though
the order of declaration is not significant., A syabol can onl
be declsred once. Zuse will tell you 1f you declare a ly-boi

wmore than once or reference an undeclared symbol in a production

The same basic format is used for all declarations:

ISPECIFIER LIST OF STMmoLS

“

10

3.0 Embed Action Routines
3.1 Format

Once the grammar has been defined, you must add action code
which specifies how the translation will proceed. Although this
step can be done while the grammar is being written, it is often
more convenient and more reliasble to first develop the grammar,
embedding action code only after the grammar is complete.

Action code may sppear anywhere amoug the list of vocabulary
symbols on the right-hand side of a production. The code is ac-
tually a sequence of Pascal statements enclosed by curly brack-
ets:

’{a’ Pascal statements ‘}’

The first charscter after “{’ must be an ‘a’ to indicate that it
is action code. Other characters, discussed in section 7, are
used for other types of code.

Rewriting the grammar productions for G_EXPRESSIONS to im-~
clude action code yields:

Ax = ; (* empty production *)

= {a init} E {a writeln(popopand);}
‘3’ Ax ; (* note the use of a quoted ; *)

E =T E-list ;

E-1ist = Asop {a pushoptor($l.operator)} T
{a r := popopand;

1 := popopand;

popoptor(op);

if op = “+° then
pushopand(1l+r)

else
pushopand(1l-r)}

E-1list ;

= (* another empty production #*)
T =P T-list ;

T-1ist = Mdop {a pushoptor($l.operator)} P
{a r := popopand;

1 := popopand;

popoptor(op);

if op = ‘%’ then
pushopand(1*r)

else
pushopand(l div r)}

T-1list ;

P=(E);
= INTEGER {a pushopand($l.operand)} ;

Asop = + {a $0.operator := ‘+'};
= - {a $O0.operator := '-"};

Mdop = * {a $0.operator := '*°}
= / {a $0.operator := ‘/"}

Several aspects of this revised grammar warrant explanation.
For the moment ignore those strange looking identifiers which be-
gin with "$”. They refer to special variables which will be ex-
plained in section 3.5.

Action code specifies how the translation is to take place.
All aspects of that specification are left im your hands. You
can either write all of your code directly in the grammar or you
can call separately declared procedures and functions from within
the action code, or mix the two styles. The grammar above {s
written 1in a mixed style. The action code in the first alterna-
tive for T-list has two assignment statements followed by a pro~
cedure call, followed by an if-then-else statement. The action
code for the second alternative of P has just a single procedure
call. You must decide which support routines (as those user-
defined routines called from action code are called) to define
and what they will do. G_EXPRESSIONS has five support routines
referenced in the action code:

init pushopand popopand pushoptor popoptor

The declaration of these five routines must be included in
LLsup.1, which contains the support routines, before skeleton.p
can be compiled. However, at this point you only need to know
what these routines do so that you can properly write the action
code,

The action code will map the infix expressions into two
stacks — "opandstk” (operand stack) and "optorstk” (operator
stack) -- where the operands and operators of the expression will
be held, respectively. The algoritha to evaluate infix expres-
sions using two stacks is quite standard, and it {s assumed that
you are familiar with {t. The code defining these five functions
is specified in section 4. "Init" 1{nitializes the two arrays
which represent the stacks and two integer variables, "topopand”™
and "topoptor", which point to the top of "opandstk"™ and "op-
torstk”, respectively. "Popopand” and "pushopand” pop and push
elements onto opandstk, while “"popoptor" and "pushoptor™ are the
analogous routines for optorstk.

3.2 Variable, constant, type, and file declarations
3.2.1 Variable declarations

Two variables are referenced in the action code -- "1" and
"r", These variables hold temporary values of the left and right
operands of some operator. Because Pascal requires the declara-
tion of each variable which is referenced, there sust be some
provision for declaring these variables. Note that Zuse itself
cannot have already declared them because the particular set of
variables needed for the action routines will vary from transla-
tor to translator. To permit user—-declared variables, an addi-
tional declaration type is permitted in grammars in the declara-
tion section: -

Iv Pascal variable declarations

If a ‘v’ (or 'V’) specifier is used in a declaration, then the
variable declaration 1is copied verbatim into file "LLvar.i”.
Note that each declaration ends with a semicolom. If wmcre than
one variable 1is declared, they are copied in the order in which
they appear in the grammar.

G_EXPRESSIONS needs several declarations:

v op: char; (* the operator popped from
optorstk *)

Iv toptorstk: integer; (* top of optorstk *)
topandstk: integer; (* top of opandstk *)

Zv opandstk: array{l..stksize] of integer;
optorstk: array[l..stksize] of char;

Zv 1,r: integer; (* temps *)

These six variable declarations can appear anywhere in the de-
claration section. Since the order of variable declarations is
not important in Pascal, they can be declared in any order. Note
that several variables can be declared using a single "Iv" as in
the declaration of toptorstk and topandstk.

3.2.2 Constant declarations

The integer constant "stksize" is referenced in the declara-
tion of opandstk and optorstk above. This constant and any oth-
ers which you need for your actioan code can be specified through
a constant declaration in the grammar. A ‘¢’ or ‘C’ is used to
specify a constant declaration. G_EXPRESSIONS needs:

2c stksize = 20; (* aaximum depth of stk *)

Constant declarations will be placed into the file "LLconst.i"
for 1inclusion into skeleton.p. They will appear in Liconst.i in
the same order as they appear in your grammar. It is vour
responsibility to guarantee that a constant is defined before it
is referenced.

3.2.3 Type declarations

Although they are not needed for this example, vou can de-
clare new types using the ‘t’ or ‘T’ specifier. For example, if
we wanted our interpretor to only work on nonnegative numbers, we

aight declare:

%t NonNegative = 0..maxint;

13

and substitute NonNegative for integer in the variable declara-
tions:

v toptorstk: NonNegative; (* top of optorstk *)
topandstk: NonNegative; (* top of opandstk *)

Type declarations will be placed into the file "LLtype.i" for in-
clusion into skeleton.p. They will appear in LLtype.i in the
same order as they appear in your graemar. It is your responsi-
bility to guarantee that a type is defined before it is refer-
enced.

3.2.4 File declarations

The purpose of skeleton.o is either to interpret the input
or to map it 1into some object code. It therefore must have a
file from which the source string is read and, in the latter
case, a file where the object code is placed. In addition, a
complex compiler may also need several other files. The file de-
clarations themselves can be handled as ordinary variable de-
clarations. For example, if we wanted a to write a C compiler,
the object code could be placed in a file called "object™ which
was declared by:

Xv object: file of char;

The action code which produced the object code would write tc
this file.

An additional problem arises, however, because Pascal also re-
quires that each file be listed in the program statement. Hence
a 2f declaration is introduced. The program heading fo:
skeleton.p has the form:

program skeleton{ input, output, LLgram
#include LLfile.i
'
1€ you wish to augment skeleton.p with new files, their names
should be listed in a 2Zf declaration, begun by & comma, and
separated by commas. If we wanted to add an object and a message
file to skeleton.p we would declare these variables by:

v object: file of char;
message: file of char;

and also declare the files by:
Xf ,object, message

The former would be included 1;to the variable declaration sec-
tion of skeleton.p, while the latter would yield the program
statement:

prograa skeleton(input, output, Llgram
,object, message
)3

3.3 Naming conventions

Because Pascal is a block-structured language, the scope of
declarations in skeleton.p is very important. You might acciden-
tally select a name for one of your variables, types, constaats,
or support routines which already has been declared in skeleton.p
at the sase lexical level. This would cause a compile-time error
vhen you tried to compile skeleton.p. To minimize the risk of
such collisions all identifers in skeleton.p which are at the
same lexical 1level as those identifiers which you will declare
for inclusion within it begin with the characters "LL". For ex-
ample, the main procedure of skeleton.p is called "LLMain". 1If
you simply avoid declaring identifiers which begin with "LL" you
should never encounter any difficulties.

3.4 Parsing action

. Skeleton.o will comstruct a parse tree for the source string
in a top-down left-to-right sanner. The axiom you declared in
the grammar will be the root of the parse tree. It will compare
the first token of the source string against the selection sets
of the alternative productions for the axiom. Assuming it finds
a4 production with the required selection set element, it will ex-
pand the axiom by hanging tree nodes from it corresponding to the
right-hand of the selected production. It will then examine the
leftmost child of the axiom which was just added. There are

three types of nodes that child can be, depending on the kind of
symbol from the right-hand side of a production which it stands
for —— nonterminal, terminal, and action. The translator’s
response will depend ou which type of node it finds.

If the child i{s a nonterminal node, the same process which
was just applied to the axiom will be repeated for the child.
The alternative productions of the nonterminal will be scanned to
find one whose selection set matches the current token. Failure
to find such an alternative indicates that the source string has
a8 syntactic error, and error processing as detailed in section 7
will be initiated.

On the other hand, if the child is a terminal, the parser
will compare the first token of the source string against that
terminal, If they "match"; i.e, they are equal, the parser will
advance to the right sibling of that node, and advance to the
next token in the source string. At this point the whole process
will be repeated with the particular action taken depending on
whether the tree node is a nonterminal action code, or a termi-
nal.

If the child is action code, that code will be executed.
Presumably this code will manipulate the variables declared in
the grammar by "Xv" declarations in order to effect the desired
translation. Once this code completes execution, the parser will
advance to the right sibling of that tree node, but will not ad-
vance to the next token in the source string since nothing in the
parse tree has been "matched” against it.

When the right-most child of a parent nonterminal has been
visited in the manner just described, the parsing of that nonter-
minal is considered complete. Parsing continues with the right
sibling of that parent node. This process iterates until an er-
ror is uncovered, in which case the error recovery policy dic~
tates what then happens, or until the end of the source string 1is
reached, or until the entire parse tree has been constructed. If
the end of the source string is reached before the entire parse
tree has been constructed or conversely, the string is not in the
source language and error processing is initiated.

The order in which nodes are added to the tree and then ex~
amined dictates when action code will be executed. For example,
in G_EXPRESSIONS 1if the second production is selected when ex-
panding axiom Ax, then the first thing the parser will do is call
init, the action routine which initializes the data structures
necessary to compute the value of the expression. Once initiali-
zation is complete, the parser will attempt to expand E into a
complete expression. Based on the other action code which will
be executed during that expansion, the value of the expression
will be on the top of opandstk when E has been completely expand-
ed. At that point other action code is executed which causes
opandstk to be popped, and the value to be printed. The parser
then moves on to the semicolon, and finally to Ax. If this in-
terpreter is to operate correctly, the other action code embedded
in the remaining productions must ensure that the value of the
string derived from E is stored atop opandstk. To understand how
this is done, the use of synthesized attributes to pass informa-
tion throughout the parse tree must be examined.

3.5 Attributes

The last feature of the action code which warrants explana-
tion is the appearance of those strange variable names with a "$"
in them., They arise from the use of attributes to pass informa-
tion through the tree.

Each node of the parse tree has associated with it a vari-
able or "attribute® which can be used within action code to com-
pute the translation of the source string. For G_EXPRESSIONS
this attribute will be used to pass information about integers
and operators in the source string. Because the use of the at-
tribute will vary so greatly with the source language and its in-
tended translation, it would be awkward to predefine the data
type which the attribute has. Therefore, each grammar writer
must declare the attribute data type using a type declaration:

Xt LLattribute = type-declaration
The reserved name "LLattribute” must be used for this purpose.
Since any Pascal type declaration can be used, a record can
be declared to actually provide several distinct attributes,

Hence, the restriction to a single attribute per parse tree node
is not actually a hindrence. For example, G_EXPRESSIONS needs

L]

14

S

some way to store both integer values and char values, leading to
the declaration:

It LLattribute = record
operator: char;
operand: 1integer
end;

In fact, if you would prefer different nodes to have different
attributes, rather than having each node have all attributes,
this ie readily achieved through a variant record:

It LLattribute = record
case selector-type of
selectorl: (fieldl);
selector2: (field2);
selectork: (fieldk)
end;

In order to refer to an attribute, the action code wmust use a
special naming scheme involving "$”. "§" has a special meaning
when used inside action code. If n is an unsigned positive in-
teger, then "$n" refers to the attribute of the a-th vocabulary
symbol on the right-hand side of the production in which the "$n"
appears. "$0" refers to the attribute of the left-hand side of
the production. In other contexts, "$" has no special wmeaning.
For example, the first alternative for E-list:

E-list = Asop {a pushoptor($l.operator)} T
{a r := popopand;

1 := popopand;

popoptor(op);

if op = “+ then
pushopand(1+r)

else
pushopand(l-r);}

E-1ist ;

contains action code which has '"$l.operator" im it. In this
case, $l.operator refers to the value of the operator field of
the attribute of Asop which is the first symbol on the right-hand
side of that production.

To better understand the way in which information is passed
up the tree, consider the parsing of "3+4;". The derivation will
begin constructing the parse tree:

Ax

| | f I
{a tnit} E {a writeln(popopand)} ; Ax
Init will be called to initialize the data structures, 1in this
case, setting toptorstk and topandstk to be zero showing that no
eleaents have been stacked yet. Then the parser will expand E, T
and P ia turn giving:

Ax
|
| | I I
{s init} E {a writeln(popopand)} ; Ax
|
I |
T E-1ist
|
| |
P T-1ist

| |
INTEGER {a pushopand($l.operand)}

At this point the parser will visit the node labeled INTEGER and
match 1t against the current token "3" in the source string. The
lexical analyzer should classify "3" as an INTEGER so that the
match will succeed. The current token also has an attribute.
The lexical analyzer will assign the integer value 3 to the
operand field of that token’s attribute.

Next the parser advances to visit the action code which 1s
to the right of the node labeled INTEGER. This action code will
be executed causing $l.operand to be pushed onto the operand

il

stack, The first vocabulary symbol starting from the left end
among its siblings {s the node labeled INTEGER which was just
matched against "3" in the source string., Hence, the integer
value) is pushed onto the operand stack.

At this point the right-wost child of the node labeled P has
been processed. Hence, the parser would next visit the node la-
beled T-1list. The second alternative for T-1list will be selected
causing T-list to expand into the empty production.

Redrawing the parse tree, eliminating nodes already visited
vhich can play no further role in the translation gives:

Ax

|
{a 1init} E

{a writeln(popopand)} ; Ax

E-1ist and Asop now expand to yield:

Ax

| | |
{a toit} E {a writeln(popopand)} ; Ax

T E-list

|
AtTp {a pushoptor($l.operator)} T {a .. } E-list

+ {a $0.operator := ’+'}

The first alternative production is selected for Asop because the
current token is "+". The action code in that production assigns
$0.operator the character value ‘+°. $0 refers to the attribute
on the left-hand side of the production, which corresponds to the
node labeled Asop. When that action code 1s executed, the opera-
tor field of the node labeled Asop is assigned the value "+,

The ne : node visited is the action code to the right of
Asop. It refers to $l.operator. This is the value just assigned
to the operator field of Asop’s attribute.

This scenario continues a while longer until the entire
parse tree is formed, but by now the basic information passing
mechanisa using attributes should be clear.

There 13 a simple restriction on the use of attributes in
action code which 1is dictated by the order in which the parse
tree is constructed. An attribute must have a value before it
can be referenced in action code. Since skeleton.o parses top-
down left-to-right, $n in action code A only has a value 1{f the
n-th vocabulary symbol occurs to the left of A. For example:

X =Yl {a .. x =82 ..} Y2 Y3

would be nonsensical because the value of $2; i.e., the attribute

of Y2, will not be known when the action code referencing it is
executed.
Although the reference to $2 makes no sense in the above
production, the very similar:
X =Yl {a .. $2 := x ..} Y2 Y3
which assigns a value to $2 is perfectly reasonable. The attri-

bute of Y2 would be assigned a value which could then be passed
down the parse tree when Y2 was expanded (assuming it were a non-
terminal). This gives you the power of both synthesized and in-
herited attributes.

In fact, there is no logical reason why you should not be
able to assign a value to the attribute of any vocabulary symbol
anywhere i{n the production from any action code in the produc-
tion. However, generate.o has a restriction on assigning values

15

IIIlIIIlllIlIlIllIIIIIIllllIlIIIIIlIlllIlIlIlIIIIIIIlIllIIIIIIIIIlIIllIIlIllllIlIllllIlIIIllIIIIIlIIllIlIIIIIIIIIIIIIIIIIIIIIIII

to attributes forced by design decisions for generate.oc. You can
assign a value to the vocabulary symbol to the immediate right of
the action code which contains the assignment -~ but not to any
symbol further to the right. Hence, the production just above is
legal, but the similar:

X =Yl {a..$3 :=x ..} Y2Y3

is not legal because the symbol to the immediate right of the ac~
tion code is the second vocabulary symbol, not the third one.

4.0 Define support routines

The support routines referenced in the action code wmust be
defined before skeleton.p can be compiled, They can freely
reference any variables, constants, types, or files declared by
the translator-writer in the grammar. For the example, the five
routines are:)

procedure init;

begin
topandstk := 0;
toptorstk := O;
end;

function popopand: integer;
begin
if topandstk = 0 then begin
writeln(operand stack underflow’);
LLFatal; {terminate translation}
end
else begin
popopand := opandstk{topandstk];
topandstk := topandstk - 13
end;
end;

procedure pushopand(element: integer);
begin
if topandstk = stksize then begin
writeln(operand stack overflow’);
LLFatal; {terminate translation}
end
else begin
topandstk := topandstk + 1;
opandstk[topandstk] := element;
end;
end;

procedure popoptor(var result: char);
begin
if toptorstk = 0 then begin
writeln(operator stack underflow’);
LLFatal; {terminate translation}
end
else begin
result := optorstk{toptorstk];
toptorstk := toptorstk - 1;
end;
end;

procedure pushoptor(element: char);
begin

if toptorstk = stksize then begin
vriteln(operator stack overflow’);
LLFatal; {terminate translation}
end

else begin
toptorstk := toptorstk + 1;
optorstk[toptorstk] := element;
end;

end;

These five function and procedure declarations should be placed
in LLsup.1.

These routines reference a
described:

procedure not previously

LLFatal

LLFatal is s pre-defined procedure which will terminate the
translation after printing an appropriate message. It is used

when a catastropic translation error occurs, such as overflowing
optorstk. It is also called as the default error recovery when a
syntactic error is detected by skeleton.o and no user-defined
recovery has been specified in the grammar. You can freely call
it within your action code. It takes no arguments.

5.0 Lexical Analyzer

Once the support routines are complete, the lexical analyzer
-- LLNextToken —- must be constructed. The lexical analyzer
needed for translating EXPRESSIONS has been broken down into two
routines, LLNextToken and nextchar. The latter is called by
LLNextToken to obtain the next character from the source text and
to take care of bookkeeping chores such as writing the lines of
source text out to a listing file and updating a line counter.

Several pre-defined error processing routines will need to
know the line number of the source text where the error occurred.
This information must be kept in the pre-defined integer variable
LLLineCount. Skeleton.p will initialize this counter to 0 for
you before parsing begins. It is the your responsibility to wup-
date {t properly through LLNextToken.

procedure nextchar; {assign next character froa source
to curchar}
begin
if not eof then begin
if LastWasEoln then begin
LLLineCount := LLLineCount+];
LastWasEoln := false;
end;
if eoln then
LastWasEoln := true;
read(curchar);
end {if not eof}
else
curchar := ‘@
end; {nextchar}

procedure LLNextToken;
var
i: integer;
begin with LLCurtok do begin
{curchar should become the first non-blank}
while curchar = “ ’ do nextchar;
{clear PrintValue field}
for { := 1 to LLStringLength do
PrintValue[i] := ' *;
if curchar in ['0°..”9") then begin
{token is an integer}
i =13
TableIndex := LLFind('INTEGER’, group);
PrintValue([i] := curchar;
attribute.operand :=
ord{curchar) - ord(’0");
nextchar;
while curchar in [°0°..°9°] do begin
i = i+];
PrintValue[i] := curchar;
attribute.operand :=
attribute.operand*10 +
ord(curchar) ~ ord(’0°);
nextchar;
end;
end
else 1f (curchar = “@’) and eof then begin
PrintValue := ‘end-of-file’;
TableIndex := LLFind(‘@°, group);
end
else begin
PrintValue[l] := curchar;
attribute.operator := curchar;
Tablelndex := LLFind(PrintValue, literal);
nextchar;
end;
end; {with}
end; {LLNextToken}

{get next token from candidate}

There are & handful of simple conventions which must be followed
in constructing LLNextToken so that it communicates with the
parser properly.

First, despite its appearance above LLNextToken does have a
parameter. Because this routine must be referenced within
skeleton.p long before the point where LLsup.i is inserted into

16

i, LLNextTokeq-has a forward declaration in skeleton.p:

procedure LLNextToken(var LLCurTok: LLTok);
forward;

All direct communication between the lexical analyzer and the
parser is through the parameter LLCurTok. The type LLTok is
pre~-defined in skeleton.p to be:

LLTok = record
PrintValue: LLStrings;
attribute: LLattribute;
TableIndex: integer
end;

LLStrings is pre-defined to be:
LLStrings = packed array{l..LLStringlength] of char;

where LLStringlength i{s a pre-defined constant equal to 12.
LLattribute 1{s the user-declared type discussed in section 3.5.

LLNextToken has one major function -- to fill-in the three
fields of LLCurTok. LLNextToken should assign a value to the at~
tribute associated with the current token. The particulars of
this assignment will vary with the declaration of LLattribute,
the particular token encountered, and the translator being imple-
mented. LLNextToken should assign to the PrintValue field of
LLCurTok the string which you want to be printed when the buflt-
in error-processing routines are called. For ordinary literals
and groups, this is usually the characters of the candidate
string. For non-printable terminals, such as an implicit end-
of-statement marker as is found in FORTRAN, the string ‘end-of-
stat’ might be assigned to LLCurTok.PrintValue instead.

LLNextToken must also assign a value to the "TableIndex"
field of the current token. Skeleton.p has an internal symbol
table (not to be confused with any symbol table which you might
produce for your translator) to keep information about the termi-
oal symbols of the grammar. This table is designed to minimize
parsing time. The table structure is hidden from you and is fr-
relevant to what you have to write in LLNextToken., All of your
communication with that table will be through the pre-defined
routine "LLFind":

function LLFind(item: LLStrings; which: LLStyle): integer;

Its first argument is the literal or group name which this token
corresponds to. For literals this value normally equals
LLCurTok.PrintValue. For groups, LLFind should be called with
the group name rather than the literal value of the token. The
second argument is either the enumerated constant "group"” or
"literal" depending on the token type. LLFind returns the index
into the symbol table where that argument can be found. If the
token cannot be found, the index value 0 i{s returned, indicating
that the token is illegal. You can process an illegal token at
the lexical level if you prefer or pass the responsibility om to
the parser. In any event, wvhether LLFind returns a positive or
zero integer, this index should be assigned to
LLCurTok.TableIndex.

The special case vhen the end of the source string is
reached 1is handled quite simply. LLFind should be called with
the first character of item equal to "€" and the remaining char-
scters blank. "@" is a group. The value returned by LLFind
should be assigned to LLCurTok.TableIndex. LLCurTok .PrintValue
could be assigned the string ‘end-of-file’ or some other ap~
propriate string, and LLCurTok.attribute should be left unde-
fined.

Note that there are two user-defined variables referenced in
nextchar. They must be declared in the grammar along with the
other variables used for the other support routines in LLsup.i:

v LastWasEoln: boolean;
curchar: char;

In order for LLNextToken to work properly the first time it
is called, curchar and LastWasEoln must already have a value,
Hence, an action routine which assigns these two variables a
value must be called before skeleton.o references LLCurTok. To
do so a speclal user-defined procedure, ""LLInitialize" will al-
ways be executed before parsing really begins. After LLInitial-
ize has been executed, LLNextToken will also be called automati-
cally causing LLCurTok to become defined so that parsing can be-—
gin. LLInitialize can also be used to reset the sourcefile if it

is not that standard input, or to reset or rewrite any supplemen-
tal files declared in the grammar.

Since LLInitialize will automatically be called, you should
be sure to 1include a declaratiom for it in LLsup.i, even 1f {t
doesn’t really do anything useful in your translator,

procedure LLInitialize;
begin
LastWasEoln := true;
nextchar {must be called to ensure LLNextToken works}
end;

All support routines including LLNextToken are placed into
LLlsup.i.

If you are using a true Pascal compiler such as Berkeley’s
"pc" which supports separate compilation and linkage to routines
written in C, (as opposed to "pi" which produces P-code, not
machine code, and hence does not support separate compilatiom),
you may want to consider writing a small C program to do the ac-
tual reading and writing and linking that with the compiled ver-
sion of skeleton.p. Depending on the nature of the i/o, a C ver-
sion of "nextchar" could perform significantly faster than a Pas-
cal version. Since such a large percentage of the total time is
spent reading and writing, this could dramatically affect the
overall run-time of skeleton.o. Whether this particular strategy
will, {n fact, improve skeleton.o’s performance depends heavily
on the quirks of your Pascal compiler and the i/0 performed in
skeleaton.o.

6.0 Execute generate.o and compile skeleton.p
6.1 Normal translation

At this point all pieces necessary to comstruct the transla-
tor are complete. Generate.o should now be executed redirecting
the input from your grammar file:

generate.o < MyFile

Generate.o will print a few informational messages as it
processes. In particular, it will tell you how masny vocabulary
symbols and productions are in your grammar. It has extensive
error checking capabilities; for example, it will flag a refer-
ence to an undeclared vocabulary symbol, a second declaration of
the same symbol, or the appearance of an i{ll-formed production.
When genccate.o finishes, it will return to the shell from which
it was called.

At this point you should compile skeleton.p using the Pascal
compliler:

pl skeleton.p; mv obj skeleton.o

All files except LLsup.i that sust be included in skeleton.p will
have been generated when you executed generate.o. Assuming there
are no fatal error messages from the Pascal compiler, the object
code should be an executable version of your translator.

The Pascal compiler may fssue warnings that certain pro-
cedures which begin with "LLSkip" have not been referenced --—
LLSkipToken, LLSkipNode, and LLSkipBoth. Do not be bothered by
these warnings. These three procedures are pre-defined for error
processing. If you use the default error recovery, they will not
be referenced (which should be the case for G_EXPRESSIONS now).
Later when you add error recovery information into your grammar,
you will probably reference one or more of the routines, in which
case the warnings will disappear.

You may receive two other warnings as well which you can
safely ignore. The compiler may warn you that fields "table" and
"grammar” of LLgram” are not referenced. It is just a quirk of
pi’s analysis routines that {t thinks these fields are never
referenced. They, in fact, are referenced.

If other warning or error msessages appear