
It-

r;11dI1~~~ '10.00

PASCAL USERS G;OUP ~

Pascal News
I
I

Communications about the Programming Language Pascal by Pascalers

. Pascal Processor Validation Procedure

. A Better Referencer

. Use of Generic Capsules

. Implementation Reports

. Validation Suite Reports

. Announcements

I

r

Number

25
APRIL83

,
I

POUCY: PASCAL NEWS (Jan. 83)

Pascal News.Pascal News is the official but Informal publication 01 the User's Group.

The Pascal User's Group (PUG) promotes the usa 01 the programming language Pascal as
well as the Ideas behind Pascal through the vehicle 01 Pascal News. PUG is intentionally de-
signed to be non political, and as such, tt is not an "entity" which takes stands on issues or
support causas or other ellorts however well-intentioned. Inlormality is our guiding principle;
there are no olficers or meetings 01 PUG.

The increasing availability 01 Pascal makes tt a viable alternative lor software production and
justifies hs further usa. We all strive to make using Pascal a respectable activity.

Anyone can join PUG, particularly the Pascal usar, teacher, main-
teiner,lmpIementor, distributor, or just plain Ian. Memberships !rom
IIbreri88 are aIeo encouraged. Sea the COUPON lor details..Pascal News Is produced 4 times during a year; January, AprIl, July October.

Purpose:
Communications about the Programming Language Pascal b~ PasCalers

APRIL 1983 Number 25

Membership:

. All THE NEWS THArS FIT, WE PRINT. Please send material (brevity is a virtue) lor Pascal News single-
spaced and camera-ready (usa dark ribbon and 15.5 em linasl)

. Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

2 EDITORS NOTES

3 PASCAL USERS GROUP (UK)
3 LT. and M.I.S.S. By PhillipDarrington
4 Pascal-AnEffectiveLanluaae StandardBy Brian Wichmann
8 Pascal ProcessorValidationProcedureBy DavidBlyth

SOFTWARE TOOLS.Pascal News is divided into ftexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

12 A Better Referencer By J. Yavner
18 The Use of Generic Capsules with the University of Minnesota Pascal 6000 Compiler

By Frank L. Fri~dman, Alns;o Giacomucci, Carol A. Ginsburg and Anita Girton

APPLICATIONS - presents and documents source programs written in Pascal for various algortthms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance. standards conlormance, sty1e,output convenience, and general
design.

ANNOUNCEMENTS
24 PACS Computer Game Festival
24 Oh! Pascal!
2. New Modula-2 Versioo
2S New Ticomm Microcomputers
25 Edison on IBM Penon.1 Computer
25 JRT Pascal
7T Pascal Compiler for IBM Mainframe
28 Great Plains Announcement
28 INMOS Announces OCCAM
30 Tiny Pascal Plus
30 Help Wanted
30 Ridse Thirtytwo Graphics

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the editor together with changes
in the mechanics of PUG operation, etc.

ARTICLES - contains formal, submttted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at ddlerent computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among members which is of
intenlSl to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts for maintainers, implemen-
tors, distributors, and documentors 01 various implementations as well as where to send bug reports. Qualitative
and quanmative descriptions and comparisons 01 various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

VALIDATION SUITE REPORTS - reports performance of various compilers against standard Pascal
ISO 7185.

32 VAUDATION SUITE COUPON

33 IMPLEMENTATION REPORTS
48 MachineInde.

47 VAUDATION SUITE REPORTS
47
51
52
88
88
80

HP 3000 Series 33
Intel 8085. ZilOJ 80 (CoJitronics)
IBM 370 (AAEC)
Pascal 1100
fBM 4341
VAX)).780

82 BACK ISSUE COUPON

.. MEMBERSHIP COUPON

I

J

Good Members Hello;

I now have control of most elements of Pascal
News and future submission articles, comments and
good jokes should be addressed:

Pascal News
2903 Huntington Road
Cleveland, Ohio 404120

Our United Kingdom and European elements are
thriving and boisterous.

PUG (UK) PUG (Eur)
P.O. Box S2 ARGE Pascal
Pinner Hellmut Weber
Middlesex HAS 3FE Degenfeldstrasse 2
U.K. D

- 8000 MUnchen 40

These groups should be excellent sources .of local
and international information.

We have lost an element and have no successor.
PUG (Aus) has experienced increased costs and de-
cided PUG (USA) could suppon them with little loss
of timeliness. I would like to thank them for their past
performance. I am sorry I did not have the opponunity
to work with them.

PUG (USA) will now serve various needs.
We now serve inside USA and outside USA mem-

I.Id- '. .AI. &1M-9'--, Cf/- ~ (0/1:Yf)9--' Cf/- ~ (U) 9--' Cf/- ~ (U) 9--' Cf/- ~ (0/1:.

Pascal Users Group (U.K.)
bers and also provide an air mail option for those who
need Pascal News as quick as possible.

Writing of timeliness I am reminded that the news-
letter has deadlines. These are January 1st, April 1st,
July 1st and October 1st. When you have material for
the newsletter please send it as quick as possible. Do
not worry about the deadlines but keep in mind news
loses its value as it matures.

I will continue to publish implementation notes and
announcements of the trade. I encourage members and
vendors to test drive their new compilers with the
"Validation Suite". Send the repons to me and then we
will all know the best performing compilers.

I have been asked if we would pay for anicles. I
have thought about this and worried where I would get
the money.

I have decided to accept advenising and use this
money to pay honorariums to writers of good anicles.

A reminder that back issues will reflect higher re-
printing costs and have a $2S per s~t price after July 1st

Its still a bargain at $1 Snow.
One more thing. Thank you for your renewals and

lovely comments. I have been encouraged by your
thoughts.

Pascal News 23a is a supplement, to plug the
lellJllhening gap between US originating 23 and 24.
Readers will note that its contents are quite different
from those of previous editions. There is a shift of em-
phasis from matters of concern at leading edge Uni-
versity level, to those of concern to producers and users
of inexpensive standardized products.

That shift has been wholly dictated by the content
of material submitted for publication. Whether it is a
temporary side-step or a permanent change, will also
be decided by contributors (to future editions).
PUG(UK) is the servant of you the subscribers and as
such, will publish material originating from any section
of the user community.

We are all indebted to each contributor but Tony
Heyes's generosity in offering his Bibliography suite of
programs for refinement through the medium of PN is
particularly appreciated. Constructive critiques are
welcome.

There is a widening of the user base and an overdue
deployment of resources to that end, evidenced by the
complementary nature of anicles from widely differing
sources. Read on and judge for yourselves. Although
you will find that 23a is pitched at quite a different level
from that of your usual expectations of PN, I sincerely
hope that you will welcome it as a stop-gap until 24 be-
comes available from Rick, Andy, and Co.

The following is offered as an illustration of the
scene which prompted the production of a supplement,

Intrigued by advenising which referred to "mere
humans", I went along to the personal computer show
at the Barbican on September 12th.

Charlie

Dear Pascalers,

here we are reopening PUG Europe:
Lor + Manha +
Erwin + Hellmut +
Jurgen + Manfred +
Urf (Korbinian).

We are Pascal fans and users from the university
and industry who are organizing in our spare time the
distribution of Pascal News for the European region.

From our viewpoint. being mainly Pascal users, we
would like to encourage you to help in keeping Pascal
News a living forum, a market place for all Pascal users.
So here again is a call for papers and programs. There
are cenainly many tools, especially for text processing,
which are of interest for the Pascal community, maybe
for simple use, maybe in order to compare ideas about
problems which many of us may already have encoun-
tered. And think about all the programs for solving the
daily commercial problems.

Another subject which we think imponant is doc-
umentation. If you have to (or like to) use non-standard
features mentioning those increases ponability. An ex-
treme e>tample of the necessity of documentation are

2

two Pascal implementations which use one name (ap-
pend) for two non-standard predefined procedures doing
different things (append one string to another versus
open a textfile for appending text).

To increase the market place function of Pascal
News we should like to ask everybody who provides
a Pascal source for publication to state whether he/she
is willing and/or able to distribute this source in ma-
chine readable form (or even as a well readable listing)
and if so at what cost.

Lastly we would like to ask all those wishing to
contact us to use our official address:

ARGE Pascal
Hellmut Weber
Deaenfeldstrasse 2
D - 8000 MUnchen 40

and not to send registered letters. (We had some prob-
lems, as there is no Mr. Pascal to claim them.) If you
want to send us money for subscription please use our
postgiro account. Munchen SIS89--801 or send an Eu-
rocheque and please take note that any other form of
payment means additional paperwork for us.

Stay happy with Pascal!

IJll8line the disappointment at faililla to fiDeIany-
tbina innovative or even mildly interesting. Discovered
that with a single exception, exhibitors did not know
whether standard Pascal was implemented on the ma-
chiDes offered to the public. More than one of those
asked, replied "Yes, it's called UOCS or something like
that". At one stand, sponsored by British Petroleum,
the Department of Trade and Industry, the Council for
Educational Technology, and others, an 'expen' merely
looked blank and sugested that I ask someone else.
'Someone Else' replied "We are only interested in
thinp for use in Education". AI the National Comput-
ilia Centre stand, 8IIOther expen, when asked if his
staDd offered any information about standard Pascal
and its implementation or use in a microcomputer en-
vironment, replied "No, there is no demand", deftly
followed by "Can I help you sir?" to someone standing
behind me. In some instances, the initial answer was
"Yes", foUowed by misrepresentative flannel when a
demonstration was requested.

Met a auy who holds a powerful position in the
IarJest education authority in Britain. He believes that
BASIC is an "appropriate" language for the "mass"
of youag people who "won't bother" to become seri-
ously interested in the technoloay. I should admit at this
point, that had my first experience of a perception of
nuochineintelliaence been through the medium of BASIC
(or COBOL, FORTRAN, etc.), I miaht easily have
joined the ranks of those who either "won't bother" or
are auitably unimpressed by obscure combinations of
hunches, guesses, and a duh of porceptual skiUwhich
only occasionally fails. PUG

I.T. and M.I.S.S.~_.
a.produeed with PIIIIIIp D8niIIpoa's pennilllloa

One of the aims of Information Technoloay Year
and the Microelectronics Education Programme is to
involve schoolchildren in the use of microcomputen
and related electronic devices. There are the M.E.P.,
the Micros in Schools Scheme, exhibitions and events
throuahout the year and beyond. It is, perhaps, fonun-
ate that Mr. Callaahan happened to be watching tele-
vision on the evening the programme "Now the Chips
are Down" was broadcast and was spurred into action
then, or we would probably find the propaganda even
more frenetic than that now being put out by the en-
ergetic Mr. Baker, the prophet of IT.

Information Technology is a curiously dif'fi.osename
for a Year. The official definition, "the acquisition, pro-
cessing, storage. dissemination and use of vocal. pic-

Complier. Note. PUG(UK)

-loria!, textual and numerical information by a micro-
electronics-based combination of computing and
telecommunications" appean to encompass most of
the IICtivities of the average person, except eatina and
one or two other processes, although the use of a com-
puter is not often considered essential to the more basic
ofthese.

So far as its Involvement of schoolchildren is con-
cerned, the publicity is decidedly shrill, the Minister's
aim being to have a compoter in every secondary school
by the end of the year and even to think about providing
them for primary schools.

There can be no argument that youna people must
be aware of computers and how to use them, but it does
seem possible that the present blaze of publicity tends

3

A
, 3 ,

B 2.5 2 3
C 2 2~D 1 2 ,
E 2.5 3 2
F 3.5 3 3
a '.5

, 3
H 5 , ,
I 3.5 1 2

j
I

j

to obscure the point that computers are a means, not
,10end. There is also the question of how the micros are
to be used in schools.

According to the fifth edition of the Concise Ox-
ford Dictionary (now, admittedly, modified), a com-
ruter is "a calculator - an electronic calculating ma-
chine" - an unfortunate description, taken too literally
oy at least some of those responsible for introducing
youngsters to computing, with the result that the school
micro is often given to the senior math teacher to guard
with his life, presumably on the grounds that computers
are electronically mathematical and possess no rele-
vance to any other subject.

In other schools, the computer is treated as a kind

"f totem, and the pupils are taught "Computer Stud-
Ies", As a subject, computing (meaning programming)
IS a singularly empty one, unless the pupil learning it
mtends to become a programmer. A computer is an aid
to the process in which it is used - in this instance,
learning - and an element of transparency to the user
rather than an obscuring of the subject by undue atten-
lion to the computer must be the aim.

Clearly, an overnight transformation, after which
every teacher would be using a micro as to the manner
horn, is hardly feasible. But, until the school micro (or

one of its terminals or even a micro owned by a pupil
or teacher) can be used naturally, as is a dictionary or
pocket calculator or a video recorder, it wiu dominate
the learning process. Utmost priority should be given
to teachers from all disciplines, from home economics
to athletics, to use the computer as an aid, rather than
as a distraction, so that pupils who are not to specialize
in science or engineering can see that it is of advantage
to them to he at ease with computers, but no more than
that.

The Inner London Education Authority is aware
of these problems and is educating teachers in the use
of computers so that, even though there may be only
one micro or terminal in the classroom, the pupils wiu
learn the place of a computer by, to use ILEA's word,
"osmosis". However, there is evidence aplenty that
education authorities in other areas are either hypno-
tized or revolted by the new equipment and, accord-
ingly, either enshrine it or pass it to the school computer
fanatic to impress people with.

In short, a computer is a useful tool, but that is all
it is: it can help or it can dangerously hinder learning,
and only the education of teachers in its natural use as
an aid can decide which. PUG

Pascal - An Effective Language Standard
Brian A. Wlchmann,6/5/82

Over the last few years, the programming language
Pascal has grown in popularity very greatly. It is widely
",ed for teaching in Universities, is available on most
micro-processors and main-frames as well. In fact, Pas-
cal is one of the few languages that form a bridge be-
tween microprocessor systems and the main-frame
world,

Until recently, there has been one drawback to
l'ascal as a general purpose software tool. The defini-
Iion of the language was not very precise and in con-
,equence, the portability of Pascal programs was prob-
lematic. The British Standards Institution (BSI set up
I group under Dr. Tony Addyman to produce a standard
Jefinition of the languaae. This was later superseded by
10ISO group also under Tony Addyman. Last October,
ISO agreed to the standardization of Pascal, and after
:ditorial work on the document, BSI published the
~tandard in February of this year (BS 6192).

What does this mean for users of Pascal? The port-
,lbility of Pascal programs should be much improved
"rollided suppliers implement the Standard and users
write their programs to conform to the Standard. One
-night think that the position with Pascal is no different
'rom that of COBOL or FORTRAN and yet portability
'roblems arise with tbese languages. There are several
easons for believing that Pascal is different:

\rticle formed the basis of piece in Computer Weekly
,y Phillip Hunter. 11th Feb. 1982 page 14

I. The Pascal standard is more comprehensive than
that of COBOL or FORTRAN. For instance, the
COBOL and FORTRAN standards do not require
that an invalid program is rejected by a compiler.
The Standard for these languages is just a definition
of a language rather than a set of requirements for,

a compiler. This is clearly not very satisfactory since
we all write incorrect programs on occasions.

2. The Pascal Standard is simple and devoid of a mul-
titude of options. If the language has lots of options,
then program portability is reduced because a pro-
gram may not be valid without a specific option.
COBOL has a large number of options and FOR-
TRAN 77 has two major levels (essentially distinct
languages) whereas Standard Pascal has just one
option, affecting only one part ofthe language. This
option is to allow procedures to handle arrays whose
size varies from call to call. This option, level 1 Pas-
cal, would allow Pascal programs to call FORTRAN
routines in many systems.

3. The Pascal test suite is more searching than that of
COBOL and FORTRAN. This is essentially a con-
sequence of the definition of the language. The Na-
tional Physical Laboratory has been collaborating
with the University of Tasmania on the construction
of this suite for over two years. About 400 copies of
the test suite have been sold worldwide. A new ver-
sion of this suite has recently been issued to corre-
spond to the new ISO Standard. Unlike the COBOL
and FORTRAN test suites, the one for Pascal in-

PUG(UK)

cludes incorrect programs which must be rejected:
ones to examine the error-handling capability of a
compiler, and the "quality" of an implementation.
The quality tests indicate if there is any small limit
to the complexity of programs that a system can han-
dle and also assesses the accuracy of real arithmetic.

All the major components to make Pascal a good
Standard are now available, that is, a Standard defini-
tion and tests to verify conformance of a compiler to
the Standard.

A Standard and tests to check conformance to the
Standard are not alone quite sufficient. The test pro-
cedures must be used and results made known to those
using Pascal compilers. This can be achieved by inde-
pendent testing of compilers which is currently being
investigated by BSI (Hemel Hempstead). BSI have a
wealth of experience with testing other goods but this
is their first venture into computer software. For this
reason, both NPL and NCC are assisting BSI in this
important development.

The last step in this process is to encourage users
to request a Standard compiler from the suppliers and
for suppliers to meet that demand. As a contribution to
this last step, NPL held a conference on this topic with
its collaborators. Professor Arthur Sale from the Uni-
versity of Tasmania addressed the conference making
it an international event. The other key speakers were
John Charter from BSI who described how a validation
service run by BSI would work. Professor Jim Welsh
from UMIST who described how the Standard can be
implemented and Lyndon Morgan from NCC who de-
scribed a guide written to support the test procedures.
Also Barry Byrne, from ICL explained how the pro-
vision of a standard compiler for Pascal is advantageous
in both marketing and for internal use. Mr. Ken Thomp-
son from the European Commission explained the use-
fulness of international standards within the Commu-
nity and some of the problems in their effective
exploitation.

'MU8 prO(Jr.. cont.1ne h 81'1'01'8, often
und.tectH by COIIpU.ra. Can you .pot the87

prOfjr&a t..t.;
eonet

n],l - '0',beg],n
],f nil

"0'
then

vrU.ln(.WIIIOItG.; +nil. .12:1)
.1..

vrit.ln(.IUGII'.")
ond.

-----------------Try 1t Oftyour .y.t. and ... hoW8&nJ'el'l'ore
are 4.t.c:t.ed.

PUG(UK)

Errore
1. ,.09'" _~ _tUft outP'R.._...
:.. nil cannot... U88d.. 8fti"'tlfler (it 18.

WOd).
J. . 18 written.. u (not equa18).
t, nil CAnnot follow1....
I. I d8ci811 poln~ _ follow I dl.l~.

The corrected procr&8 Is:

prolr.. t.e.t (out.put.) ,
conat.

n111 . '0' i
boa1.

It' nUl (> '0'
lh.n

wrlteln('WRONG', n111, 0.12])
01..

wrlteln('lICHT')
ond.

-----..--

Although this test is only an illustration, it does
show the wide ranging capabilities of current compi-
lers. The results of compilers tested so far can be sum-
marized thus:

11'1'01'. AccuraoJ' ot' ".ooy.r, t're.
d..t.ecled .rror ..SNles lasl error

All the marks are out of 5. The half marked for de-
tecting an error indicates that the error message was
confusing enough for it to be unclear if tbe error was
properly detected. Naturally, tbe last two columns are
subjective. PUG

5

~
~

I
I
i
I
i
I
I

..J

PASCAL PROCESSOR VALIDATION PROCEDURE
By David Blyth

Standardization Office,
National Computing Centre

1 Introduction

Few Pascal users can be unaware of the recent pub-
lication of the British Standard for the language which
will shortly be adopted internationally. Many Users
have heard of the suite of validation programs, devel-
oped by the University of Tasmania and the National
Physical Laboratory, which can be used to check on the
standard-conformance of an implementation. This suite
is readily available and any user who has a copy can
use it to test his own compiler or interpreter. For those
brave users who undertake such testing this article pre-
sents a brief guide to the steps involved and draws upon
experience gained at NCC in a joint NPUNCC/BSI
project to develop and document the validation
procedures.

2 The Pascal Standard ud Validation Suite
The Pascal standard defines the language itself and

the manner in which Pascal programs are to be handled
by an implementation. The validation suite contains
over 400 test programs whose purpose is to check
whether or not an implementation accepts the language
as defined in the standard and whether or not programs
which are accepted behave as the standard says they
should. The standard and the validation suite have been
developed in parallel with tbe result that the suite will
provide an exceptionally strenuous test of any imple-
mentation. An implementation which. performs well
under test can be used with confidence in its conform-
ance and reliability.

The suite contains eight types of test program
which investigate respectively, conformance, devi-
ance, implementation-defined features, implementa-
tion-dependent features, error handling conformance
arrays, quality and extensions. These classes of tests
are quite distinct and are used in characteristic ways.

2,1 Conformance Tests

Conformance test programs attempt to check that
an implementation provides those features required by
the standard and that it does so in the manner which the
standard specifies. These programs are all correct stan-
dard Pascal. If the implementation conforms to the
standard these programs all compile and execute. If a
conformance test program fails then it is an indication
that the implementation does not conform to the
standard.

2.2 Deviance Tests
Deviance te st programs check whether

(i) the implementation provides an extension of Pascal :
(ii) the implementation fails to check or limit in an ap-

propriate manner some feature of Pascal;

6

(iii) the implementation incorporates some common
error.
No deviance test program is standard Pascal. Each

such program contains exactly one such deviation.
When a deviance test is run the results are inspected
for evidence that the implementation does in fact detect
the deviation. If it does not then the implementation
does not conform with the standard.

2,3 Implementatlon-Dellned Featnl'eS

The standard defines an implementation-defined
feature as one which may differ between implementa-
tions but which is defined for any particular processor.
A conforming implementation must be accompanied by
a document that provides a definition of all its imple-
mentation-defined features. The test programs for im-
plementation-defined features are intended to show
how these features are handled in any particular imple-
mentation. If they aren't handled in the manner claimed
then the implementation does not conform.

2.4 Implementation-Dependent Features

An implementation-dependent feature may differ
between implementations and is not necessarily de-
fined for any particular implementation. Here the im-
plementor can either state in his documentation that use
of such features is not reported or else have the imple-
mentation issue some diagnostic for which such a use
is encountered. The test programs in this area are de-
signed to determine the behaviour of the implementa-
tion. The implementation conforms only if it behaves
as claimed or reports implementation-dependent usages.

2,5 Error.HandBng

An error is defined, in section 3.1 of the standard,
to be a violation by a program of the requirements of
the standard that the implementation is not obliged to
detect. An implementation only fails to conform in re-
spect of error-handling if it fails to process an error in
the manner claimed in the documentation. The error-
handling tests each present the implementation with
one error with the aim of determining exactly what the
implementation does with it.

2.6 Conformant Arrays

An implementation may conform with the standard
at level-O or at level-I. In plain terms it can either have
conformant arrays or it can 't. If conformant arrays are
provided then all ofthe features specified for them must
be provided according to the standard.

The conformant array tests are a collection of con-
formance, deviance, implementation-defined, imple-
mentation-dependent, error-handling and quality tests

PUG(UK)

designed to test the conformant array features in
isolation.

2.7 QuaUty
Many aspects of an implementation are beyond the

scope of the standard, but it is still useful to investigate
them. Quality tests explore these areas and investigate:

(a) The limits on the size and complexity of programs
imposed by the implementation

(ii) the amount of store needed to perform certain
well-defined tasks

(iii) the accuracy of real arithmetic
(iv) the meaningfulness of diagnostics for common

types of error
(v) the speed of the code produced.

Quality tests often throw up some surprising results!

2.8 Extensions
Many implementations offer extensions to the

standard. The extension tests see whether common ex-
tensions (eg those approved by PUG) are implemented.

Together the test programs provide a very thor-
ough test of an implementation.

3 Using the Validation Suite

3.1 Distribution Format

The validation suite is distributed on 9 track 11III8-
netic tape with characteristics as follows:

Recording density 800 or 1600 bpi
Recording mode ; NRZI or PE
Character code : ISO 646 or EBCDIC
1200 bytes/block, 80 characters/record.

A purchaser of the tape can specify which density,
recording mode and character code he wants.

There are 49 files on the tape. Three of these con-
tain documentation. The rest contain the validation
programs.

3.2 Media Conversion
Users whose machines have tape drives should

experience no significant problems in reading the dis-
tribution tape. Their only concern will be with lexical
conversion if necessary.

Users with ftoppy disc based systems need to do
a media transcription to get the suite in a form in which
they can use it. This conversion can be tricky, and is
almost always done on an ad hoc basis for the particular
system concerned.

3.3 Lexical Conversion
There are two character sets to consider when us-

ing the suite - the one used to encode the test pro-
grams, and the one used to represent "char-type" val-
ues on the target computer.

Roughly speaking any consistent set oflexicalsub-
stitutions can be made, but some may render specific
lexical test programs, and some programs which test
the char type, irrelevant in validation.

Care is needed to ensure that lexical conversion is
consistent throughout. This is particularly important if

PUG(UK)

media conversion affects character code
representations.

3.4 integrity ChecldDc
Following media and lexical conversion it is advis-

able to check that no corruption has occurred. For this
purpose a program called the Checktext program is
supplied. It produces a 96-bit binary check pattern us-
ina an algorithm oriainally developed for use in data
transmission (CCITI Rec. VA 1)

The Checktext program operates on a standard-
ized internal representation ofthe program and will not
be aft'ected by legal lexical substitutions. Certain parts
of the proaram may need cus!omization for use on par-
ticular systems and the source code is marked to show
where such chanaes should be made.

The results of the Checktext program should be
compared with standard results contained in the User
Guide to the suite (supplied with the distributrion tape)
and if there is any discrepancy then transcription has
introduced errors.

3.5 Checldna VaUclationSuite Assnmptlons

A validation suite must necessarily make certain
assumptions about the nature of the implementations
which it will be used to test. The Pascal validation suite
assumes that

. textfiles

. character-strings

. the real-type. localfiles
are all implemented, also that

. lines up to 72 characters long can be accepted

. lines up to 72 characters long may be output

. the value of maxint is > 32,000

. the relative precisionfor reals is < 0.001

. the characters needed to encode the test pro-
grams are all accepted as distinct by the
implementation

. the "largest"' procedure in the test suite is ac-
cepted by the implementation (except for cenain qual-
ity test procedures).

A further implicit assumption is that the real arith-
metic system is susceptible to investigation by cenain
types of method.

The validation suite contains a prOJl'lUDcalled the
"Check Assumptions" program which enables the user
to determine whether or not the implementation vio-
lated any of the assumptions listed above.

4 I'IuaIBIanda ' theT_

4.1 PlannIng Is Important
Testing an implementation is not just a matter of

running all the test Proarams. The test suite is larae and
on some machines it is not possible to run all the tests
without breaking the suite into batches. Furthermore
close attention must he paid to ensure that the behav-
iour of the implementation is accurately recorded
throuahout the test procedure. Finally provision must

7

I

J

be made to make it easy to re-run any particular test
after preliminary interpretation of test results.

Choice of the method of working can have a
marked effect on the overall time taken to run the tests.
There are two areas to consider. First some method
must be chosen to extract test programs from the files
which contain them. Second the organization of the
jobs which run the test programs must be decided. The
User Guide illustrates three approaches for each of
these methods which will cover most cases on a wide
range of machines.

Some programs may prove to be rogues on certain
implementations. There is no way of knowing in ad-
vance whicb programs will behave in this way for any
given implementation. The user should take care so that
such programs do not cause tbe loss of accumulated test
results.

In any event some programs will need re-running
because the results on the first run may have been in-
conclusive. The circumstances in which a re-run is
needed are given in the Guide.

5 Reportlq Results
It is desirable to adhere to a standard form of pres-

entation when reporting the results of a validation. This
offers two main advanla8es.

First, when a formal validation is being done, a
standardized report:

I Processor Identification
2 Test Conditions
3 Conformance Test Results
4 Deviance Test Results
5 Error-Handling Test Results
6 Implementation Defined Test Results
7 Implementation-Dependent Test Results
8 Level I Test Results
9 Quality Test Results

10 Extension Test Results

Guidance on the content and presentation ofthese
sections is included and a sample validation report is
included as an Appendix.

6 Practical Use

The present article offers only a brief sketch of the
validation procedure. At first sight it may look some-
what daunting. In practice the key is attention to detail.
The User Guide gives fairly detailed advice on tran-
scription and test job organization, and will be found
helpful by most people undertaking tests of implemen-
tations. Once transcription and organization have been
sorted out the tests usually run smoothly. Carrying out
a full test is a rewarding exercise which offers many
lessons to language implementors. It is hoped that users
and implementors alike will use the test suite and help
to promote rapid practical standardization of Pascal.

PUG

Dear Nick,

After our phone conversation the other week, I
was rather more relieved to feel that here in the UK
there are other Pascalers at work and that PUGUK is
viable again. The gap has been too long, and I wish you
well in trying to get it going again. [shall try and do
what I can and particularly with public domain soft-
ware, but at the moment, I don't have a great deal of
time to spare, nor any telecomms equipment to plug
into my computer.

I enclose a cheque for 9 pounds for subscription.
On the question of back numbers, I have copies of 12-
16, and any subsequent or previous issues would be
very welcome. I would have thought that for [7-21
which you already have, it would be worth while put-
ting a note in the next issue to see how many people
want them, and thell have your printer print adequate
copies in total. Much better than spending your time
collating everyones ' needs and doing individual pho-
tocopies of bits and pieces. Perhaps if other people
were able to lend YOllsome oCthe older copies, the same
could be done. I'd certainly lend you 12-[6 if you like.
After all, its the information that matters, not whether
the issue is an original or not unless we have an collec-
tors among us. Anyway, mark me down for any back
issues you can get your hands on, please.

I am now using Pro-Pascal from Prospero Software
as my mllior programming tool, as well of course as
Wordstar to compose programs and write letters, The

e

hardware is OEM kit from Sirton Computers in Purley,
by the name of Midas and is in essence an Integrand
10-slot SIOOcase with PSU, Ithaca IEEE SIOOcards
(MPU-80, FDC-2, 64KDR and VIO boards) giving 64k
and 4Mhz Z80A with CP/M, plus 2.YE-DATA 174D
[Mb drives. The printer is a Qume (a luxury really), and
a Volker-Craig VC404 completes the outfit.

I will try and compose a critique of Pro-Pascal as
soon as possible, but version 1.4 is due out soon with
8 byte longreals among other goodies. I have written to
Charles Foster of PascaJ/Z User Group asking if he or
his contributors would permit the distribution of any of
their Pascal sources to PUGUK members appropri-
ately modified to BS 6192, or ifindeed there is any other.
Public Pascal around in the States. I think we ought to
be prepared to reciprocate on this, don't you?

In converting from programming mainly on main-
trames in Fortran and having a nodding acquaintance
with Cobol, Basic and other languages, there are times
when even Standard Pascal has its limitations. There-
fore, I've thougIJt of two ways of improving the Ian-
gUllle. As PUG may have some inftuence with the pow-
ers that be, I've taken the liberty of including the
suggestions - by all means put them in a news-letter
if you like. I don't believe in trying to persuade com-
piler-writers to augment their compilers as their job is
to implement the standard. If the languqe is to grow,
and if any such need is identified, then it's the standard
that must mature. Now BS 6192 is published, it will be

PUG(UK)

some time before any further thought is applied to the
subject I expect, if ever, so perhaps now is the time to
see if anyone is interested.

John R Lolldon
18 Darley Road

Manchester MI6 ODQ

II) St~uctu~ed eonatanta.

nnQ.AM pte;
OOI85TolMhuMr4'd-1bn;

ete:
TTPI!

8eat81'\,,.-(cof'ee.j...ltr..d. tea .hl.cult ._ute Ide);

..r,pe-JPmRD
.:I..t ;
b,e :ch8..;
.:uny'n..'1 of .nteur;
f:lluhrt'''''j
"188\ of M:81artJ'pe;
h:lI..uy(I,.2nJ of rh8l'

,,"D:
, .tr

TAWL"..1 t..t.,pe-
Oft."""'red. ".* .rhr(2n) .en.25.S".''',

,_.
leoff..,t.. ...r I. . ehol..t.ro!';

.r.l:JN
...,.r;...I;
dl8playh-e'lll.h(4J:

ete

Note the use of the 'chr' function to set up unprint-
able characters, the absence of any delimiter other than
those already used in Pascal and the access of a con"
stant array element. There is no reason why 'ord'
should not also be included so that portability is en-
hanced. The syntax follows closely on that of Pascal as
it is and involves no ambiauity in type declaration im-
plicit where structured constants are declared in the
constant section as in some implementations. Pointers
declared in the correspnding type declaration may be
set to whatever internal value represents nil, however
they are named and uncompleted arrays of char ini-
tialized to spaces.

Such a feature will provide geniune structured
read-only constants without the uaty initiation pres-
ently necessary in Pascal. In fact, in practice it is easier
to put records for initialization in a parameter file and
read them in, which does not seem an elegant solution.
For micros with restricted memory, initializing a record
from constants needs up to two copies of every element
- one dynamic and one in the constant area, which is
rather wasteful ofspace.

h) Tvrf'-eh.l'I~r 'unction.

cn',~ etc

Typr
scorr-" t rst. s.cond. tht "d.

fOtlrth);
frul t-' lII,u')rt.oe.r.,or."" r.,..);

PUG(UK)

ICIII)cul.ta tht88Cora 808ehow)

rhl,'rut t t-frut t(tM..eon);

ate

This facility wiDprovide a logical completion to the
built-in functions 'ord', 'chr' and provide a much more
readable alternative to the use of variant records. Al-
thoulh there is no reason why the method should not
be available for records if the matching of record
lengths were entirely the programmers responsibility,
there is an objection in that the internal representation
of variables will be machine-dependent. I envisaae this
type-change function purely for scalar variables be-
tween scalars and perhaps for pointers between point-
en. It is of course really a mechanism to cause the com-
piler not to check types.

(This facility is similar to one available in AAEC Pascal
8000 for the IBM 3600'370 series, and attributed to
KludlC8JDUS)

If any readen have any comments for or qainst,
perhaps PUG can help to air views?

HELP!

Dear Nick;
Sy8lem. Used
(i) Apple (II) UCSD Pascal.

(ii) To be delivered December 1982: Burroups B21-5
(384 K Byte). Pascal ISO draft 5.

SpeclallDtereata

Business systems. Particularly rapid access to un-
sorted data items. Data base management systems.

1aIorm8tIo.

We would be interested in knowing of a Pascal
compiler to interim ISO standard or UCSD for Bur-
roughs BI955 with o.SM Byte working store. Manufac-
turer does not support Pascal for.

Mr. P A E Herring
MAPAC

17 Market Square
Leilhton Buzzard

Bedfordshire
LU77EU

Dear Nick,
CET TELESOFrWARE PROJECT

Thank you for your letter of 6th December.
I think you must have lot the wrong impression

from my letter of 3rd December. We certainly do not
want to see a different telesoftware format for PAS-
CAL. As I understand it, the only problem with the cur-

9

I
I

J

rent format is the TAB character which lies outside the
PRESTEL character set. You may be interested in our
recent extensions to the format (copy enclosed) which
overcome this.

As far as including PASCAL programs in our li-
brary is concerned, all I am saying is that we need to
learn how to walk before we can run. We are keen to
include programs in languages other than BASIC, in-
cluding PASCAL, but need to be sure there are people
who can receive them on our system and will find them
useful, before putting them up.

If you know of PASCAL programs which will run
on the micros most used in educations, ie 380Z, Apple,
Pet, Acorn and TRS 80, I would be interested in re-
ceiving details.

Chris Knowles
Telesoftware Project Manager

Council for Educational Technology
3 Devonshire Street, London WIN 2BA

Dear Pascal User,

Please find enclosed details regarding Version 3. J
of the Pascal Validation Suite which was released on
the first of October 1982. Should you wish to receive
a copy of the suite, please fill in the enclosed application
form for a license and send it together with your re-
mittance to:

Dr. Z. J. Ciechanowicz
Division of Information Technology & Computing
National Physical Laboratory
Teddington
Middlesex TW II OLW England

10

\

On receipt ofthe form and remittance we wiDsend
a magnetic tape containing the suite.

The cost of the package is £ 100 sterling (+ 15%
VAT for UK users) and cheques should be made pay-
able to "The National Physical Laboratory" quoting
our reference number NPS 2/01.

APPLICATION FOR LICENSE 1'0 USE VALIDATION SUITE FOR PASCAL

Name and address of requester (com-
pany name if requester Is a company)

Name and address to which information
should be sent (write 'as above' If the
same)

Z. J. Ciechanowicz
Division of Information Technology & Computing

Department of Industry
National Physical Laboratory

Teddington, Middlesex TWll OLW

PS When requesting the suite please supply the tape
format you require:

i.e. 1600/800 b.p.i.
ISO/EBCVDIC code

We generally write our tapes with fixed length
blocks, 15 records per block, 80 characters per record.

Signature of requester

Date

In making this application, which should be signed by a responsible person In the case of a company, the requester
agrees that:
(a) The copyright subsisting In the validation suite Is recognized as being the property of the British Standards

Institution and A. H.J. Sale;
(b) The requester will not distribute machine-readable cople8 of the validation suite, modified or unmodified, to any

third party without permission, nor make copies available to third partlee.

In return, the copyright holders grant full parmission to use the programs and documentation contained in the vali-
dation suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of comparative
reports, and similar purposes, and the provision of listings of the reslAts of compilation and execution of the programs
to third parties in the course of the above ctivlties. In such documents, reference shall be made to the original copyright
notice and the source.

Dear Nick,

1. Can you recommend a PASCAL for XENIX? (LSI
II UNIX)

2. Do you know who distributes the Dutch 'Fres Uni-
versity' version of PASCAL? (in the UK)

Brian Kirk
Robinson Systems

Engineering Limited
Red Lion House, St. Mary's Street,

Painswick, GL6 6QR
Telephone: (0452) 813699

VAT Registration: 302 3124 28

OFFICE
USE
ONLY

Signed

On behalf of A.H.J. Sale and the British Standards Instrtution

NIltIoIl8I PhY8lcel1.8borlltory T8ddlngton MlcldlMex TW11 OLW T8I8phone 01-1177-3222 TeI.x 282344

Pascal Compiler Validation Suite
NPL Issued version 3.1 of the above suite of test programs on 1 October 1982. These programa permit a user to
check the compliance of a Pascal compiler and run-time system with the ISO standard for Pescel (ISO 7185, also
BS 6192). The new suite is an eX1enslve revision of version 3.0 and the work has been undertaken In conjunction
with Professor A.H.J. Sale of the University of Tasmania. SUbsequent revisions to the test suite are likely to be of a
minor nature.

The British Standards Instrtution will shortty be launching a pilot validation service base upon the test suite together
with other material.

PUG(UK)

The test suite consists of about 17,300 lines of Pescel programs plus addition comments on each of the 553 test
programs. The programs themselves are divided Into a number of classes as follows:

182 programs checking that the felltures of the St81dard are available;
157 programs checking thet illegal constructs are rejected by a complier;
82 programs checking the error-detection cepabillty of a Pascal system;
60 programs checking the quality of an implementation:
40 programs checking for Level 1 Pescel ('conformant arrays')'
16 programs checking the variations permitted by the Standard;
13 programs checking for features defined for each Implementation;

3 programs checking for eX1ensions. B.A. Wichmann
Z.J. Clechanowlcz, eX1ension 3977

For BSI, J. Hatton-Smooker, telephone 0442-3111

11PUG(UK)

,...

~
I

I

J.

:Too!.Y,t.- !Too!.Y,t.- :Too!.Y~ :Too!.Y~ :Too!.Y~ :Too!.Y~ :Too!.~

A Better Referencer
By J. Yamer

Money Management Systems Inc.

The program which follows was developed from
the Currie/Sale procedure cross-referencer published
in Pascal News # /7. Of course, any programmer who
looks at someone else's program thinks he could do a
heller job, but I think that by almost any standard I suc-
ceeded, though it took me much longer than Sale's
three days. I have an excuse, however: prior to this
one, I had never wrillen a Pascal program; my experi-
ence with the language comes solely from the articles,
standards proposals, and validation suite which have
heen published in PN.

The program is shorter, simpler, and almost cer-
tainly faster: It has half as many source lines as the
Currie/Sale version, but the format is different, and the
numher of statements in only 25% smaDer. The HP
100012015compiler generated 4604 words of code and
static data (the 1000 is not stack-oriented). The proce-
dure descriptor is 25% smaller: the reference descriptor
is 97% smaDer. The syntax analyzer is more tolerant:
missing semicolons do not faze it. The program needs
29.80 seconds and 1376 words of heap to process itself,
356.80 seconds and 5780 words to process the 103-pro-
cedure, 4000-line P4 compiler.

The improvement stems from the use of a different
data structure: The Currie/Sale referencer is optimized
for programs of virtually infinite size, using trees and
stack and rings of procedure descriptors and chains of
reference descriptors, which allow the procedure da-
tabase to grow very large with the program's taking all
the memory ever manufactured and all the time till
doomsday to process it. This referencer, on the other
hand, is optimized for smaD programs, and uses an ar-
ray of procedure descriptor pointers whose size is fixed
by a constant, a quick-and-dirty replacement sort, and
sets of reference descriptor flags (two sets, since the
program prints the reference data from both view-
points, caDer and caDee). As the program to he pro-
cessed increases ill size, memory use increases quad.
ratically, eventually surpassing the Currie/Sale
referencer, which started out higher but rises only lin-
early. Execution time, I imagine, ought to expand sim-
ilarly. It might he interesting to determine where the
cross-oYer point is.

The program IlseS the CASE. . . OTHERWISE
construct which many processors don't recognize yet.
The solution for thi s problem is to upgrade the proces-
sor! An interim fi" is to replace the CASE's with
IF . . . ELSEIF c()nstructs.

OptloualllDes

Those lines which hegin with the null comment are
not vitally necessa.ry to the program and can he re-
moved without seriously affecting its operation. They
serve primarily to handle HPlOOO extensions.

12

Lines 19,21-24,49-51,68-71,522-526, and 551-564
make use of implementation-dependent intrinsics to
print processing time and heap usage information.
These lines can of course he replaced with the appro-
priate code to do the job at the target installation or sim-
ply left out - like most statistics, they're not really
necessary.

Lines 113-116 ignore compiler directives. HP Pas-
ca.1I1000has its directives bounded by dollar signs. The
format is like strings or comments, and thus is in the
spirit of Pascal, but nonetheless the construct must he
handled separately.

Line 1 is a compiler directive (another is on line
71). The default output line width is 128, which causes
132-character lines to wrap around even though there
are still empty columns on the page.

Lines 307-308 and 345-346 add the HPIOOOintrin-
sics to the pre-defined procedure table. They can he
replaced with the appropriate constants for the target
installation or removed to make the program conform
to the pure standard. The format is as follows: Each
procedure name is followed by a space. A hyphen ter-
minates each constant. The last string ends with a pro-
cedure name, space, and hyphen, and is then padded
with trailing spaces to ConstLen. As many strings as
necessary can he added at 307 as long as they have cor-
responding caDs at 345.

The directive "external" is recognized by the re-
ferencer. Lines 8, 149, 237-238, aDd 477 could he mod-
ified to aDow the it to recognize the target installation's
directives. The implementation dependency was in-
cluded primarily to show how this is to he done. The
na.ture of the dependency is such that it can he left in
even if the target doesn't recognize it.

Options

This referencer contains a much more efficient
AddIntrIDsk:s procedure than does the Currie/Sale ver-
sion (hecause intrinsics inclusion is not the default for
that referencer, while it is for this one). The feature can
he disabled by setting Intrlnslcs false. The procedure
itself is quite smaD and can he left in even ifinactivated.

The program is designed to print the reference in-
formation from the standpoint both of caller and caDee.
Naturally, twice as much information takes twice the
space and twice the time to print. Either table can he
disabled separately by means of CallsTable or
CalIersTable. Almost all the code for printing the tables
is common. As an aside, when both tables are printed
it is sometimes difficult to figure out which direction is
represented by which table, even though the table's ti-
tle says "calls" or "callers." One table contains only
a single procedure defined at level 0: the main program.

Softwara Toole

Obviously no procedure can caD the main program.
Similarly, the other table contains the intrinsic proce-
dures. Obviously they don't make any calls.

The identifiers in the input file are truncated if they
are too long to fit into the identifier arrays. The length
ofthese arrays is specified by ldentLen. Changing this
constant requires corresponding modification to the
constants defined on lines 5-8, 83-87, and 210-211.

U...,Wldtb can.he set to any appropriate value.
Setting it to 80 gives two columns of reference data,
which is somewhat hard to read (try setting your ter-
minal width to 2 some time). Setting it to 56 forces the
tables to have one reference per line, which is rather
vertical but still readable.

MasProc: determines the size of the array of point-
ers to procedure descriptors, and thus the maximum
aDowable complexity of the input program and the reo,
ferencer's static size. If it is set to 64 and the HP-spe-
cific intrinsics are removed, there is room for 34 pr0-
cedures, more than most programs published in PN
need - more than most programs executable on a pro-
cessor that can't handle large sets probably need.

StackDeptb specifies how many BEGIN/END and
CASE/END structured statements imhedded inside the
body of a procedure the referencer can handle. Few
programmers can create code more complicated than
16 nested structures (the referencer never goes deeper
than four), but if desired the stack can he extended eas-
ily, since each element in the stack -takes only one
integer.

Otraet is the distance from upper case to lower. The
program may he set for EBCDIC by changing this con-
stant to the appropriate value.

One final note: no numhers larger than 32767 are
needed by the program. On some processors (such as
the HP 1000), significant space can he saved by assign-
ing MasInt to 32767 in the referencer's global constant
section.

U'Itf.F '-00003 1. OM CROOOJ__ USIItO 00014 .-0000

I~I
"'''COft."

1I II.ldeflt. '1"..Ide>fIot. .. '."0."_
.,

f'wdI~\ .. .'or...rd .,
lE.tIHftt . '..t.""81 'I1"t., lc8 . tru.

(
'1"'.

,,,,,,.I.sic",..ec:"""_
),

C.II"f"". -true
(

P,.ift\ tnle
0'

..1III".'8.C.. ,,!tOM
"'pee JJ

C.II.,.TabI8 . true
(,.,.Ift\ table

0'
,..,...8nC_ TO "'I'oc...,.._)f

tletl .. 16
(

St tiC8'U:8 11..t For '''''\''.8,.8.
H

Lift"""'"
132

(
D.t

' "uM."
of' '."t.'I

,..,. 11_'
)

(
CLi",.Width-lcMlttl._-22_

II'"
(1 ""_.2'),

7.
(

,-.u..
flU'" 0'

.roc.., TliIls ,1.
)

(b. ..t to . COft ", ..t .,r..)I
16(

"'.1_ bloc~ tl... ..lth.I'I. .,.ee JJ
32(...tance t.._ Uf'''.''-to I_,,-c...)'
11

(
RTE: ...tUf',.-t,_-o'-d... co,.,.)1

Ihd."U.
O'h.t(:.0.11_

till".
C JOft.wG,d

()Z,.f'''8C:(
)Ti-'l:oc

<>.....
It.ock._"E,.,..,T..",..

. -32' 127.7.. ".c..d .,,,.,..IIIo""I'.I"C.d...f' , 0 ~I

. .oc..d .1111..c...oc...'"",...,, "'~d .-4,

. 0.."..1"",. ...I".c "1I1. (MaI" It.,.,illI"1_.Too/totloc..Mi...lec",
T_Do..,\.o."E"d..l._"",..lod)

,

u.....
".."1..,,"1"..".I ~'"

. 1. .I "L...'. _, ., I ""."..,

. ...c".d .,...Clft"""."..1 .. e".".
"'ld8fI"I"j".'

"'''ocltM..""oc'L oc" . 0..".."rocJ
"'oeS." . .." .r ocR."..,
"'rochK . ..c..d.._ Ilde"'S".i,,.'

c , Ift"'''t.''_.1 I l oclt ,.c_. I l ocR."...
(

0 , 0,,1., a I),,' H , Occluded)I

d.'''''. '
WIIol.'

8ofIwa.. Toole

...".. I -I. \1c.t ,., c.I t "..oc"'"-..-()I.f.C),..
()oec:...1

I
la'''''I TI"-ocl, h." 'II.., 10__ t
"".'..10...'.110

"
I .., ~ Clawl

,..." lOp..
1...\.:....

i""'''''IfP.

, 1-.,,1'.'..'. I"'"'', I """Iu ou......,. Ii..'1 .C...o.._.Ct..."
..,...
~'KII.H.,
..,UI."

I
P'Yec:"''''. L 'ec ,

I ..,."(..'oc,,
)

0' -.".ochU'. .".,,(f-.oc] of ""MIt."...,
.rack.' , .,oe ,
."adr..,C.l.iK"It) .f *,,,'.1

"
()to, [.KCC..' ,.U I.;_,T ,),

..".,...1'

"
()cr.." "'I_f. '"",1 '. (",.. ,_f.'I..,.-.d J .."..".1'

"P.""'. '
04'

...oc ..edl ".(
..." ideo,i'i..

,._ ..."',. ._,... ".oc:.., t.")(..., i.. c_"., .._,.",_., ..UfOC'".t.._..,)(~., c_lI... .i.OC"I)(..., , i'. It 1__' .f., ldeft'.fwdl t .. .48'n". 'c(
1"..''--,1 ' 1 '_.' "'.0"..\ ,-..,... '''..4
c__"

'''.1 ''
. '...oc '. .1

F.-cl...' . "...c"l811 .,
...ill ' . 1. .,C_ldeII'. 'c... .,
€act , . 'OIl. .,

vwJ . 1 "
'c.. I C*I..'

.,..8'.1'.'(
.1. AU88"C c c,...

)
(..,)

...i.
(

h8dldeft'
)

, , ,. 81...1
"I " ,. []I

I ,. ."P
'

, ,
Clio.. I "'..'.f c C',.._

"""
CPOP i. or c_t)

,

"
IIUI,,'''C.'.' 'h_ I- +1.'... be.'"

(C_t.,
cl'll.'("-.....If e...i.' ,.._ ..,.. ,. MII

tI e " , , .'11 ,,' ,
()

It C , l
(C_,I.. .I..cli_)

() , "... _'i' 0..."' ORCi"..,," '.() .,
I"""'

, , .-t.i' I..."" ,
()

UfO'!I
" '.',If' clt..(, ,It_ r ' (C_l)

...il. (u...,,'''C'')'. M88U_"'...() .. ,
., ,""", ,".........\1' U_"')'. . 11-..''.'"

It (c.,."" ... (dl(-"') "'i.
(

"

)

.,,.8'.1'.'

"

, ' UIeo
(

he: ._1
)

.....

..,..I'.I'.f
-".

"
Ci" ' ,.. 01 C,...", ,It.. 1..

(
c t.

)

..... ,
"1..11."",...,

-".t_ .,
tll""'" .M., " ,.._ boOllICI~'i'i..

J '.11,
.,

."""'0'
. J ._

"e"I '(J] I. ,"""'..,.....

""'"
MO'et"""''''

I. .I""ed'.") . .'.I U '
'or J I. J __to I . It I "(JJ 1M.1""., i. (c.._' \0 '_r C._)

ldofIU,,) ,. c...C.,.dC,...UJ]leOf'h.U'
I "c ,.

' "e (,]1-.,I " ,. Q ,
"

I" ''''
.M.,,,"."..1',.._ t.

" _'il
t80' CI

",'"
1M.1.,,"';.1').1_

I'
(' ocl...UOl:CI '...UfOcl

"
'11_ , , ,...,

.,..
I'

e '.' I " 011:C ".IE.U U
OIl1","...,.,i,_,I_

I' 1..' I..ldoII'u._ ' '" 0.._.1.. I' ,,,,,-c._1"" , I..." ,.C...._
.1.. I. idoll'..:lIdl' \III...

" I.CI...1-..,.. i. c..e)'c'
"

1I:..dl
"11 I ''''...e)IIIP.oc...'

-.,

13

,...

~
I

I

.J.

Pr lilt. .rro" _""...
1,,(1

"'are,n.'.
}

GI'19"9.8b"8CI<." .[,.porfll".'" I i,.a,"..Proc ._ou,"u'"
,,,tu~ ,St.ecl< h..th

}

"....
t.Coull'ut [ttor .l'>I'n.'~" I ')J

ca.. ...,.or of'~oPr...,...,
w"tet"(outl'ut.'F,la d_" not b..." with -"..oe ')I

~._f'1"1t.10II1
""I'elnloutrull'Procedure cS8fin8d t..te..t lOCO "

'OoM8'UtPrOC.1.,,. I".I"(oul"...t. 'Too ..~II ,.roc H.' ,N..Proe '41
,

~'.""Cedl
"",t.lnCoul".,,". 'M,.placad ,

",.d ...rd')I
'DO

'
..'I\.ln(_\, '.'Too .an. ".,,'ad blocl<.. ...',8tlc:l<o."lhl)"

l).t[II;:I.'
..r It..ln (outP...t. '[11<1-0'-(III -- 8'..'''S EN_' '..~') I,

o"t.P.,..odl
.."talfl(out.,.u\,'Uft_t.C"ld [MP". Or .,..in, [or ""'0(1')1-.,

Ir brac...tn
"ha"

..rlt,'ftlout t,'U"ta,..in,t.d blo~k"".1,1. b'.ck.'U do
H.'" ("'illt ,.". ot ""..tch.d IIE-GIM/CASE'.)br.ek.t I. b".ck.t-IJ

wrIt.l... Cout",ut ,..t.ek(br.ek.t) It9) J
U

.0"0 I
,,,(t.,o,, fo,..t.ld...t.t".. ,"'-"l'loj'''l:'t..

,...1
.~. ,d."t.c 'ld."t.S

'

I 1~."tF-t.rl
k."lo,. u",..,-c.". for "r

,nl,,,.. f'o".t~.,. .', ""..1 I..c"u..~ lh.
)

r ,,'l of . fun(t.o" t b. ..th.. ord,n.1 or ,.o".t..r.
)

,;
'h..., t..ld...t.t.", 1"."U't, .1"''''.R'''i~'

,ld.."t5.t. J,I."t 'ar
,,,...,Off t.f.l)

~I Ianlk.n 1

fo,..tl"."t. J~ h... ,..1,,,\ 1
h 'd...t." I. ,d."tl
fo. . I. 1 to Id."U_." ,to ,I . IN

'~"tCil"'" t.h."
t"n. ."."t.n(.) I Kchr (o'dU' "."t.-

[.)1 'Off...t.1 1
..nd;

,uc..<Ju,. f', ."T.t-..h.,I..t.,.. .111"'01 1I
lo, t..d eNt..ut ot (011.et..4 ,.t.r.nc. .,.t.. It

'
'.,

)

.,0c.OO", h t.h. "..., th... ,
."

ord., gt d.I.".t..on
)

l; '!ilooI , 'fo,..t.ld...t .ld."tL." ,l ,".W. dth. I ,..I. "out..ut,
)

.,0c""""..ocll.""..,.,ocS.t '0""0' I.II"t
]

(0".1.
Id."Ulfdth . 18

(
1ct8nt.t ::' I t..o c... b.,,,,. ,d...U)j

I"d.,,' ~ 38
(

con',nu.t.o" ,...t.,,'.t,o"l Id."tl.".2::'
}I

...
. , 1. .ti".Wldthl..,oc, ,.f , f"rocR.fI..1,.f..t 'P'ocS.tl

h..,n
... ,t.I"leNbuU I

".'.'oul.",tl J
.."t.tou",,"u'" "'-,

bOh 1 T.tol. of
')',f' c.lI..t.t>I. th." ..r,l.Co..t.",t..'c.iI..'1.1.. ..r".(out..ut.'c.1 1.,..'1 I

.."'.'nlout t.. lor ., u.)I

,t.'''(eNt.utl'
'or

..,OC1.1 to ..rocn.,. do ..,'h ',..U.O,tI,..tC.,oc)] do

"
c.lht.bl. AMDCC.'I..()(]I Of(NOTc.iI"t..tol.,...O

1(,.I'.r..()(JI Oft C IIOII t.h." b..,n
(

I"clude ..eh ..,oc.du,.
)

(,f It. c.,I.d or c.ll.d. but. ,nc'ud. .,,
",..r-4''''".4"

)

C
." I.". t.tH. ot c.II.,. ,"

o,d., t.o
"nd A r.."'...d.

)

JIKI"'d."t.1

"

d.fl,, O lh." 't.lout."".' "1::'1 ..,. b..,.. (Mo, i,..t""..,,,..)
,t. (out.ut.4.' I

.".'
5~ ,

c.". bod.., .". ot

,t.lout..ut... ,..on."'1 (lIod..
0'

f'or...rd ...oc.dou... "'ot
lou"d),

_,'..Cout.ut.' 1'0,.."11
lI'I""'..

.." t.. (out...t.bod.. I
'''''''1

I
."dl..,...",or.t.leN'.ut, , 11'.' . .,-o'..tldilntl, "...c 1

.' 1'1 I,t ".,."t.bl. 'h.,.. ,.'..thC.II. .,.. ...f..t.IKc.II.,.,fo, ,,".1 to .,oc" do

"
..ortl,."'.') 1Mr.'.., th." be.,n

I' IcN"tWld'hlt,"iI'N..tt.hnJ th." b..,,, (
No ..0_ '.1', 0,.. I,,,..)

"',l.'''lout.utt I
..I' It.CU<.l,.",t.

'
I' 'Ind.nt.1 I

JI.I"de"U
.."dl..,th I,.,r"ortl.."r.'])~ ,",0 ,t.Coull'ut..

fo'..tld."t.C"._., e "I~1
,

~, .~.ld."tM,dthl
."dl

."t.I"loull'uUI

."dl.,...t!

'»'1.'0'" ,-," O"t ' ""OC'P...odt.,
I' tool..",Set .r. to I,.t() el_t Uut ",ol"h. to th.)

HIK~.c 'or ,...,. It ,..on.. r...ult ,. ,]
".00'..""

deft,. I ,.t oc" ,P'ocR.,)
b...,.. j' II..t(I).NIL

'h."
,-.

""",oc
,.,.,... ,'.. b..,,,

..,oc:
1.""oc"u.'wh.'e ((11.'C."O(J~."._C)o,dtl.tI OR Cli.tC..roc)"..co...OH o\H[t

,,.,oc)11 do
.roc'."'oc-I~f,,..4I",OCI.tr..-'

",th 1,,,lC..,oc]~ do ,I(.cg.,<)JIOR("_.(I,d."lIt.h." r,,,dl",ocl.'.I..I
.An .ndl

o<'d"... o\d4f>,oel
0\4.t. ""oco.s<:

'0'
..,...t)

.'t>lor:.., .('ro'.lr.."".oc.' t.,"."t(
,

I ,,,..-,,., ,M.,P,oe...,0"nu..I',ocR."..

14

v., .,0cIP,ocR."..1
be'inIf Ft"df'rocC.rocl

'h." .f li.tC...ocl"
th." E,rorill.det,nlt.on),

"
",ocnUII.N.,,"rocth.,.. [norITooN''''''"oe..',

i'
I ,.H nOMIL t.h... ...oc"u.,..'!IC:" 1I

"...1 Il..te.,oc"...]I'
",Ith II.t("'oe"u.]~ do be.l"

(
Inlti.,...

)

"... .. '~"tl"...c , I. id."tc.,.,', , ,. blor.kJ
't:o... I. 11defl,,,. ,.. i".1
bo4ll"". .. 01
c.".

,. []I
c.ll.r. ,. []I
~..

."cH
...oc.dur. o\ddl,," i".

;e.1(
Adct "h. ".11"..1 ..'oc.dou '0 "... .,o(.du". 'I"t.

)
(8Itl.,..It,IoHnt.. Ii d."t..'dentc ld."t.R." 1in.

)

co".t
Co".'Le". 53

(
l.n.th

0'
t.h. '''''',,,.,c.-4il'finlt,_ co""t."t.

)J

Co".'1
. '.1;1" .'ct.n chr co.. d.,.o.. .0' .0'" ..t IA "... 0~'1Con.t2 .'cf4 O..d ...".. d .ut r.'d "..dln

,..., r..."t.. .,'1Con.t3 . "001".1.,n ."'" ..." .ucc t.'UIICu"..c.., .."t. 't.I" - 'J()
Con..t.. .

' "d "'0.. h81t. 11"..0. ..,. 0.0.." o r..'i"t...'J()
Co".t., &' "o.lliOl'l .,_t t"

'.1 ..,i'..:tl'
_

'1tv...
Co",tR.".. . I. .Con.tl... ,
Co"St.,,n.ck.d ."..(Con.Ut.""..) o~ Ch.,'
r ..I(d...tR 1

.,oc.du,'. Addlnt" "., r." (" ICu"St, ,,,.1 J
l 00 the ,... ..o'~ Of the ..ro"..:lu'.. H.c r. ..,,,c. th. ,,,t,,n..c..

)
(

d.fin,t.o" cOf,..l.,,~
'. "'''~IO''''.J

,,,...,
.'oc Hi ,_.11." fu, ..d,.

)

(0' 'A.j.jf",oc, iiiI.". Ide" t ,Ce...Slr
'''..Co tR.."

,
d."t..a~

)

.ICo""tR."..Ib..,..
"_11ra,...l

"
"._.[)J~' .

t."."
to..,,, (

11Io014.ror..dur.
)

A.I.JI'ru,1
. p

~"II.. ,. I.
,d."t ,. 1I1.".ld...t'...

.1..
"

n ().-.
lh'" to..'" t R..d "..t

(h.,
,d."U..J ,. n 1JII
~ I. ~. 11

'"
.,.,

."dlt"
" t

j)~'
--'1,,,dl

1;I..,n
(

Addl"tt ,...'C. lout..,)
id.nt ,- !il1.n,,14.nt.l
1cf8"tc (II
.,... ,. OJ. 1.11
"'dd("t"".,c..iCo".lU I
Addl"t"n"'c..(Co""t2) I
Add1"t..

'''''.C.
tCon.tJ) I()

Addl"tr ,,,.,c..ICo l..1 I()
Addl,,"'''.'(.(COI'I.'')'
II'" '.11
'''41

.'oc."u... "oc.".IiJIOO::.'(
P..or..'.oc."""" funLt'U...

0'
..ro bloc.

)

(0' tAdo:IP,oc,ab'oc. .Ellt ,d."t.'r .n""..oc. 'fo,..' ra"t. id8f\'. ,d8fttc.....(
Icf8nt ,

II".. I ,.t .LowP'ocR.n.., 'oul...t ,...,."' ocn_.f'..ocft."..

.'0"
, P..ocR.",.1

(U"."t,loc.',oot.
,

LOtOf'rocR."".,
...oc.du,. &c...A"u_..t..1(

R.." .,_.,,'., Ch.c.i",
'0' .co"'. occl ,_. 8ft" '0,..1 .'oc.

)
(1)1' IItddf'roc.b'ock. 'E,..o,. If .,,4f>..oc. 'ror..t 1 '. '.M"t. .dentc)(

1cf8"' 1.".,I'..'..ou,,."'t ,, 'oc,
!...dl~t

)

b.""
(

Se."A'."'
,.)

..,.,,'.0 (
9ho",Idt,. .n ' l;Iut...k. .u...).

".'dld.""..hII. ..""10 do b..."
(

I"..de "._", ,..t)

"
h...Oth...

'h .t
F,,,dP,oc(.,oc'

th... 1,.U"',ocY-.SC_.I.block
If , tv...()De,

'h."
E,..o,("i..I.c.dl

.,.. b..,,, (
fO'..1 .,0c.dur."unctI0fl

)
R..4Jcf8"tl

."
It.ln lout.ut, I ,,,.'S.' . Iblock'2.fo,_tldent. C t. te)"I.

.., It.lnCout..ut. . ,,,.'~~!.' . Itblock..1.2. 'fo,... ') I
AddP,oc'
I I.tl.'o(ll".)" .bodv I .nal.",.I"t. I
~..

."dldentl,r
".'."H 'h.n r_..t ...dl t Ufltli , t21

."dl
."d'

",roe..:tur. &c."D.'.'(
R..d de',,,it,o,,.,

C"IIC"'''. '0'
.e_. oc:clu.,OI'I.

."d .oe.1 ..,oc..
)

[I)'bl!IC:k.
'f ."df'roc. Ifor..tl""'t.. id.At,

'''''..'e '
de"t..",... ."..

)
(

'.i.t"out"ut,l.roc.I"..oc:a..llock.IR.ildldent
)

b..." wh... (,d."tll...OO.,nl liMO(ld."" C).,r."t' 1 do to..,,,
I'

,dant KOth... th.A It f.".:IP,ocC;,oc)
tll." r ,.U"'oc)'-'.'o.".blo,t.

"

Id."tll "f th... b..."
(

Loc.1 ..roc..:tu".
)

R...:tldelltl
.."t.I"Co...t,.ut, "".,5.' "loloc.,,,,
For..tl ""I'..."t.id.nlc I"1 I

Software Toola

P'oc oc.,-..R..dld8f\U
.".1 .,,4'

.roc.dour. 1k...8ocI1I'(
Ch.ek &>0411

'or r.'.r_c.. to
"'OC'<N"..

)

'.'brlM;k.l..eu",_t. IE..,o,.IF IIU...o<:",...t ."..".. ill..I,.t.(
'.,oe. IR..d, 'R..41cf8..t.
.roc84ure

"UP'
(

SI..ek . 'b..,'" Of'
.c .t.t._"t.-"...,k.t I ,n..."u.b8")

(GI~r.ct..t.l£rro...1
1" t.".,.t..dD...th

)

be'i".1..e.rb,.cll.t)I.II,...'
ir brocll.t.it"kD.",t..

"h." [""0"
IT_~.. I 1

I;Ir.,k.,'.b..."k.t.IJ~.,
.'CK.du...

"01"(0
ID'CK", ,'b...ck.'" IErro". in...,t.

)

b..I" i'
li".~t~) 1oM0 «b,.ck.t)21 011: (bIO(k>I)1

th8ft E o'llo.tE"d.> ..,. b'.c".t'.b'.c~,.l-t ."dJ
b..,,, (

Ic."lIo""
]

. i..t((u n'Y..bodwl,".,K. .n.'
PU..hl
r t

R..dld8fttl
c 'd.nt of

Det.Directiv.1
Erro..I"'."'.c.dll

O...".C..'O"...I
"u...,

Oth.rl
b.. in

(
"O..'bl. ".'.,,,Ar.. 0' ...i.".."t. to . IUllctiOl'l

)
wh,I. - ."",ut~.'

. do 1t..dJ

"

.".ut...,1' th.n
be""

(

'1.'
.o..,bl.

)

It..dl

i' '''.01''' ,..."
,.", , (A..i 1. H

.ndl
If ,d...t.II Oth.r th.n

,(
I ,,,df'ruc (.ro,1

lh'"
t-e.,,,

(
411.'

)

w,t" I ,,,ULu..r."t.). .1u l.1 .", ~c.. '."(.'0()1

wl'h 11.'[...oc1 do ".'I.f"IK,~II rcu,'."I.)I
wndl

.ndl
."011Ul\t, I t>r.c~_.t" I I

.".:i'
...oc.dur. O...t.D.I.'(

5.1. 'Ol:.' ..,oc.dou,." uut-ol-'co
.""

, ,,,.t.t.
oc':'u"'d

)
(0 Iblod .1 ,st. 10<.1 ,00t...,oc"u.,f',O,)cR.",.

)

1' ""OC:IP,oc;lt."..,
b..,,,

., 10c.I,00t.1..,0,,,... t.",,, fOf .'O(Io<lOl:.'root.L
1.0."00::"'" ..

II.t(.ro(I co..,.OJ
ro,

.'0' ''''oc.',ool
do..llto I do

It. ,.t.(..fOC)". iCU t"Q("~ th... t ,..H..roc)~. "co..'.11
'''011

be""
(

,'o'
lIoc..

)

cu"...t 1.01
i'

f, 'oc;("'..CKI t ..It" 'I,U...CK]- 40
il (lav.'.blec.1 iIIoMD(too.,., O.
th'lt cu "t ,..'oc

(
"oot"

(0. . 10 'd..,Itr.I.'.d .'oc.d),

"
eu,r.tlt.O th."

"'.""

(
Add "... .roc.dou...

)

A6dl'rocl
curr...'I..."ocnUIII
...dl

loc.' root 1..roc"U8'
blockl.block.I'
.(."A, "t.,
Sc."p.,..1

."
,t..."(out.ut.I

'''.1:'.'
. ,t,'oc.'...fo,..tld8ftt.1

'da""
te)'

II ."'-,,' 0..." t.h." le."lIod.it iden'.t;.tld."t th." I ..Ucur'."t)~.bo""'I".I8-1.1Del.t.llet.,
bloelll.bloc.-I'
-..

""ee""',
So,U(IltK. 'II.". .0

,_
"'roc:Ot't. 1'.

)
C ., "'0

...d 'or. c_llc.t.d .10.',1.".)
(.III.".rOC et",.oc " i.t

)

..,
~"'8c:i.l,kI ",ec

'.,.,"" I «...,,"oc fi..i...")'
i.

tli.'U)'."t.,. ""8'(1.2t.. .'M.,... tIkl OC IIV
2'.t..l.u.'.I..",oc...'

w I'.t(oc)~ ..

i'
1..I.(II.\[kU") 1.11_ , ,

It ".1
,,,_ , , d

".. If 1..U tll.\[(o-IU...II_)II_ 1.11_..,-.-1
.t.tu...,.'.i'll....._\il .'.t.u I.I...ed

.'H
, \

.,
k"'oe

1.,,_ .1..'u.I.Filll d
.1..

"
1i.\(_tl..I.(kJJ~ <__ t k l

.1.. .t."u.I.Fi",,4h8d
_I." "o\",,"'IIII.lIed'

'0"
JI..roc 1.0

k'"
... 'I..'I')I...,.I.II.U.I-IJI

aor\llstU.)t...roc'...,-,
,.f'OC II' ,[

C"oe".8(" CIIII.rr.._ i..",u' 'or _d-o'-II".
)

(...' ut..,I..
)

1... .
_\tl_u\)'
it _'"(i..,."..>

"'_
1i..I.., 1I-,

...i.. C"..,)
(JI:.ec:I"fi...ti_) ,
C)vitti \I.. .. beoi"

(.,...\ \1_)
()

'II8C.. d II..,r..UOO u c:.J()
.It ,. .llli_c.'() ,

.1.". ,.
('A' .'S'. .C.., [..

'f' .'8'. 'H'. '1'. '.1'. '1('. 'L' .'"'.'.'. 'Oii'''', '1'. '.'.
.1.. .f'. 'U'. 'V'.

'Y'.
'Z' J'.1"' I.lt .. .I,."..('~.'.e.. '4'. f.. '.'. i'. '~'. ,'1'.

r.,. '.', '0'.
'

'.i. '.'. 't.'. 'y'. 'v'. '''''.'Ie''."..'.'..0 "II.tell I. NIL'

"'
.. 0'bllKk 18

0'b,.ck.\ ,."Ii... I. II
..OC"''' .."._(,i...\),
I' l.t.",...'c. th_

1...'"".'C"bHI "
I' l(.' r~\ u...f.,.,U..,.' 1...dl..,U

oof' U."I.< I"', M) ~J_ll.I"'..,t.,,,., II.. ''-1..' cNt'.' '0" """0..'.."1..111(001 ,,,.1
"..oc loc..

(
PII... I ~ "..oc... i ut H

I' I""u'''(,'.' ,..."
(

,H-..I."...'odl'
lor'

(
PIIa.. 2 U

It C.lh"bl. I ""ill'...I.ltr.,.> (PII..,:u.
J'It t.II"""I. ."

(, (
J'

)J
C>v..Itel... t_'-"'ul)

,

()"tI"'o(I"'ol,()i..cCI., t...I.
().,II." I,,'o.t 40 be8l11

(, 1.
.t.t.I.I.".

)
()

.-c I. d UO/t..II."" ec cl()

.iI .. .1I1i.K.-.11JC) ., .iICO ,.._ be C tor.ec:' ,... r_ t.._ .111,..ecOftd..)()
.if ,. .11.'00'()
11KI. He-II()
-....(J ...i\.C_t"'..&..' ..I..itoll-\ 1.. _d.. '1_. c.I

'
()

it .IIHO t.1I_ ."'\8C_,,,"u','O')I()
.,I\8I.f_"",,,\..II'I.' ..c_d..'I'()
-...."...t..wu\). PUG

..",_.

Dear Rich:

The software tools section of Pascal News is ex-
tremely useful. We have implemented Prose on the HP
3000 and we eJ1joyusing Prose to do our text formatting.

This letter includes one enhancement to Prose and
one bug-fix. The enhancement provides a new terminal-
type: DIABLO. This terminal-type provides for pro-
portional spacing on DIABLO terminals. The change_
are as follows:

Lln.. 167 to 17] ",COlI.:

I THE'OLLOIIUC AIlE !fOf D!IIECflV[:5. SUT IT I:' CONVUIElfT
I TO UIClUDETIfEMU THIS TABLE.

AST.
L'T.

t ASCII TERMINAL
t L litE fOilfliTEIl

Softwere Tools

I UD£IISC*IJACOISO. T!IIItJI.u
t OIaI..O nIMt.'L
I ILLECAl

".If,
011.
IU)i

. Lift.. ,.. '0
19] tt.C08.:

CASE fU"IIALnrt Of
AJT,
014, .
AS1: IflllTf1(CII);
LPT: lIer.

WIlITELlfOUHUfl;
CIIIII(IIGECOtITIIOL: .PLUS

fl.

UD t
I'

TU"UUn,£ . AJT I
USr:
IF TUI'IIIUn'f. DU THU

8EGI"
:~1I:;1 0;. 1 TO L£II 00

15

,...

..
I

J

WITH SU,XI) DO
If C

()
SLUr THEIl

BEGfli
IF X.. 0 0 THEIl

!EGIII
If (12 MOD

C"""WIDTH . 0) THEN
fOil 13 :. 1 TO (Xl

DI'I C"AIIWIDTH) DO
WIITEI(BUM")

EL.SE
8[GIII

Fall X} :. , TO (Xl DIY CHARVIDT")DO
WIUTEH8UIIIO;

X2 :. X2 MOD CMUIIIDT";
VIIITEI(E!C);
WIliTE1(TH"[[} ;

FOil][3 :. 1 TO X2 DO
WIIf[I(8LAU);

WIt1TE1t[SC);
WRIT[I(fOt1I1)j

'"
UD,

12 :. 0,
""IT[1{C)

'"ELSEXl:. X2. 181...
'LS'fOil 11 :. 1 TO LEI DO

lIlIe. 18~2 to 1860 bee08e:

"JT,
tn.: I[GIII

WHILE IIICHU . 8un DO
IUTCH;

CHA_WIDTH ;. IIUtt8U(1D, _I, 0, UrrIITT, 10'31;
If MOT (eMUIHDT" II (10, 12]) THEIl

8EGJN
UROII(101]);
CHA"WIDTH ;. 10

[10,
If (TE8MIULTTP[. DUI AID (CHUWYDTH . 12) THU

I[GUI
\lIIUEI(Ue), IWrite Ot,lt the IIMII
""!TEI(US);
VIIIT[1(f'f);

[10;
CHAIIW!!)!" :. 60 DIY CHAIIWIDTH;
aUfLIIIElt].1I8' :. LEP'TMUGIM .CHUWIDTH

U.
line.]11]9 to]11.0 b.e088:

If ElIDI! 1"£1 vll!TILI(' PilOSE [lIIOIS DETECTED,'),
IF (TUMIULTYPE . OIA) .uD (CHA.!twIDTH . ~) THEIl

,.,,--_...

BEGI. U£sEY PITCHI
WIIIT£I(ESC);

WIIIHHSt;

""
END, t PIlOSE I

The version of Prose published in PN # 15contains
a bug concerning index entries. If an index entry is
underlined, Prose starts referencina the NIL pointer.
The problem is that the function UPPER returns an in-
correct value for underlined characters. A new UPPER
function is introduced in the SORT procedure.
Lint! 21b9 t.o 2110 becoMe:

"

II1TtCEII; t G£I[lAL nOEl VAlli ABLE

UPPEII
_

SPECIALVEIISIOIIOf U I:I. DOES lOT IIEfUIIII
vllDERLfJlED CHAltACTUS.

PUH CH . CHAueTER TO CDUEltT TO U..,EI CASE.

F'UIICTIOH UPPEIt(CH ASCIn) ASCI II ,
BEGIN

(
UPPEI

)

If ODt)(CHOIV 128) THEIl
CH:. CH

_
128;

If ClASStCHJ.lETTEJI THEIl
If 01 h SHALLA THEIl

UPPElt;. CII_ 32
ELSE

UPPEII:. CH
ELSE

UPPElt :. CHi
£110 [UPPEIIli

8E(;111 I SalT
j

I encourage all Prose users to send their changes
to Pascal News. With such an excellent tool it would
he unfortunate if widely varyina versions were to start
appearina.

Yours truly,
David J. Greer

The Use of Generic Capsules
with the

University of Minnesota Pascal 6000 Compiler
by Fr8Dk L. Friedman

AlessIo Glacomucd
Carol A. Glnsbel'l

Anita Girton
Temple University

I. INTRODUCTION

This document contains a description of a data
type abstraction facility, a capsule, that has been im-
plemented as an extension to the University of Min-
nesota Pascal 6000 Series compiler. The facility pro-
vides an encapsulation that establishes a static scope
of identifiers with controlled visability. Data objects
and a set of operations on these objects may be en-
closed. The document is intended to provide sufficient
information for those who wish to use the general cap-
sule facility and library. A more complete description
or capsules may be found in the paper "Capsules: A

Department of Computer and Information Sciences,
Computer Users Document 81-01, February,l98I, Rev.
I. September, 1981. Rev. 2, December, \98\

16

Data Abstraction Facility for Pascal," CIS-TR 81~I,
Temple University C & IN SC Department Technical
Report.

II. WHAT IS A CAPSULE?

A capsule is an additional Pascal type which is syn-
tactically similar in structure to the Pascal record. The
syntax diagrams for the Pascal type definition (with the
capsule added) may be specified as
type
deftnidon

Software Tools

'ype type identifier

ocaIer type

s.braaae £ype

pointer type

capsule £ype

The capsule type is defined by the diagram

with the export declaration derlned as

oxpon
doclarotion

-C- EXPORT0"01

Software Tools

'.

The export list is a list of variable, procedure and
function identifien which may be referenced outside
the scope of the capsule. All protection of the data ob-
jects encapsulated in the capsule is provided at compile
time. Thus, if capstype i. a capsule. and the variable X
is declared to be of type capstype. then all external ref-
erences to identifien. id. appearina in the export list for
capstype must be ohhe form

X$id

Exported variables are read oaly, and identifiers DOt
appearlq in the export list may DOtbe referenced out-
side the scope of the capau1e. There is noexplicit import
facility, such as provided in Modula and Euclid.

The Pascal scope rules for capsules are the same
as tbe rules for all other Pascal objects. Oaly a sinaIe
copy of the operations (procedures and functions) de-
fined within a capsule is created, regardless of the num-
ber of variable. declared to be of the capsule type..
When a procedure (or function) containina the decla-
ration of a capsule-type variable is called and the var-
iable declaration is elaborated, the capsule's global var-
iables are placed on the runtime stack as a record. This
record remains on the stack as lona as the called pr0-
cedure (function) remain. III:tive. Operations on the
abstr8ct object. are thus performed via call. of the ap-
propriate capsule procedures or functions.

An example ofacapsule in parameterized (aeaeric)
form i. shown in Fipre 2. An iUu.tration of the use of
Ibis cap.ule is sbown in F'1JUI'eI.

{A noa-rccunh't exrres:cion rarser}

.~. 'Sf'; (.capnk.l.cD~311 char~tad(:fj. 20. charI',

war
- stack: chanuckZO;

B.

c. ~ {Initial!", J stackSinlt;

.{

~(pa l;

figure 1:

Use of 8 simplestack caps"

E, _It

F. (pst:.,
r'yp')

. capsul.

{]
ist of c~le rar88letf'Ts}

{:teck c8JWIUle d.t1n1t1ort (1n f.('ftf'rlc fcrl'll)

.....
p8I'8Itten:
pruDe

- n8r ot o["'ul('
pli:e . l'UIb~r of ("h,'Illcnt~ in the.' sU':~
ptype . t'tast: t~'T'f' of uad ,1.'r"~t)

17

~tackpointN . l...p:i:~'.
H. ~ {glor-a} cap.ulf' LJri:tt>!("s!

.: ana\' (1. .r~i:cl ot pt~~; I..t;!d~
top: --;:tii'ckpc>ir.teT; Ir<'l~tcr tC' ton ::-f :,tad.

I
p",h

(i''''' 1"'1'<);~'rl)CrduT~ ~'~h fitm: Pt'l)(');
(pu I ~h.':II ('lite .ud.:

I. pr('cedure in1t;

Irl'r{C'T'!':'I:\rl~\it::rcd ir:.itl:di::'It:c:1 r: "'~';!: l,t-.lt,.t~

~
top. J

!:!!! {init!

J. procedure f,rint;
{flnnt out the d.nta}

~"SY 1F('MYPE'.'REAL')llir."'J
"'Titeln

(dat8\-alue:S:2)

(.Sy ELSEIF(
'm'PE'.'n.~f.R'}*)

"'Titeln
(dat.".81ue:S);

(_n ELSE insert the next Hnt' to 1nfonn u,er of ~rTOn~
to the u!'er: pt)-pt' IIIJst bt- t)'»e integer or rral. onJy.

(
"SY INHf")

!!!!! (print) ;

~ (eeneric fom of stack)

Figure 2:

Stack capsule: generic form

The major features of the capsule facility are in-
dicated by the letters A-H in the left hand margins of
these figures. These features are discussed next.

A. Generle (Par.meterlzed) referen<e: Generic refer-
ences in a Pascal program are processed by the Ge-
nerics Preprocessor (see Section III). This program
searches a library of generic capsules (capsall in this
case) for the named capsule record (capstk). and
copies the capsule text into the program. substitut-
ing the designated arguments (charstack20. 20 and
char) for the generic parameters (pname. psize and
ptype) listed in the capsule header (see line F.). The
syntax for specifying a reference to a generic cap-
sule is pattemed after the syntax for the INCLUDE
facility pro vided by the Minnesota Pascal
Compiler. +

B. butlmtlatlon of a data ele_t of type charstaekZO
aD about one 8Iack: This creates an instance ofthe
capsule: a copy of the global variables of the capsule
wiD be placed on the run-time stack when this dec-
laration is elaborated during execution.

C. can to initialization: The global capsule variable.
top. will be initialized to zero when this call is
executed.

+ See the University of Minnesota Pascal 6000 Release
3 document.

18

D. References to exported Ideatl8en: An exported
identifier is referenced by prefixing it with the cap-
sule name followed by a dollar sign.

E. Capstk is the name of the capsule record as refer-
enced in the generic statement (see A.).

F. Capsule Parameter Uat: Generic arguments (char-
stack20, 20 and char in this case) are substituted for
the parameters (pname. psize and ptype) each time
the capsule is referenced in a generic statement. As
illustrated in the capsule header statement in the line
following the parameter list. the use of the param-
eter pname permits the user to assign different
names to each different stack capsule that is needed.

G. Export list: The export list is a list of all capsule
identifiers (variables. procedures. functions) that
may be referenced from outside the capsule.

H. Dedaratlon of Iiobal (per_t) objects: For each
variable declared to be ofthe capsule type, a copy
of these objects is placed on the run-time stack.

\. The initialization procedure: If the initialization of
global capsule data is required. such a procedure
must be called explicitly by the user for each de-
clared instance of the capsule.

The examples in Figures 1 and 2 also illustrate
some of the shortcomings of the current capsule imple-
mentation. For example. there is no provision for the
automatic execution of initialization statements, such
as provided in Concurrent Pascal. There is also no pro-
vision for the direct specification of variable initializa-
tion in a declaration. a feature that is provided by Ada.
Euclid. and CLU. Rather. any initialization required for
the encapsulated data object must be done via an ex-
plicit reference to an initialization procedure (such as
init) defined within the capsule.

recommended for creation and maintenance of the
capsule library (see the CDC Manual on Modify for
additional details).

In Figure 3. the first line of each record indicates
the record name. The second line contains the list
of parameters (n, .. 9) to be replaced when the cap-
sule is copied from the library. If there are no pa-
rameters. this line may be omitted.

Tecnarn1
(paT

I
, parZ' ... parnl)

{ capsule body

*EOR
recnam1
(parI' parZ' parnZ)

f
capsule body

"EOR

Figure 3:

Structure of a Sequential File of Capsules

2. Capsules may be retrieved from a capsule library
(and copied into a Pascal module) through the use
of the Pascal G compiler option:

SG('recnam' /'Iibfilnam ')
III. GENERIC CAPSULE PREPROCESSOR

A. Introdudloo

The Generic Capsule Preprocessor (GCP) is a pro-
gram that may be used to allow a programmer to insert
Pascal source text anywhere in a Pascal source pro-
gram. The GCP is patterned after the Pascal INCLUDE
facility (see the document Pascal 6000 Release 3) and
is used primarily for the insertion of Generic Capsules
into the type declaration section of a user program. pro-
cedure, or function.

or
$G('recnam'/'libfilnam'. arg.. arg'i2. arg,,)

where
recnam - the name of the capsule record to
be inserted
libfilnam - the name of the capsule library
file containing the record
arg.. arg" - the actual parameters to be
substituted (via text string substitution) for
the dummy parameters in the definition of the
capsule record.

Remember that Pascal compiler options must be in-
serted inside a comment. and may contain no blanks.

B. Use of the GCP
I. To use the GCP. the programmer must first create a

capsule library either in the form of a sequential file
of capsules [with each capsule separated by an end-
of-record (7/8/9 or "EORj, or a user library file of
capsules (using the CDC Modify source library
maintenance system).

If the sequential file approach is taken, the file
must appear as shown in Figure 3. Such a file may
easily be created and maintained using SEN ATOR
(see TUCA documents E601 or E602).t For large
collections of capsules, the CDC Modify system is

3. Example
The generic stack capsule shown in Figure 2 con-

tains three parameters. pname. psize. ptype which can
be used to specify the capsule name. the size of the ar-
ray to represent the stack. and the type of the infor-
mation to be stored in each element of the stack.

When encountered by the GCP. the statement

("SG('capstk'/'capsall'. charstack20, 20. char)")
causes an instance of the stack capsule to be copied into
the user's text at the point of reference. During the
copy, each occurrence ofthe parameters pname, psize

Software Tools

tTemple University Computer Activity. introductory
and advanced level documents on interactive
computing.

Software Tools

and ptype would be replaced by the correspondina ar-
IUments. charstack20. 20, and char. The result. in this
case. would be a capsule named charstack20 which
uses a 2O-element array of elements of type char. Given
this capsule definition. variables such as x.y.z declared
as

var x,y,z; charstack20;

would represent character stacks of size 20 which could
be manipulated IUlmathe POP. push. and init functions
specifted in the capsule.

The reference
(.SG(' capstk' /' capaall' .instack 1000.1ooo.inteJC'r).)

eould be used to establish a capsule definition for a
stack consisting of an array of 100 integers. The
delcaratlon

var W,z: intstackIooo;

would establish variables w and z each representing in-
teJC'r stacks of size 1000.

C. RMtrIetIou... Other Co b

I. A JC'nerie reference $0... may not be the first state-
ment of an input program. since a program statement
is expected here.

2. Only one capsule h'brary file may be accessed at a
time.

3. If no substitution is desired for a particular param-
eter. paI'j. in a capsule record. use a null argument
(indicated by conaecutive commas) in the position
corresponding to paI'j. ThIUl

$0(' capstk' /'capsa1l' .charstack20. .char)
would have the effect of leaving psize untouched
when the stack capsule is copied into the user
program.

... No capsule parameter (appearina in a JC'neric cap-
sule record) may exceed 10 characters in lenath.

S. A maximum of 9 parameters is allowed for a liven
JC'nerie capsule.

D. Uae flI COIIdItIoD8IlDeI1osbowItIIIa a capsule

1. L Any conditional statement may be included within
a seneric capsule which is part of a capsule li-
brary. There must be at least one cap$ulr param-
eter which wiD be the basis for testing the con-
dition. A conditional statement must never
precede the capsule parameter statement. but it
must procede the EOF marker of the capsule
within the library. (Refer to Fig. 2, the stack
capsule).

b. The permissible conditional statements may be-
po with only one of the following: 'IF'. 'ELSE',
'ELSEIF', 'ENDIF'. One 'endif' atateuent is
required for. each 'W. statement. No 'elseif'
statement may loaically follow an 'else'
statement.

c. The only relational operators permitted are as
follows:

< > <-= >= < >
d. No blanks are permitted in the formal part ohhe

statement. except the one which follows the 'Y'

19

