BULK RATE
U.S. POSTAGE
PAID
WILLOUGHBY, OHIO
Permit No. 58

£833

ts
e Comy

ht@n: Pascal Group
Univ, of Minneso
217 Brows
C 227 EX
Hxnnesrolis:HN 55455

Rooe
uce:

2903 Huntington Rd. ¢ Cleveland, Ohio 44120
Return postage guaranteed Address Correction requested

Return to:

Pascal News

bl Bea \gﬂé

PascarL Uskrs GROUP

Pascal News

.|
Communications about the Programming Language Pascal by Pascalers

Pascal Processor Validation Procedure

A Better Referencer

Use of Generic Capsules

¢ Implementation Reports

Validation Suite Reports

® Announcements

Number

20

__APRIL 83 _

POLICY: PASCAL NEWS (Jan. 83)

® Pascal News is the official but informal publication of the User's Group.

Purpose: The Pascal User's Group (PUG) promotes the use of the programming language Pascal as
well as the ideas behind Pascal through the vehicle of Pascal News. PUG is intentionally de-
signed to be non political, and as such, it is not an “entity” which takes stands on issues or
support causes or other efforts however well-intentioned. Informality is our guiding principle;
there are no officers or meetings of PUG.

The increasing availability of Pascal makes it a viable alternative for software production and
justifies its further use. We all strive to make using Pascal a respectable activity.

Membership: Anyone can join PUG, particularly the Pascal user, teacher, main-
tainer, implementor, distributor, or just plain fan. Memberships from
libraries are also encouraged. See the COUPON for details.

e Pascal News is produced 4 times during a year; January, April, July October.

* ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a virtue) for Pascal News single-
spaced and camera-ready (use dark ribbon and 15.5 cm lines!)

o Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

e Pascal News is divided into flexible sections:
POLICY — explains the way we do things (ALL-PURPOSE COUPON, efc.)

EDITOR'S CONTRIBUTION — passes along the opinion and point of view of the editor together with changes
in the mechanics of PUG operation, etc.

APPLICATIONS — presents and documents source programs written in Pascal for various algorithms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance, style, output convenience, and general
design.

ARTICLES — contains formal, submitted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at different computer instaliations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS — contains short, informal correspondence among members which is of
interest to the readership of Pascal News.

IMPLEMENTATION NOTES — reports news of Pascal implementations: contacts for maintainers, implemen-
tors, distributors, and documentors of various impiementations as well as where to send bug reports. Qualitative
and quantitative descriptions and comparisons of various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-iImplementation Notes, and Machine-Dependent
Implementations.

VALIDATION SUITE REPORTS — reports performance of various compilers against standard Pascal
1SO 7185.

Pascal News

Communications about the Programming Language Pascal by Pascalers

APRIL 1983 Number 25

ShWw W

8 S8ERVURRR

&8

a

51

EDITORS NOTES

PASCAL USERS GROUP (UK)

LT. and M.L.S.S. By Phillip Darrington
Pascal-An Effective Language Standard By Brian Wichmann
Pascal Pr Validation Procedure By David Blyth

SOFTWARE TOOLS

A Better Referencer By J. Yavner .
The Use of Generic Capsules with the University of Minnesota Pascal 6000 Compiler
By Frank L. Friedman, Alessio Giacomucci, Carol A. Ginsburg and Anita Girton

ANNOUNCEMENTS

PACS Computer Game Festival
Oh! Pascal!

New Modula-2 Version

New Ticomm Microcomputers
Edison on |BM Personal Computer
JRT Pascal

Pascal Compiler for IBM Mainfi
Great Plains Announcement
INMOS Announces OCCAM
Tiny Pascal Plus

Help Wanted

Ridge Thirtytwo Graphics

VALIDATION SUITE COUPON

IMPLEMENTATION REPORTS
Machine Index

VALIDATION SUITE REPORTS

HP 3000 Series 33

Intel 808S, Zilog 80 (Cogitronics)
IBM 370 (AAEC)

Pascat 1100

IBM 4341

VAX 11-780

BACK ISSUE COUPON

MEMBERSHIP COUPON

B i

Good Members Hello;

I now have control of most elements of Pascal
News and future sub ion articles, and
good jokes should be addressed:

Pascal News

2903 Huntington Road

Cleveland, Ohio 44120

Our United Kingdom and European elements are
thriving and boisterous.

PUG (UK) PUG (Eur)

P.O. Box 52 ARGE Pascal

Pinner Hellmut Weber
Middlesex HAS 3FE Degenfeidstrasse 2
U.K. D — 8000 Miinchen 40

These groups should be excellent sources of local
and internationat information.

We have lost an element and have no successor.
PUG (Aus) has experienced increased costs and de-
cided PUG (USA) could support them with little loss
of timeliness. I would like to thank them for their past
performance. I am sorry I did not have the opportunity
to work with them.

PUG (USA) will now serve various needs.

We now serve inside USA and outside USA mem-

bers and also provide an air mail option for those who
need Pascal News as quick as possible.

Writing of timeliness I am reminded that the news-
letter has deadlines. These are January 1Ist, April 1st,
July 1st and October Ist. When you have material for
the newsletter please send it as quick as possible. Do
not worry about the deadlines but keep in mind news
loses its value as it matures.

I will continue to publish implementation notes and
announcements of the trade. I encourage members and
vendors to test drive their new compilers with the
**Validation Suite’’. Send the reports to me and then we
will all know the best performing compilers.

I have been asked if we would pay for articles. I
have thought about this and worried where I would get
the money.

1 have decided to accept advertising and use this
money to pay honorariums to writers of good articies.

A reminder that back issues will reflect higher re-
printing costs and have a $25 per sét price after July st

Its still a bargain at $15 now.

One more thing. Thank you for your renewals and
lovely comments. I have been encouraged by your
thoughts.

Charlie

Dear Pascalers,

here we are reopening PUG Europe:
Lor + Martha +

Erwin + Hellmut +

Jurgen + Manfred +

Urf (Korbinian).

We are Pascal fans and users from the university
and industry who are organizing in our spare time the
distribution of Pascal News for the European region.

From our viewpoint, being mainly Pascal users, we
would like to encourage you to help in keeping Pascal
News aliving forum, a market place for all Pascal users.
So here again is a call for papers and programs. Thcre

two Pascal implementations whlch use onec name (np—
pend) for two non: dard pred d pr ing
different things (append one string to another versus
open a textfile for appending text).

To increase the market place function of Pascal
News we should like to ask everybody who provides
a Pascal source for publication to state whether he/she
is willing and/or able to distribute this source in ma-
chine readable form (or even as a well readable listing)
and if so at what cost.

Lastly we would like to ask all those wishing to
contact us to use our official address:

ARGE Pascal
Hell Weber

are certainly many tools, especially for textpre

which are of interest for the Pascal community, maybe
for simple use, maybe in order to compare ideas about
problems which many of us may already have encoun-
tered. And think about all the programs for solving the
daily commercial problems.

Another subject which we think important is doc-
umentation. If you have to (or like to) use non-standard
features mentioning those increases portability. An ex-
treme example of the necessity of documentation are

Degenfeldstrasse 2
D — 8000 Munchen 40

and not to send registered letters. (We had some prob-
lems, as there is no Mr. Pascal to claim them.) If you
want to send us money for subscription please use our
postgiro account. Munchen 51589-801 or send an Eu-
rocheque and please take note that any other form of
payment means additional paperwork for us.

Stay happy with Pascal!

Compilers Notes

Pascal Users Group (U.K.)

Pascal News 23a is a supplement, to plug the
lengthening gap between US originating 23 and 24.
Readers will note that its contents are quite different
from those of previous editions. There is a shift of em-
phasis from matters of concern at leading edge Uni-
versity level, to those of concern to producers and users
of inexpensive standardized products.

That shift has been wholly dictated by the content
of material submitted for publication. Whether it is a
temporary side-step or a permanent change, will also
be decided by contributors (to future editions).
PUG(UK) is the servant of you the subscribers and as
such, will publish material originating from any i
of the user community.

We are ali indebted to each contributor but Tony
Heyes's generosity in offering his Bibliography suite of
programs for refinement through the medium of PN is
particularly appreciated. Constructive critiques are
welcome.

There is a widening of the user base and an overdue
deployment of resources to that end, evidenced by the
complementary nature of articles from widely differing
sources. Read on and judge for yourselves. Although
you will find that 23a is pitched at quite a different level

Imagine the disappoi t at failing to find any-
thing innovative or even mildly interesting. Discovered
that with a single exception, exhibitors did not know
whether standard Pascal was implemented on the ma-
chines offered to the public. More than onc of those
asked, replied ** Yes, it's called UDCS or something like
that". At one stand, sponsored by British Petroleum,
the Department of Trade and Industry, the Council for
Educational Technology, and others, an ‘expert’ merely
looked blank and suggested that 1 ask someone else.
‘Someone Else’ replied **We are only interested in
things for use in Education’’. At the National Comput-
ing Centre stand, another expert, when asked if his
stand offered any information about standard Pascal
and its implementation or use in a microcomputer en-
vironment, replied **No, there is no demand'’, deftly
followed by **Can I help you sir?"* to someone standing
behind me. In some instances, the initial answer was
"Yes“. followed by mwrepresenlauve flannel when a

ation was req

Met a guy who holds a powerful position in the
largest education authority in Britain. He believes that
BASIC is an *‘appropriate’’ language for the ‘‘mass’”
of young people who **won't bother’’ to become seri-

from that of your usual expectations of PN, I si ty
hope that you will welcome it as a stop-gap until 24 be-
comes available from Rick, Andy, and Co.

The following is offered as an illustration of the
scene which prompted the production of a supplement.

Intrigued by advertising which referred to *‘mere
humans'*, | went along to the personal computer show
at the Barbican on September 12th.

ously i din the technology. I should admit at this
point, that had my first experience of a perception of
machine intelligence been through the medium of BASIC
(or COBOL, FORTRAN, etc.), I might easily have
Jomed the nnks of those who elther “‘won’ t bother“ or

d by ob of
hunches guesses , and a dash of perceptual skill which
only occasionaily fails. PUG

I.T. and M.L.S.S.

Reproduced with Phillip Durrtn.lon'a pennhdon

One of the aims of Information Technology Year
and the Microelectronics Education Progmmme is to

‘torial, textual and numerical information by a micro-

electromcs based combmuuon of computing and

involve schoolchildren in the use of micr
and related electronic devices. There are the M.E. P
the Micros in Schools Scheme, exhibitions and events
throughout the year and beyond lt is, perhaps. fortun-
ate that Mr. Cal d to be wi g tele-
vision on the evening the programme “‘Now the Chlps
are Down’’ was broadcast and was spurred into action
then, or we would probably find the propaganda even
more frenetic than that now being put out by the en-
ergetic Mr. Baker, the prophet of IT.

Information Technology is a cunously dnffuse name
for a Year. The ofﬁcnal definition, ‘*the pro-
cessing, storage, d ination and use of vocal, pic-

PUG(UK)

* appears to encompass most of
the activities of the average person, except cating and
one or two other processes, although the use of a com-
puter is not often considered essential to the more basic
of these.

So far as its involvement of schoolchildren is con-
cerned, the publicity is decidedly shrill, the Minister's
aimbeingtohavea p inevery dary school
by the end of the year and even to think about providing
them for primary schools.

There can be no argument that young people must
be aware of computers and how to use them, but it does
seem possible that the p blaze of publicity tends

-
|
I

1o obscure the point that computers are a means, not
anend. There is also the question of how the micros are
0 be used in schools.

According to the fifth edition of the Concise Ox-
ford Dictionary (now, admittedly, modified), a com-
puter is ‘‘a calculator — an electronic calculating ma-
chine'’ — an unfortunate description, taken too literally
by at least some of those responsible for introducing
youngsters to computing, with the result that the school
micro is often given to the senior math teacher to guard
with his life, presumably on the grounds that computers
are electronically mathematical and possess no rele-
vance to any other subject.

In other schools, the computer is treated as a kind
of totem, and the pupils are taught **Computer Stud-
ies'". As a subject, computing (meaning programming)
is a singularly empty one, unless the pupil learning it
intends to become a progr . A is an aid
to the process in which it is used — in this instance,
learning — and an element of transparency to the user
rather than an obscuring of the subject by undue atten-
tion to the computer must be the aim.

Clearly, an overnight transformation, after which
every teacher would be using a micro as to the manner
horn, is hardly feasible. But, until the school micro (or

one of its terminals or even a micro owned by a pupil
or teacher) can be used naturally, as is a dictionary or
pocket calculator or a video recorder, it will dominate
the learning process. Utmost priority should be given
to teachers from all disciplines, from home economics
to athletics, to use the computer as an aid, rather than
as a distraction, so that pupils who are not to specialize
in science or engineering can see that it is of advantage
to them to be at ease with computers, but no more than
that.

The Inner London Education Authority is aware
of these problems and is educating teachers in the use
of computers so that, even though there may be only
one micro or terminal in the classroom, the pupils will
learn the place of a computer by, to use ILEA’s word,
‘‘osmosis’’. However, there is evidence aplenty that
education authorities in other areas are either hypno-
tized or revolted by the new equipment and, accord-
ingly, either enshrine it or pass it to the school computer
fanatic to impress people with.

In short, a computer is a useful tool, but that is all
it is: it can help or it can dangerously hinder learning,
and only the education of teachers in its natural use as
an aid can decide which. PUG

Pascal — An Effective Language Standard

Brian A. Wichmann,6/5/82

Over the last few years, the programming language
Pascal has grown in popularity very greatly. It is widely
used for teaching in Universities, is available on most
micro-processors and main-frames as well. In fact, Pas-
cal is one of the few languages that form a bridge be-
tween microprocessor systems and the main-frame
world.

Until recently, there has been one drawback to
Pascal as a general purpose software tool. The defini-
tion of the language was not very precise and in con-
sequence, the portability of Pascal programs was prob-
lematic. The British Standards Institution (BSI set up
1group under Dr. Tony Addyman to produce a standard
Jefinition of the language. This was later superseded by
wn ISO group also under Tony Addyman. Last October,
1SO agreed to the standardization of Pascal, and after
zditorial work on the document, BSI published the
Standard in February of this year (BS 6192).

What does this mean for users of Pascal? The port-
bility of Pascal programs should be much improved
provided suppliers impiement the Standard and users
write their programs to conform to the Standard. One
might think that the position with Pascal is no different

. rom that of COBOL or FORTRAN and yet portability
rroblems arise with these languages. There are several
casons for believing that Pascal is different:

Article formed the basis of piece in Computer Weekly
5y Phillip Hunter. 11th Feb. 1982 page 14

1. The Pascal standard is more comprehensive than
that of COBOL or FORTRAN. For instance, the
COBOL and FORTRAN standards do not require
that an invalid program is rejected by a compiler.
The Standard for these | is just a definition
of a language rather than a set of requirements for

" a compiler. This is clearly not very satisfactory since
we all write incorrect programs on occasions.

2. The Pascal Standard is simple and devoid of a mul-
titude of options. If the language has lots of options,
then program portability is reduced because a pro-
gram may not be valid without a specific option.
COBOL has a large number of options and FOR-
TRAN 77 has two major levels (essentially distinct
languages) whereas Standard Pascal has just onc
option, affecting only one part of the language. This
option is to allow procedures to handle arrays whose
size varies from call to call. This option, level 1 Pas-
cal, would allow Pascal programs to call FORTRAN
routines in many systems.

3. The Pascal test suite is more searching than that of
COBOL and FORTRAN. This is essentially a con-

q e of the definition of the lang! . The Na-
tional Physical Laboratory has been collaborating
with the University of Tasmania on the construction
of this suite for over two years. About 400 copies of
the test suite have been sold worldwide. A new ver-
sion of this suite has recently been issued to corre-
spond to the new ISO Standard. Unlike the COBOL
and FORTRAN test suites, the one for Pascal in-

PUG(UK)

cludes incorrect programs which must be rejected:
ones to examine the error-handling capability of a
compiler, and the ‘‘quality’’ of an implementation.
The quality tests indicate if there is any small limit
to the complexity of programs that a system can han-
dle and also assesses the accuracy of real arithmetic.

All the major components to make Pascal a good
Standard are now available, that is, a Standard defini-
tion and tests to verify conformance of a compiler to
the Standard.

A Standard and tests to check conformance to the
Standard are not alone quite sufficient. The test pro-
cedures must be used and results made known to those
using Pascal compilers. This can be achieved by inde-
pendent testing of compilers which is currently being
investigated by BSI (Hemel Hempstead). BSI have a
wealth of experience with testing other goods but this
is their first venture into computer software. For this
reason, both NPL and NCC are assisting BSI in this
important development.

The last step in this process is to encourage users
to request a Srandard compiler from the suppliers and
for suppliers to meet that demand. As a contribution to
this last step, NPL held a conference on this topic with
its collaborators. Professor Arthur Safe from the Uni-
versity of Tasmania addressed the conference making
it an international event. The other key speakers were
John Charter from BSI who described how a validation
service run by BSI would work. Professor Jim Welsh
from UMIST who described how the Standard can be
implemented and Lyndon Morgan from NCC who de-
scribed a guide written to support the test procedures.
Also Barry Byme, from ICL explained how the pro-
vision of a standard compiler for Pascal is advantageous
in both marketing and for internal use. Mr. Ken Thomp-
son from the European Commission explained the use-
fulness of international standards within the Commu-
nity and some of the problems in their effective
exploitation.

This program contains five errors, often
undetected by compilers. Can you spot them?

program test;
const
nl = *0Y,
began
1€ nil § '0* then
writeln(°‘WRONG®, +nil, .123)
elne
writeln('RIGHT')
end.

Try it on your system and see how many errors
are detected.

PUG(UK)

s e -

Zrrors

1. progras must contain output &8 parameter.

2. nil cannot be used as an identifier (it is a
zreserved word).

3. § 18 vwritten &8 <« (not equals).

4. nil cannot follow a eign.

8. a decimal point must follow a digit.

The corrected prograa 1s:

progras test{output);
const
nill = '0°;

begin
if nill <> '0' then
writeln("WRONG', nill, 0.123)

se
writein('RIGHT®)
ond.

Although this test is only an illustration, it does
show the wide ranging capabilities of current compi-
lers. The results of compilers tested so far can be sum-
marized thus:

Compiler Errors Acourscy of Recovery froa

detected error messages last error
[} L] 3 L[]
B 2.5 2 3
[2 2 2
D 1 2 1
E 2.5 3 2
F 3.5 3 3
G 4.5 4 3
H 5 L} L3
1 3.5 1 2

All the marks are out of 5. The half marked for de-
tecting an error indicates that the error message was
confusing enough for it to be unclear if the error was
properly detected. Naturally, the last two columns are
subjective. PUG

L ry

PASCAL PROCESSOR VALIDATION PROCEDURE

By David Blyth
Standardization Office,
National Computing Centre

1 Introduction

Few Pascal users can be unaware of the recent pub-
lication of the British Standard for the language which
will shortly be adopted internationally. Many users
have heard of the suite of validation programs, devel-
oped by the University of Tasmania and the National
Physical Laboratory, which can be used to check on the
standard-conformance of an implementation. This suite
is readily available and any user who has a copy can
use it to test his own compiler or interpreter. For those
brave users who undertake such testing this article pre-
sents a brief guide to the steps involved and draws upon
experience gained at NCC in a joint NPL/NCC/BSI
project to develop and document the validation
procedures.

2 The Pascal Standard and Validation Suite

The Pascal standard defines the language itself and
the manner in which Pascal programs are to be handled

(iii) the implementation incorporates some common
error.

No deviance test program is standard Pascal. Each
such program contains exactly one such deviation.
When a deviance test is run the resuits are inspected
for evidence that the implementation does in fact detect
the deviation. If it does not then the implementation
does not conform with the standard.

2.3 Implementation-Defined Features
The dard defi an‘,' ation-defined
feature as one which may differ between implementa-
tions but which is defined for any particular processor.
A conforming implementation must be accompanied by
a document that provides a definition of all its imple-
mentation-defined features. The test programs for im-
plementation-defined features are intended to show
how these features are handled in any particular imple-
ion. If they aren’t handled in the laimed

by an implementation. The validation suite contains
over 400 test programs whose purpose is to check
whether or not an implementation accepts the language
as defined in the standard and whether or not programs
which are accepted behave as the standard says they
should. The standard and the validation suite have been
developed in parallel with the result that the suite will
provide an exceptionally strenuous test of any imple-
mentation. An implementation which.performs well
under test can be used with confidence in its conform-
ance and reliability.

The suite contains eight types of test program
which investigate respectively, conformance, devi-
ance, implementation-defined features, implementa-
tion-dependent features, error handling conformance
arrays, quality and extensions. These classes of tests
are quite distinct and are used in characteristic ways.

2.1 Conformance Tests

Conformance test programs attempt to check that
an implementation provides those features required by
the standard and that it does so in the manner which the
standard specifies. These programs are all correct stan-
dard Pascal. If the implementation conforms to the
standard these programs all compile and execute. If a
conformance test program fails then it is an indication
that the implementation does not conform to the
standard.

2.2 Deviance Tests
Deviance te st programs check whether

(i) the implementation provides an extension of Pascal:
(i) the implementation faits to check or limit in an ap-
propriate manner some feature of Pascal;

then the implementation does not conform.

2.4 Imp} fon-Dx dent Features

An impl tation-dependent feature may differ
between implementations and is not necessarily de-
fined for any particuiar implementation. Here the im-
plementor can either state in his documentation that use
of such features is not reported or else have the imple-
mentation issue some diagnostic for which such a use
is encountered. The test programs in this area are de-
signed to determine the behaviour of the implementa-
tion. The implementation conforms only if it behaves
as claimed or reports impl ion-d d

P g

2.5 Error-Handling

An error is defined, in section 3.1 of the standard,
to be a violation by a program of the requirements of
the standard that the implementation is not obliged to
detect. An implementation only fails to conform in re-
spect of error-handling if it fails to process an error in
the laimed in the d tation. The error-
handling tests each present the implementation with
one error with the aim of determining exactly what the
implementation does with it.

2.6 Conformant Arrays

Animplementation may conform with the standard
at level-0 or at level-1. In plain terms it can cither have
conformant arrays or it can’t. If conformant arrays are
provided then all of the features specified for them must
be provided according to the standard.

The conformant array tests are a collection of con-
formance, deviance, implementation-defined, imple-
mentation-dependent, error-handling and quality tests

PUG(UK)

designed to test the conformant array features in
isolation.

2.7 Quality

Many aspects of an implementation are beyond the
scope of the standard, but it is still usefu! to investigate
them. Quality tests explore these areas and investigate:

(a) The limits on the size and complexity of programs
imposed by the implementation

(ii) the amount of store needed to perform certain
well-defined tasks

(iii} the accuracy of real arithmetic

(iv) the meaningfulness of diagnostics for common
types of error

(v) the speed of the code produced.

Quality tests often throw up some surprising results!

2.8 Extensions

Many implementations offer extensions to the
standard. The extension tests see whether common ex-
tensions (eg those approved by PUG) are implemented.

Together the test programs provide a very thor-
ough test of an implementation.

3 Using the Validation Suite

3.1 Distribution Format

The validation suite is distributed on 9 track mag-
netic tape with characteristics as follows:

Recording density : 800 or 1600 bpi
Recording mode NRZI or PE
Character code 1SO 646 or EBCDIC
1200 bytes/block, 80 characters/record.

A purchaser of the tape can specify which density,
recording mode and character code he wants.

There are 49 files on the tape. Three of these con-
tain d tation. The rest in the validation
programs.

3.2 Media Conversion

Users whose machines have tape drives should
experience no significant problems in reading the dis-
tribution tape. Their only concern will be with lexical
conversion if necessary.

Users with floppy disc based systems need to do
a media transcription to get the suite in a form in which
they can use it. This conversion can be tricky, and is
almost always done on an ad hoc basis for the particular
system concerned.

3.3 Lexical Conversion

There are two character sets to consider when us-
ing the suite — the one used to encode the test pro-
grams, and the one used to represent *'char-type’’ val-
ues on the target computer.

Roughly speaking any consistent set of lexical sub-
stitutions can be made, but some may render specific
lexical test programs, and some programs which test
the char type, irrelevant in validation.

Care is needed to ensure that lexical conversion is
consistent throughout. This is particularly important if

PUG(UK)

media conversion affects character code
representations.

3.4 Integrity Checking

Following media and lexical conversion it is advis-
able to check that no corruption has occurred. For this
purpose a program called the Checktext program is
supplied. It produces a 96-bit binary check pattern us-
ing an algorithm originally developed for use in data
transmission (CCITT Rec. V.41)

The Checktext program operates on a standard-
ized internal representation of the program and will not
be affected by legal lexical substitutions. Certain parts
of the program may need customization for use on par-
ticular systems and the source code is marked to show
where such changes should be made.

The results of the Checktext program should be

pared with standard results ined in the User
Guide to the suite (supplied with the distributrion tape)
and if there is any discrepancy then transcription has
introduced errors.

3.5 Checking Validation Suite A t

A validation suite must necessarily make certain
assumptions about the nature of the implementations
which it wili be used to test. The Pascal validation suite
assumes that

o text files

® character-strings
o the real-type

® local files

are all implemented, also that

o lines up to 72 characters long can be accepted
lines up to 72 characters long may be output
the value of maxint is > 32,000
the relative precision for reals is < 0.001
the characters needed to encode the test pro-
grams are all accepted as distinct by the
implementation

e the ‘‘largest’’ procedure in the test suite is ac-
cepted by the implementation (except for certain qual-
ity test procedures).

A further implicit assumption is that the real arith-
metic system is susceptible to investigation by certain
types of method.

The validation suite contains a program called the
**Check Assumptions’’ program which enables the user
to determine whether or not the implementation vio-
Iated any of the assumptions listed above.

4 Planning and Running the Tests

4.1 Planning is Important

Testing an implementation is not just a matter of
running all the test programs. The test suite is large and
on some hines it is not possibie to run all the tests
without breaking the suite into batches. Furthermore
close attention must be paid to ensure that the behav-
iour of the implementation is accurately recorded
throughout the test procedure. Finally provision must

7

L X

be made to make it easy to re-run any particular test
after preliminary interpretation of test results.

Choice of the method of working can have a
marked effect on the overall time taken to run the tests.
There are two areas to consider. First some method
must be chosen to extract test programs from the files
which contain them. Second the organization of the
jobs which rua the test programs must be decided. The
User Guide illustrates three approaches for each of
these methods which will cover most cases on a wide
range of machines.

Some programs may prove to be rogues on certain
implementations. There is no way of knowing in ad-
vance which programs will behave in this way for any
given impiementation. The user should take care so that
such programs do not cause the loss of accumulated test
results.

In any event some programs will need re-r 8

1 Processor Identification

2 Test Conditions

3 Conformance Test Results

4 Deviance Test Results

S Error-Handling Test Results

6 Implementation Defined Test Results

7 Implementation-Dependent Test Results

8 Leve!l 1 Test Results

9 Quality Test Results
10 Extension Test Results
Guidance on the tent and pr ion of these
i is included and a ple validation report is

included as an Appendix.

6 Practical Use
The present article offers only a brief sketch of the

because the results on the first run may have been in-
conclusive. The circumstances in which a re-run is
needed are given in the Guide.

5 Reporting Results

It is desirable to adhere to a standard form of pres-
entation when reporting the results of a validation. This
offers two main advantages.

First, when a formal validation is being done, a
standardized report:

lidation procedure. At first sight it may look some-
what daunting. In practice the key is attention to detail.
The User Guide gives fairly detailed advice on tran-
scription and test job organization, and will be found
helpful by most people undertaking tests of implemen-
tations. Once transcription and organization have been
sorted out the tests usually run smoothly. Carrying out
a full test is a rewarding exercise which offers many
lessons to language implementors. It is hoped that users
and implementors alike will use the test suite and help

to promote rapid practical standardization of Pascal.
PUG

Dear Nick,

After our phone conversation the other week, |
was rather more relieved to feel that here in the UK
there are other Pascalers at work and that PUGUK is
viable again. The gap has been too long, and I wish you
well in trying to get it going again. I shall try and do
what 1 can and particularly with public domain soft-
ware, but at the moment, I don’t have a great deal of
time to spare, nor any telecomms equipment to plug
into my computer.

lose a cheque for 9 pounds for subscription.
On the qu of back s, I have copies of 12-
16, and any subsequent or previous issues would be
very welcome. I would have thought that for 17-21
which you already have, it would be worth while put-
ting a note in the next issue to see how many people
want them, and then have your printer print adequate
copies in total. Much better than spending your time
collating everyones’ needs and doing individual pho-
tocopies of bits and pieces. Perhaps if other people
were able to lend you some of the older copies, the same
could be done. I'd certainly lend you 12-16 if you like.
After all, its the information that matters, not whether
the issue is an original or not unless we have an collec-
tors among us. Anyway, mark me down for any back
issues you can get your hands on, please.

1am now using Pro-Pascal from Prospero Software
as my major programming tool, as well of course as
Wordstar to compose programs and write letters. The

hardware is OEM kit from Sirton Computers in Purley,
by the name of Midas and is in essence an Integrand
10-slot S100 case with PSU, Ithaca IEEE S100 cards
(MPU-80, FDC-2, 64KDR and V1O boards) giving 64k
and 4Mhz Z80A with CP/M, plus 2*YE-DATA 174D
IMb drives. The printer is a Qume (a luxury really), and
a Volker-Craig VC404 completes the outfit.

I will try and compose a critique of Pro-Pascal as
soon as possible, but version 1.4 is due out soon with
8 byte longreal: g other goodies. 1 have written to
Charles Foster of Pascal/Z User Group asking if he or
his contributors would permit the distribution of any of
their Pascal sources to PUGUK members appropri-

ately modified to BS 6192, or if indeed there is any other,

Public Pascal around in the States. I think we ought to
be prepared to reciprocate on this, don't you?

In converting from programming mainly on main-
trames in Fortran and having a nodding acquaintance
with Cobol, Basic and other languages, there are times
when even Standard Pascal has its limitations. There-
fore, I've thought of two ways of improving the lan-
guage. As PUG may have some influence with the pow-
ers that be, I've taken the liberty of including the
suggestions — by all means put them in a news-letter
if you like. I don't believe in trying to persuade com-
piler-writers to augment their compilers as their job is
to impl the standard. If the | ge is to grow,
and if any such need is identified, then it's the standard
that must mature. Now BS 6192 is published, it will be

PUG(UK)

some time before any further thought is applied to the
subject 1 expect, if ever, so perhaps now is the time to
see if anyone is interested.

John R Logsdon
18 Darley Road
Manchester M16 ODQ

rong! Pascal L

a) Structured constants.
Program make-up to be for example:

PROCRAM example;
CONST Snehundred=1bo

scalartype={coffee, Jam,bread, tes, hocult suicide);

2Rty pe=RFCORD
s:integer;
b,cichar;
d:array[0..9] of integer;
fincalartype;
givey of scalartype;
hinrray(1,.20] of char

YND:

T 11

TABLP. ex!texctvpes
onehundred,a’,chr(20),(N,25,50,73), fam,
{coffes,tea, hread], cholesterol’;

VAR exvariextype;displayl:char;

RECIN
exvar:=exl;
dtaplayli=exi.hl4);

Note the use of the ‘chr’ function to set up unprint-
able characters, the absence of any delimiter other than
those already used in Pascal and the access of a con-
stant array clement. There is no reason why ‘ord’
should not also be included so that portability is en-
hanced. The syntax follows closely on that of Pascal as
it is and involves no ambiguity in type declaration im-
plicit where structured constants are declared in the
constant section as in some implementations. Pointers
declared in the correspnding type declaration may be
set to whatever internal value represents nil, however
they are named and uncompleted arrays of char ini-
tialized to spaces.

Such a feature will provide geniune structured
read-only constants without the ugly initiation pres-
ently necessary in Pascal. In fact, in practice it is easier
to put records for initialization in a parameter file and
read them in, which does not seem an elegant solution.
For micros with restricted memory, initializing a record
from constants needs up to two copies of every element
— one dynamic and one in the constant area, which is
rather wasteful of space.

h) Tvpe-change function.
Svatax to be, for efample:
PROCRAM snother;
CVIST sevvssncsconsaes sune OTC

TYPF ecore=ftirat aecond,third, fourth);
frutt=fapnies, vears, oranges arapes):

PUG(UK)

VAT thisscoreiscore;thistruitifrole;
AFGIN
(caleulate thisscore somehov)
thisfrutt:=fruit(thisscore);

sesssccssnsecsnsrcsasana QLC

This facility will provide alogical completion to the
built-in functions ‘ord’, ‘chr’ and provide a much more
readable alternative to the use of variant records. Al-
though there is no reason why the method should not
be available for records if the matching of record
lengths were entirely the programmers responsibility,
there is an objection in that the internal representation
of variables will be machine-dependent. I envisage this
type-change function purely for scalar variables be-
tween scalars and perhaps for pointers between point-
ers. Itis of course realiy a mechanism to cause the com-
piler not to check types.

(This facility is similar to one available in AAEC Pascal
8000 for the IBM 360/370 series, and attributed to
Kludgeamus)

If any readers have any ents for or agai
perhaps PUG can help to air views?

HELP!

Dear Nick;

Systems Used

(i) Apple (1) UCSD Pascal.

(ii) To be delivered December 1982: Burroughs B21-5
(384 K Byte). Pascal ISO draft 5.

Special Interests

Business systems. Particularly rapid access to un-
sorted data items. Data base management systems.

Information Please .

We would be interested in knowing of a Pascal
compiler to interim 1SO standard or UCSD for Bur-
roughs B1955 with 0.SM Byte working store. Manufac-
turer does not support Pascal for.

Mr. P A E Herring
MAPAC

17 Market Square

Leighton Buzzard
Bedfordshire

LU7 7EU

Dear Nick,
CET TELESOFTWARE PROJECT

Thank you for your letter of 6th December.

1 think you must have got the wrong impression
from my letter of 3rd December. We certainly do not
want to see a different telesoftware format for PAS-
CAL. As Iunderstand it, the only problem with the cur-

L rYy

rent format is the TAB character which lies outside the
PRESTEL character set. You may be interested in our
recent extensions to the format (copy enclosed) which
overcome this.

As far as including PASCAL programs in our li-
brary is concerned, all I am saying is that we need to
learn how to walk before we can run. We are keen to
include programs in languages other than BASIC, in-
cluding PASCAL., but need to be sure there are people
who can receive them on our system and will find them
useful, before putting them up.

If you know of PASCAL programs which will run
on the micros most used in educations, ie 380Z, Apple,
Pet, Acorn and TRS 80, I would be interested in re-
ceiving details.

Chris Knowles

Telesoftware Project Manager

Council for Educational Technology

3 Devonshire Street, London WIN 2BA

On receipt of the form and remittance we will send
a magnetic tape containing the suite.

The cost of the package is £100 sterling (+ 15%
VAT for UK users) and cheques should be made pay-
able to “'The National Physical Laboratory’ quoting
our reference number NPS 2/01.

Z. J. Ciechanowicz

Division of Information Technology & Computing
Department of Industry

National Physical Laboratory

Teddington, Middlesex TW11 OLW

PS When requesting the suite please supply the tape
format you require:
i.e. 1600/800 b.p.i.
ISO/EBCVDIC code

We generally write our tapes with fixed length
blocks, 15 records per block, 80 characters per record.

Dear Pascal User,

Please find enclosed details regarding Version 3.1
of the Pascal Validation Suite which was released on
the first of October 1982. Should you wish to receive
acopy of the suite, please fill in the enclosed application
form for a license and send it together with your re-
mittance to:

Dr. Z. J. Ciechanowicz

Division of Information Technology & Computing
National Physical Laboratory

Teddington

Middlesex TW 11 OLW Engiand

Dear Nick,

1. Can you recommend a PASCAL for XENIX? (LSI
IT UNIX)

2. Do you know who distributes the Dutch ‘Fres Uni-
versity’ version of PASCAL? (in the UK)

Brian Kirk

Robinson Systems

Engineering Limited

Red Lion House, St. Mary's Street,
Painswick, GL6 6QR

Teiephone: (0452) 813699

VAT Registration: 302 3124 28

PUG(UK)

R

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address to which information
should be sent (write ‘as above’ if the
same)

Name and address of requester (com-
pany name if requester is a company)

Signature of requester
Date

In making this application, which should be signed by a responsible person in the case of a company, the requester

agrees that:

(a) The copyright subsisting in the validation suite is recognized as being the property of the British Standards
Institution and A.H.J. Sale;

(b) The requester will not distribute machine-readable copies of the validation suite, modified or unmodified, to any
third party without permission, nor make copies available to third parties.

In return, the copyright holders grant full permission to use the programs and documentation contained in the vali-

dation suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of comparative

reports, and similar purposes, and the provision of listings of the results of compilation and execution of the programs

to third parties in the course of the above ctivities. In such documents, reference shall be made to the original copyright

notice and the source.

OFFICE
USE Signed
ONLY On behalf of A.H.J. Sale and the British Standards Institution

National Physical Laboratory Teddington Middiesex TW11 OLW Telephone 01-977.3222 Telex 262344

Pascal Compiler Validation Suite

NPL issued version 3.1 of the above sutte of test programs on 1 October 1982. These programs permit a user to
check the compliance of a Pascal compiler and run-time system with the 1SO standard for Pascal (1ISO 71'85. also
BS 6192). The new suite is an extensive revision of version 3.0 and the work has been undenakm.ln conjunction
with Professor A.H.J. Sale of the University of Tasmania. Subsequent revisions to the test suite are likely to be of a
minor nature.

The British Standards Institution will shortly be launching a pliot validation service base upon the test suite together
with other material.

The test suite consists of about 17,300 lines of Pascal programs plus addition comments on each of the 553 test
programs. The programs themselves are divided into a number of classes as follows: -

182 programs checking that the features of the Standard are available;
157 programs checking that illegal constructs are rejected by a compiler;
82 programs checking the error-detection capability of a Pascal system;
60 programs checking the quality of an implementation;
40 programs checking for Level 1 Pascal (‘conformant arrays’)’
16 programs checking the variations permitted by the Standard;
13 programs checking for features defined for each implementation;
3 programs checking for extensions. B.A. Wichmann
Z.J. Ciechanowicz, extension 3977
For BSI, J. Hatton-Smooker, telephone 0442-3111

PUG(UK) 11

|, ry

o Tooks Soptmans Tk Softmare Tools Sopiware Tools Soppmare Jool Soptware Jools Softmane Jools Sy

A Better Referencer

By J. Yavner
Money Management Systems Inc.

The program which follows was developed from

the Currie/Sale procedure cross-referencer published
in Pascal News #17. Of course, any programmer who
looks at someone else’s program thinks he could do a
better job, but 1 think that by almost any standard I suc-
ceeded, though it took me much longer than Sale’s
three days. I have an excuse, however: prior to this
one, I had never written a Pascal program; my experi-
ence with the language comes solely from the articles,
standards proposals, and validation suite which have
been published in PN.

The program is shorter, simpler, and almost cer-
tainly faster: It has half as many source lines as the
Currie/Sale version, but the format is different, and the
number of statements in only 25% smaller. The HP
1000/2015 compiler generated 4604 words of code and
static data (the 1000 is not stack-oriented). The proce-
dure descriptor is 25% smatler; the reference descriptor
is 97% smalier. The syntax analyzer is more tolerant:
missing semicolons do not faze it. The program needs
29.80 seconds and 1376 words of heap to process itself,
356.80 seconds and 5780 words to process the 103-pro-
cedure, 4000-line P4 compiler.

The improvement stems from the use of a different
data structure: The Currie/Sale referencer is optimized
for programs of virtually infinite size, using trees and
stack and rings of procedure descriptors and chains of
reference descriptors, which allow the procedure da-
tabase to grow very large with the program’s taking ail
the memory ever manufactured and all the time till
doomsday to process it. This referencer, on the other
hand, is optimized for small programs, and uses an ar-
ray of procedure descriptor pointers whose size is fixed
by a constant, a quick-and-dirty replacement sort, and
sets of reference descriptor flags (two sets, since the
program prints the reference data from both view-
points, caller and callee). As the program to be pro-
cessed increases in size, memory use increases quad-
ratically, eventually surpassing the Currie/Sale
referencer, which started out higher but rises only lin-
early. E tion time, I i ought to expand sim-
ilarly. It might be interesting to determine where the
cross-over point is.

The program wuses the CASE . . . OTHERWISE
construct which many processors don’t recognize yet.
The solution for this problem is to upgrade the proces-
sor! An interim fix is to replace the CASE’s with
IF . . . ELSEIF constructs.

Optional lines

Those lines which begin with the null comment are
not vitally necessary to the program and can be re-
moved without seriously affecting its operation. They
serve primarily to handle HP1000 extensions.

12

Lines 19, 21- 24 49-51, 68-71 522-526, and 551-564
make use of imp i pend intrinsics to
print processing time and heap usage information.
These lines can of course be replaced with the appro-
priate code to do the job at the target installation or sim-
ply left out — like most statistics, they're not really
necessary.

Lines 113-116 ignore compiler directives. HP Pas-
cal/1000 has its directives bounded by dollar signs. The
format is like strings or comments, and thus is in the
spirit of Pascal, but nonetheless the construct must be
handled separately.

Line 1 is a compiler directive (another is on line
71). The default output line width is 128, which causes
132-character lines to wrap around even though there
are still empty columns on the page.

Lines 307-308 and 345-346 add the HP1000 intrin-
sics to the pre-defined procedure table. They can be
replaced with the appropriate constants for the target
installation or removed to make the program conform
to the pure standard. The format is as follows: Each
procedure name is followed by a space. A hyphen ter-
minates each constant. The last string ends with a pro-
cedure name, space, and hyphen, and is then padded
with trailing spaces to ConstLen. As many strings as
necessary can be added at 307 as long as they have cor-
responding calls at 345.

The directive *‘external’’ is recognized by the re-
ferencer. Lines 8, 149, 237-238, and 477 could be mod-
ified to allow the it to recognize the target installation’s
directives. The impl tation d y was in-
cluded primarily to show how this i ll to be done. The
nature of the dependency is such that it can be left in
even if the target doesn’t recognize it.

Options

This referencer contains a much more efficient
AddlIntrinsics procedure than does the Currie/Sale ver-
sion (because intrinsics inclusion is not the default for
that referencer, while it is for this one). The feature can
be disabled by setting Intrinsics false. The procedure
itself is quite small and can be left in even if inactivated.

The program is designed to print the reference in-
formation from the standpoint both of caller and callee.
Naturally, twice as much information takes twice the
space and twice the time to print. Either table can be
disabled separately by means of CallsTable or
CallersTable. Almost all the code for printing the tables
is common. As an aside, when both tables are printed
it is sometimes difficult to figure out which direction is
represented by which table, even though the table’s ti-
tle says ‘‘calls’’ or ‘‘callers.” One table contains only
a single procedure defined at level 0: the main program.

Software Tools

Obviously no procedure can call the main program.
Similarly, the other table contains the intrinsic proce-
dures. Obviously they don’t make any calis.

The identifiers in the input file are truncated if they
are too long to fit into the identifier arrays. The length
of these arrays is specified by IdentLen. Changing this
constant requires corresponding modification to the
constants defined on lines 5-8, 83-87, and 210-211.

LineWidth can.be set to any appropriate value.
Settmg it to 80 gives two columns of reference data,
which is somewhat hard to read (try setting your ter-
minal width to 2 some time). Setting it to 56 forces the
tables to have one reference per line, which is rather
vertical but still readable.

MaxProc determines the size of the array of point-
ers to procedure descriptors, and thus the maximum
allowable complexity of the input program and the re-
ferencer’s static size. If it is set to 64 and the HP-spe-
cific intrinsics are removed, there is room for 34 pro-
cedures, more than most programs published in PN
need — more than most programs executable on a pro-
cessor that can’t handle large sets probably need.

StackDepth specifies how many BEGIN/END and
CASE/END structured statements imbedded inside the
body of a procedure the referencer can handle. Few
programmers can create code more complicated than
16 nested structures (the referencer never goes deeper
than four), but if desired the stack can be extended cas-
ily, since each element in the stack takes only one
integer.

Offset is the distance from upper case to lower. The
program may be set for EBCDIC by changing this con-
stant to the appropriate value.

One final note: no numbers larger than 32767 are
needed by the program. On some processors (such as
the HP 1000), slgmﬁcant space can be saved by assign-
ing MaxInt to 32767 in the referencer’s global constant
section.

APREF T=00003 IS ON CROOO34 USING 00014 BLKS R=0000
CISLINESIZE 1329

rrosraa PrafCinsutsouteut)

1abel 9999;

const
BiankIdent = ' i<l
Prosldent = ‘srovren "
Fudldoat = 'forward i
ExtIdent = ‘externs! .
Iatrinsics = true (Pre-define intrinsic sracedures)
CallsTable = true (Print tabie of refersaces FRON rrocedures)3
CallursTable = true (Print teble of refarences TO srocedures)
Identien = 14 (Srenificence liart for sdent ifiers.)5
Linetiidin -

¢
ManProc = 74t u.mv- nusber of srocedures. This shewid
{ be set to » convenient set site.
BtackBerth = 16 Mauimum block nesting withia o erecedure))
0rfset s 32 { Distance from verer- to lower-cose 15
(eTine = 11 € RTE retura-tine-of-das code)I
ture
{ YoneHard . ~32748..327671
(dnfoRec = racord 8/ tohsbsInItON,Codensf » Onevord end}
CITimeRec = record aillisecs secs aiAutes hours dove! Daskord end)
O
note = 0. Mexint)
StachRense - 1. ltl:lh—ﬁhl
ErrorTyses = Redefini IMiseloceds
TeoDesr ;LostEnds :Lﬂ\"r lodd §
ll.ntkmﬁ = §,, ldentien}
1dentte = set of ldentRense
l“n\.ltrlh' = eached nrr.ltldm\tllniu] of Cher}
» “Identsteinal
Prachaen; 2 LoMexproc)
Lostrochense = 0. NecProc
ProcSet = set of Prxlunnl
ProcDesc = record
nene v IdentString)
hsaecases 1 IdentSeti
Tovel 1 LowProcRense
scors] Mrotllni- €0 1 Outl 1t Inf 21 v Occluded M
dofline 1 Whole?
Software Tools

AR de e e e e

badu|ing 1 -1 mexlat)
caller callors 1 ProcSol)
ond)

ARSI g 2N

Clinfe s InfoRac!
(iee 1 Tiashec!
Cleacy ail 4 lnteser)
Fines roren t Wnale)
airha airhedivit ¢ sot of Chor}
idents pros v 1dentitrinw}
Ioentcases o TdontSet)
hoor idont 1 TdontPiri)
13 o DefDirecti L 2 €1
srocaun 1 PracRense)
Slech 1 LowPrecRease)
1188 1 errav(PrecRanse) of “ProcBesc!
sartiist + sreaulProcResse) of Preckense’
Srachet ¢ Stachkense)
stach 1 arravtStockRansel of Hhales

:;".‘m. Exec(codetlnetord} var Lise!TineRec)) externsl)
:;n-onu Setinfa SALIAS ‘BGNSI’S (var inforinfokec)) exterasl)
sracodure Resdq) forusrdl

:’:‘-:m. "““.'::-n fron iaPuts keeeind Lrack of sarenthes:s ;

¢ and nl»nu uotstions, ton markse
ons ¢ ler diraCtives

{ muabers. 3}
ulnlm;u»uun:nmu-u-huc-n-!ulmt 1010808 S tdentcasen))

€ Ioentian, IdeniRanve,sidentvres inrul OfFsoL sraren, 'Read

conet
Precldent = ‘srocedure; '

Fumcideat = ‘fusctien s
Bedinldent = ‘basin "
Casoldeat = ‘case M

1 t = ‘end 'y

o
4 1 leentRense!
h § Char)

—u‘.dun hirBigits)
Skie numeric cheracters)
!.l'hll 3

bovin while (ineut~)=’0’) ANB (input (2’9} do Resd endi

bevin (Resdident)
idan = llnh ideat)
Amunn te [H

Ideniure = InPreacess)

roveat
o in insuttl
if enar (' then botin (Perenthesis or comment)

ad
1€ 1neut~(}’a’ then roren i= rarencl eise bev)n { Comment)

Resd
chint?d
ond)

andi
u chal): then saren n raran-i}
chmr?t? Lhoa rocest Resd until ineutoe’’iry
n u-r then resest (Comeiier directive)
rorast Resd uatit (inrutl~a’s’) OR (imsul=s'’’’)}
han revest Resd wnlil meut~e’’’’}

P
jopeseses
is

14 :h-'l' thu revast { Conmen
while LUt (2727} AND (A»v\"()'.'i 4o Resd}
ir inu"’"" then Resd)
watlil (insud~m?’)?) OR (iaput~e’})}
1 (£R)=’G7) AND (ch(n'?’) than Bavin (Nusber)
Shishisite)
AP inevtna’. ’ then Desin (Deciast
1]

Aosd.
Siebisiter

ond)
it Clarut~s’E’) OR (1arui~a’e’) Lhen bosin ¢ Envonent)
Resd}
Read}
Skivhigitel
onai
ond
else 1e iaruts M BiPRedivit then Desin (Identifier)
4 ve 1)

un-
10 ident110 ¢ uo- 4 1s so12
identlJ] 1= insut

Resd.
watil NOT Cineut~ IN elehadisit) OR (snldentilen))
for J 1w 4 dowato | d8 ¥ ideatlJ] IN aisha
tuu begin (Canvert to iowsr Chse
dent(s) 1o chrlordlident(i3) e0¢faet))
I‘-n'.zlloi 1= (dentcnsescls);

u-u-n t= Qther)
1 insutt IN Srenadinit
then resest Reag unlii NOT (insut™ IN sishadivit)

else |f (identeProcident) OR(Idontofuncident) Lhen 1dentveni=Bef

siun if (identoFudident) DR (ident=Extident)
thea Iéntuspsapirective

wlee i
alse it identeCaseldont tnu m-nt-nv-:-nﬂ-n
wlse if ol

and
atae i N7’ than Read)
unti] identure(dInProcessi
ond}

erocedure Error (error iErrerTyres))

13

ar aes
619999, sbracket sErrorTyres, |ine,HoxProc, soutrut s stack StackDerth 3

bewin
Writetoutsut, P REeNNe Error oL tine!d)’ weauEn 1 7))
cess arcor of

t
writein(outruts ‘File does not b
~edefinitions
tein(outruts 'Procedure defined tuice at same scoee’))
tooManwProces
writain(outruts’Too eans rrocedures, sax’ MaxProctd)}
Hivsiacedt
writetnloutruts 'Niseiaced reservad word’) i
TooDesr |
writeinioutruts*Too eany nested biocks) mex’ BtackDerthid))

n uith “rroer

»

ostEnd
uru.ln(uuu«t. End-of ~file -~
ostPeriodt
--u-u(wtmt:‘u«ulcnod END’’s or sissing EOF reri0d’) i
and

asine END PR30

nated blocks:’)

" bunnu thea writeln(outrut, Unte
while b 133 s of unestched BEGIN/CASEs)

do begia (Print tine
Sracket 1o brechet-1i
writeintoutsut s stackibrochet)i19)f

end}
soto P9NY;
-t

unction Forsetidentivar deatildentSiringi
tcases:ldentSet) i [dentfir

for rrintine. Fointers sre osed ko

result of 8 function must be e.ther ordinal of rointe:

Gihear i dent,ldentien: ldentPte, IdentRan e, [dentSets Iden

cause Lhe)

St ing, 07f set)

3t ldentiengei
"

!or- tident - hearrsentl

Ident” t= ident

fg. J 1= 4 to Identien 4o 1 J IN identcases then
hear cdent (3] xche (ordiness dent [43) -DFfset) §
en.

rucadure PeinTapletcs nt.n.l.n-mnnn)l
forestted outeut of collected r
ocedures he

vers)
ou af definition)
G tBooteans 'For. .uanc.luonuon.umqunatn.||u.noutmt.)
rrocnuesProchanve ProcSet s cos aortt) bl

const
Identhidth = 18 (Identtens) (tuo sraces before ideat))i
Indent = 39 ¢ continuation «ndentationt IdentLens2? 3¢

var

4 t 1. .Linedideh}
srac, ref 1 Proc
refset 1 ProcSet;

besin
wr(teintouteut) i
tmiouteut))
Itetoutrut,* def bodw Tabie of)3
14 calistanie Lhen write(oulrut,’caiis’)
«iss writeloutrutsicaliers’)]
writelniouteuts’ for ‘reroe)
wriletnouteut)
for srocixl to procnum do with listisartlistisrac)) do
(¥ catistable AND (calis<)[)} DK NOT cailstabte AND
tlcatters()() OR (leve1)0)) then begin (Include each rrocedure)
)

€ 2f 1t called or was calieds but include all user-3efineds
€ in the tabie of callecrs in order Lo find never-useds)
sinlndenti

(f Jdefiinem0 Lhen write (uteut;’ '112) etse bevin (Non-intrinsics)
weite (outeut s defiine13))
I3 vodviine o

write(outeuts’ none?’) (Body of Forverd erocedure not found}i
write(outeuts’ exlern’))
anlate

write(outsut .’ Foremi’)s

theru

write (outeut bodul inet7)i
g}

endi
writetouteut s leveli?,’ ,rurnu-unuuum‘ eca
Jaten then refsmtincoll set .
for re o srechum 4@ 1f sortls l(r.f) IN refset then bewin
" lc-nuna'.numwmln 1 Ahen besin (No room 1eft on line)
writeln(guteutt
writetoutsuts’ 1 1Inclent) }
si=indents
wnd
with Fist{sortiistlre@1)” do writeloutruts’ o
Forastident (nase,nsswcases) ™))
J1mseldentiidin)
end)
weiteintoutrut) §

yrerany)

wmctioa FindProc(ver proc! FrocRanes): Boolean’
Set are \o lu\.() wiesent that roints to the

Frocbesc
s hoote. mnmv..uuu-ruuu-.rrunnn)

besin i€ {1atf1)aNIL then FandProci=éaise
rrocieasrrocnuel
whale (tirstirroc)” . nene(3 dent) OR (1istlsroc)”
tarac)l) do —nx roc -
FingProcistrue
with n.u.(-ro()" do 1 (scoreC)1)OR(nann()sdent) then FindProcinfalue’
anct end)

coews0r)} AND

ocedure AddProc i

ver rrociProcRanse)
9in
I FindProc(sroc) thea 1f Iistlrroc)”, evatublock
then Error (Redefinition))
e eroc o then Errord [3]
(4 11stTIIONIL thea srocnumi=sracauneld
newilistirnocnual))
witn l-n(-ro(nu-)" do besin lait
I iden
m-nt.cnn»
biock)

11e)

15
1 line)
te 04

1. L))

reocedura Agdintrin

(Add the rre-da he rrocedure fist)
3 ankIdent,®ident unidentca oulu-m.l-n- r#line)

nst
ConstlLen = 53 (Lenwth of the inteinsic

w-nmm conttunts)3
Consti = ’abs n:nn chy

Const2 ’gd ord . d

Constl = ‘round min SAFL SUCC trumc uUnrack write writaln -
() Consta prend c1ose hait 1inesos mark ros oren averrrint-’J
() ConsiS = ! posilion srosel ceaddir reiease sesh writedir - 2

= 1..Constlen)
= packed srraviCoastRanse) of Char)
var kildentRanse!

rrocedure AddIntrinsick(names iConbtrine))
U U0 the real work Of the srocedure. MNecebsarw since the intein
£ definition constent (s seclioned
€G11ASIFrocsBlank [Jent ,ConSLr 1%, Cons LRairgl

cs

rdent ek)
var siConstRanse’
bewin
st
resest
1§ nasesi.]=’ ! Lhen besin (AJY srocedure)
AddProc
. IRy
3
1dent tx Biank Ident)
o
elve IF nam ’ then tesin (Resd next char)
identih] 1 Y
1 Y
’ (LY

a5
unt i neseslildstori
and)

10 € AdUlntirinsice (outer))

ident tx Btankldent)
1dentcases 1= (1)
Vine 1= 04
. ta 1d

Addlntrine cs(Constlli
Addinte insics(ConatD)
AGS{nteinsica(Conet3))

) AddIntrinsics(Conetdd

€) AddIntrinsics(Const3))
bine 1= 1§
enar

rrocedure Processkiock

{ Process s srocedures function: or sras block)
(B1!AdIPrac ablock ExLident, (FindPracs iForaatident ident, | dentcan)
¢ identuresiinesiist:LowPracRense souteut ssaren reacnua Frochense)

var
rroc .t ProcRanse}
curcenttocalrdot ¢ LouProckan.

rrocedurs ScanArsusentsi

{ Read arvuments: Checking for score occlusions sad forms! procs)
(B11AddPrac blocks 'Error . 1F indProc, (Foraat ldent s ident, s dentc
€ rdantyresiiner | 1t houtPut srarenssrroc: tReadldent b

bewia ScanArgusents
earenisd ¢ HShouid be sawuav: but aske sure)J
Re

1n (Iaside srevaeat Fist)
then f FindProc(rroc)

then 1istirroc] . scorsisbiock

®ise else 1f tdentwre()Baf then Error (Mise laced)
in (Forms! srocedure/function)

v
writeln(outrut,line:S,’
Farmetident (ideat, ident,
weiteinioutrutslineis,’
AddPrac)
Jistleracnum]”.bodwtine taNaxints

fibinche2,

)73 8
(biocke))#2, Foreel)}

end’s
Resdident
L€ raren)l then resmat Resdident uatil saren(2)

rrocedure ScanDefst

{ Resd definitionar Checking for scors occiuaions and local rrocs)

€Bibiocks 'FindProcs 'Farastideat ident 1 deatceses: (denture:iine,)
b

€ ®)ist.soutrut issroc o IProcessdiock , tResdldent

besin un.u na.nuu()n. n) AND (identure()Directive) do besin
th

weiteincoutrut: linets,”
Formatinoent(ident,identcases))]

Tibiockn2,

Software Tools

)
tnner Proc is catled for each,)

o R

Process¥iock?
)

-
Readldents
ond end}

srocedure ScanBodwi

€ Chack bodw for references to srocedures)

{Bibracket current, (Error, tFiAdProc ¢ 1dentures inputsline, list,)
C weroc:Read, !Resdldent)

-rondun Pulhl
Stack o ‘beg or ‘ca nt-brachet |ine-nuaber)
(Ol-hrnnuntnanl\unuuu.lu:tnnth 3}

benin

ecklbrachet)ialine’

it bracket=fiteckDesth Lhen Error (TooDeer))
bracket tebrachatel]

rrocedure Foe s
<Bibiock.sbrachet, IError,inrut }

besin if Cinspt~e’,’) AND ((bracket)2) OR (block)l})
then Error (LostEnde) else brackeli=bracket-1 =ndf

besin (ScenMody)
listlcurrent])”.bodel inai=ine’
Push}
"

L
l' dident }
identvre of
Mflblrochv-l
Error(Wiselaced))
Oren:Coselrent
Push)

Close!
Pos)
Othert
besin { Possible reference or sssivneent 40 » function)
whiie inrut~=’ * do Resd}
i inpyttaric then bewin (*

* rossible)

Resd)

if iarutcer=’ then identu
endi

If 1dentyre=Other then rf FindProc (prac) then tasin { Ref)
with {istlcurrent) aliselerachs
Vith 1iatlrrocT d0 rallersiecel terastcurrentd)

»bef { Assisnagnt)}

ndi
unti) bracketnti
and}

rrocedure Deletabefei
(Set local procedures vut-of score and re-instate occluded ones }
(Brolack s 1iststocairootsrrocnua,Frockansy)

var erociProcRan
bedin
I focatroot(rrocaue then for erocizlocelrootel to srocaum do
bistleroc) . score:=0]
for procistocairoat downto t do
©f Listlrroc) . scorest.lock then 1istirroc)”. scoreintl
endi

besin { ProcessBlock)
curreat t=
i Hh‘rx(!ru) then with 11
i velxblecx) AND (bodu!ia
t»-» currentimproc ¢ Bodw for a foruwsrd-deriered rrocedure })
1f currentad then Lasin (Add Aew rrocedurs }

tirrocl” do
)

currentinsrocauel
)

»
locslrooti=rrocnyus)
biockt=biockeli
ScanArsusents
Scanhefs)

weiteln(outrut, tine1S,”
1§ 1dent Oeen then ScanBodw
ol l' .m\-t-ua-nt then (istlcurrent)”.bodultness=1}

3 wlno-brunumu.«n\- 1dentcasand) b

o
blorll-blotl‘l‘
w*nd)

rrocedure Sorti

(Since there %o foew rrocedures te sort: there)
"o d for o coerticsted alowrithe b

(Olllntw ocAus Prockanse s Ssortiist)

ver
Procs skt PracRense)
status 1 tIaPrac

bevia
sertiistiidial)
far sreci=2 te rracaus 4o betin
23

o
118tk neaeinsne Lhen Tor
f el thea statusi=Finishe
etse if 1istlsortiistin-111".noeeinsee Lhen Risk-1
stotusieF inithed

= 15 I shed

L

t

u‘ hseroc thes stalusi=Finished
+f List{eortintikl} . nsaecsnane then Riskel
atatusisFinishad

uw.-ﬂun nod)

[dewnto 8+l do sortlistis)
mullt(lllu!ul
ondi

orttists-111

ad)

D'.(D“l Read}

€ En each cher froa input for ead-of-iine)
¢ Au ulrsline 3
betvin R
set dinrut)

if ealntinout) then 1ine
)

ines i

bevin { Pref)

{Mnec(GeTina,tine))

(Inith tine do Dowin { Save start tise)
sec 8.

aittivecs)
ta [rAT,

e 10,
V= sirhecl’s

BRI AO I INS LRF I (I R I
R NI I It IS 1]
1aoh

P vttty

» IR I
ot

Listc13

raren

block

brachet

fine 1

srocrua LN ¥}

Aew (have idont) |

3 Intrinaice then Addlatr

Nesdldent

u unuwvnuul thie ‘B¢
1den

ldent Cident el
writeinloutruts’ line Tabis of ﬂ"-

1taons for /srrom)

- . tarut 3
of InPUt ()’ .7 then Ervor (LestPeriod))
Sar M

a
1€ CalisTabie then Prinlsbieitrue) (Phase 34)

(Foise) { Phose 30)

ot
()-n.n info.time ¢. begin (Prist statistics)
.nc

-sect

ariiis "
11¢0 then uun (Corract for borrou from miliiseconds)

@il 1= mi1et00

sac iv sec-1}

-}
writeloutrut,’Ness = 7, initoh-tenil,* werds. Time * ‘rsecils’.?))
if aii(10 thon writeleutrut '0%}}
writainioutrut miiin,’ saconds.)i
ond)

AmmmnmAa A~
[eroterrissatestrore)

a0 (autrut))

L] PUG

”md.

Dear Rich:

The software tools section of Pascal News is ex-
tremely useful. We have implemented Prose on the HP
3000 and we enjoy using Prose to do our text formatting.

This letter includes one enhancement to Prose and
one bug-fix. The enhancement provides a new terminal-
type: DIABLO. This terminal-type provides for pro-
portional spacing on DIABLO terminais. The changes
are as follows:

Lines 167 to 173 become:

{ THE FOLLOWING ANE NOT onEc‘Hvu BUT IT IS CONVENIENT
{ TO INCLUDE THEM [N THIS TABLE

AST, { ASCII TERMINAL]
LPT, { LINE PRINTER 1]
Software Tools

AT, 1 AIMIS“/JACOBSOI TEMMINAL)}
DA, { DIaBLO TEMW: ¥
ILTY; { ILLEGAL I

_Lines T89 to 793 become:

CASE TEMMINALTYPE OF
AJT

DIA,
asT! IIl\‘!'(C.).
LPT: BEG
lll‘l’[Ll(OUTPUY),
CARRIAGECONTROL: sPLUS
£nD
END

Lines 828 Lo 825 becowe:
END | IF TERWINALTYPE « AJT }
ELst
IF TERMINALTYPE » DIA THEN
BEGIN

X2 :s
FON X1 1 TO LEN DO

15

ry

WITH STR(X1) DO
IF € <> BLANK THEN
BEGIN

IF lz <> 0 THEN
Gl

"
n‘ (xz MOD CHAMIDIH » 0) THE
ix 1 TO (X2 DIV c»AmD‘rn) 00
lIlTEHBLIIIK)
LSE

BEGIN
FOR X3 :x t TO (X2 DIV CHAMWIDTH) DO
WRITET{ALANK);
X2 iz X2 MOD CHARWIDTH;
WRITEV(ESC);
unl\‘ENrunst)
R X3
vuTU(BLAIK)
WRITEV(ESC);
WRITE) (FOUR) ;
END

END;

0o

X2 :x 0;
WRITEHC)
EKD
ELSE X2 :x X2 « WE)
€aD
£LSE
FOR X1 :x 1 TO LEN DO

Lines 1852 to 1860 become:

AT,
DIA: BEGIN
WHILE_INCHAR = BLANK DO
REXTCH
CHARVIDTH := NUWBER(S 0, -1, INFINITY, 1073);
1r IOT (CHAAWIDTH 1IN (lo 12]) THEN

EIIOIHOI])
CMAIHDTN 1s 10

¥ (n':lnllALr"E * DIA) AMD {CHARWIDTH &« 12) THEN
WRITET(ESC);
WRITEV(US);
VRITEV(FF)};

END;
CHAMIDTH :2 60 DIV CHARWIDTH;
OUTLINE(1).NBY :x LEFTMAAGIN ® CHARWIDTH
END

(Write out the HM1}

Lines 3839 to 3AR0 becowe :

1F EAAORS THENW WATITELN (' PROSE ERRORS DETECTED.');
IF (TERMINALTYPE = DIA) AWD (CHARWIDTH = 5) THEN

BEGIN

Hlssn PLTCHE
WRITEI(ESC);

unn‘i!(w

END
END. | PROSE |

The version of Prose published in PN # 15 contains
a bug concerning index entries. If an index entry is
underlined, Prose starts referencing the NIL pointer.
The problem is that the function UPPER returns an in-
correct value for underlined characters. A new UPPER
function is introduced in the SORT procedure.
Lines 2169 to 2170 become:
x : INTEGER; { GENERAL INDEX VARIABLE 1]

‘ UPPER - SPECIAL VERSION OF UPPER,
. UNDERLINED CHARACTEAS,

DOES OT RETURN

. PARM CH s« CHARACTER TO CONVERT TO UPPER CASE.

FUNCTION uPPﬁN cH
BEGIN [UPPE
I onmcu Dlv ma) THEN

o ASCIEX) : ASCIIK;

28;
iF cuss(c») LEFTEN ThEW
1F CH >s SMALLA THEN
UPPER 1z CH - 32
ELSE
UPPER is CH
ELSE
UPPER :s CH;
END (UPPER};

BEGIN | SORT)

1 encourage all Prose users to send their changes
to Pascal News. With such an excellent tool it would
be unfortunate if widely varying versions were to start
appearing.

Yours truly,
David J. Greer

A N . . on 5

The Use of Generic Capsules
with the
University of Minnesota Pascal 6000 Compiler

by Frank L. Friedman
Alessio Glacomucci
Carol A. Ginsberg
Anita Girton
Temple University

L. INTRODUCTION

This document contains a description of a data
type absrracuon facility, a capsule, that has been im-
d as an ex ion to the University of Min-

nesota Pascal 6000 Series compiler. The facility pro-
vides an encapsulation that establishes a static scope
of identifiers with controiled visability. Data objects
and a set of operations on these objects may be en-
closed. The document is intended to provide sufficient
information for those who wish to use the general cap-
sule facility and library. A more complete description
of capsules may be found in the paper ‘*Capsules: A

Department of Cornputer and Information Sciences,
Computer Users Document 81-01, February, 1981, Rev.
1, September, 1981, Rev. 2, December, 1981

16

Data Abstraction Facility for Pascal,”” CIS-TR 81-01,
Temple University C & IN SC Department Technical
Report.

II. WHAT IS A CAPSULE?

A capsule is an additional Pascal type which is syn-
tactically similar in structure to the Pascal record. The
syntax diagrams for the Pascal type definition (with the
capsule added) may be specified as

type
definition

Software Tools

ype

ox e ates

The export list is a list of variable, procedure and

function identifiers which may be referenced outside
. the scope of the capsule All protection of the data ob-
—* scaler type i* jects psulated in the capsule is provided at compile
time. Thus, if capstype is a capsule, and the variable X
is declared to be of type capstype, then all external ref-
-—i type Ir to identifiers, id, appearing in the export list for
—-* pointer type |L
——-i capsule type }—

capstype must be of the form
Xsid
Exported variables are read only, and identifiers not
appearing in the export list may not be referenced out-
side the scope of the capsule. There is no explicit import
facility, such as provided in Modula and Euclid.
The Pascal scope rules for capsules are the same

niind m’e as the rules for all other Pascal objects. Only a single
copy of the operations (p es and functions) de-
mo,d .yp, fined within a capsule is created, regardiess of the num-

ber of variables declared to be of the capsule type.
When a procedure (or function) containing the decla-
ration of a capsule-type variable is called and the var-
iable declaration is elaborated, the capsule’s global var-
iables are placed on the runtime stack as a record. This
record remains on the stack as long as the called pro-
cedure (function) remains active. Openniona on the
abstract ob;ects are thus performed via calls of the ap-
4 or functi

. . priate
The capsule type is defined by the diagram exampl ot‘n lein eterized (generic)
::-Psule form is shown in Figure 2. An illustration of the use of
ype . f .
@ —xport declaration o this capsule is shown in Figure 1.

{A non-recursive expression parser}

e
° Al 197 (*capstk'/"capeall’, charstackl0,20, char)’
) -

B.
e O

C. begin

s
b.
suckswp Sri;hmpcrnd) ;

stackipop (operator);

constant declaration

T stack: charstackl0;

(initialize} stackSinit;

stack$pop (leftoperand)

H = tparer
g
Use of a simple stack capsule
E. capstk
F. {pname, psize, puype) {list of capsule parameters}
pname = capsule

with the export declaration defined as

{stack capsule definition (in generic fom)

.
export .
declaration * parsmeters:
L] -
pnase - name of capsule
EXPORTS ° m o * psize - mmber of cluments in the stack
‘) ptype - base type of stach arruy

Software Tools 17

