
p.

'

ASCAl US£fI'S6tOUP.

8MBER 2lJ

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

APRIL} 1981

If this isn't APRIL...

- - -- . '.. ."

..

~I
'

does that mean we're late?

EX LIBRIS: David T. Craig

736 Edgewa ter
~

[8] Wichita, Kansas 67230 (USA)

~
().--o
Q.

POLICY: PASCAL NEWS (15-Sep-801

* Pascal!!!!!! is the official but informal publication'of the User's Group.

* Pascal News contains all we (the editors)
.know about Pascal; we use it as

the vehicle to answer ~81l inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately ~uccumb to the. reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls 'or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiri~as at the
"concentrators" (our phones and mailboxes). 0 We are trying honestly to say:
"We cannot promise more that we can do."

* Pascal News is produced 3 or 4 times during a year; usually in March, June,
September;-and December.

* ALL THE NEWS.THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 em lines!) -

;* Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAINA REQUEST
o

TO THE CONTRARY.

* Pascal News is divided into flexib!e sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and. articles (including reviews),
riotices of Pascal in the nsows, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools.. for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/ algorithm certification, .performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teacbing tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal ~.
IMPLEMENTAl"lONWOTES 7:' reports news of Pasc-al implementations: contacts
for maintainers, implementors, distributors, anddocumentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative.. desctip.t..ions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations .

i-

- -
USA Europe Aust.

] 1 year $10. $14. A$ 8.
] Enter me as a new member for:

] 2 years $18. $25. A$ 15.
[] Renew my subscription for:

3 years $25. *35. A$ 20.

[] Send Back Issue(s)

- - - - - - ALL-PURPOSE COUPON - - - - - - (1-Apr-81)

Pascal Users Group
P.O. Box 4406

Allentown, Pa. 18170-4406 USA

Note

We will not accept purchace orders.
Make checks payable to: "Pascal Users Group", drawn on a U.S. bank
in U.S. dollars.
See the Pol icy section on the reverse side alternate address if
you are located in the Australasian Region.
Note the discounts below, for multi-year subscription and renewal.
The U. S. Postal Service does not forward Pascal News.

] My new address/phone is listed below

[] Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

[] Comments:

ENCLOSED PLEASE FIND: A$
$

CHECK no.

NAME

ADDRESS

PHONE

COMPUTER

DATE

-- --------------

------------------ -----

JOINING PASCAL USERS GROUP?

Membership is open to anyone: particularly the pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Please enclose the proper prepayment (check payable to "Pascal user's
Group"); we will not bill you.
Please do not senO-Us purchase ordersi we cannot endure the paper work!
When you join PUG any time within a year: January 1 to December 31, you will
receive all issues of Pascal News for that year.
We produce pascal News as a---means toward the end of promoting Pascal and
communicating news or events surrounding pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through pascal News. We desi re to minimi ze paperwo rk, because we have
other work to do.

--

American Reg ion (North and South Amer ica) , and European Reg ion (Europe,
North Africa, Western and Central Asia): Join through PUGUSA

Australasian Region (Australia, East Asia - incl. Japan): PUG(AUS) . Send
$A10.00 per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

--

PUG (USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatlves collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG (USA) . Persons in the Australasian Region must
join through thei r reg ional representative. people in other places please
join through PUG (USA) .

RENEWING?

Please renew early (before November and please write us a line or two to tell
us what you are doing with pascal, and tell us what you think of PUG and
Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins wi thin a year means that we eliminate many requests for
backissues ahead of time, and we don't have to reprint important information
in every issue--especially about Pascal implementations!
Issues 1 .. 8 (January, 1974 - May 1977) are out of print.
Issues 9 .. 12 (September, 1977 - June, 1978)-are-available from PUG(USA) all
for $15.00 and from PUG(AUS) all for $A15.00
Issues 13 16 are available from PUG(AUS) all for $A15.00i and from
PUG(USA) all for $15.00.
Extra single copies of new issues (current academic year) are: $5.00 each -
PUG(USA)i and $A5.00 each - PUG (AUS) .

SENDING MATERIAL FOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines l' i
cm. wide) form.
All letters will"be printed unless they contain a request to the contrary.

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write II as above" if the same)

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop-
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc-
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur-
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc-
uments, reference shall be made to the original copyright notice and its source.

X Distribution charge: $50.00

X Make checks payable to ANPAjRI in US dollars drawn on a US bank.
Remittance must accompany application.

Source Code Delivery Medium Specification:
9-track, 800 bpi, NRZI, Odd Parity, 600. Magnetic Tape

Mail request to:

() ANSI-Standard

ANPAjRI . .
P.O. Box 598
Easton, Pa. 18042
USA
Attn: R.J. Cichelli

a) Select character code set:
() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.

() 40 () 20 () 10

() Special DEC System Alternates:
() RSX-IAS PIP Format
() DOS-RSTS FLX Format

lce use on y
Signed
Date

Richard J. Cichelli
On behalf of A.H.J. Sale & R.A. Freak

Index
PASCAL NEWS t21 APRIL, 1981 INDEX

o POLICY, COUPONS, I~DEX, ETC.

1 EDITOR'S CONTRIBUTION

3 HERE AND THERE WITH Pascal
3 Book review: "The Pascal Handbook"
4 Book review: "Introduction to pascal"
5 Tidbits
5 PUG PRESS ... our sister publication?
6 I'm not sure??

7
7
23

APPLICATIONS
The EMI compiler
Unreal Arithmetic

-- Andrew s. Tanenbaum.
-- Jeff Pepper.

27 ARTICLES
27 "An extention to pascal Read and Write Procedures"

-- by David Rowland.

28 "PDP-ll Pascal: The Swedish Compiler vs. OMSI Pascal-I"
-- by Margret Kulos

40 OPEN FORUM FOR MEMBERS

43 PASCAL STANDARDS

85 ONE PURPOSE COUPON, POLICY

--

Contributors to this issue (t21) were:

EDITOR
Here & There
Books & Articles
Applications .

Standards
Implementation Notes
Administration

Rick Shaw
John Eisenberg
Rich Stevens
Rich Cichelli, Andy Mickel
Jim Miner, Tony Addyman
Bob Dietrich, Greg Marshall
Moe Ford, Jennie Sinclair

PASCAL NEWS APRIL, 1980 Page 1

Editor's Contribution

NEW ADDRESS

Yes, in my continued effort to bring you better service, (read
this as: I can not do all the work effectively!) I have found
someone else (read: sucker) to take over the PUG mailing list. I
am sure that this will increase the satisfaction level for this
task l~~'. this will take a great load off of my back and allow me
to devote all of my time to editing and publishing pascal News.

LATE

I thought April first (April Fools Day) was an appropriate target
date for this issue of Pascal News! I apologize for the tardiness,
but my work (I have a real job that pays the bills) and the many
pressing problems and issues of PN got in the way. I had to solve
the PUG Europe problem, and try to gather as much as I could
concerning the final vote on the ISO standard.

FUTURE OF PUG IN EUROPE---
It took me more than a few months to correct the festering
problems in Europe sur round ing pascal News. The prev ious
coordinator was sinking under the mire of ever increasing job
responsibilities as well as the editorship of clearly the best
journal dealing with practical software implementation. (SP&E) As
a resul t, the european reg ion suffered from lack of attention.
This is over! PUG cares. Please send your "job well done's" to
David in Southampton, and send your complaints to PUGUSA. We will
be handling all but the Australasia Region from the US. Please
read the new APC carefully for policy and price changes. We will
be mailing by surface mail to the UK and Europe, but I have been
assured by the USPS that it should take no more than a month. I
have been asked if I would mail by air for an extra surcharge. The
answer has to be no, at this time. PUG can just not afford the
special processing and handling that this would be required for
two different types of mail. Sorry!

STANDARDS

Another delay was the standards effort. There is so much going on
in the standards arena that we just could not afford to miss it. I
think it was worth it. Over half of this issue is devoted to the
vote on the ISO standard for Pascal (7185). Jim Miner has done
another fine job.

PASCAL NEWS APRIL, 198121 Page 2

THIS ISSUE

Now the good news! We have another jam packed issue. I think you
will recognize out book reviewer this issue. He is an "occasional"
contributor to PN. And I hope you will get a chuckle from our
"sister" publication PUG PRESS. Andy Mickel brings this little gem
to us. The other HERE and THERE article is a real puzzle. It came
to me just as you see it!?

.

The application for this issue was so good I could not miss
pubIishing it. It is a Pascal to EMI pseudo code compiler by
Andrew Tanenbaum. Its a real beauty. But it was sooooo big I could
not publish it all... yet. This issue conta~ns the definition of
the assembler language that is output and also an interpreter
which serves as the EMI machine definition. Issue 22 will contain
the program text for the EMI Pascal compiler. I hope everyone
reviews the documentation and the code, even if they do not need
the compiler. It is a fine example of elegant design and
implementation using the language Pascal. Also included in the
APPLICATIONS section is an article by Jeff Pepper om the
implementation of extended precision integer arithmetic. A fine
job.

The ARTICLES section contains a thought provoking extension to the
read/write subroutines by David Rowland. Lets hear a response from
the members. And finally Maragret Kulos has contributed a very
comprehensive article comparing OMSI-l Pascal and The Swedish
Pascal compiler. There is a great deal of interest in these two
compilers for the PDP-Il. I hope this provides some answers.

All in all, a great issue. More to come on EMI in issue #22.

Hope you like it!

Here and There With Pascal
BOOK REVIEW

(5)The failure of many
requirements of the
implementations the
features.
The po~s~bility of,the statement failing to terminate (incorrectly)
some l1m1t values 1n the OMSI and UCSD implementations is not
documented.
The statement is
by the statement

true to say that

of these implementations to enforce the

for-statement is not mentioned; indeed for four
entry is None known for implementation-dependentThe PascaL Handbook by Jacques Tiberghien

500pp, 270 Illustrations, SYBEX, Berkeley

(1980) $US14.95 (paper edition only),

ISBN 0-89588-053-9.

(6)
for

(7)
~ade that The A and B parameters may not be modified
~n the Loop. This is simply incorrect, though it is
the loop limits are determined on entry to the loop.

Overview

This is not a Pascal textbook; it is something very different. Perhaps the
most succint description is that it is a Pascal lericon: a sort of
all-purposereference manual. It is organized around entries keyed by an
appropriate Pascal word (eg if, scope, writeln) arranged in alphabetical
order. Each entry takes up one or more whole pages, and the standard sub-
headings are SYNTAX, DESCRIPTION,IMPLEMENTATION-DEPENDENTFEATURES and
EXAMPLE. The relevance of the entry to Standard Pascal and a number of
particular implementations(HPlOOO,CDC, OMSI-l, Pascal/Z and UCSD Pascal) is
encoded into the entry.

Perhaps this is the worst case to show, but a few more examples will suffice

to.show that the problem is not isolated. The syntax for MARK sho~s that
th1S non-standard procedure takes a parameter which is an integer

e~p:ession. MAXINT is incorrectly described as determining the positive
l1m1t of representable integers (which it may be only coincidentally). The
syntax for CASE statements is incorrect. And so on.

General issues

Thus the book is meant to be used as a dictionary to look up difficult points
or to find out what some usage in a program you have received really means.
As such, it follows a lot of reference manuals which are similarly structured
(eg the B6700/7700 Pascal Reference Manual).

However, since Pascal is a small language with not very many things needing
to be remembered, it needs to be asked why a lexicon of 500 pages is needed?
Examination of the book ~ndicates that its main purpose seems to be to
document extensions and differences between implementations. Thus, since its
topic is the union of all the quirks of 5 implementations, it has grown to

this rather large size.

There are two.major deficiencies in this book which deserve comment. First
is t~e lack 0: f~rmal definitions,and indeed the appearance of only a few
Engl~sh descr~pt10nsthat resemble the actual requirements of Pascal. The
author claims to be talking about Pascal (presumablythe standard variety) as
well as the others, but there is simply no basis for comparison if the reader
cannot find out what sets, for example, are really supposed to be.

Target and reality

The second is the mystifying omission of any reference to the Pascal
Valid~tion eff~rt. If one of the purposes of the book is to aid programmers
who w1sh to wr1te portable Pascal programs, then it is difficult to
understand why the author did not carry out validation tests on the five
compilers he regards as important, and print the results in a second section
of the book. It would have added significantlyto the value of the book as a
reference.

So much for the target; how does the book match up to it in reality? The
answer seems to be that it does a reasonably good job of documentingwhat
exists, but that it does not measure up to the very exacting standards that
such an ambitious project warrants. The standard of accuracy against which a
dictionary is judged is much higher than that appropriate for textbooks, in
which a few lapses can be tolerated or justified on tQe grounds that pedantic
accuracy would impede learning.

Minor issues

Regrettably,once again it is necessary to point out that capitals were
designed for carving into stone, not for ease of reading. This book
perpetuates the habit of printing programs in capitals, with consequent

loss of legibility.

The slips in the book are far too numerous to detail (a list is being sent to
the author), and a few examples will have to suffice. Dipping into the entry
for the reserved word for is probably the richest source of examples.
Faults which should be-rnentioned are:

(1) An "equivalent flow-chart" is given. The sense of defining a high-

level construct such as while in flow-chart terms is questionable at
the best of times, but for-the complex for-statementit is extremely
unfortunate in that it might make people think the flow-chart is right.
It isn't.

(2) The prohibition on changing the value of the count variable is not
mentioned.

(3) The limitations on what a count variable can be (only a local simple

variable) are not mentioned.
(4) The correct restriction of the HP-lOOO implementation is considered to

be an implementation-dependent feature, whereas the corresponding flaw
in the J&W/CDC implementation is not mentioned.

It,is di:ficult to de~uce the author's criteria for choosing which topics to
om1t or 1nclude. To 1llustrate this, note that the UNIT feature of USCD
Pascal, together with the correspondingUSES, INTERFACE and IMPLEMENTATION
res:rved words, is not treated in the book, apart from a mention, despite
the:r undoubt:d importance in use. On the other hand, such trivia as a pre-
def1ned funct10n EXPIO in OMSI Pascal takes up 2 pages.

Directing another comment to the publisher rather than the author, one
won~ers why the tremendous amount of white space in the book was tolerated.
A ~1t~le care in layout (perhaps two entries per page; perhaps denser
pr~nt1ng) would have halved the number of pages, and perhaps reduced the
prIce.

Summary view
The presenta:ionls traditional, and there are no surprises. The chapter

headlng~ are. Ba.__~ Concept,s, Programming in Pascal, Scalar Types and
Operatol s, Exprcs.:non.3 and ~)taLementst Input. and Output Control Structures
Procenur~s and Functions, Data Types, Arrays, Records a~d Variants, Files,

'Sets, POInters and Lists, UCSD cwd Other Pascals, Program Development (15 in
all) followed by 12 Appencices including answers to selected exercises.

Despite the criticisms made above-t I believe the book would be useful to
programmers who have to cope with Pascal programs which were developed on
different systems or in different dialects. The level of detail and accuracy
of information is not as high as it could bet but nevertheless the book has
no competitors.

I doubt that it will be of much use to
less beginners at programming, because
really Pascal and what is "extension".
simply not meant to be read through.

~..£rtcomings
programmers learning Pascalt still
it is too difficult to see what is

And of course, dictionariesare
In my opinion, the book is not likely to be widely used as a text in
tertiary courses, for several reasons. Most importantly, it is very light on
the con~eptsof Pascal and Dr Zakstreats of the languagesimply as t1!1other
Fortran--orBASIC. In~tructor3 trying to get acrossthe important advancesin
knowledgeaboJ~computingwillnotforgivethe lack, whereasreadersu~ingit
as a self-tutorialalmost certainly wouldn't notice the deficiency. Less
important, but still relevant, is the typical American verbosity in this
kind of book.

A.H.J.SaZe

To illustrate the conceptu31 treatment,observe that 6 pages (pp135-140) deal
with enumerated types and subranges,and 11 pages (pp247-257) for sets.
Other data structuringmethods seem to fare better, but this appearance
disappearson close ~x3~ination. For examplethe array chapter contains
39 pagez, but 4 page3 are devot3d to a matrix addition program, 16 puges to
a sorting program, and 8 pages to UCSD features (including UCSD st~ings which
are not arrays at all!), leaving 11 pages of discussion of the syntax and
semantics of arrays. The low-level obsession with flow of control is very
obvious in this book.

INTRODUCTIONTO PASCAL

- including UCSD Pascal

by Rodnay Zaks
320pp, 100 illustrations
Sybex, Berkeley (1980) US$12.95 (Paper Edition only)
ISBN 0-89588-050-4

A reviewer cannot pretend to check every program and statement in a book SUCh
as thi3, but I was pleased to note few errorS or half-truths in "Introduction
to Pascal n . Notable amongst the omissions, however, are references to the
axiomatic definition of Pascal (surely one of the most important sources!)
and to the draft ISO Standzrd for Pascal. These omissions seem to be related
to the book's orientation towar'dssmall computers and relatively naive
programmers.

Reviewed by A.H.J.Salc, Sandy Bay, Tasmania.

Overview-- In spite of the great care put into this book (its technical presentation is
excellent except for the blu~der of printing program text in capitals), I had
to cometo theconclusionthatthe inclusionof UCSD Pascalin it is a
mistake. The book is predominantly about flSt;::mdard pascaltl, and purchasers
who hopeto learnsomethingaboutUCSD Pascalthatis not in the UCSDand
SofTech manuals will be disappointed. It seems that the UCSD material acts
as textual clutter, even if its inclusion on the cover sells more copies.

On receiving H book which proclaims that it will teach you a programming
langu~ge, I conceive that most reviewers will groan and wonder what new there
is to say. The more so if tho language is a popular one, such as BASIC,
Fortran,COBOL, or Pa3cal. Formanyeducationalbook writers are
plagiarists, and after the fifth to tenth version of the same ideas, my eyes
get weary and the text fuzzy...

To start with, then, it is a pleasure to be able to write that Rodnay Zaks
book is somewhat different from the run-of-the-mill Pascal books. Firstlyit
has a defjnite carget readership, and is addressed to them. DrZaks' book is
well-sui t.ed to frticrocoffi}Jut...erenthusiasts and programmers who want to learn a
bit about Pascal but have no im!IJediate intention of using it professionally.
The exposition is gentle, r~irly easy to read, and liberally interlaced with
reading exz!:1ple~.

SU~l1ary

"Introduction to Pascal" by Dr Rodnay Zaks is a useful soft-cover book that
will pr'obably be useful to people trying to learn Pascal by themselves, due
to the many examples. However, it will lead them up to the point of
programming usin,__ ?a5c~I, but thinking in traditional ways. Many of the
insights and prod"ctivity improvements will require extensive further
experience, but perhaps that is inevitable.To enhanceitsvalu~ to such readers, Dr Zaks has decided to include material

on one popular var'iant of Pascal in the microcomputer field: UCSD Pascal.
Thisis interspersedthroughoutthe book in clearly labelled sub-sections.

Secondly, the book has 8 good collection of examples, and they are not
eX8ctl_y the sa:J!(~ examples you find .in other textbooks!' Learning a language
is always \)asier if you C~ln read. it (and read a lot of it), since then you
discover sampl"r's (or templates) that you can modify to your own purposes,

and thus gr'Mually discover typical. programming paradigms of that language.

I--'<.D
00
I--'

Even with all the snow on the ground, SPRING IS IN TBJ!:AIa::::
This is a good time to remember to bring your dog's shotsup to date
and don't forget about heartworm.

One of Marianne's Pug Family has passed away in early February.
Helen Landon had only had her PUGS for 2i years, but she truly loved
them. .Her love for all animals was a driving force in ,her life, and
she will Ue missed. The family has requested memorials to Pet Haven
or American Cancer Society.

)IE ~~~~~lA.H.Dt\\5 - ()r\.Wui--UeYJ~~uiYed. ~
Tracy Cunningham has a new little girl PUG named Miss Josie Posie

Penelope." The day before Christmas she was brought home at the tender
agp. of 2t weeks. (This should be a reminder that not all breeders are as
concerned for the dog's welfare as they should be. There is no excuse for
selling a dog at this age for monatary gain. Remind people who are looking
for puppies that they should be eating from a dish, and should be able to
get along without their Mama and litter mates before they are taken home.)

Mr.
.

and Mrs. Don Coen of South St. Paul are soon to be getting a new
baby boy PUG. They recently lost a 13 year old PUG.

Mr. and Mrs. Don Donaldson of River Falls, Wise. became owners of
a male PUG at Christmas time. They bought him from Rachel Fishcher; he
was at the Pug Party last fall as a puppy.

Mr. and Mrs. Joe Jenareo of Minot brought home a new female PUG in
December. They have an eight year old male and are also looking for
another male.

The John Kerschner Family recently bought an eight month old PUG
puppy from Dorothy" Justad.

~ i. 1'\AS y\.{\1V\eCo'n.\esl
The John Healy Family would like to know some of the names that

have been given to the pugs. So we thought it would be fun to have a
"PUG NAME CONTEST." The contest will be based on the registered and/or
call names our PUG people have named their PUGS (past and present).
Some of the catagories will bel most unusual, most beautiful, most
interesting, most common, and most humerous. To enter the contest, please
write or call Maryanne before June 1, 1980. All entrants will be mentioned
in the next newsletter.

~ 11t\Ve ~O\l. f-te(\YQ fu ~te=>t???
We have it on good authority that Pandy WenZ has visited Chipper

Justad at his home. Early May will tell the ~::::

Page 2

Dorothy Justad is proud to announce the arriTal ofl

Woodcrofts Foster Fordyce arrived February 12th (the one and only)

SireI AXC
'"

CKC ptd in Bermuda Ch. Sheffields Shortening Bread
(better known as Chipper)

Sugar Plum Jen IDam I

Wo.n. t -4..dS
WANTED Small PUG Stud

Stud must be experienced yet
Contact. Ron or Marlys Hampe

to breed with the Classiest Bitch in Town.
gentle, lovlng, and discreet.

(612)-890-4141

John G. Waltz I 184 Amherst, St. Paul 551051 1s the manager at Sherwoc ~
Pet in St. Paul. He would like a male pet PUG at a reasonable price. ~

EUnic~ Thorson; 536 1st st., ~octor, Mn. 55810; -recently lost her
fourteen year old PUG. She would like another girl puppy or older PUG.

JI\ Ih(\n~ HOU-])oMh~
Our thanks to Dorothy Justad for the wonderful article

started in show biz. We know it will be useful to those of
in showing PUGS.

If you have any PUG news that you would like to share with fellow
"PUG PEOPLE" please let us know. Deadline for the next newsletter is
June 1, 1980. Just call or write Maryanne, and we'll get your news in
the next issue of PUG PRESS.

on getting
you interestec

HAVE A HAPPY SPRING :::::::

Maryanne Johnson
Henrietta Wenz
Patti Sue Selseth

"»
'"'"V1

Dear Newsletter enthusiast, the following is a list of subjects that are
likely to be examined in the upcoming newsletters. If you feel like
it, please respond to any of the subject matter, adding suggestions,
visions, or other comments. Bits of any incoming communicationare
likely to be recycled into the newsletter at some date. This being the
first newsletters, the form may change from issue to issue, but my idea
initially is to have each letter be a theme examining some proponent of
the hypothetical floating sea city, of which we can all be a part.

a. the spiral method of accretion
b acquiring the necessary elements off the land: going into the

recycling aspects of the project, recycling of cars, refrigerators,
machines for the conducivematerials, and also papers and (liquified)
plant matter, for the papier mache structures.

c. A deeper tripping out on paper machait: how it can be used to
invo~e peoples' minds as to the process of accretion, selecting
varieties of forms which scintillate. Drawings can be included of
terrestrialmotifs, walls, time capsules,zoomorphic borders of
gardens, rises, walkways, spontaneousexpressions of color and
form.

d. aspects of energy acquisition and usage: Solar, wind models, under-
water exploits; shaJing-concepts,valuation.

e. Plantlife likely tt"\ eVvlve, and the natLlres of I.'~rgeI1t ecosys Ci~;r
including overlappings,and new symbioses.

f. Food to be grown, produced, specialty items for shipping away, into
the land: Pickles,sweets,notedcheeses,pastries,modesof eating;
availabilityof different substances.

g. Separation of thirds of spaces: industrial/mercantile/co-operative;
common/state-owned;and home spaces, privately ruled and operated.

h. Varieties of social forms, explorationsof likely.traditions to be
fused for propulsion into pyremusical ambidextrouslymobile batteries.
Cultures to be examined including refugees, aliens, star-struck,
dropped out, mutating, change-oriented.

1. Blasting of t',eclosed-endedsystem!;,reiterating the expansive
potentials in;,erentin futuristicthinking: an invitationto
recent explosions.

j. The inner workings and displayed aspects of the water system in the
structure. Designs for waterfalls, ponds: pools, streams, bathing,
plant feeding, recirculation,distillation.

k. Art- and Extrapolitical-aspectsof lifestylesemerging on the sea.
Options for peoples' expressions in career, craft, vocation, activitiesj

1. An examination of the effort to create groups of three melting, softing
tetras, to meet and merge on the high seas, producing the interior
lagoons and flatlands. Also known as triangulation,the tendenciesof
groups of threes to balance and stability. .,

m. Diagrammatic explanationsof the various levels, including shipping
ports, flotation devices, fluxuatingshores, and sky-high properties.
Proportions of spaces allotted to playgrounds, bycicle loops,
orchards, cottages, mist gardens, arboretum/terminalstands, geodescic
elevating modules, and sky light sculptures of varying densities
will be suggested, examined, detailed.

n. Something to attract transient visitors: vacation playgrounds.
There are fantasy worlds open for exploration, and technological

and entertainmentforms. Also perhaps, casino- and pub-like grottoes,
looking out to under the waves; and varieties of sports presentations
and activities. Contests, fairs, festivals,holidays, erections,
revampings, scribblings.

o. Communicationwith other life forms, and inviting them alqng for
the journey into spa~es high and blue. The idea of having a dolphin
embassy, a whale tavern in the sea (growingtypes of algae for
them), platforms and niches to support many sea tr~vellers,and
those from the sky.

A continuouslybuildingmural made by contributIons.f~o~
each.

., . all the media It will start from some 1nltlal pOlnt(s)v1s1tor 1n . k d (Thanx Yoko)
and spread as more and more visitors come, ma e, an go.

,

The idea of "not letting an enemy rise on any leve]", as Maharis~i
so aptly puts it. The foreign rela.ions app~icable as: ldeolog1es
can be shared as love. Using the platform ~s a museum,

~
carousel

of multiple nationalitiesand displays of blfu~cate merg1ng, develop
events which can be generally supported by natlons, groups, and
factions. In them independentrovers can sniffaround. .
Examinationsof the acoustics, the silentcave.likes, thepubl~c,.
open airy ampetheaters. Electronic and other forms of communication
running alongitscircuits,andextendingfrom itsstructure.
Visions, ideas for schools, markets, subjects to be ta~ght: seems
likely there's to be a concentrationof the space studIes on b~ard,
so examining some of the fields briefly: ex~-ecol~gy. ~ow

grav1ty

motion, non-terrestrialphysics, neurogeneticengln~erl~g.

Health wholeness holiness: attaining it and keeping It, some ~f

the ne~ermedicin~lstatementshave beenwaitingforsomewherellke
this to display themselves, and from which to fly.
The idea as the project not just an end,.a new place, but as another
link on the roadway. What then is to come next? What first? What
has been encouraging this? . .
The extra-realistartmovement,itsprin~iplesand pr1D~lpal~.
Tributesto thoseliversof thepast who ve sentgoodvlbratlons
into our present sphere. Catacombs and hillsides.
The expositionand superimpositionof ~he ideas0:

nakedness,

nudity, nets of reality, and masturbatlon. TechnIques.
Proposal for direct access networks to stretch across the lan~. .
"Ananimal's or plant's eye view of what we humans have been dlScusslngl
sometimes grave, sometimes humorous.

In closing, I would like to add that all flowingwaters lead to.the ~ea. Thanks
for the initial interest. Direct correspondanceto me at: Kev1n SWltzer,
1534 Ford, Lincoln Park, Michigan 48146.

p.

q.

r.

s.

t.

u.

v.
w.

x.

y.
z.

* **** ** ** * **** ****

""N.....

.....
l£>
00.....

-0,.

'"m
en

Applications
EJt-1 ASSEIIIL Y LAIIIiUA&E

t1.L ~ iMtructtons

11.1. Introduction

'i~st the notation used for t~ operands of the pseudo instructions.
<RUM> = an intege~ constant
<SY8> an identifier
<a~g> <num> or <sym>
<val> <arg>, long constant (ending with L or l), ~eal constant, string

c~nstant (~urrounded by double quotes), p~ocedure numbe~ (starting
w,th S) or ,nstruct,OA label (starting with *).

<...>* zero or more of <...>
<...>+ one o~ more of <...>

An assembly language program consists o~ a series of lines, each contain-
ing 0 or 1 statements. A 'Rachineinstruction may not be labeled. In other
words, the label field on a machine instruction must be left blank. There are
two kinds of labels, instruction and data labels. Labels start in column 1.
Instruction labels are unsigned positive integers, and each must appear alone
on a line by itself. The scope of an instruction label is its procedure.

The pseudoinstructions CON, ROM, and BSS may be labeled with a 1-8 char-
acter data label, the first character of which is a letter, period or under-
score, followed by letters, digits, periods and underscores. Only 1 label per
line is allowed. The use of the character followed by a number (e.g. .40)
is ~ecommended for compiler generated programs, since ~hese are considered as a
special case and handled more efficiently in compact assembly language (see
below).

Four pseudo inst~uctions req~t global data:

BSS <num>
Reserve <num> bytes, not explicitly initialized. <num> must be a

mult,
'
pleof the word size.

"<1. <num>
Idem, but all following absolute ~lobal data
this block. ~ references will ~efer toEach statement may contain an instruction mnemonic or pseudoinstruction.

These must begin in column 2 or later (not column 1) and must be followed by a
space, tab, semicolon or LF. Everything on the line following a semicolon is
taken as a comment.

CON <val>+

Assemble global data words initialized with the <val> constants.

ROM <val>+

Idem, but the initialized data will never be changed.
All constants are decimal unless started with a zero e.g. 0177, in which

case they are octa~. In CONand ROMpseudoinstructions, floating point numbers
are distinguished by thepresenceof a decimalpoint or an exponent (indicated
by E or e), or both. Doubleprecision(long) integers are followed directly by
an L or l. Th~ee pseudo instructionspartition the input into procedures:

Also allowed as initializers in
rounded by double quotes andmay
constant, e.g. CON"hello\012\OOO".
byte. Strings are padded at the end

CONand ROMare strings. Strings are sur-
include \xxx, where xxx is a 3-digit octal
Eachstring element initial hes a single
up to a multiple of the word size. is the procedure name. <num1> is the number

<num2> is 1 for procedu~e names to be exported
o otherwise.

PRO <sym>,<num1>,<num2>

Start of procedure. <sym>
of bytes for arguments.
out of the current module,

Local labels are referred to as *1, *2, etc. in CON and ROM pseudoin-
structions (to distinguish them fro. constants), but without the asterisk in
branch instructions, e.g. BRF 3, not BRF *3.

END
End of Procedure.

The notation Sprocname is used to mean the descripto~ number fo~ the pro-
cedure with the specifieo name.

EOF
End of module.

An input file may contain many procedures. A procedure consists of zero or
more pseudoinstructions, a PRe stat.-ent, a (possibly empty) collection of in-
structions and pseudoinstructions and finally an END statement. The very last
statement on the input file must be EOF. The END di~ectly preceding the EOF
may be omitted.

Besides th~ export flag in PRO, six other pseudo inst~uctions are involved with
separate compilation and linking:

Input to the assemblef is in lower case, if available. Upper case is used
in this document merely to distinguish key words from the su~roundin9 prose.

EXD <sym>

Export data. <sym> is exported out of this module.

I"A <sym>
Ieport address. I"A allows global symbol <sym>to be used before it is

......
cD
00......

-c
»
en
m

defined. Note that <sym> may be defined in the same module.
12. ASSEJIBLY LAN6UA6E INSTRUCTION UST

For each instruction in the list the range of operand values in the assem-
bly. language is given. These ranges are all sub ranges of -32768..32767 and are
lndlcated by letters:

Ille <sym>
Simil.ar to IMA, but used for imported single word constants. These two
different forms are necessary, because the assembler must know how much
storage must be allocated if <sym> is used in CON or ROM.

FWA<sym>
Forward address. Notify the assembler that <sym> will be defined later
on in this module, so that it may be used before being defined.

m: full range, i.e. -32768..32767
n: 0..32767
x: 0..32766 and even
y: 1 or (2..32766 and even)
z: -32768..32766 and even
p: 2..32766 and even
r: 0, 1 or 2Fwe <sym>

Similar to FWA, but for constants.

to be used before it is
module and must not be ex-
entered in the undefined
will be known outside this
treated differently, how-

The letters should not be confused with the letters used in the
E"-1 in-struction table in appendix 2. Instructions that check for undefined operands

and underflow or overflow are indicated by (*).

FWP <sym>
Forward procedure reference. FWP allows <sym>
defined. <sym> must be defined in the same
ported. Normally, unknown procedure names are
global reference table, so that their names
module. Procedure names introduced by FWP are
ever, to prevent their being exported.

GRWP 1: LOAD

LOC m
LNC m
La.. x
La: x
LOP x
LAly
LOF m
LALx
LAE x
LEX n
LOI y

LOS
LDl x
LDE x
LDF m

Three other .pseudo instructions provide miscellaneous features:

LET <sym> ,<arg>
Assembly time assignment of the second operand to the first one.

Exe <num1>,<num2>
Two blocks of instructions preceding this one are interchanged before be-
ing assembled. <num1> gives the number of lines of the first block.
<num2> gives the number of lines of the second one. Blank and pure com-
ment lines do not count.

liES <num>,<val>*
A special type of comment. Used by compilers to communicate with the op-
timizer, assembler, etc. as follows:

liES 0 -
An error has occurred, stop assembly.

liES 1 -
Suppress optimization

MES 2 -
Use virtual memory (EII-2)

liES 3,<num1>,<num2> -
Indicates that a local variable is never referenced indirectly.
<num1> is offset in bytes from LB. <num2> indicates the class of
the variable.

!'IES 4 -
Number of source lines (for profiler).

PIES 5 -
Floating point used.

!'IES 6,<val>* -
~Comment. Used to provide comments in compact assembly language

(see below).

GRWP 2: ST<~E

STL x
STE x
STP x
SAI y

STF m
STI y

STS
SOL x
SDE x
SDF m

Store
Store
Store
Store
Store
Store- Store- Store
Store- Store

Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Loaa
Load
Load
Load
Load

constant (i.e. push it onto the stack)
negative constant
local word x
external word x
word pointed to by x-th local
auto increment y bytes (address of pointer on stack)
offsetted. (top of stack + m yield address)
address of local
address of external
lexical. (address of LB n static levels back)
indirect y bytes (address is popped from the stack)
indirect (pop byte count, address; count is 1 or even)
double local (two consecutive locals are stacked)
double external (two consecutive externals are stacked)
double offsetted (top of stack + m yield address)

local
external
into word pointed to by x-th local
auto increment y bytes (address of pointer on stack)
offsetted
indirect y bytes (pop address, then data)
indirect (pop byte count, then address, then data)
double local
double external
double offsetted

GROUP 3: SINGLE PRECISION INTEGER ARITHMETIC

ADO Addition (*)
SUB Subtraction (*)~
MUL Multiplication (*)

......
cD
00
......

.."
»

'"
IT!

00

GR OUP 13: BRANCH

BRf n Branch forward unconditionall{ n bytes
BRB n Branch backward unconditional y n bytes

BLT n forward branch less (pop 2 words, branch if top> second)
BlE n forward branch less or equal
BEQ n forward branch equal
BNE n forward branch not equal
BGE n forward branch greater or equal C>
BGT n forward branch greater »

'"mZlT n forward branch less than zero (pop 1 word, branch negative) cD
ZlE n forward branch L,ss or equal to zero
ZEQ n forward branch equal zero
ZNE n forward branch not zero

DIV Division (.)

MOD Modulo i.e.remainder (.)

NEG Negate (two's complement)
SHl Shift left (.)
SHR Shift right (.)

XOR P
XOS
CCJI P
COS
ROl
R<R

GROUP 4: DOUBLE PRECISION ARITHMETIC

DAD
DSB
DMU
DOV
DMO

(format not defined) GROUP 10: SETS

Double
Double
Double
Double
Double

add (.)
Subtract (.)
Multiply (.)
Divide (.)
Modulo (.)

INN P
INS
SET p
SES

Boolean exclusive
Boolean exclusive
Complement (one's
Complement; first
Rotate left
Rotate right

or on two groups of p bytes
or; nr of bytes is first popped
complement of top p bytes)
pop number of bytes from stack

from stack

Bit test on p byte set (bit number on top of stack)
Bit test; first pop set size, then bit number
Create singleton p byte set with bit n on (n is top of stack)
Create singleton set; first pop set size, then bit number

GROUP 5: flOATING POINT ARITHMETIC (format not defined)
GROUP 11: ARRAY

fAD
fSB
fMU
fDV
flf
fEf

floating add (.)
floating subtract (.)
floating multiply (.)
floating divide (.)
floating multiply and
Split floating number

lAR
LAS
SAR
SAS
AAR x
AAS

GROUP 6: POINTER ARITHMETIC

split integer and fraction part (.)
in exponent and fraction part (.)

GROUP 12: C<J'IPARE

ADl m
PAD
PSB

Add the constant m to pointer on top of stack
Pointer add; pop integer, then pointer, push sum as pointer
Subtract two pointers (in same fragment) and push diff as integer

CMI
CMO
CMf
CMU p

CMS
CMPGROUP 7: INCREMENT/DECREMENT/ZERO

INC
INl x
INE x
DEC
DEL x
DEE x
ZRl x
ZRE x

Increment top of stack by 1 (*)
Increment local (.)
Increment external (*)
Decrement top of stack by 1 (*)
Decrement local (.)
Decrement external (.)

Zero local
Zero external

TlT
TlE
TEQ
TNE
TGE
TGT

GROUP 8: CONVERT

CID
CDI
Clf
Cfl
CDf
CfD

integer to double (.)
double to integer (.)
integer to floating (.)
floating to integer (.)

double to floating (.)
floating to double (.)

Convert
Convert
Convert
Convert
Convert
Convert

GROUP 9: lOGICAL

ANDP -
ANS
lOR P
105

.Boolean
Boolean
Boolean
Boolean from stack

and on two groups of p bytes
and; num,er of bytes is first popped from
inclusive or on two groups of p bytes
inclusive or; nr of bytes is first popped

stack

load array element
load array element; first pop ptr to descriptor fram stack
Store array element
Store array element; first pop ptr to descriptor from stack
load address of array element
load address; first pop pointer to descriptor from stack

Campare
Compare
Compare
Compare
Compare
Compare

True if
True if
True if
True if
True if

- True if

2 integers. Push negative, zero, positive for <,
2 double integers
2 reals
2 blocks of p bytes each
2 blocks of bytes; pop byte count
2 pointers

or >

f-cD
00
f-less, i.e. iff top of stack < 0

less or equal, i.e. iff top of stack <= 0
equal, i.e. iff top of stack = 0
not equal, i.e. iff top of stack non zero
greater or equal, i.e. iff top of stack >= 0
greater, i.e. iff top of stack> 0

For each of the groups of instructions. the basic ones are given:

GRWP 1 : LOC, LAE, LEX, LOS
GROUP 2: STS
GROUP 3: ADO, SUB, MUL, OIV, SHL, SHR
GROUP 4: DAD, OSB, OMU, OOV
GROUP 5: FAD, FSB, FMU, FOV, FlF , FEF
GRWP 6: PAD, PSB
GRWP 7:
GRWP 8: CIO, COI, COF, CFO
GROUP 9: ANS, lOS, XOS, cas, ROL, ROIl
GROUP10: INS, SES
GRWP 11: AAS
GROUP 12: CMI, CMO, CMF, CMS, CMP, TGT, TLT, TEQ
GROUP 13: ORB, ZNE
GROUP14: MRS, CAS, RES
GROUP 15: BES, BLS, CSA, CSB, OUS, EXG, HLT, LOR, MON, NOP, RCS,

RTT, SIG, STR, TRP

Almost all the other instructions can be replaced in the assembly language by a
short equivdlent sequence of simpler instructions. By applying these replace-
ments recursively a sequence of basic iastructions can be found.

GRWP 1:
LNC m LOC -m
LOl x LAL x + LOI 2
LOE x LAE x + LOI 2
LOP x LOl x + LOI 2
LAl y OUP 2 + OUP 2 + LOI 2 + AOI y + EXG + STl 2 + LOI y
LOF m AOI II + LOI 2
LAL x LEX 0 + AOI x
LOl y LOC Y + LOS
LPL x LAL x + Uil 4
LOE x LAE x + LOI 4
LOF m AOI II + LOI 4

GRWP 2:
STL x LAL x + STl 2
STE x WoE x + STl 2
STP x LOl x + STl 2
SAI y OUP 2 + OUP 2 + LOI 2 + ADI y + EXG + "'1 2 + STl y
STF m ADI m + STl 2
STl y LOt y + STS
SOL x LAL x + STl 4
SOE x LAE x + STlt 4
SDF II ADI II + STl 4

ZGE n
ZGT n

Forward branch greater or equal zero
Forwdrd branch greater than zero 13. ICERIEL IIISTRUCTICIIII SET

GRWP 14: PROCEDURE CALL Many of the instructions presented in the previous chapter are replace-
ments for a small sequence of basic instructions. The basic instructions form
less than half of the complete instruction set. Only a few basic instructions
have operands. Most of them fetch their arguments from the stack. Very few
basic instructions are provided to load and store objects.

MRK n
MRS
CAL n
CAS
RET
RES

Mark stack (n = change in static depth of nesting.- 1)
Mark stack; first pop the static link from the stack
Call procedure (with descriptor n)
Call indirect; first pop procedure
Return (function result consists of
Like RET, but size of result on top

number from stack
top x bytes)
of stack

-0}>

G'>

'"

GROUP 15: MiSCELLI\NEOUS

BEG
BES
BLM
BLS
CSA
CSB
OUP P
DUS
EXG
HLT
LINn
LNl
LOR
MON
NOP
RCK
RCS
RTT
SIG

Begin procedure (reserve z bytes for locals)
Like BEG, except first pop z from stack
Block move x bytes; first pop destination addr, then source addr
Block move; like BLM, except first pop x, then addresses
Case jump; address of jump table at top of stack
Table lookup jump; address of jump table at top of stack
Duplicate top p bytes
Like OUP, except first pop p
Exchange top 2 words
Halt the machine (Exit status on the stack)
Line number (external 0 .- n)
Line number increment
Load register (O=LB, 1=SP, 2=HP)
Monitor call

- No operation
- Range check; descriptor at (external) Xi trap on error

Like RCK, except first pop x from stack
Return from trap
Trap errors to proc nr on top of stack (-2 resets default). Static
link of procedure is below procedure number. Old values returned
Store register (O=LB, 1=SP, 2=HP)
Cause trap to occur (Error number on stack)

......
.D
00......STR

TRP

GROUP 3:
MUL + SUBMOD DUP 4 + DIV +

NEG LOC 0 + EXG + SUB

GROUP 4:
DMU + DSBDMD DUP 8 + DDV +

GROUP 6:
ADI m LOC m + PAD

GROUP 7:
IN: LOC 1 + ADD
INL x LOL x + INC + STL x
WE x LOE x + INC + STE x
DEC LOC 1 + SUB
DEL x LOL x + DEC + STL x
DEE x LOE x + DEC + STE x
ZRL x LOt 0 + STL x
ZRE x LOt 0 + STE x

GROUP 8:
ClF CID + CDF
cn CFD + CDI

GROUP 9:
AND p LOt P + ANS
lOR p LOC P + 105
XOR p LOt P + XOS
CCJII p LOt P + COS

GROUP 10:
INN p LOC P + INS
SET p LOt P + SES

GROUP 11:
LASLAR x LAE x +

SAR x LAE x + SAS
AAR x LAE x + AAS

GROUP 12:
CMU p LOC p + CMS
TLE TGT + TEQ
TGE TLT + TEQ
TNE TEQ + TEQ

GROUP 13:
BRF n LOt 0 + ZEQ n
BLT n CMI + ZLT n
BLE n CMI + ZLE n
IIEQ n CPIl + ZEQ n
BNE n CMI + ZNE n
BGE n CMI + ZGE n
IIGT n CMI + ZGT n
ZLT n TLT + ZNE
~ZLE n TLE + ZNE n

ZEQ n TEQ + ZNE n
ZGE n TGE + ZNE n
ZGT n TGT + ZNE n

GROUP 14:
MRK n LOC n + MRS

-c
CAL n LOt n + CAS

»en
RET p LOt P + RES

n
»
rGROUP 15:

z
BEG z LOt z + BES

,."
:IE:

BLM P LOC P + ilLS
enDUP p

LOt p
+ DUS

LINn LOt n + STE 0
'!toLNl lNE 0
N
......RCK x LAE x + RCS

LAL x + LAI y Let. x + DUP 2 + ADI y + STL x + LOI yLAE x + LAI y LOE x + DUP 2 + ADI y + STE x + LOI yLAL x + SAI y Let. x + DUP 2 + ADI y + STl x + STl yLAE x + SAI y LOE x + DUP 2 + ADI y
+ STE x + STl y

»
-c:;cThe replacements for LAS and SAS would even be longer,

because the size of rthe object to be loaded or stored must be fetched from the
descriptor. If thesize y is known, then LAS and SAS can be replaced by:

......
cD
:x>......

LAS AAS + LOI y
SAS AAS + STl y

The replacements for LIN and LNI are only equivalent if they precede the
first HOL in that assembly module. The replacements for LAI and SAI are rather
artificial. These instructions are most likely preceded by

a LAL or LAE in-struction. Then they replace the sequence:

const
t13 8192; {

2**13
}

t14 16384; {
2**14

}
t15 32768; {

2**15
}

t15m1 32767; {
2**15 -1

}
t16 =65536; {

2**16
}

t16m1 =65535;
{
2**16 -1

}
t31m1 2147483647; {

2**31 -1
}

maxcode =8191; {
highest byte in code address space }

maxdata =8191; {
highest byte in data address space }

{ mark block format }

statd 6'
{
how far is static link from lb },

dynd 4"
{
how far is dynamic link froa lb },

reta 2-
{
how far is the return address from lb },

mrksize 6; {
size of mark block in bytes}

{ error codes }

ESTACK O. EHEAP 1. EIlUNS 2; EODDZ 3'
, ,

ECASE 4; ESET 5' EARRAY
,

6; ERANGE 7'EIOVFL
, ,

8; EDOVFL 9' EFOVFl 10;EFUNFl 11;,
EIDIVZ 12; EFDIVZ 13;EIUND 14;EDUND 15;
EFUND 16; ECn 17;ECFD 18; ECDI 19;
EFPP 20; EUN 21; E"ON 22; ECAl 23;
ELAE 24; EMEMFlT 25; EPTR 26;EPROC 27;
EPC 28;

APPENDIX 1. OfFICIAL ER-1 MCHIE DEFINITIC»I.

{This is an interpreter for E"-1. It serves as the official machine
definition. This interpreter must run on a machine which suppOrts 32
bit arithmetic.

Certain aspects of the definition are over specified. In particular:

1. The representationof an address on the stack need not be the
numerical value of the memory location,

2. The state of the stack is not defined after a trap has aborted
an instruction in the middle. For example, it is officially un-
defined whether the second operand of an ADD instruction has
been popped or not if the first one is undefined (-32768).

3. The memory layout is implementationdependent. Only the most
basic checks are performed whenever memory is accessed.

4. The format of the mark block is implementationdependent.

5. The format of the procedure descriptors is implementation
dependent.

6. The result of the compare operators C"I etc. are -1, 0 and 1

here, but other negative and positive values will do and they
need not be the same each time.

7. The shift count for SHl, SHR, ROl and ROR must be in the range 0

to 15. The effect of a count greater than 15 or less than 0 is

undefi ned.

program em1(tables,prog,output);

label 9999;

{ procedure descriptor forrut }
pdargs =0; { offset for the number of argument bytes }
pdbase =2; { offset for the procedure base }
pdsize 4; { size of procedure descriptor in bytes}

}

dsize 4;
rsize =4;
{ header words }
NTEXT 1;
NDATA 2;
NPROC 3;
ENTRY 4;
NLINE 5;

{ size of double precision integers}
{ size of reals }

escape
undef

0;
-32768;

{ escape to secondary opcodes }
{ the range of integers is -32767 to +32767 }

">m
IT1

mnem = (NON,
AAR, AAS, ADO, ADI,XAND, ANS, BEG, DEQ, BES, BGE,
BGT, BLE, BLM, BLS, BLT, BNE, BRB, BRF, CAL, CAS,
CDF, CDI, CFD, CFI, CID, CIF, CMD, CMF, CMI, CMP,
CMS, CMU, C<JII, COS, CSA, CSB, DAD, DDV, DEC, DEE,
DEL,XDIV, DMD, DMU, DSB, DUP, DUS, EXG, FAD, FDV,
FEF, FIF, FMU, FSB, HLT, INC, INE, IN.., INN, INS,
lOR, lOS, LAB, LAE, LAI, LAL, LAR, LAS, LDE, LDF,
LDL, LEX, LIN, LNC, LNI, LOC, LOE, LOF, LOI, La..,
LOP, La!, LOS, LSA,XMOO, MaN, MRK, MRS, MRX, MUL,
MXS, NEG, NOP, NUL, PAD, PSB, RCK, RCS, RES, RET,
ROl, ROR, RTT, SAI, SAR, SAS, SDE, SDF, SOL, SES,

XSET, SHL, SHR, SIG, STE, STF, ST!, STL, STP, STR,
STS, SUB, TEQ, TGE, TGT, TLE, TLT, THE, TRP, Xa!-
XOS, ZEQ, ZGE, ZGT, ZLE, ZLT, ZNE, ZRE, ZRL>;

dispatch record
iflag: ifset;
i nst r: mnem;
impl icit: word

enu;

{ }
{

Declarations }
{ }

;nsr: IInell;
normalmap: boolean;
halted: boolean;
exitstatus:word;
uerrorlb:adr;
uerrorproc :adr;
header: array(1..8J

{ holds the instructionnumber }
{ true except when in alternate context}
{ normally false. set to true by halt instruction}
{ parameter of HLT }
{ static link of error procedure}
{ number of user defined error procedure}

of adr;

type
bitval= 0..1; { one bit}
bitnr= 0..15; { bits in machine words are numbered 0 to 15 }
byte= 0..255; { memory is an array of bytes}
offset= 0..t15m1; { positive integers are offsets}
adr= 0..t16m1; { a machine word int~rpreted as an address}
word= -t15..t15m1; {a machine word interpreted as a signed integer}
full= -t16m1..t16m1; { intermediate results need this range}
double=-t31m1..t31m1; { double precision range}
bftype= (andf,iorf,xorf); { tells which boolean operator needed}
iflags= (mini,short,xbit,Ybit,zbit);
ifset= set of iflags;

tables: text;
prog: file of byte;

{ description of EM-1 instructions }
{ program and initialized data}

{ }
{

Various check routines
}

{ }

{ Only the most basic checks are performed. These routines are inherently
implementation dependent. }

procedure trap(n:byte); forward;

procedure oddchkadr(a:adr);
begin if (a>maxdata) or «a>sp) and (a<hp» then trap(EPTR) end;

procedure chkadr(a:adr);
begin if odd(a) then trap(EPTR); oddchkadr(a) end;

procedure newpc(a:adr);
begin if (a<O) or (a>pd) then trap(EPC); pc:=a end;

procedure newsp(a:adr);
begin if (a<lb-2) or (a>=hp) or odd(a) then trap(ESTACK); sp:=a end;

procedure newlb(a:adr);
begin if (a>sp+2) or odd (a) then trap(ESTACK); lb:=a end;

procedure newhp(a:adr);
begin if (a<=sp) or (a>maxdata+1) or odd (a) then trap(EHEAP); hp:=a end;

var
coue: packed array(O..maxcodeJ of byte; { code space}
data: packed array(O..maxdataJ of byte; { data space}
pc,lb,sp,hp,pd: adr; {internal machine registers}
i: integer; { integer scratch variable}
s,t,k: word; { scratch variables}
j:offset; { scratch variable used
a,b:adr; { scratch variable used
dt,ds:double; { scratch variables for
rt,rs,x,y:real; { scratch variables for
found:boolean; { scratch }
opcode: byte; { holds the opcode during execution}
escaped: boolean; { true for escaped ope odes }
cutoff: byte; { ~code of first call in alternate
dispat: array(boolean,byteJ of dispatch;

function argi(w:word):word;
begin if w = undef then trap(EIUND); argi:=w end;

function argn(w:word):word;
begin if w<O then trap(EILLINS); argn:=w end;

as index }
for addresses }
double precision}
real }

function argx(w:word):word;
begin if (w<O) or (w>=t15) or odd(w) then trap(EILLINS); argx:=w end;

function argp(w:word):word;
begin if odd(w) or (w<=O) or (w>=t15) then trap(EILLINS); argp:=w end;

function argy(w:word):word;context }

.......
cD
00
.......

var b;adr;
bllQin

if odd(g) or (a>maxcode) thlln trap(EPTR);
b;acodeCa+1J; me.i;~256*b + codeCaJ

end;

function aryz(w;woro);word;
bllgin if Odd(w) or (w<-t15) or (w>at15) then trap(EILLINS); argz:aw IInd;

function chkovf(z;double);wprd;
begin if abs(z) >a t15 thlln trap(EIOVFL); chkovf:~z end;

function nextpc:byte;
begin nextpc;-cOdIlCpcJ; newpc(pc+1) end;

procedure lino(w:word);
begin if (w<O) or (w>hlladerCNLIHEJ) then trap(ELIN); store(O,w) IInd;

{ }
{ Memory access rout i nlls }
{ } { }

{
Stack Manipulation Routines

}

{ }{ memw returns a mgchine word as a signlld intllg,r; -32768 (- memw<- +32767
mllma returns a machine word as an address ; 0 (a mesa <a 65535
memb rllturns a singlll byte as a positive integer; 0 <a memb(a 255
store(a,v) stores the word or address v at machine address a
storllb(a,b) stores the bytll b at machinll address a

{ push puts a word or address on the stack
papw removlls a machine word from the stack and delivers it as a word
popa removes a machinll word from the stack and delivers it as an addrllss
pushd pushes a double precision number on the stack
papd resoves 2 machine words and returns a double precision integer
pushr pushes a real (floating point) number onto th. stack
popr removes 2 machine words and returns a r.al numb.r
pushx puts an object of arbitrary size on the stack
popx removes an object of arbitrary size

memi returns a word from the instruction spac,; 0 <- memi <a 65535
Notll that the Proclldure oescriptors arll Part of instruction sPace.

nextpc returns the next byte addr,ssed by pc, incr.mllnting pc

lino changes the line number word.

All routines check to make sure the address is within range. The word
routines also check to see that the addrllSS is even. If an addressing
IIrror is found, a trap occurs. } procedure Push(x;full);

bllgin nllwsp(sp+2); store(sp,x) end;

function mllma(a;adr);adr;
var b;adr;
begin chkadr(a); b:adataCa+1J; mllma;=256*b + dataCaJ IInd;

function popw;word;
begin POpw;amemw(sp); newsp(sp-2) end;

function papa:adr;
begin popa;~mema(sp); newsp(sp-2) end;

procedurll pushd(y;double);
begin { push double integer onto the stack} newsp(sp+dsize) end;

function memw(a;a~,);word;
var b;adr;
begin b:amema(a);i t b>at15 then memw;ab-t16 flu memw:><bend;

function memb(a:adr);byt.;
b.gin oodchkadr(a); mtmb;adataCaJ IInd; function papd:double;

begin { pop double inttger from the stack} newsp(sp-dsize); popd:-O end;

proctQure stor.(a:adr; x:full);
btgin chkadr(a);

if x < 0 thtn x :a x+t16; { tquivallint value, but positive}
dataCaJ ;a x mod 256; dataCa+1J ;a x oiv 256

e~;

procedure pushr(~;real);
beyin < Push a real onto tht stack} newsp(sp+rsize) end;

function papr:r.al;
begin { pop real from th. stack} newsp(sp-rSiZt); popr:-O.O end;

procedure storeb(a:adr; b:byt~);
begin oddchkadr(a); data(aJ:ab end;

procedur. pushx(si~.;off~et; a:adr);
var i:integer;
begin

funct ion m,mi (a:adr) :adr;

}

......
cD
00......

if si ze=1
then push(meeb(a»
else if odd(size) or (size<=O)

then trap(EQDPZ)
else for i:=1 to size div Z do push(8e8w(a~Z+Z*i»

end;

procedure popx(si~:offset; a:.or);
var i: integer;
begin

if size=1
then begin storeb(a,me~(sp»; newSP(SP~Z) end
else if odd(size) or (size<=O)

then trap(EODPZ)
else for i:=1 to Size div 2 do store(a+size-2*i,popW)

end;

{ ~~~~-~ ~-~~~~~~~~~~~~~~~~-~~~~--~~~~~~-~--~~--~~-~}

{
Bit manipulation routines (extract, shift, rotate)

}

{--~~---~~~~ ~-~ ~-~ ~ ~ ~~~~~~~~~--~-~~}

procedure sleft(var w:word); {1 bit left shift }
begin if abs(w) >= t14 then trap(EIOVFL) else w := 2*w end;

procedure sright(var w:word); {1 bit right shift with sign extension}
begin if w >= 0 then w ;= w 4iv Z else w := (w~1) div 2 end;

prQcedure rleft(var w!word); {1 bit left rotate}
begin if w >= 0

then if w < t14 then w:= 2*w else W:" Z*w-t16
else if w >= ~t14 then w != 2*w+1 else w:= 2*w+t16+1

procedure rright(var W!word); {1 bit right rotate}
begin if odd(w)

then if w<o then w:=Cw-1) div 2 else w := w div 2 ~ t15
elSe if w<O then w:=Cw+t16) div 2 elSe w:= w div 2

function bitCb:bitnr; w:word>:bitvil; { return bit b of the word w }
var ;:bitnr;
begin for i:= 1 to b do rrightCw); bit !"Ord(odd(w» end;

{ return boolean fen of 2 words }function bf(tY:bftype; w1,w2:word):word;
var i:bitnr; jladr;
begin j:=O;

for i:=
begin

15 downto 0 do
j

I"
2.j;

case ty of .
andf: if bi<t(i,w1)+bitCi,wZ)
iorf: if bit(i,w1)+bit(i,wZ)

2 then j:"j+1;
> 0 then j:=;+1;

--

I

xorf: if bit(i,w1)+bit(i,wZ) = 1 then j:=j+1
end

end;
if'j <= t1581 then bf:=j else bf:= j - t16

end;

{-~ ~ ~---~~~~~~-~~---~-~~~-~~~~-~~-~~~~~~-~~~~~-~ ~ ~~~~~--}
{ Array indexing
{ ~---~~ ~ ~~ ~~~~~~---~~~~~---~---~~~~~~ ~---}

function arraycalc(c:adr):adr; { subscript calculation}
Vir j:word; size:offset; a:adr;
begin j:= popw - ..mw(c);

if (j<O) or (j>aemw(c+Z» then trap(EARRAY);
size := ..mw(c+4);
if (size<O) or «size>1) and odd(size» then trap(EODDZ);
a := j*size+popa;
irraycalc :".

end;

{ ~---~ ~~~ ~~~~~--~-~-~ ~ ~---~~ }
{ Pouble and Real Arithntic }
{ ~-~ ~-~~-~ ~~---~---~ ~ ~~-~~ ~ }

{ ALL routines for doubles and reaLs are dWl8Y routines, since the formet of
uoubles end reals is not defined in EN-1.

}

function dodad(ds,dt:double):double;
begin { add two doubles } dodad:=O end;

function dodsbCds,dt:double):double;
begin { subtract two doubles} dodsb:=O end;

function dodml(ds,dt:double):double;
begin { multiply two doubles} dodml:=O end;

function doddv(ds,dt:double):double;
begin { divide two doubles} doddv:=O end;

function dodmd(ds,dt:double):doubLe;
begin { 8Odulo of two doubles} do48d:=O end;

function uofad(x,y:real):real;
begin { add two reaLs } dofad:=O.O end;

function dofsb(x,y:real):real;
beyin { subtract two reals } dofsb:=O.O end;

function dofmu(x,y:real):teal;
begin { multipLy two reals } dofmu:=o.O end;

.....
\.0
00.....

""C
>

'"
'".....
U1

function dofdv(x,y:real):real;

begin { divide two reals } dofdv:=O.O end;

procedure dofif(x,y:real;varintpart,fraction:real);
begin { dismember x*y into integer and fractionalparts}
intpart:=O.O; {integer part of x*y }
fraction:=O.O;{ fractionalpart of x*y }

eno;

procedure Jofef(x:real;var mantissa:real;var.exponent:integer);
begin { dismember x into mantissa and exponent parts}

mantissa:=O.O; {mantissa of x }

exponent:=O; { exponent of x }
end;

I

{ }
{ Trap }
{ }

procedure trap;
{ This routine is invoked for overflow, and other run ti.e errors.

For non-fatal errors, trap returns to the calling routine
}

begin
if uerrorlb=O then
begin
writeln('error ., n:1, ,

occurred without being caught');
goto 9999

end;
{ Deposit all interpreter variables that need to be saved on

the stack. This includes normalmap, all scratch variables that can
be in use at the mo.ent and (not possible in this interpreter)
the internal address of the interpreterwhere the error occurred.
This will .ake it possible to execute an RTT instruction totally
transparent to the user progra..
It can, for example, occur within an AOD instruction that both
operands are undefined and that the result overflows.
Although this will generate 3 error traps it .ust be possible
to ignore them all.

For simplicity just the nor.al.ap flag will be stacked here}

push(ord(nor.almap»;
{ Now simulate the effect of an "RS instruction}
push(uerrorlb); { pushstaticlink}
push(lb); { pushdyna.iclink}
push(pc); { push return address}
push(n); { push error nu.ber }
{ Now simulate the effect of a CAS instruction}
newlb(sp);newpc(me8i(pd+pdsize*uerrorproc+pdbase»;
if n in [ESTACK,EHEAP,EILLINS,EOODZ,ECASE,ECAL,ENE"FLT,EPTR,

EPROC,EPCJ
then goto 9999;

end;

procedure dortt;
var s:adri
begin
newpc(mema(lb-reta»; s:=lb-.rksize-2;newlb(.e.a(lb-dynd»; newsp(s);
{ So far this was a plain ret 0 }

normallRap := popw = 1;
end;

r,

~
<.D
00
~

-c,..

'"
'"~
en

:J;o

":;<:I

~.....

cD
00
.....}

S3

{ }
{ lnitializationand debugging }
{ }

procedure initialize; {start the ball rolling}
{ This is not part of the official 8achine definition}
canst tab = I .;

var b:boolean;
cset:set of char;
f:ifset;
nmini,mbase,nshort,sbase,obase,i,j,n:integer;
c:char;

function readword:word;
var b1,b2:byte; a:adr;
begin read(prog,b1,b2);a:=b2; a:=b1+256*a;

if a>=t15 then readword:=a-t16else readword:=a
end;

function readdouble:double;
var a,b:adr;
begin a:=readword; b:=readword;

{ construct double out of a and b } readdouble:=O
end;

function readreal:real;

var b:byte; i:integer;
s:array[1..100J of char;

begin i:=0;
repeat

read(prog,b); i:=i+1; s[iJ:=chr(b)

unt it b=O;

if odd(i) then read(prog,b); {skip padding byte}
{ construct real out of character string s } readreal:=O.O

end;

begin
normalmap:=true;
halted:=false;
exitstatus :=-1;
uerrorlb:=O;
uerrorproc:=O;

{ initialize tables}
for i:=O to maxcode do code[iJ:=O;
for i:=O to maxdata do data[iJ:=O;
for b:=false to true do

for i:=O to 255 do
with dispat[bJCiJ do
begin instr:=NON; iflag:=[zbitJend;

{ read instruction table file. see appendix
reset(tables); insr:=NONi
repeat readln(tables) until eoln(tables);
repeat readln(tables) until eoln(tables);

2 }

{ skip until empty line}
{ skipuntile.ptyline}

t
54

readln(tables); { skip e.pty line}
repeat
insr:=succ(insr);cset:=[J; f:=[J;
read(tables,c,c,c,c);
while (c=' ') or (c=tab) do read(tables,c);
repeat
cset:=cset+[cJ;
read(tables,C>

until (c=' ') or (c=tab).
readln(tables,n.ini,.bas~,nshort,sbase,Dbase);
if 'x' in cset then f:=f+[xbitJ;
if 'y' in cset then f:=f+[ybitJ;
if 'z' in cset then
with dispat['s' in csetJ[obaseJdo
begin iflag:=f+[zbitJ;instr:=insr end

else
begin
with dispat['l' in csetJ[obaseJdo
begin iflag:=f; instr:=insr end;

for i:=O to nshort-1 do

with dispat['s' in csetJ[sbase+iJdo
begin iflag:=f+[shortJiinstr:=insri i.plicit:=256*iend;

if insr=CAL then cutoff:=8baseelse
for i:=O to nmini-1 do
with dispat[falseJ[mbase+iJdo
begin iflag:=f+[8iniJiinstr:=insri
i.plicit:=i+ord('o'in cset)

end;
end;

until eoln(tables);

{ read in program text, data and procedure descriptors }
reset<prog) i
for i:=1 to 8 do n:=readwordi {skip first header}
for i:=1 to 8 do header[iJ:=readwordi {read second header

lb:=Oi hp:=maxdata+1; sp:=O; lino(O);
{ read program text }

for i:=1 to header[NTEXTJ do read(prog, code[i-1J);
{ read data blocks }

for i:=2 to readword dO push(undef)i {ASS block}
for i:=2 to header[NDATAJ do

begin n:=readwordi

if n>=O then

for j:=1 to n do push(undef)

else
begin j:=(n+t15) div t13i n:=(n+t15) mod t13;

case j of
0, { words }

1: { pointers}

for j:=1 to n do push(readword);

2: { double integers}
for j:=1 to n do pushd(readdouble);

3: { reals as character strings}
for j:=1 to e do pushr(readreal);

end

end
end;

{ read descriptortable }
pd:=header[NTEXTJ;
for i:=1 to header[NPROCJ*pdsize do read(prog,code[pd+i-1J);
{ call the entry point routine}
push(maxdata); {illegal static link}
push(maxdata); {illegal dynamic link}
push(maxcode); {illegal return address}
newlb(sp+2);
newpc(memi(pd + pdsize*header[ENTRYJ + pdbase»;

end;

{--~ }
{

MAIN LOOP Of THE INTERPRETER
}

{ ~ }

{ It should be noted that the interpreter (microprogram) for an EM-1
Machine can be written in two fundamentally different ways: (1) the
instruction operands are fetched in the main loop, or (2) the in-
struction operands are fetched after the 256 way branch, by the exe-
cution routines themselves. In this interpreter, method (1) is used
to simplify the description of executiQn routines. The'dispatch
table dispat is used to determine how the operand is encoded. There
are4 possibilities:

o. There is no operand
,. The operand and instruction are
2. The operand is one byte long and
3. The operand is two bytes long and

together in 1 byte (mini)
follows the opcede byte(s)
follows the opcode byte(s)

In this interpreter, the main loop determines the operand type,
fetches it, and leaves it in the global variable k for the execution
routines to use. Consequently, instructions such as LOL, which use
three different formats, need only be described once in the bOdy of
the interpreter.

However, for a production interpreter, or a hardware EM-1
machine, it is probably better to use Method (2), i.e. to let the
execution routines themselves fetch their own operands. The reason
for this is that each opcode uniquelY determines the operand format,
so no table lookup in the dispatch table is needed. The whole table
is not needed. Method (2) therefore executes Much faster.

However, separate execution routines will be needed for LOLwith
a one byte offset, and LOL with a two byte offset. It is to avoid
this additional clutter that Method (1) is used here. In a produc-
tion interpreter, it is envisioned that the Main loop will fetch the
next instruction byte, and use it as an index into a 256 word table
to find the address of the interpreter routine to jump to. The
routine JUMped to will begin by fetching its operand, if any,
without any table lookup, since it knows which forMat to expect.
After doing the work, it returns to the main loop by jU8Ping in-
directly to a register that contains the address of the main loop.
When the alternate context is entered (after the MRX or MXS in-
structions), this register is reloaded so that an alternate main
loop is used, with an alternate branch table. A slight variation on
this idea is to have the register contain the address of the branch
table, rather than the address of the main loop.

Another issue is whether the execution routines for LOL 0, LOL
2, LOL 4, etc. should all have distinct execution routines. Doing
so provides for the maximum speed, since the operand is iMPlicit in
the routine itself. The disadvantage is that manynearly identical
execution routines will then be needed. Another way of doing it is
to keep the instruction byte fetched fr08 memory (LOL0, LOL 2, LOL
4, etc.)in some register, and have all the LOL mini format instruc-
tions branch to a common routine. This routine can then determine
the operand by subtracting the code for LOL0 from the register,
leaving the true operand ~ the reyister (as a word quantity of
course). This method makes the interpreter SMaller, but is a bit
slower.

r-,
....
<Dex>....

....
ex>

To .ake thi. i8PQrtant point a little clearer, con.ider how a
production interpret.r for the PDP-11 .ight appear. Let us aSIU8e the
following.opcode.have been assigned:

Further aSSU8e that each of the 6 opcodes will have its own e.ecution

routine, i.e. we are .aking a tradeoff in favor of fast execution and
a slightly larger interpreter.

Register rS il the e.1 progr.. counter.
Regilter r4 is the e.1 L8 register

Register r3 is the e.1 SP register (the stack grows tow.rd high core)

Register r2 cont.ins the interpreter .ddres. of the ..in lOOp

The..in loop looks like this:

30: LGL 0
31: LII. 2
32: LGL 4

33: LOL 6
34: LOL b
3S: LOL w

MOvb (rS)+,rO
asl rO
jllP *table(rO)

{ }
{

"ain Loop }
{ }

(2 bytes, i.e. next word)

begin initiatite;
repeat
opcode := nextpc; { fetch the first byte of the instruction }
if nor.al.ap or (opcode<cutoff) then

begin escaped:=oPcode=escape;

if escaped then opcode :* nextpc;
with dispat[escap.d][opcode) do

begin insr:=instr;
if not (zbit in ifleg) then

begin

if .ini in iflag then k:-i.plicit else
if short in iflay then k:=i.plicit+n.xtpc else
begin k:=nextpc; if k>=128 then k:*k-2'6;

k:*2S6*k + nextpc

:z:,.,.,

:E:
en

(for.at with a one byte offset)
(for..t with a one word,'i.e. two byte offset)

Ifetch the opcode into rO and incr..ent r5
Ishift rO left 1 bit. How: -2'6<*rO<=+2S4
IjUMP to execution routine

end;
if xbit in iflag then k:=k*2 els.
if ybit in ifleg then
if k=O then k:=1 else k:*k*2

end
end

Hotice that no operand fetching has been done. The execution routines for
the 6 saMple instructionsgiven above .ight be .s follows:

end
else
begin insr:=CAL; k:=opcodt-cutoffend;

The i.portant thing to notice is where and how the operand fetch occurred:
lolO, lol2, lol4, and. lol6, (the .ini's) h.ve illPl icit operands

lolb knew it had to ~tch one byte, and did 10 without any table lookup
lolw knew it had to fetch a word, and did so, high order byte first}

lolO: 80V (r4),(sp)+
j8P (r2)

lol2: MOV 2(r4),(sp)+

j.P (r2)
lol4: .ov 4(r4),(sp)+

j.p (r.D
lol6: .ov 6(r4),(sp)+

jlllP (rZ)

lolb: elr rO
bisb (rS)+,rO
esl rO
add r4,rO
IIIOv (rO),(Sp)+

jlllP (r2)

lolw: clr rO
bisb (rS>+,rO
swab rD
bisb (rS>+,rO
all rO
add r4,rO
MaV(rO),(sp)+
j.p (r2)

Ipush loc.l 0 onto Itack
19o back to .kin loop

IpuSh local 2 onto st.ck
Igo back to ..in loop
IpuSh local 4 onto st.ck
Igo b.ck to ..in loop
lpush loc.l.6 onto St.ck
Igo b.ck to .ain loop
Iprep.re to fetch the 1 byte ~perand
loper.nd is now in rO
IrO is now offset frOM L8 in bytes, not words
IrO is now addre.s of the needed loc.l
IpuSh the local onto the Itack

{ }
{

Routines for the individu.l instructions
}

()
......

<.D
OC>
......

case insr of

NON: tr.p(EILLINS);

{
LUID GRWP

}

LOC: puSh(k);
LNC: puSh (-k);
LOL: push(.eMw(lb+argx(k»);
LOE: push(.e.w(.rgx(k»);
LOP: puSh(."w(Me8a(lb+arg.(k»»;
LAl: begin k:=argy(k); .:=POP.;b: (.);store(a,b+k); pUlhx(k,b) end;
LOF: push(MeMw(popa+k»;
LAL: push(lb+arg.(k»;
LAE: push(.rgx(k»;
LEX: begin a:*lb; for j:-1 to argn(k) do .:- ...a(a-st.td); push(.) end;
LOl: pushx(argy(k),popa);
LOS: begin k:=pop.; pushx(argy(k),popa) end;
LDL: begin k:-argx(k); ~sh(.eMw(lb+k»; push(8f.w(lb+k+2» end;
LDE: begin k:*.rgx(k); push(.aMw(k»; pUSh(..MW(k+2» end;
LDF: begin a:-popa; push(.e.w(a+k»; push(.eMw(a+k+2» end;

......

<.D

Iprepare to fetch the 2 byte operand
Ifetch high order byte first !!!
linsert high order byte in place
linlert low order byte in pl.ce
Iconv.rt offset to byt.s, fr08 worde
IrO is now address of needed loc.l
Istack the loc.l
Idone

-c»G>
m

{ STORE GROUP }.
STl: storeClb+argxCk),popw);
STE: sto~eCargxCk),popw);
STP: storeCMeMaClb+argxCk»,popw);
SA1: begin k:=argyCk); a:=popa; b:=aeMaCa); storeCa,b+k);popxCk,b) end;
STf: begin a:=popa; storeCa+k,popw)end;
STI: popxCargyCk),popa);

ST5: begin k:=popa; popxCargyCk),popa) end;

SOL: begin k:=argxCk); storeClb+k+2,popw);.storeClb+k,pop~),end;
SDE: begin k:=argxCk); storeCk+2,poPw);storeCk,popw)end,.
SDf: begin a:=popa; storeCa+2+k,popw);storeCa+k,popw)end,

{
INCRE"ENT/DECRE"ENT/ZERO}

INC: PuShCchkovfCargiCpopw)+1»;
INl: begin k:=argxCk);

t:=argiCaeawC(b+k»i storeClb+k,chkovfCt+1» end;lNE: begin k:=argxCk); t:=argiCaeawCk»i storeCk,chkovfCt+1» endiDEC: PushCchkovfCargiCpopw)_1»;
DEL: begin k:=argxCk);

t:=argiCaeawClb+k»; storeClb+k~chkovfCt-1» endiDEE: begin k:=argxCk); t:=argiCaeMwCk»;
storeCk,chkovfCt-1» end;ZRl: storeClb+argxCk),O);

ZRE: storeCargxCk),O);

end;
end;
end;

{
CONVERT GR OUP }

CID: pushdCpopw);
CDI: begin dt:=poPd; if absCdt)

> t'S., then trapCECOI) else pushCdt) end;Clf: pushrCpopw);
CfI: begin rt:=popri

if absCrt»t1Sa1-0.S then trapCECfI) else pushCroundCrt»
end;

CDf: begin dt:=popd; pushrCdt) end;
CfD: begin rt:=popr; if absCrt)

> t31a1-0.S then trapCECfO) ;pushdC roundCrt))
endi

{ SINGLE PRECISION ARITH"ETIC }

ADD: begin t:=argiCpopw); s:= argiCpopw); pushCchkovfCs+t»
SUB: begin t:=argiCpopw); s:= arg~Cpopw); pushCchkovfCs-t»

"Ul: begin t:=argiCpopw); s:= arglCpoPw); pushCchkovfCs*t»

XDIV: begin t:= argiCpopw)i s:= argiCpopW)i .if t=O then trapCEIDIVZ) else pushCs dlV t)

end;

X"OD: begin t:= argiCpopw); s:=argiCpopw);
if t=O then trapCEIDIVZ) else pushCs - Cs div t)*t)

end;
NEG: begin t:=argiCpopw); pushC-t) endi
SHl: begin t:=argiCpopw); s:=argiCpopw);

for i:= 1 to t do sleftCs)i pushCs)
end;

SHR: begin t:=argiCpopw); s:=argiCpopw);
for i:= 1 to t do srightCs); pushCs)

end;

{
lOGICAL GROUP}

XAND ,ANS :
begin if insr=ANS then k:=popw; k:=argpCk)i

for j:= 1 to k div 2 do

begin t:=popw; a:=sp-k+2; storeCa,bfCandf,...wCa),t»
endiend;

IOR,IOS:
begin if insr=IOS then k:=popw; k:=argpCk)i

for j:= 1 to k div 2 do

begin t:=POPWi a:=sp-k+2i storeCa,bf1iorf,...wCa),t»
endiend;

XOR,XOS:
begin if insr=XOS then k:=poPWi k:=argpCk)i

for j:= 1 to k div 2 do

begin t:=POPWi a:=sp-k+2i storeCa,bfCxorf,...wCa),t»
endiend;

CCJII,COS:
begin if insr=cos then k:=popw; k:=argpCk);

for j:= 1 to k div 2 do

begin storeCsp-k+2*j,bfCxorf,...wCsp-k+2*j),-1» endend;
ROl: begin t:=pOpw; s:=popw; for i:= 1 to t do rleftCs); pushCs) end;
ROR: begin t:=popw; s:=poPWi for i:= 1 to t do rrightCs);pushCs) end;

{ DOUBLE PRECISION ARITH"ETIC }

DAD: begin dt:=popd; ds:=popd; pushdCdodadCds,dt»
DSB: begin dt:=popd; ds:=popd; pushdCdodsbCds,dt»

D"U: begin dt:=popd; ds:=popd; pushdCdod8dCds,dt»
DDV: begin dt:=popd; dS:=popd; pushdCdoddvCds,dt»
~D: begin dt:=popd; ds:=pOpd; pushdCdod8dCds,dt»

end;
end;
end;
end;
end;

{ flOATING POINT ARIT~ETIC }
fAD: begin rt:=popr; rs:=popr; pushrCdofadCrs,rt» end;
fSB: begin rt:=popr; rs:=popr; pushrCdofsbCrs,rt» end;
f"U: begin rt:=popr; rs:=popr; pushrCdof.uCrs,rt» end;
fDV: begin rt:=popr; rs:=popri pushrCdofdvCrs,rt» end;.

.flf: begin rt:=popri rs:apopri dofifCrt,rs,x,y)ipu~hrCY)~ pushr()
fEf: begin rt:=popr; dofef(rt,x,i);pushrCx)i PUSh(l) end,

{
SET GROUP}

INN,INS :
begin if insr=INS then k:=poPWi k:=argpCk)i

t:=popw; if t<O then trapCESET)i

i:= t aod 16i t:=.t div 16i if
2*t>=k then trapCESET>i

s:=..awCsp-k+2+2*t)i newsp(sp-k)i push(bit(i,s»;

{ POINTER ARIT~ETIC }

ADI: pushCpopa+k);
PAD: begin t:=poPWi
PSB: begin a:=popai

pushCpopa+t) endi

b:=pofai pushCchkovfCb-a» endi

......
<D
DO
......

-0
>en

"'

""<=>

{ BRANCH GRWP }

BRF: newpc(pc+argn(k»;
BRB: newpc(pc-argn(k»;

BlT: begin t:=popw; if popw < t then newpc(pc+argn(k» end;
BlE: beyin t:=popw; if popw <= t then ne~pc(pc+argn(k» end;
BEQ: begin t:=popw; if popw t then newpc(pc+argn(k» end;
BNE: begin t:=popw; if popw <> t then newpc(pc+argn(k» end;
BGE: begin t:=popw; if popw >= t then newpc(pc+argn(k» end;
BGT: begin t:=popw; if popw > t then newpc(pc+argn(k» end;

ZlT: if popw < 0 then newpc(pc+argn(k»;
ZlE: if popw <= 0 then newpc(pc+argn(k»;
ZEQ: if popw 0 then newpc(pc+argn(k»;
ZNE: if popw <> 0 then newpc(pc+argn(k»;
ZGE: if popw >= 0 then newpc(pc+argn(k»;
ZGT: if popw > 0 then newpc(pc+argn(k»;

TlT: if popw < 0 then push(1) else push(O);

TlE: if popw <= 0 then push(1) else push(O);

TEQ: if popw 0 then p~h(1) else push(O);

THE: if popw <> 0 then push(1) else push(O);
TGE: if popw >= 0 then push(1) else push (0);

TGT: if popw > 0 then push(1) e~se push(O);
end;

XSET,SES:
begiIT if insr=SES then k:=popw; k:=argp(k);

t:=popw; if t<O then trap(ESET);

i:= t mod 16; t:= t div 16; if 2*t>=k then trap(ESET)
for j:= 1 to t do push(O);
s:=1; for j:= 1 to i do rleft(s); pushes);
for j := 1 to k di v 2-t-1 do push

(0)

end;

{ ARRAY GRWP }

lAR,LAS:
begin if insr=LAS then k:=popa; k:=argx(k);
pushx(memw(k+4),arraycalc(k»

end;
SAR,SAS:

begin if insr=SAS then k:=popa; k:=argx(k);
popx(memw(k+4),arraycalc(k»

end;
AAR,AAS:

begin if insr=AAS then k:=popa; k:=argx(k);
push(arraycalc(k»

end;

{
PROCEDURE CAll GRWP }

{ There are four ways to mark the stack. The change in static depth can
be given as an immediate operand or the new static link can be provided
on the stack. Also, the instructionmay switch into alternate context,
or not. Only two of these have mnemonics, i.e. can be used by the prog-

rammer. These mnemonics are MRK and MRS, corresponding to the immediate

and stacked forms respectively.The decision about using alternate con-
text is made by the assembler. The four cases are:

MRK: immediate, normal context
MRX: immediate, alternate context
MRS: stacked, normal context
MXS: stacked, alternate context

{ C<J1PARE GRWP
}

CMI: begin t:=popw; s:=popw;
if s<t then push(-1) else if s=t then push(O) else push(1)

end;

CHP: begin a:=popa; b:=popa;
if b<a then push(-1) else if b=a then push(O) else push(1)

end;

CMD: begin dt:=popd; ds:=popd;
if ds<dt then push(-1) else if ds=dt then push(O) else"push(1)

end;

CMF: begin rt:=popr; rs:=popr;
if rs<rt then push(-1) else if rs=rt then push(O) else push(1)

end;
CMU,CMS:

beyin if insr=CMS then k:=popw; k:=argp(k);
t:= 0; j:= 0;

while
(j

<
k) and (t=O) do

begin a:= mema(sp-j); b:=mema(sp-k-j);
if b<a then t:= -1 else if b>a then t:= 1;

j:=j+2
end;

newsp(sp-2*k); push(t);
end;

}

MRK,MRS,MRX,MXS:
begin if (insr=MRS) or (insr=MXS) then k:=popw; k:=argn(k);

a:= lb; for j:= 1 to k do a:= mema(a-statd);
push(a); push(lb); push(O);
normalmap:=(insr=MRK)or (insr=MRS);

end;
CAl,CAS:

begin if insr=CAS then k:=popw; k:=argn(k);
a:=pd+pdsize*k;t:= memi(a+pdargs);store(sp+2-t-reta,pc);
newpc(memi(a+pdbase»; newlb(sp+2-t);normalmap:=true;

end;
RET,RES:

begin if insr=RES then k:=popw; k:=argx(k);
newpc(mema(lb-reta»; a:=sp-k; b:=lb-mrksize-2;
newlb(mema(lb-dynd»;
for j:= 1 to k d~v 2 do store(b+2*j,memw(a+2*j»;
newsp(b+k);

end;

""N......

r,

......
\.0
00
......

"»G>
rTI

N
......

<. "'lSCELlANEM GlUltlI'>
}

8EG,ftS:
b~gin if insrcteS th~n k:=popw; k:*argz(k);

if 'k>"O
t~en for j:* 1 to k div 2 do pushCundef)
else newsp<sp+k>;

end;
ilL"...8LS:

begin if insr*8LS then k:*popw; k:*argx(k);
t:=pope; s:epopal
for i :* 1 to k div 2 do store(t-2+Z*j,...MW(s-2+2*j»

end;
CSA: begin k:=POpa; b:=memi(pd+Pds;ze*memw(k)+pdbase);

t:* popw - memw(k+4); s:=-'}
if (t>=O) and (t<*memw(k+6» then s:*memwCk+8+2*t);
if s*-1 then s:*memw(k+Z);
if s=-1 then trap(ECASE) else n~"pc(b+S)

end; ,
CS8: begin k:=popa; b:*memi(pd+pdsize*mem..(k)+pdbase);

t:*pop..; i:*1; found:-false;
..hile (i<=..m..(k+4» arid not found do

if t"..uv(k+2+4*j) then found:*true .lse i :=1+1;
if found then s:~..(k+4+4*i) else s:"me...(k+2);
if 5*-1 then trap(ECASE) elSe nawpc(b+S);

frhd;

flU,",6US:
begin if insr=DUS then k:=popw; k:=argp(k);

fori :"1 to k div 2 do push((sp- k.+ 2»;
end;

EXG: begin t:=popw; s:=pop..; Push(t); pushes) end;
HLT: beginexiUtatus:*popw;halted :.. true end;
LIIiI: lino(argnCk»;
LNl: lino(.emw(D)+1);
LOll: btgin i :*k;

Case i of O:pushHb); 1 :push(sp); 2:pushChp) end;
end;

"ON: ; { "'ONwill not be described here}
NaP: ;
RCK,RCS:

begin if Insr=RCS then k:~a; k:*.rgK(k);
if (me Csp)<.em..(k» or (1II (sp» (k+2» th.n trap(UAN&E)

end;
RTT: dortt;
516:begin a:=pOpa; b:=popa; push(uerrorlb); push(uerrorproc);

uerrorproc:=a; uerrorlb:*b
end;

STR: begin i:=k;
case i of 0: newlb(pope); 1: newsp(popa); 2: newhpCpopa) end;

end;
TRP: trap(popw);

..ritaln('halt with eKit ttatus:',exitstatus);
end.

.

end (end of caSe State..nt)
unt it halted;

9999:

f '" "'.~

{ UNREAL ARITHMETIC -- extended precision integer arithmetic }

j

{ routines for 16-bit machines.

l

~
Jeff Pepper
Three Rivers Computer Corporation
160 N. Craig Street
Pittsburgh. PA 15Z13

{
written July 1980 ~

{ PURPOSE; ~
{ This module provides routines for performing standard integer }
{ arithmetic functions with extended precision. It is designed

}
{ for use on 16-bit machines. where it effectively extends MAXUY }
{ from 32767 to roughly 256 trillion (2"48 - 1). This is }
{ particularly useful in financial applications I where you can }
{ store dollar amounts in tenths of a cent and still keep track

i

{ of up to $256 bill ion.
{
(IMPLEMENTATION:
{ Numbers 8fe of type UNREAL. a Pascal record containing 6 bytes
{ (0. .255) and a boolean indicating the sign. The preciSion }
{ can be changed by changing the global constant BYTE MAX. and }
{
{

by changing code as noted in Uwrite. Changing Ur-ead is lIIore }

difficult. but you probably never want to read a decimal
}

{ number larger than 15 digits anyway... }

~ EXCEPTIONS; ?
{ The ErrorTrap procedure is called on all exceptions. which are }
{ as follows: }

~

"input too long" -- too many chars in input string
}

"input too large" -- value of input> 2"48 - 1 }

"no number found" -- Uread encounters a non-digit before}
{ finding a digit }
{ "division by zero"

}
{ "addition overflow"

}
{

"mul t overflow"
}

{ The values returned by a proct!dure/functiofi are undefined if an }

~
n n n. :::::~ ~:: _~: - :::::~ n__ _m_ _ _ _ __m mn _m"__n nn_ nn

J{ The fo11owing operations are available: }
{ }
{ Unegate (8: unreal) a -a }

{UUa1d (a.b; unreal; VAR c: unreal) c a + b }

{UUsub (a.b: unreal; VAR c: unreal) c a - b }

{UUmJlt (a,b: unreal; VAR c: unreal) ca. b }

{UUd;v (a,b: unreal; VAR q.rem: unreal) q a DIV b; }
{ re.. :. a MOO b }

t UUgreater (a.b: unreal): boolean true iff 5
{ UUequal (a,b: unreal): boolean true iff }
{ Uzero (a: unreal): boolean true iff }
{ }
{ Uread (VAR f: text; VAA num: unreal)

}
{ reads a nunber in decimal form, converts to type unreal }
{ Uwrite (VAR f; text; num: unreal; fieldwidth: integer) }
{
{

converts from unreal to decimal form. writes to file }

f. using fieldwidth specified. Writes all '.'s if }

~
fieldwidth is too small

5{ IUconvert (a: integer; VAR b: unreal))
{ converts int~ger to unreal }
{
{

Ulconvert (a: unreal; VAR b: integer): boolean }

cOflverts unreal to integer. The function returns II false value}
{ iff a > ma.dnt. }
(}
{)

re~lArr8y
'"

ARRAY [0. .byteMax] Of integer;
wrlteBuf

'"
ARRAy [0. .bufmax] OF integer:

digArray . ARRAY [0..2] OF 0..9;
string" PACKED ARRAY [0. .19] Of char;

{ n n }

procedure UUSub (a. b: unreal; VAR c: unreal); fORWARD;

{n
_ _ n _"

_ _ _ _ _ _ _ _ _
n _ _ _ _ _ _ _ _ _ _ _._ _ _ _ _ _ _ _ _ _ _ _ _ _

_"
_ _ _ _ _ _ _ _ _

n
_""

_ _ n_ _ _ _ _}

procedure Errorfrap (str: striftg);

8EGIN

:~:~:~~;
(UNREAL ARITHMETIC ERROR: str);

ENO:
{_

- -
n

_ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ __ _ _ _
n

_ _
_"n

_ _ _ _ _ _ _ _ _ _ _ _ _}

procedure Unegate (VAR a: unreal);

8EGIN
a.pos

:'"
NOT a.pos

ENO:

{_

-
n

_ _ _ _ _ _ _
n

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _

_
_ _ _ _ _ _ _

_ __
_ _ _ _ _

n
_ _ _ _ _ _ _ _ _ _ _ _ _ _}

function Uzero (num: unreal): boolean;

VAR i: integer; zip: booleaA;

8EGIN
zip

:'"
TRUE;

~~:r~
:'"

~i~o
byteMax 00 zip :- zip AHD (num.byt[i]

'"

0); {test all bytes}

ENO;

{- - - - - -" -. - - - - - - - - - - -" - - - - - - - - - - - -" - - - - - - - - - - - - - -}

function UUequal (I,b: unreal): boolean;

VAR i: integer; eq: boolean;

8EGIN
eq

:'"
TRUE;

~~\~p~; ~>t~.~~~e~~;NO~qe~';;A~~E~80
(a.byt[i] . b.byt[i]):

HU~~e:~(~)s:H~o~~e~~(b ~'f~~~ ~~ ~~f~:~:7t
sign...}

UUequal
:'"

eq
ENO;

{----- ---- -- -- --}
procedure IUconvert (a: integer; VARu: unreal);

VAR i: inleger;

8EGIN
FOR i
u .byt[l]
u. byt[O]
u. pos : =

ENO;

2 to byteMax DO u. byt[i]
;. A8S(a) OIV 256;
;. A8S(a) MOO256:
(a >. 0)

0:

{_n_ _n_ __
n_un nn_ n ___h_ _ _ _u_ _ _ __n _ _

_n nn _n _
n}

CONST bufmax" 16: size of write buffer, - 1
byteMax ..5: size of byte array. - 1 }

TYP[byte'" O. .255;
unreal

"
RECORD

byt: ARRAY [O..byteMH] OF byte;

ENg~&: boo'ie-an; { true if it's non-negative}

function Ulconvert (u: unreal; VAR a: intfger): boolean:

{ returns TRUE iff u is in range .32767 .. +32767 }

VAR small: boolean;
i: integer;

8EGIN
small TRUE;
FOR i. 2 to byteMax DO small
Ulconvert

;'"
small:

. :. u.byt[l] . 256+ u.byt[O]:
IF NOTu.pos THU: a :- -a

small ANO(u.byt[i] . 0):

256, add to s)
digits) ;

digits[i] 2;
dig; ts[i] 5;
digits[i] 6

65536, add to s} :>
digits) ; LJ

=
digits(i] 6:
~digits[i) 5;
digits[l] 5;

.Ddigits[l] 3" exdigHs[i] 6

16,777.216 and add to s}
digits) ;

{abr-acadabra.. . convert the digit array to base 256}
t,.p[OJ s[OJ + s[1J . 10 + 5[2] .. 100 + s[3J 232 +

s[4J 16
,

s[5J . 160 + s[6] . 64
'

s[7J 128:
tmp[l) ;. s[3J 3 + s[4J

,
39 + s[5] .. 134 + s[6] 66 +

s[7J' 150 + s[BJ 225 + s[9] .. 202 + s[10]- 228 +
s[II]' 232 + s[12]' 16 + s[13P 160 s[14]' 64;

tmp[2] s[5] s[6J . 15 + s[7) .. 152 + s[8J .. 245 +
s[9] . 154 + s[10]' 11 + s[11]. 118 + s(12]. 165 +
s[13]' 114+ s[14]- 122 :

tmp[3J s[8]. 5 + s[9] . 59 + s[10J' 84 + s[II}' 72
s[12]' 212 + s[13}' 7B + s[14]' 16:

tmp[4] ,[10J' 2 + S[l1]' 23 + s[12}' 232 + s[13J' 24
s[14]' 243;

t"'p[S] s[13]' 9 + s[14J' 90;

frw.

{------ - - - - - -- - - - - -- - --- - - - --- - -- --- -- - - ---- "hh hh___nn__}
{check for high byte overflow}
If tmp[byteMax] <= 255

THEN num.byt[byteMax] := tmp(byteMax]
ELSE ErrorTrap ('input too large ');

END;
END:
{nun

_ _ _ _n__
n

_
h

_ _ n___
nn_ h_

_ _
nn

_
h

_ _ __ _n _ __ _ _
n

_ _ _ _ _ _ _ _ _
n

_ _}

function UUGreater (a.b: unreal): boolean;

VAR lac: integer;
state: lbigger, same, smaller);

BFGIN
IF Uzero(a) AND Uzero(b)
ElSE IF a.pos ANDNOT b.pos
llSE IF NOT a.pos AND b.pos
ElSE

BfGIN
state := same;
1oc ~=

byteMax;
REPEAT

IF a.byt[loc] > b.byt[10C] THEN state := bigger
ELSE IF a.byt[loc] < b.byt[loc] THEN state

:'"
smaller;

loe ;
= 10c-l;

UNTIL (s tate <> same) OR (lac <
0);

IF a. pas
TH[N UUGreater. (state bigger)
ELSE UUGreater := (state = smaller);

END;
END;

THEt~ UUGreater ::z fALSE
THEN UUGreater :,. TRUE
THE N UUGr ea tel' :" fALSE

procedure Uwrite (VAR f: text; num: unreal; fieldwidth: integer);

{at this point, a and b must have same sign}

VAR s: writeBuf;
i,j: integer;
digits: digArray;
started, goodsize: boolean; -"

{when both are pas.}
{when both are neg,}

{_ __h h _ _ n
__ _

h
_ _ _

n
_ _ _ _ _

h
_ _ _ _

U nn_ }
procedure GetDigits (nurn: byte; VAR digs: digArray);
BEGIN
digs[2]. num DIV 100;
digs[l) :

= num MOD 100 DIV 10;
digs[O]

:'"
num MOD 10

END'{- _:
- - - -- -- - -- -- - - - - - - - -- - - - - - -- - - - - - -- --- -}

--,-

BEGIN
FOR i := 0 to bufmax DO s[i] := 0;

{_ __ _ _
n

_ _
n_

_ _ _ _ _
n

_ _ _
h

_ _ _ _ _ _ _ n_ _ n h_ n n _ n
_ _ ___ _ _ _ _

_n
_ __ _ _ _ _ _

n
_}

{Oth byte}
GetDigits (num.byt[O], digits):
FOR i .= 0 to 2 DO s[i]

:'"
digits[i);procedure Uread (VAR f: text; VAR num: unreal);

VAR i,strLen: integer;
tmp'. real Array;
s1: array [0. .bufmax] of char;
s: wrHebuf;

BEGIN
{initialize}
FOR i 0 to bufmax DO 8EGIN s[i]

:'"
0; sl[i]

:'" '0'
END;

{1st byte -- multiply by
GetDigits (num.byt[l],
FOR i : = 0 to 2 00

BEGIN
s(2+i]
s[11-i]
s[O+i]
END;

s[2+iJ
s[l+1]
s[O+i]

WHILf fA

nurn.pos .
IF f~ IN

DO get(f):
NOT (f' . '-');

"
", "'J

THEN get(f):

{skip leading spaces}
{look. for minus sign}
{edt leading sign}

{2nd Dyte -- multiply by
GetDigits (num.byt[2],
FOR i :

'"
0 to 2 00

BEGIN
s[4+iJ s[4+1]
s(3+i] s[3+;]
s[2+i] s[2+i]
s(l+i] s[l+i)
s[O+;] 5[0+i]
END;

stl'Len :"
0;

WllIlE (f~ IN ['0'.. 'g']) AND (strLen bufmax) DO
B1!GIN
read (f. sl[strlenJ); {read into string of digits}
strLen

:'"
strLen + 1;

END;
IF strLen > bufMax THEN ErrorTrap (' input too long ')
ElSE IF slrLen

"
0 THEN ErrorTrap (' input not found ')

ElSE
BEGIN
{now rt!verse the string and convert from chars to integers}
FC)R i

:" a to strlen-l 00 s[i]. ord(sl[strLen-i-l]) ord('O');

(3rd byte -- multiply by
GetDigits (num.byt[3],
FOR i :" 0 to 2 DO

BEGIN
S[7+1] s[7+i] + digits[i] 1;
s[6+i] s[6+i] + digits[i]

6's[5+i] s[5+i] + digits[i] 7;
s[4+1] S[4+i] + digHs[i] 7;
s[3+i] s[3+i] + digits[i] 7;
s[2+i] s[2+;] + digits[i] 2;
s[l+1] s[l+i] + digits[i]

l's[O+1] s[O+iJ + digits[i] 6
END;

FOR i :" 0 to byteMax - 1 DO
IF trop[i] <" 255

THEN num.byt[i] ::z tmpEi]
ELSE

BEGIN
Unp[l+l] := tmp[i+1] + tmp[i] DIV 256;
num.byt[i] := tmp[i] MOD 256
END;

{4th byte -- multiply by 4,294,967,296
IF lUlTI. byt[4] > 0 THEN

B"GIN
G~tDigits (num.byt[4], digits);
f.)R i :.. 0 to 2 DO

BEGIN
s[9+1]
s[8+i]
s(7+i]
s[6+;]
S[5+1J
s[4+i]
s[3';]
s[2+ 1]
sf1+iJ

and add to s}

s[9+i] +
S[8+1] +
s[7+i]
5[6+i]
s[5+ 1)
s[4+iJ
s[3+1]
5[2+i)
s[l+i]

d gits[
d 9 its[
d gits(
d gHs[
d gits[
d gits[
d gits[
d gits[
d gits[

. 4
2. 9, 4. 9

. 6
7
2. 9

{5th byte -- multiply by 1.099.511.627.776 (I hope) end edd to s}
IF nUII.byt[5] > 0 THEI

BEGIN
GetDigits (num.byt[6].digits);
FOR i :. 0 to 2 00

BEGIN
s[12+i]

{.[lI+i]
s[10+i]
.[9+i]
.[B+;]
s[7+i]
s[6+i]
s[5+i]
s[4+i]
5[3+;]
.[2+i]
.[I+i]
.[O+i]
END;

END;

e" IF YOU INCREASE THE NUMBER OF BYTES BEYOND D. .5: repeat the process
as above for all higher-order bytes, using a multiplier that's
256 . the multiplier for the next lower byte ...}

{now reduce all values to range O. .9}
FOR

; :.. 0 to bufmu DO
IF sri] > 9 TIIEN

BEGIN
.[i+I] :. s[i+l] + sri] DIY 10;
.[i]

:"
.[i] MOD 10

END;

{check to see if any digits will be lost}
goods i ze :.. TRUE:
FOR 1 :- fieldwidth TO bufmax DO

goodsize :.. goodsize AND (5[i];' 0);

I F NOT goods i ze
THEN fOR i :- f1eldwidth-l dOWRlo DOwrite C'.')
ELSE

BEGIN
IF fieldwidth > bufmax + 1 THEN {pad wI spaces on right if needed}

BEGIN
write (' ':fieldwidth - (bufmax + 1»:
fieldwidth :- bufmax + 1;
END;

started
:""

FALSE;
FOR i := fieldwidth-l dowoto 0 DO

BEGIN
IF (s[i] . 0) AND (NOT started) AND (i

>
0)

IHEN IF (NOT num.po.) AND (5[,-1] >
0)

THEN write ('-') {leading minus sign}
ELSE write (' ') {leading space}

ELSE
BEGIN
write (s[i]:1); started TRUE
END;

END;
END;

END;

.[O+i]
END;

EID;

s[0+1] + digits[i] . B ELSE IF NOTe.pos ANDNOT b.pos
THENBEGII Unegste(a); U.eoate(b); UUadd(a.b.c); Unegate(c) END

ELSE
BEGIN {now we know both are po~itive}
FOR i :" 0 to .byteMax DO tmp[i] :. a.byt[i] + b.byt[i];
FOR1 :- 0 to byteMax- 1 00

IF tmp[i] <. 255
THENc.byt[i] :- tmp[i]
ELSE

BEGIN
c.byt[i] :- tmp[i] - 256;
tmp[i+l]

:"
tmp[i+1] + 1

END;
IF tmp[byteMax]

<"
255

THEN c. byt[byteMex] :. tmp[byteMu]
ELSE ErrorTrap (' addition overflow ');

c. pos TRUE;
END;

END;

s[12+i]
'[11+i]
s[10+i]
s[9+i]
s[8+i]
s[7+i]
s[6+i]
.[5+i]
s[4+i]
s[3+i]
s[2+i]
'[1+i]
'[O+i]

+ digits(i]
+ digits[i]
+ digits(i]
+ digits[i]
+ dig.ts[i]
+ digits[i)
+ digits[i)
+ digits[i]
+ digits[1)
+ digits[i]
+ digits[iJ
+ digits[i)
+ digits[i] . Procedure UUsub {a. b: unrea,; VARc: unreal};

VAR i: integer;
tmp: real Array;

1
o }

9
9
5
1
1
6
2
7
7
7
6

{_ _ _ n _ _ _ _
u _ _ __ _ _ __

u n_
_ _ _ __

n _ _ _ _ _ _ _u _ _ _ _ n _ _ _ _ _ _ _ _ _ _ __
n

_ _ _ __ _ __ _ _}

BEGIN
{juggle the signs}
IF a.pos AND NOT b.pas

THEN BEGIN Une9ate(b); UUAdd(a.b.c) END
ELSE IF NOT a.pos AND b.pos

THEN BEGIN Unegate(a); UUadd(a.b.c); Unegate(c) END
ELSE IF NOT a.pos AND NOT b.pos

THEN BEGIN Unegate(a); Unegate(b); UUsub(a.b.c); Unegate(c) END

{now make sure a>-b}
ELSE lF UUGreater(b.a)

THEN BEGIN UUsub(b.8.C); Unegate(c) END
ELSE .

BEGIN
FOR i :-0 to byteMaxDOtmp[i] :.. a.byt[i];
FOR i :- 0 to byteMax - 1 DO

IF tmp[i]
>"

b.byt[i]
THEN c.byt[i] :- tmp[i]

- b.byt[i]
ELSE

BEGIN
c.byt[i] tmp[i] + 256 b.byt[i];
tmp[i+1] tmp[i+1] - 1
END;

c. byt[byteMax] tmp[byteMax] b. byt[byteMax];
c.pos TRUE; {it better bel}
END;

END;

{n __u__ n_
___u_n_u nn_ n__ u__ un__u _nn _u u n__u_ n

_
uU u_}

procedure UUmult (a. b: unreal; VAR c: unreal);

VAR i, j: integer;
tmp: real Array;

BEGIN
FOR i :-byteMax DO"'NTO 0 DO

BEGIN
tmp[i]

:"
0;

FOR j
:- 0 to i DO tmp[i] tmp[i]. (a.byt[i-j] . b.byt[j]);

END;
FOR i :-0 to by teMax - 1 DO

IF tmp[i]
<- 255

THEN c.byt[i]
:'

tmp[i]

ELSE
BEGIN
c.byt[i]

:"
tmp[i] MOO 256;

tmp[i+l]
:"

tmp[H1] + (tmp[i] DIY 256)
END;

lF tmp[byteMax] <= 255
THEN c.byt[byteMax] :- tmp[byteMax]
ElSE ErrorTrap ('mult overflow ');

c.pos (a.pos AND b,poS) OR NOT (a.pos OR b.pos);
END;

{___ nn n___ ___ n_ ____n__}

procedure UUadd (a. b: unreal; VAR .c: unn 81);

VAR i: integer;
tmp: realArray;

BEGIN
{first. juggle the signs}
IF a.pos AND NOT b.pos

IHEN BEGIN Une9ate(b); UUSub (a.b.c) IND
ElSE IF -NOT a. pas ANDb. pos

THENBEGIN Unegate(a); UUsub (b.a.c) fNO

N
\.J1

VAR i,j: integar; .shifted: unreal:
BEGIN
as ize :.. byteMa}!.;
WHILE (a.byt[asiza]
baize

:'"
byteMax;

WHILE (b.byt[bsi~a]
IF as ize . bs ize

THEN foofer :- TRU(

ELSE
BEGIII
FOR; :.byteMex dowoto 1 do sbifted.byt[i]
shHtad.byt[O] :. 0:
TOGFar :. UUGreater (shifted, a);
EIIO;

EIIO;
{_ _ _ _ _ __ _ __

_n
__ _ _ _ _ _ _ n__ _ _ _ _ _ _u_ _ __ _ _ _ _ _ _ _ _ _ _ __ _}

O} AIIO (uize
>

O) DO uize

O} AIIO (bs1ze > O) DO bs1ze

as he 1;

1;

'.': IF UUequal(x,y} THEil write ('equal') ELSE write ('not aqual');
'c': BEGIN dummy:. Ulconvert(x,a); if dUIllllY THEN write ('conY OK');

write (&:10); IUconvert(e,z) END;

'+': UUadd (x,y.z);

'-'. UUsub (x.y.z):
UlJIIoult (x.y,z);

'/': UUd1v (x.y.z,r..);
EIID; {ce..}

write (' > ');
IF ch IN [.+ '/'. . c'] THEil Uwrite (output.z.16);

IF ch,,'f' THEN BEGIN \frite C', rea. '): Uwrite(~utput,rem,10) END;
writeln;

UNTIL false;
EIID;

{_ __ ___ _ _
n

_ _ _
n

_ __
nn _ _ _n _ _ _ _ _ _ _ _ _nnn

_ _ _ _ _ __ __ _ _ __ ___
_n _ _ _ __}

procedure UUOh (a,b: unreal; VARq, rem: unreal)~

VAR $hHtCt, i,j: integBr;
ashe, bsize: integ.r;
{_ _ _ _ ___ _ _ __ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ ___ _ _ _ _ _ ___ _ _ __ _ _

n
_ _ _}

functiotl TooFer (a.b: unreal): boolean;

{

"
.~.. -"". "'... }

bsize

b.byt[1-1];

BEGIN
Main

EIID.

BEGIII
IF Uzero(b)

THEN ErrorTrap ('Oivision by zero ')
ELSE

BEGIN
{figur,e out quotient's & rem's signs now, then force a and b positive}
q.pos :. (a.pos AijD b.pos) OR IIOT (a.pos OR b.poa):
rem. PO$;: = a. pos;
a ..pos TRUE:
b. pos:' TRUE;
FOR i :. 0 to byteMax 00 q.byt[i] 0: {initialize all O's}

shiftCt :. 0;
WHILEIIOT Toofer (e.b) 00

BEGIII
FOR 1 :. byteM.. OOWNTOI DO b.byt[i] b.byt[1-1];
b.byt[O] :. 0;
shiftet :. shiftCt + 1;
EIIO ;

F~R i :. shiftCt OOWIITO0 DO
BEGIN
WHILEIIOT UUGreeter (b.a) DO

1IEGIII
q.byt[i] :. q.byt[i] + 1:
UUsub (a,b.e);

I/~O; 0 THEN
BEGIII
FORJ :. 0 to byteM.. - 1 00 b.byt[j] b.byt[J+l];
b. byt[byteM..] :. 0;
EIID;

END;
rem.byt :. ..byt;
EIIO:

ENO:

{shift right}

{shift left}

{_ ___ _ _ _ _ _ _ _ _ _n_ _ _ __ _ ___ __ _ __ _n
_ _ _ _ _ _

__ _ _ _ _ _ _ _ _ __ _ _ _ _ __ _ _ ___ _ _ _ _ _ _ _
__}

procedure Mai4l;

YARa. i ,f: integer;
x,y,z,rem: unreal:
C1: char;
dJmmy: bool...:

"'tJ
»

'"m
IEGIN
REPEAr

wf'He ('Enter probl_ in for. n-op-n: '):
Ureld (input, x);
ree~ (ch):
Urud (input. 1);
CAS, cb OF

'>': IF UUgreater(x.y) THEIl write ('gre.ter') ELSE write ('not grtr'):

N
01

DDDDDD PASCAL INPUTIOUTPUT

Articles
In this example characters derived from the variable I

bv WRITE are sent to the procedure CONVERT, which stores
them In an arraY.

AN EXTENSIONTO PASCAL READ AND WRITE PROCEDURES

David A. Rpwland
Real-Time Soft\lare Auoclates

2717 Hllle&ass Ave.
BerkeleV, Calif. 94705

(415) 548-8095

Pascal READ and WRITE have several distinct actions.
Thev convert between Internal forms of data and their
representations as character strings, and they direct the
character strings through tiles. Thev are also the onlv
procedures in Pascal that allow an arbltrarv number of
parameters of varying tYPes,

VAR
CHARS ; ARRAY (.1..10.) OF CHAR;
C, I: INTEGER;

PROCEOURE CONVERT(CH: CHAR);
BEGIN

IF C <.. CNAX
THEN

BEGIN
CHARS (, C.): ..CII;
C: "C1-1;

EN!);
END;

BEGIN
C:"l; 1:"437;
URITE(CONVERT, I);

END.

The second example shows j,ow READ CSln re..d Integers
dlrectlv from a hardware Input buffer.

sometimes It Is useful to have the properties of READ
and \IRITE sepilrate from the file strUcture., For example,
one may wish to convert an Integer to a character strln& and
store the strin~ In iln array. Or one may wish to take Input
from a keyboard dl rect I v through I ts Input buffer address
rather than deflnin& a system handler for It.

Files In READ and WRITE are specified by being named
first In the parameter list. If no file name apPl!ars, an
approprlatl! system file is Implied. The extension Is to
allpw the first Parameter In the 1Ist to be the name of a
u$er.d,flned procedure. For READ It must be a procedure
having a parameter list like (VAR CII:CIIAn). For ~IRITE It
must have a parwueter lIst like <CH:CHAR).

VAR
I, J:INTEGER;

PROCEDURE <iETC!I(VAR CI::CIIAR);
\JAR

RCSR ORIGIN 1775GOB:INTECER;
~UF ORIGIN 177562B:CHAR;

BEGIH
I-Until a char Is ready, walt here*1
IItIILE RCSR .. 0 00 l"nothing*1
CtI~ -RI\I,iF;

END;

5EGI.N
~AI)(GETCII, I, J);

EHO.Thl! actions arl! thl!nJ for REAP, every time
Is $OUiht, the user procedure Is called. It
charactl!r In CU. For \~RITE, the user procedure
with the character provided as the parameter.

This exten$lon Is very much In the spirit of Pascal,
whleh elsewhere allow, procedures to be passed ali
par~ters. It m.ilV seem a sllght convenience In standard
Pascal, but It 1$ an enormous aid In the multl.t..sldn&
version of P9$cal ~Ihlc;h we have created. It allows one the
full flexlbllltv and famillarltv of READ efld WRITE In the
absence of any operatlni system. It might be considered for
other real-time and process control languages.

a character
returns the

I s ca II ed

"»
'"rn
N ,

PDP-11 PASCAL: THE SWEDISH COMPILER

VS

OMSI PASCAL-1

stated in the draft standard.

PASCAL STANDARDIZATION

Margaret A. Kulos
Naval Underwater Systems Center

New London, Connecticut

The formal effort to produce a standard for the Pascal
programming language began in 1977 when a working group was

formed within the .British Standards Institution (BSI). In
October 1978, Pascal was listed as a International Standards
Organization (ISO) work item and a working draft was
circulated as the ISO document (1).

The current version of the standard (the 5th working
draft) is being circulated to ISO member bodies for comment.

In the United States, the cognizant bodf is the joint ANSI

X3J9-IEEE Pascal Standards Committee (2).

ABSTRACT

This paper presents a comparison of
Seved Torstendahl's Swedish Pascal
compiler and the Oregon Minicomputer
Software Inc. (OMSI) Pascal-1 compiler.

A comparison of the results of
applying the Pascal Validation Suite
against both compilers is reported. A
discussion of the factors that need
consideration in transporting programs
written for one of the compilers to the
other, based on the results of the
validation suite, is presented.

THE ~ PROCESSOR VALIDATION SUITE

The Pascal processor validation suite by A.H.J. Sale
and R.A. Freak is a series of test programs written in
Pascal that are designed to support the draft standard
(3,4). This suite of programs may be used to validate a
compiler by presenting it with a series of programs which it
should or should not accept. The suite also contains a
number of tests that explore implementation defined features
and the quality of the processor. Processors that "pass"
all the tests are likely to be well designed and relatively
trouble free, although they may not be error free.

Use of the validation suite provides an opportunity to
measure the quality of a processor and aids implementators
in providing a correct implementation of "standard" Pascal
in an effort to improve the portablityof Pascal programs.

The six classes of tests in the validation suite are
conformance, deviance, implementation defined, error
handling, quality, and extension.

INTRODUCTION

This paper presents a comparison of two Pascal
compilers implemented on a PDP-11/70 running the
RSX-11M-PLUS operating system.

A comparison of the results of applying the Pas~al
Validation Suite against Seved Torstendahl's Swedlsh
.Compiler and the Oregon Minicomputer Software Inc. (OMSI)
Pascal compiler is reported. Both compilers are discussed
in relation to the requirements of the draft Pascal
standard. Spec'ific areas where programs written for one
compiler may not be compatible with the other compiler are
highlighted. This paper does nut discuss the differences in
the I/O handling by the two compilers except for presenting
the validation suite results .for tests that examine I/O as

Conformance programs are correct
programs that should compile and execute.

Programs in the deviance class are Pascal programs that
differ in subtle ways from the standard. These detect
processors that:

Btandard Pascal

(a) handle an extension of Pascal
(b) fail to check or limit some Pascal

feature appropriately, or

-u»mIT1
N

""

(c) incorporate some common error.

Implementation defined programs detail features of the
processor that are implementation dependent.

Validation Suite Version: 2.2

Conformance Tests

Humber of tests passed: 118
Humber of tests failed: 17

Details of !!!.!!! tests:

The programs in the error handling category test
situations where an error should be detected. This enables
documentation of undetected error conditions.

Programs that explore the quality of an implementation
are classified as quality tests.

The final category of tests investigates the sYntax of
extensions to the language according to the conventions
cited in the standard.

6.1.8-1 Comment is not considered to be a token
separator.

PROCEDURE(*comment*)ABC; is not a legal procedure
heading.

All test programs are labeled with a test number
corresponding to the section in the standard which gives
rise to the test followed by a dash and a serial number that
uniquely identifies each test written for that section. For
example, the test numbered 6.10-3 is the third test in the
validation suite corresponding to that section of the
standard numbered 6.10.

6.2.2-) Type identifier which
of a pointer type is not permitted
occurrence anywhere in the type
which the pointer type occurs.

specifies the domain

to have its defining
definition part in

PROGRAM Name;
TYPE
node=real;

SWEDISH COMPILER VALIDATION REPORT
PROCEDURE X;
TYPE
p=Anode;

The following is a report of results obtained by
running the Pascal Validation Suite against the Swedish
Compiler Version 6. The details of the test results state
the actions demonstrated by the compiler for a particular
test rather than the requirements listed in the standard.
Examples of syntax constructs that will cause a test to fail
are provided in the descriptions only for those tests that
are not self-explanatory.

6.4.3.3-1 Empty field-list in variant part of
record type definition is not allowed.

e =RECORD
CASE married OF
true: (spousename:string);
false: ()

END;

6.4.3.5-1 File of pointer to integer is not
allowed.

.

Pascal Processor Identification

Computer: DEC PDP-11/70 running RSX-11M-PLUS V1 BL6

Processor: Swedish Pascal Compiler Version 6.01

Test Conditions
TYPE

i=integer;

VAR
ptr:"i;
filex:file of ptr;

Tester: M.A. Kulos

Date: September 1980

",.

'"IT!
N:.D

6.4.3.5-3 The end of line marker is not inserted
at the end of a line, if not explicitly done in a
program.

6.9.2-2 Read of a
equivalent to correctly
variable.

character variable
positioning the

is not
buffer

6.6.3.1-5, 6.6.3.4-1 and 6.6.3.5-1 Procedure
declaration is not permitted as argument to a
procedure. Procedures and functions may not be passed
to other procedures and functions as parameters.

PROCEDUREConforms(PROCEDURE abc(x:integer));

6.9.4-4 Real numbers are not correctly written to
text files due to the fact that when a real number does
not fit the format specified, or the fraction length is
not specified, the number is written to the text file
in scientific notation.

Note: Version 4 of the Swedish compiler would process
this statement correctly if procedure abc did not have
an argument--which goes along with the Jensen and Wirth
definition of a parameter list (5).

6.6.3.4-2 The environment of procedure parameters
does not conform to the requirements stated in the
standard. (This test did not compile because of the use
of a procedure as an argument to a procedure.)

6.6.5.2-3 "TRUE" is not assigned to "EOF" if the
file is empty when reset.

Deviance Tests

Number of deviations correctly detected: 63
Number of tests showing true extensions: 1
Number of tests not detecting erroneous deviations: 30

Details of extensions:

6.1.5-6 Lower case He" may be used' in real numbers
(e.g. 1.602e-20).

Details ot deviations not detected:

6.6.5.4-1 UNPACK is not
compiler.

implemented by the 6.1.2-1 NIL is not implemented as a reserved word
and may be redefined.

6.1.7-5 and 6.9.4-12 Packed is ignored so that
packed array of char is identical to array of char.

6.6.6.2-3 The arithmetic function ARCTAN is not
implemented.

6.6.6.3-1 Transfer functions TRUNC and ROUND give
.error... floating point number too large. (This error
is due to the failure of the function DIV on a negative
number rather than the implementation of the
functions.)

6.1. 7-6 and
bounds other than
execute.

6.1.7-7
1. .n,

Strings .are compatible with
allowing deviant programs to

6.8.2.4-1 ion-local GOTO statements
allowed.

are not

TYPE
alpha = 'A'..' Z' ;

VAR

:~ : :~~:~

~

6::j
j

~;
a3 : array 2..5 ,)f

a4 : array 1..4 of
:BEGIN

a1 :='ABCD';
(* the next three are not valid assignments*)

a2:='EFGH' ;
a3:='IJKL' ;

a4:='MNOP' ;

.....
cD
00
.....

6.8.3.9-7 The use of extremevalues in a FOR loop
causes wraparound (overflow), - leading to an infinite
loop.

char;
char;
char;
alpha;

FOR i:= MAXINT-10 to MAXINT DO something;

"".m
'"I..NC)

6.1.7-8 Compatibility of subranges of char and
packed arrays of char is not checked and the assignment
of erroneous values is allowed.

6.4.2.4-2 Real constants are permitted in a
subrange declaration. (Should be limited to subrange of

another ordinal type.)

6.10-3 The default file output is not
declared and it can be redefined.

6.2.2-4 Incorrect scope allows programs that are
incorrect to compile.

implici tJ.y

6.4.3.2-2
ordinal-types.

Index type should be limited
Compiler allows real bounds.

to

(* 'red' is used in a local procedure
before its declaration. *)

l'ROGRAM Xxx;
CONST
red=1;

PROCEDURE Yyy;
CONST
m=red

TYPE
colour: (yellow,green,red);

6.2.2-9 A fUnction identifier may be assigned
outside of its block.

6.3-5 Signed constants are permitted in contexts
.other than CONST declarations.

Wri teln{ +TEN);

6.3-6 Scope error...constant may ~e used in its
own declaration.

testarray = array [1.5..10.1] of real;

6.4.3.2-5 Strings are not required to
subrange of integers as an index type.

6.4.5-2 Var parameters which are compatible
not identical are allowed

have

but

PROGRAM .
TYPE
colour (red,pink,orange,yellow,

green, blue) ;
red..yellow;
pink. .blue;

subone
subtwo

VAR
colour1
colour2

PROCEDURE

: subone;
: sub two ;
test(VAR coll:subone);

END (*procedure*)

BEGIN (*main program*)
cOlour2:=pink;
test(colour2)

END.

PROGRAM Mainprogra.;
CONS!
ten=10;

PROCEDURE Localprocedure;
CONST

ten=ten;

6.4.1-3 Attempt to use types in their own
de~inition when the type with the same identifier is
available in an outer scope is not detected by the
compiler.

(* Colour1 and colour 2 are compatible but
not identical. The call to procedure
test should fail in this example. *)

6.4.5-3 Non-identical array types allowed as var
parameters.

.....
<D
00
.....

6.4.5-4 Non-identical record types allowed as var
parameters.

Details of Errors Not Detected

6.4.5-5 Non-identical pointer types allowed as var
parameters.

6.6.2-5 Function declaration with no assignment to
function identifier is permitted.

6.7.2.2-9 Unary operaonr plus is allowed to
than numeric operands.

other

6.2.1-7 Local variables are not undefined at
beginning of statement part.

6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-8 Variant
un-definition is not detected, there is no checking on
the tag field of variant records.

6.4.6-4 Value of expression out of clos€d interval
of destination in assignment statement is an error and
is detected at run time with a PASRUN error 12
(subscripting error) occurring. The program, however,
contiftues to execute.

(e.g.) CaNST
dot .

'.. ,

BEGIN
WRITELN(+dot);

6.8.2.4-2 Jumps between
statement are allowed.

branches of an IF
VAR

Answer: array[1 ..5] of integer;
i : integer;

6.8.2.4-3 Jumps between branches
statement are allowed.

of a CASE

6.8.3.9-2, 6.8.3.9-3, and 6.8.).9-4 Assignment to
a FOR statement control variable within the FOR loop is
not detected by compiler.

6.8.3.9-9 Non-local variable at an intermediate
level can be used as a FOR statement control variable.

i:=5;
answer:=2*i;

6.4.6-6
checked.

Array subscript compatibili ty is not

6.8.3.9-14 Global variable (at the program level)
can be used as a control variable in a FOR statement.

6.4.6-7 Members of a set expression not in the
closed interval specified by base type of assignment
destination are not detected as errors.

6.8.3.9-19 Nested FOR statements using the same
control variable are not detected.

6.4.6-8 Assignment compatibility for sets passed
as parameters is not checked.

.....
<.D
00
.....

6.9.4-9 Attempt to output integers whose field
width parameters are zero or negative are not detected
by compiler.

6.5.4-1, 6.5.4-2 Pointer variable with undefined
value or value NIL when de-referenced is not detected.

6.6.2-6 Undefined function result is not detected.

6.6.5.2-1 Put operation on file when EOF is false
is not detected. This may occur when a file is reset
(opened for read only) and written to.

Error Handling Tests

Number of errors correctly detected: 35
Number of errors not detected: 31

-c
>G>

'"
'"N

6,6.5.2-6, 6.6.5.2-7 Changing current file
position while buffer variable is an actual parameter
to a procedure or an element of a record variable lis~
does not produce an error message.

Iaplementation Defined ~

6.6.5.3-4, 6.6.5.3-5, 6.6.5.3-6 Dispose
is not implemented.

procedure
The implementation

suite demonstrated the
Swedish compiler:

defined tests in the validation
following characteristics of the

6.6.5.3-7 Variables from NEW used
assignment ,statement or actual
undetecteci.

as operand in
parameter pass

A rewrite is permitted on the output file.
Alternate comment delimiters are implemented.
Equivalent symbols for A~ :, and := are not allowed.
Equivalent symbol for [J is implemented (i.e., (. .)
is allowed).
Alternate symbols for <, >. <=, >=, and <> are not
available.
The value of MAXI NT is 32767.
Ordinal numbers of set elements must lie in the range
O. .63 or

' '..' "for characters.
A measure of time and space requirements of a program
which is an implementation of Warshall's algorithm
7ields:

6.6.6.2-4, 6.6.6.2-5 Negative arguments passed to
LN or SQRT are not detected.

6.7.2.2-3 When the second operand of DIV is zero,
ao error is detected.

6.7.2.2-6, 6.7.2.2-7 Result of binary integer
operations not in range O..MAXINT and O..-MAXINT are
not flagged as errors.

6.7.2.2-8 MODzero is not detected as an error.

6.8.3.9-5, 6.8.3.9-6 The use of a
control variable after FOR statement
intervening assignment or, the use of
variable after a loop which is not entered
that is not detected.

FOR statement
without an
a control
is an error

space = 370 bytes (2960 bits)
time 1.066 seconds

(This is in comparison to 0.81646 seconds
and 143 b7tes--6864 bits on a Burroughs
B6700 running the B6700 Pascal compiler
version 2.9.001.)

The characteristics of the floating-point arithmetic
system are determined to be:

24 bit mantissa.
Rounds on arithmetic.
EPS (smallest positive number such that

1.0+EPS <> 1.0)is:
6. 4604644E-08.

The, smallest positive floating point
number is: 2.9387357E-39.

The largest positive floating point
number is: 1.7014119E+38.

The value of expressions are fully evaluated before the
boolean value is determined.
Index is selected before an expression is evaluated.
Expression is evaluated before a pointer is

de-referenced.
The output buffer is flushed at the end of program
execution.

Real numbers are written with two exponent digits.
Default field width values are:

Integer 8 characters
Boolean 6 characters

......

<D
00
......

6.8.3.5-5 CASE statement that doee not contain a
constant of selected value produces no warning.

6.8.3.9-17 Nested FOR statements using same
control variable are not detected as errors.

6.9.2-4, 6.9.2-5 Readingintegers and realsfrom
file of text when the text is not a valid integeror
real number does not produce a diagnostic. For
example, the text string read as a real 'ABC123.456' is
not detected as an error.

.">G>
'"

Real OMSI VALIDATION REPORT15 characters.

A total of 18 implementation defined tests were run.
The OMSI Pascal-1 compiler was tested against the

Pascal Validation Suite by Barry Smith, a member of the
Oregon Software i~plementation/maintenance team in September
1 979

(
6

)
.

Quality ~

Twelve quality tests were executed, producing the
following observations:

There are 10 significant characters in an identifier.
The compiler does not assist in detecting unclosed
comments.
Yore than 50 types are allowed.
More than 50 labels permitted.
More than 100 variable declarations allowed.

Functions SQRT, EXP, SIN, COS, LN are implemented
coqsistently.
Function ARCTAN is not implemented.
Operator DIV does not handle negative values correctly.
Warnings are not generated for impossible cases in a
CASE statement.
FOR statements may be nested at least 15 levels deep.
FOR ~tatement control variable may be accessed upon
exit from loop (value is last value in loop).
Recursive I/O is allowed using the same file.
Large populated CASE statement (containing 255
constants) is allowed.

Conformance Tests

Of the 137 conformance tests attempted, 15 failed. The
major reasons were:

Comment delimeters not required for pairwise matching.

Pointer scope not handled correctly.
Assignment to function identifier within nested module
generates faulty code.
Empty record types and cases are not allowed.
Equal, compatible sets of different base types do not
compare.
Set of char is implemented as a 64 element set.
Procedural parameters do not conform to draft standard
proposal.

End of file on empty temporary file not checked.
Pack and unpack not implemented.
Empty field specifications nDt allowed in record

declarations.
Conversions on reading real numbers not identical to
the conversions performed by the compiler.
Writing boolean values is incorrectly right-justified.Extensions

Deviance Tests

Number of tests run = 1

The only extension test
OTHERWISE clause in a CASE
implemented but has instead been
OTHERS as a case constant.

run demonstrated that the
statement has not been

modified to use the word

Forty-one of the 95 deviance tests attempted in the
compiler test proved to be deviations to the standard. The
basic causes were:

Real number constants without digits
allowed.
Packed array of char identical to array of char
Requirements to be a string-type are not checked.
Empty string allowed.

Incorrect scope allows incorrect programs to compile
and execute.
Invalid programs
inaccessible.

after point

where function identifier is

Function identifier may be assigned outside of its
block.
Packed scalars, subranges an~ type-identifiers are
allowed.
Non-integer subrange index types are allowed for string
types.
The use of a set of real is not detected.
Compatible but not identical var parameters are
allowed.
Non-identical array types and pointer types allowed as
var parameters.
File assignment and records containing file components
compiled as descriptor copy.
Functions without assignment to function identifier
allowed.
GOTO statements that transfer into structured statement
components are allowed.
Contro1 variable in a FOR statement may be from any
level of the program and may be assigned a value within
the statement. The same variable may also be used in
nested loops.
Use of ext~rnal file (other than program parameters)
not stated .
The files input and output are not implicitly declared
at the program level, but at a lexically enclosing
level.
The entire program heading may be omitted.

Error tests

Assignment compatibility with overlapping sets.
Case expression with no matching label.
Use of for statement control variable after loop
termination.
Nested loops using same control variable.

Implementation Defined Tests

Of the forty-eight tests attempted, 11 detected
errors while 35 of the remaining tests compiled and
executed without detecting the areas where the code
deviates from the standard. The basic causes of
undetected errors were:

The execution of the implementation defined tests
showed the following results:

The value of MAXINT is 32767.
The set of char is not implemented (but is equivalent
to the set of characters from underscore character to
the back-arrow character.
Set limits are 0 to 63.
Standa~d functions are not allowed as functional
parameters.

Real representation is as follows:

24 bit mantissa.
Rounds on arithmetic.
EPS = 5.96E08.
Minimum floating point number is:

2.393E-39.
Maximum floating. point number is:

1.70E+38.
Boolean expressions are evaluated fully.
Index to array selected before expression eva+uat8d
(e.g. a[i]:=exp).

Evaluation before dereferencing in the statement
p.:=exp.

Real numbers are written with two exponent digits.
Default field widths are:

Integer 7
Boolean 5
Real 13

A rewrite is permitted on the output file.
Alternate symbols are allowed only for comment
delimiters.

Use of un-defined values.
Variant undefinition.
Assignment compatibility (except index type in arrays).
NIL or undefined pointer de-referencing.
Undefined function result.
File buffer aliasing and use of file.
Some disposing conditions with undefined values or var
parameters.
Dynamic variant
assignment.
Succ or pred of limiting value in type.
Chr of very large integer.
Overflow of integer type.

record .used expressionin or

-0
>-
'"
'"VI
Vl

"CLASS SWEDISH COMPILER OMSI COMPILER
):>
en
r>):>
r-

CONFORMANCE 87~ 89~ :z
".,

DEVIANCE 68~ 56~
:E
en

ERRORHANDLING 76~ 76'f, '!toN
......

Quali ty tests COMPARISON OF VALIDATION TEST RESULTS- -
Twenty-seven quality tests were attempted, with three

tests failing for the following reasons:

Could not handle program with 50 labels (infinite
loop).
The use of a real expression in the SIN/COS test
generated error for lack of register.
Fatal error when compiling 11 nested for loops.

The quality measurements resulting from the other 21
tests demonstrate the following:

Identifiers of any length are allowed, disallowing all
mis-spellings.
Unclosed comments take the remainder as comment with no
warnings.
More than 50 types are allowed.
Array[integer] is detected but diagnostic message
produced is not a applicable warning.
Record fields are allocated representation space in
declaration order.
.More than 100 variable declarations are allowed.
Less than 10 nested procedures are allowed.
Mod is inconsistent for negative operands.
No warnings generated for impossible CASE clauses.
More than 256 case constants are allowed.
Undefined (out-of-range) values of case expressions are
possible but do not cause damage.
No more than 3 nested WITH statements permitted.
Textfile without EOLN at end is still printed.
Recursive I/O allowed on same file.

A comparison of the results of applying the Pascal
Validation Suite to both the Swedish compiler and the
OMSI Compiler produced the results shown in table 1.

Table 1

Percent of Test Results
Consistant with Draft Standard

The results show that both compilers conform
relatively well to the standard definition in accepting
"correct" programs. They are also comparable in error
detection.

The OMSI compiler appears to deviate in more cases
than the Swedish compiler in that it accepts more
syntax constructs that are not allowable according to

the definitions.

......
cD
:JO
......

The following is a list of the areas where the two
compilers differed in the conformance and deviance
tests of the Pascal Validation Suite. The details for
each instance are available in the validation reports
for theae compilers. It is important to note that
these factors need consideration when trying to ensure
that programs written for one compiler may be
transported to the other.

The Swedish compiler allows redefinition of NIL.
The OMSI compiler allows a decimal point not
followed by a digit.

"»G')m
VI
CT>

Comments are not allowed as token separators in
the Swedish compiler.
The Swedish compiler permits lower case "e" to be
used in real numbers.
The OMSI compiler comment delimiters do not have
to be a pairwise match.
The OMSI compiler allows invalid programs with
inaccessible function identifiers and functions
that attempt assignments outside their blocks.
Assignment to a function identifier from within a
nested procedure or function generates bad code.
The OMSI compiler allows signed characters,
strings, scalars, and enumerated types.
The Swedish compiler permits a constant to be used

in its own declaration.
Real constants are allowed in subrange
declarations by the Swedish compiler.

The OMSI compiler allows packed scalars, subranges
(i. e., not restricted to structures), and packed
type identifiers.

The Swedish compiler allows real bounds as an
index type.
The Swedish compiler allows the use of undefined
variants in a record.
The OMSI compiler does not detect the use of a set
of reals as erroneous.
A file of pointer to integer is not allowed by the
Swedish compiler.
The Swedish compiler allows non-identical record
types as var parameters.

Compatability of file types and records containing
file components is allowed by the OMSI compiler.
Equal compatible sets of different base types do
not compare as equal in the OMSI compiler.
Unpack is not supported by the Swedish compiler.

The Swedish compiler does not support- the ARCTAN
function.
Non-local GOTO statements are not allowed by the
Swedish compiler.
In the Swedish compiler, the assignment does not
follow the expression evaluation in a FOR
statement.
The control variable in a FOR statement is allowed
as a formal parameter by the OMSI compiler.
Reading a character variable is not equivalent to
correctly positioning the buffer variable in the
Swedish compiler.
The Swedish compiler does not allow redefining the

default file at a local level.
Real numbers are not correctly written to text

~iles by the Swedish compiler because the ~ormat
defaults to scienti~ic notation when the real
number does not fit the format specified.
Negative field widths give undesired output and
issue no warning in the Swedish compiler. The
OMSI compiler uses the absolute value of the width
and gives an octal interpretation of the number.
The OMSI compiler ignores program parameters,
allowing the use of an external file not declared.
The entire program heading may be omitted and not
detected by the OMSI compiler.

The Swedish compiler and the OMSI compiler
generated similar results in the validation suite tests
for standard implementation defined features and
quality. The following is a list of areas where the
two compilers differed. The reader is again referenced
to the validation suite reports for the details of the
test results for each compiler.

The Swedish compiler allows (. .) as a substitute
for [].
The OMSI compiler default output field width for
integers is 7 characters, whereas the Swedish
compiler default is 8.
The OMSI compiler default output field width for
boolean values is 5 characters, whereas the
Swedish compiler default is 6.
The OMSI compiler default output field width for
reals is 13 characters, whereas the Swedish
compiler- default is 15.
Identifiers are significant to 10 characters in
the SwediSh compiler. The OMSI compiler- has no
11mit.
The OMSI compiler MOD function is inconsistently
implemented for negative numbers.
The Swedish compiler DIV function is
inconsistently implemented for negative numbers.

ADDITIONAL NOTES

In further examination of the results of the tests
of the validation suite for the OMSI and Swedish
Compilers, it is important to note that there are areas

in which both compilers disagree with the proposals of
the draft standard. These items should also be
considered when writing programs for either compiler in
order to attain code that is reasonably compiler
independent. The following is a list of features found

-0
»
G>IT1

in both compilers that do not agree with the draft
standard.

Empty strings are allowed.
Packed is ignored. A packed array of char is
identical to an array of char and similarly with
other structures.
String type requirements are not checked.
I/O files can be redefined (i.e., not implicitly
declared at the program level.
Pointer scope is not handled correctly.
A function identifier may be assigned a value
outside of its block.
The unary operat.or "+" is allowed with a constant
identifier.
String types are allowed to have non-integer
subrange index types.
Empty record types with semicolons and empty case
variants are not permitted.
Var parameters that are compatible but not
identical are allowed.

Non-identical array types and non-identical
pointer types are allowed as var parameters.
A function definition with no assignment to the
function identifier is allowed.
Only the procedure parameters as defined by Jensen

and Wirth are allowed.

End-of-file is not checked on an empty temporary
file.
GOTO statements are allowed to transfer into
structured statement components.
Assi!nment to a FOR control variable is allowed
within the FOR statement.
The FOR statement control variable is allowed to
be program global.
Nested loops using the same control variable
pro4uces an infinite loop.
The Swedish compiler allows an otherwise clause in
a case statement, uSing the word OTHERS as a case
constant (the standard proposes OTHERWISE). The
OMSI compiler, however, allows an ELSE clause
similar to the ELSE clause of an IF statement,
rather than a case label.

CONCLUSION

This paper has no conclusion. The s.tatistical
differences comparing both compilers to the draft
standard are not absolute measures of the "correctness"
of a compiler and should not be viewed as such. The
intent of this discussion has been to present the
differences between the Swedish Pascal Compiler and the
OMSI Pascal-1 Compiler from a user perspective,
considering what syntax construct are particular to a
certain compiler and should not be used in programs
that are intended to be transportable. It would be
difficult to say that one compiler is better than the
other based solely on the information presented in this
paper.

r-,

-0
>enm

REFERENCES TEXT VERSION: 2.50-01 INSTALLED AUG 1980
ON: MEAP 11/70 SYSTEM

FOR HELP CALL:
STEPHEN P. PACHECO (4730) OR ROY E. TOZIER (4754)

START OF RUN: 16:03:38 26-0CT-80
END OF RUN 16:04:13 ELAPSED WALL TIME: 30.93 SECONDS.

(1) Addyman, A.M., "Pascal Standardisation", Pascal
News, No. 18, 1980.

(2) Addyman A.M.,
"A Draft Proposal for Pascal",

Pascal News, No. 18, 1980.

(3) Winchmann, B.A., and Sale, A.H.J.,
"A Pascal

Processor Validation Sui ten, (document accompanying
Pascal Validation Suite).

(4) Sale, A.H.J., "The Pascal Validation Suite -
Aims and Methods", Pascal News, No. 16, 1980.

COMMAND LINE SUPPLIED TO TEXT:
**TXT @PAPER/-SP

(5) Jensen, Kathleen
User Manual and Report,
1974.- -

and Wirth, Niklaus, Pascal
Springer-Verlag, New ~

RUN STATISTICS

**********922 RECORDS READ 895 RECORDS WRITTEN 23 PAGES GENERATED

102 RECORDS USED IN TEMP FILE.
ONE OR MORE "SAVED STATE" RECORDS REMAIN STACKED.

MULTIPLE INPUT FILES USED:
abstract. txt
intro.txt
standard.txt
validate.txt
swedrpt.txt
omsirpt.txt
compare.txt
conclude.txt
ref. txt

(6) "Three Sample Validation Reports", ~ News,
No. 16, 1980.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance of
E. Wade Scannell of Shearwater, Inc., in analyzing the
results of the validation suite applied to the Swedish
Pascal compile~.

......

**~

Open Forum For Members
JJ'l]J DIJWnrJ IlfJlrJ IW Ii SHAI MICRO COMPUTERS LTD.

521111 .~ ; o'~'Un' ,'] "N'tIl'I)I:n JERUSALEM, ISRAEl,GIVAT SHAUlS', TEl. 521111. P.O.B 3406
3405 .'.n

CABl£S, RIMCO. TEl£X, 25387

Rick,

P.O. 80s .-1 1IS-f162
St. Paul. lIi._ 66184

With all this talk about Ada replacing Paacal as the avant-garde language of the eighties, I

thought I would contribute these definitions from The Name for Your Baby, by Jane Wells and

Cheryl Adkins [Westover Publishing Company, Richmond, Virginia. 1972]:

Pascal Users Group
DEC
5775 Peachtree
Dunwoody Road
Atlanta, GA 30342

ADA: (Aida, Eng.) "Prosperous, happy"; Old English

PASCAL: Born of suffering; Hebrew

Sirs:

Our firm has developed a Pascal based program generator called "MINIAC"
which makes possible an 80-90% reduction in the time required to write
typical business data processing programs.

But then again, what's in a name?

I enclose a brochure describing MINIAC, which we have implemented in the
UCSD p-System, a microcomputer environment. We are planning a CP/M imple-
mentation soon, and we forsee no special problems in implementing MINIAC
in any environment which provides a sufficiently powerful Pascal.

Scott H. Costello

We have been using MINIAC for nine months to develop software for our
clients in Israel, and we feel that our initial expectations were fully
justified.

MATHEMATI8CHE8 IN8TITUT

DEa LUDWIG-MA.XJMILIA.N.-UlfIVERSITl..T

M-oNCHEN

Prof. Dr. GUnther Kraus

D 1;1M-oNCHEN II. DE,"
TR..B8IEN.TII 88

TEL. I DuaCHWAHL .8."1

(VER..ITTLUNG _8841)

We are planning to marketMINIAC in the United States, and it is for this
reason that we are contactingyou. Perhaps MINIAC would be of interest to
some of your members.

If so, we would be pleased to answer any questions they may have.

Thanking you in advance for your consideration, I remain

I am going to develop PASCAL - programs for use in pure mathematics

(Complex Analytic Geometry, Algebraic Geometry, Algebraic Topology).
Who is interested to join ideas and experiences?

I am interested in commercial applications, too.

GUnther Kraus, Mathematisches Institut der Universitat Mtinchen,
TheresienstraEe 39, D-8000 MUnchen 2 (West Germany)

ar/hs
enc

303-777-3638

Comment on A.H.J. Sale's Proposal to Extend Pascal
southwest decision systems. inc.

30 west bayaud. suite 201
denver. colorado 80223 by Tom Pittman

P.O. Box 6539
San Jose: CA 95150

(text of notice for Pascal News)

ref: SIGPLAN 16:4 p98-103

Southwest Decision Systems, Inc. is a small software
It seems to me that while the while-statement and the repeat-statement are
"similar" when considered throuqh the flow chart paradigm; they actually have
significant differences. resulting (for example) in the fact that dominator
analysis requires only one pass if the only loop structure is repeat. but as
many passes as the deepest nesting of loops if while-loops are used.

The point is that the repeat-statement pertor~ls a valuable service in clearly
representing a loop structure that is to be perforlOed one or more times and
terminated on a condition generated by the execution of the body of the loop.
It is significant that ~Ir. Sale proposes to filter existing proqrams by
replacing the simple repeat-statement with either a duplication of the body
(offeri ng opportunit i es to have differi nq vers ions of the code intended to be
the same) or the introduction of that dreaded goto. The repeat-statement
cannot be correctly simplified.

Now'. I will grant that the repeat-statement may be eas i ly misunderstood. The
goto-statel~ent wh1ch 1S offered to replace lt 1S surely no less IOlsunderstood!
I~erely the tact that neither Mr. Sale's students nor tne poor anonyrlous
programmer whose code he set up for us to ridicule are able to grasp the
proper distinction between repeat and while. is a poor ex~use indeed for the
remova I of that funct i on from the I anqua'le. The prob I enl 1n understand1 nq that
gives rise both to the ill-conceived scanner and the terminal I/O excerpt is
one of not fully thinking throuqh the proqram flow. and such a fault will
result in incorrect code whether or not the repeat-statement is available to
be the butt of misdirected ridicule. -

house in Denver, Colorado, specializing in the writing

and installation of Pascal-based software on microcomputers.

We would welcome leads from university faculty, in the

u.S. or elaewhere, concerning exceptional students near

the M.S. (or equivalent) who might be suitable for

positions with S.D.S. starting late 1982. Demonstrated

ability to conceive and complete a substantial Pascal

programming project to a very high standard will be the

principal requisite. Replies (from faculty only,

please) to David P. Babcock, Southwest Decision Systems, Inc.,

30 I'lest Bayaud Avenue, Suite 201, Denver, Colorado 80223.

u COMPUTACIONES INFOTEC S.R.l.
APARTADO 61125, CARACAS 1060A,VENEZUELA

Pascal Users' Group, c/o Rick Shaw
Digital Equipment Corporation

5775 Peachtree Dunwoody Road
Atlanta, GA,]0]42

AV. FRANCISCO DE MIRANDA, GALERIAS MIRANDA, 3"
PISO, CHACAO

TELF.: (02) 333590 TLX: 23327 CENINVl
Dear Mr. Shaw,

For users of interactive systems a very simple
modification of the program, Referencer, by Arthur Sale
adds a very useful feature. This feature causes all
declaration parts to be printed out and thus provides a
very handy reference document when developing large
programs.

The modification inserts the following.
j. i c.. ,I

""'
",

SCJl .s~r's :~rOUi),

'. .".
',_ ,~__;5 ::~L;,

tl~litJ, G~crJi~
_
_'~~

After line
After line
Line 609
Line 610

0785
0897

printflag,~false;

printflafl~false;

remove
remove

Sincerely yours~ {.

1: recev(;(. ti<; /.LL-PL::?C<;r:: C-:'U?Oi' 2nCi I cd:: Vf.:ry inter~'steQ in jO;;jinU t:,E:

. roup. i ai, Ci :.oft:L:r';:, Ew:iilr:'2c:r and our COi.1p,my I:JF)TEC is represer.ting i,dcro-
cc.~.:(jUI';?r <2c.:ui ,~'nt; i1 Vcn2zlkla like I\L TOS, TVI, :\;,',\D~;<, i;;IC,\OP~O, etc. ;,ll
our :':oftt!:_~rl2 s J2vcloped in Pt.0C;.L (I.:C£D, P!\SC!,L/:'" p!\SCr,L/;:T+l. (1L:r CO!;i~JU-
t.;~r:::. our Z-.: ": .);::,52(.,.

£. Z'; ..l.-.,

Edgar S. ~ilchrist

21B Via Ithaca
Newport Beach, CA, 9266]

Ifill sU:-)Lit in the futurE so~,:e ideas or articles concerning our expe-
ri2nc(: in ?i\SC.:,L. "c hi..:VE"d2Velope(: t:. General Purpose ~'ata Ct:.SE- ;:2.nt:.SE';-,i€nt
Systc: ~'~Ilc-rator. It is :-:i2r.Jrch~cal ;}nd it is only neC€SDry to c~enerat'2
t;-,~ :~C~~(:L;;:,c,IH.' oll t:","2 r'2S'~ of t:12 systei., '.Jill ~Jork. It includes c, r':ot<:: "':(]S"2
::::l,it0r oj-or dr.:t<:: '.:ntry, V;,?\j1n;; &nd editinG, General purpose- query systc;~." Lisee;
tJ 1.i(Oi...:LtCC'suj-se.ts of tl1E t.lholE dat;; ::'a52, ta~les of inforr~,ation, rEports,
,~:tc. Th;:; ta:~les can ci: c£:ni;:;ulat0i...i i;'ith cur Table Systen for i.ler'J;nl;, sortin,;,

]oinin'J, ~-nG stc:.tistical .:inclisis can 02 cz.rried out b'ith OLr Stat Pc:Jckage.
For t',;:' SCh'2:.i;?; :.:cnE:'r2tion thert:- ~re sE.'vt:;ral j:rogrc",i.iS: Schc;;",C\ cJitor, l1st, Cr,j

".i~
,}ri ntcr for;-;!at Edi tcr, etc.

Note. My system is AppleII+ and UCSD Pascal.

TRS-80 UCSD PASCAL bw FMG

Tic syster:; ~u";s fi rst
Pi,SC:,L/~n+ rL:nnins on CP/:

'iriven S~/stf:';:~..

dcvelcpeG in UCSD PASC~L 0ut has been transfErcd to
'/2.xx, ";P/r"; V1.xx, ect. It is nOl; (J cor::plete r.,enu

i\~: to t;~c:: ,c:~'::)ersh;p you ~Jill find cnclose0
y~z,r su~scription. PLe~se hurry Ge the _issues.

chc:ck for US~; 25.00 for

I would be interested in corresponding with anYone who is
currentlw usinS the UCSD PASCAL package modified for he
"fRS-SO bw FMG Corporation. I have been using the s~steffi ()r

persor1al projects for over a wear and am verw satisfied w th
its capabilities, except for one problem which I hope some-
one else has encountered and solved!!! Programs whictl util-
ize random access files (using GET and PUT) appear to ran-
domlw destrow blocks on the diskette in the write mode
(using PUT). It seems that a bug in the code permits (ran-
dom) overwrite of some of the diskette sector control infor-
mation, so that the sector is nc lon~er able to be found.
If anwone else has experienced this problem, please get if1
touch (especiallw) if wou have fixed it. If a P-code disas-
sen,bler is available for this UCSD F'ASCAI_. I wO'.lld be ver,.'
interested in setting a hold of it.

S.E.L.

Richard J. Bonneau

6 Tanglewood Drive

Shrewsburw. MA 01545

(6171 845,-1432

'P' Members approve 4 Italy, Netherlands, Switzerland, United
Kingdom

'P' Members approve Australia, Austria, Canada, Finland, France,
with commen t Germany, United States

'p' Members disapprove 1 Japan J>
-0

'p'
:;0

Members not Voting 6 China, Hungary, Norway, 'Romania, Spain, Sweden r
'0' Members approve 1 Poland

..D

'0' Members approve
""
.....

with commen t 1 Czechoslovakia

Germany Attachment F

Japan AttachmentG

~AttachmentH 2 parts

Pa.ca'Standard: Prolr... R.port mg ameriCin nationalltandards institute, inc.
1430 broadway, new york, n.y. 10018
(212} 354.3300

ISO/TC 97/SC 5 N 60619S1 Hay os

by Jim Miner (1981-07-31)

The second ISO Oraft Proposal for Pascal (as printed in Pascal News#20)
has received strong support in the official vote this spring. The number of
countries disapproving has dropped from four to one.

ISO
INTERNATIONALORGANIZATION FOR STANDARDIZATION
ORGANISATIONINTERNATIONALEDE NORMALISATION

Second DP 7185

Approving
with comments

Australia
Austria
Canada
Czechoslovakia *Finland
France
Germany
United States

* country is an '0' member -- vote is advisory.

Disapproving

Japan

ISO/TC 97/SC 5

PROGRAMMING LANGUAGES

Secretariat: USA (ANSI)
Approving

Italy
Netherlands
Poland

*Switzerland
United Kingdom

Summary of Voting on 97/5 N 595

Second DP 7lS5 - Specification for the
Computer Programming Language - Pascal

The Secretariat issued this document for voting by 31 March 19S1. To date
the followingvotes have been received:

Some degree of compromise has been reached in the "conformant array parameter"
issue (see Pascal News#19, page 74). Because of the convergence of support
evidenced by this vote, it is likely that SC5 (the ISO Programming Languages
committee) will approve the DP with a few changes at its October meeting in
London. Once it has done so, the draft will be a Draft International Standard
(DIS) to be voted on by a broader constituency. In short, nearly all of the
technical work has been done on the standard, freeing it to progress through
the remaining steps toward official adoption. The changes made to the DP will
result from the comments submitted by the member bodies with their votes.
Tony Addymanand Working Group 4 are presently developing those changes.

The official comments on the DP are quite voluminous, but we have ~ecided to
print them here. One reason is that you can get some idea of the amount of
effort that goes into each new draft. Rememberthat these comments are just
the output of national committees, and that these committees worked hard to
formulate the commentsand to reject others. The work done by TonyAddymanat
each stage has been tremendous.

Another reason for printing the comments is so you can appreciate the
difficulty of some of the technical issues, and the tensions created by
conflicting goals of eliminating technical flaws, establishing the standard as
quickly as possible, and making the standard as readable as possible. For
example, the German comments regarding "denote" raise an issue that pervades
the entire document, but its resolution would require many more months and
might result in a less readable document.

Finally, note that not everyone is happy with conformant arrays. Both the
United States and Japan stress their dislike of including an extension to
Niklaus Wirth's Pascal in the first standard. The United States committee is
now preparing to put out a draft proposed American National Standard for
public comment which will not have any kind of conformant array parameters.
Many countries also have criticised certain details of the feature as 'defined
by the second DP; most objected to the use of parentheses in the actual
(calling) parameter to specify it as a value (as opposed to "val''') parameter.
Some changes will therefore be made in the final version.

Comments received

Australia - AttachmentA

~ Page 35, parasraph (e) (1) first line: Specificationinstead of
specifi~cation

~ - Attachment B

Czechoslovakia - Attachment C

~ - Attachment D

France - Attachment E

DOCUMENT ISO/TC 97/SC 5 B595
* No underlining or italicising is used in the document, not even where such

treatment would aid clarity by giving cues. Thus no headings are
underlined or bold-faced, making it difficult to find places in the
document. Also, notes should be in a distinctive type-face if possible.
Particularly bad examples can be found in section 6.9, where the sense
of the words input and output are only determinable with difficulty:

DP7l85: ...applied to the required textfile output.
better: ...applied to the required textfile denoted by the required

identifier output
or: ...applied to the required textfile output.

ATTACHMENT A

ISO/DP 7185 - Specificationfor the
Computer ProgrammingLa~a~ PASCAL

Co888nt of Australian Member Body

In recordinga Tote of approval on the aboTe ISO/DP, the
Australian Member Body submits the folloving com8ent.

RECOMMENDATION
While sympathising with the problems associated with the prE~aration of this
document, it is recommended that before the DP is sent out for a further vote
or for voting as a DIS, it should either be typeset or it should be typed with an
acceptable word-processing system providing for good-quality typefonts.

The Australia vote in favour of the adoption of DP7185.1 expresses the view
that the conceptual structure and definition of the DP are correct and
a?propriate for an International Standard, and takes into account the delays

that have already arisen in the preparationand approval of a Pascal Standard. INTRODUCTION
g

ZERO-~UMBERING

However, examination of the DP has revealed a number of points which are not
adequately defined by the text, though the intent is well-understood by those

who haVE worked on this Standard. The followingcomments therefore represent
our considered vie~'of the editorial changes that must b.e made to the Draft
!l~OPOSal so t~at it does say what is meant. We believe that the changeswill
be non-controvers:al, and should be incorporated before the DP is sent for
voting as a DIS. Generally the changes correct grammatical and punctuation
errors, poor Lnglish expression, or omissions.

PROBLEM
It is barbarous to start the numbering of sections in this document from
zero, and offends against normal practice.

In addition, the Introduction is nothing of the sort, but rather part of the
prescription of section I (Scope of this Standard).

RECOMMENDATION
Delete the "0. INTRODUCTION" heading.

Comment rece:ved on such documents is usually negati ve, since critical appraisal
is sought. It should, however, be placed on record that commentsreceived
by the Australian Committee have praised two features of the definition which have

raised controversy in the past:
~':the conforrnant-array-parameter, and

*
the restriction of a for-statement controlled-variable to local
simple variables.

In addition the improved formalism of the Draft Proposal was favourably received,
and the vie~ has been expressed that an even greater use of formal definitions
would have been welcome.

Move the text contained in the now deleted Introductionto the end of paragraph
1.1, pa~e 2.

ERRORS

TYPOGRAPHICAL COMMENT

PROBLEM
The definitionof eppop in section 3.1, page 3, is correct, but suffers from two
defects. Firstly, the detection of errors is hardly to be regarded as "optional"

~n accepted.Englis? usage; rather the detection of errors ~ be elided by
1mplementat10ns wh1ch do not profess to offer the highest quality of implementation.
Unless the meaning is expressed correctly, implementors will take the words in the
most relaxing sense.PROBLEM

Australia draws attention to the poor presentation of DP7l85, and in particular
to the following features or the document: The second flaw ~s more serious: the philosophy of errors is nowhere stated.

This is certain to cause confusion in future revisions of the Standard, and has
been illustrated with the rapid switching of positions on goto-statements in
recent drafts. Clearly this is not part of the Standard, but could be in a NOTE.

*
The typefont (which is guessed to be that of a Decwriter) is very difficult
to reaq in large quantities; its treatment of characters with descenders
(for example p, q) is unacceptable in a professional document.

-0
»

'"!T1

RECOMMENDATION
1. Alter the definition of error to:

REQUIRED, PREDEFINED & PREDECLARED

3.1 error. A vioZation by a program of a requirement of this standard
which a processOl' is permitted to leave undetected. PROBLEM

~e a collection of problems with the terms required, predefined, and
predeclared in the DP. 'Theseare detailed below.

*
'ThetenDS predefined and predeclared are not defined in the DP, and
are not cOllDllOnEnglish words. 'Theirmeaning in the context of the
DP is thus uncertain, and only determined by Pascal tradition.

2. Between 3.1 and 3.2 add the following NOTEs:

NOTE. If it is possible to construct a program in which the vioZation
or non-vioZation of a requirement of this Standard requires knowledge
of the data read by the program. ol' of the implementation definition
of implementation-defined ol' implementation-dependent features. then
vioZation of that requirement is cZassed as an error. Pz-ocessorsrrr:zy
detect and report on some vioZations of the requirement without such
knowledge. but there alwys remain some cases which require execution
or simulated execution. ol' proof procedures with the required knowledge.
Requirements which rrr:zy be verified without such knowledgeare not
cZassified as errors.

NOTE. Processors should attempt the detectidn of as rrr:znyerrors as possible.
and to as complete a degree as possible. Permission to ClTlit detection is
provided for implementations in which the detection would be an excessive
burden. or which are not of the highest quality.

*
'Theterm required is defined by 6.2.2.10 and nowhere else. A definitionof
the meaning of the term is necessary, especially as it does not mean
predefined nor predeclared.

*
In clause 4 an assUDption relating to the denotations of required

identifiers in program fragments in the DP is stated, but in terms

of "predefinedor predeclared". Not only are these not defined, but
Pascal tradition would then exclude input or output from the set.

RECOMMENDATIONS

DEFINITION OF PROCESSOR

1. Replacethe followingsentencein section4, page 3, lines18-21:
Any identifier that is defined in clause 6 as the identifier of a
predeclared or predefined entity shaU denote that entity by its
OOOU1'1'ence in such a program fragment.

by:
Any identifier that is defined in clause 6 as a required identifier
shaH denote the cOl'1'eBpcmding required entity by its occurrence in
such a program fragment.

PROBLEM
~inition of processor is incorrect. A processor can only be regarded
as a complete system for processing Pascal programs, and parts of a complete
system cannot be regarded as a "processor".

2. Add at the end of the first paragraph of 6.1. 3, page 6:

Identifiers that are specified to be requiredshaH have special
significance in Pascal (see 6.2.2.10 and 6.10).

A partial processor (eg a compiler, as suggested by the DP) is free of all sorts
of semantic constraints;even with a run-1ime system it can still shed responsibility
to a host operating system, or even to hardware design.

3. Add the following sentence after the last paragraph of section 6.3, page 11:
The required constant-identifiers are specified in 6.4.2.2 and 6.7.2.2.

4. Feplace the sentence followingin section6.4.1, page 12;
!!'he required types shaU be denoted by predefined type-identifiers
(see 6.4.2.2 and 6.4.3.5).

If validationof Pascal processors is to be possible, this definitionmust say
what has been assumed all along: a Pascal processor is an entity that accepts
Pascal programs, ~ "executes'! them. by:

!!'he required type-identifiers and CC!'1'eBpcmdingrequired types are
specified in 6.4.2.2 and 6.4.3.5.RECOMMENDATION

Replace definition 3.4, page 3, by:
5. Replace the only paragraph of 6.6.4.1, page 38, by:

!!'herequired prooedure-identifiers and function-identifiers and
the correBponding required procedures and functions shaH be a8
speci fied in 6.6.5 and 6.6. 6 l'8spectivelll.

3.4processor.A system or mechanism which accepts a program as input.
prepares it for execution, and executes the process so defined .nth
data to produce results.

NOTE. A processor may consist of an interpreter. a compiLer and
run-time system. or other mechanism. together .nth an associated
host computing machine and operating system, or other mechanism for
achieving the same effect. A compiler in itself. for example. does
not constitute a processor.

6. Add at the end of section 6.2.2.10; page 10:
See 6.1.3. 6.4.1 and 6.6.4.1.

NOTE:The rsquired identifiers input and output are not included.
since these denote mriables.

-c
»G>
'".l::"U1

1. Replace the f fr.t senteneeof thli second paravaph of section 6.10, paae 65:
fhB oatntnlt/'ld. cf t1ut idtmtiliw input fJ1' t1ut identili8l' output CUIa
pt'Ogl'C1IiIpaNtIfIW .halt ai>MUtute its ekfimng-point ffJ1' the l'6{Jion
that ill the pI'CgN1/f-btoc7<all a 1Ja1"labZe-identifier of the NqUired
type dtmoted bIf tezt.

rhe otMUr'l'enae 01 the required idtmtifier input fJ1' the required
idtmtifi8l' output as a '{J1'OgN1IIparamet.r shatz aongtitut. its
ekfining-point ffJ1' the roegion that i. the progmm-bZoa7<CUIa
IJal'iabte-UkntiliBr of the required type eknoted by the required
type-ldBntifi.l' text.

by

9. The exampleat the end ot 6.6.2 .iolates the requirements of section 4 by
using the required identifier ~ with a denotation that is not the required
pZ>ocedure. Thoua:h the USliae is obvious, it is inconsistent! and the example
shOUld be rewritten with the identifier new replaced by 'st~te.

LANGUAGE LEVELS

PROBLEM
'i'iie"i>Pdefines two "levels" of the language, which it numbers 0 and 1. There are
two objections to this scheme:

. Numbering an enumereted set of objects 0 and I is a barbarism ~
ED2lish lan2Ualre, however mathematically attract! ve it might be. Levels
1 and 2 wouloi be far preferable.

*
The le.el chosen to be le.el 0 is in fact close to what is popularly known
as Standard Pascal, whereas level 1 contains an extension which is at
present not common. It would therefore be preferable to refer to the
"levels" by _es whieh itldicate their usage.

The Australian recommendation is to adopt the latter eourse, using the names
Standard Pascal and Extended Pascal to distinguish the levels. Not only does
this make the distinction clear, it has the following advantages:

· Vendors of Paseal products can more readily identify their conformance
as being to "Standard Pascal as defined in IS07185" etc.

* Future revisions of the Standard can retain Standard Pascal as a subset,
by confining extensions to Extended Pascal.

* Implementors who choose not to implement the extension for conformant
arrays will not be saddled with an implied deficiency ("only level 0").

RECOMMENDATION

Replace the phrases at ZeveZ 0 and at ZeveZ 1 in section 5.1, page 4, and in

section 5.2, page 5 by as Standard PasaaZ and as E:t:tended PascaZ respectively.

Replace the NOTE in section 5, page 4 by:

NOTE. rhere are tI.Io leveZs of compZianae. Icnor.m as Standard Pascal and
Extended Pascal. Standard Pascal does not inaZude aonformant array
parameters. Extended Pascal does inaZudB aonformant array parameters.

Iteplaee the several occurrences of
(do] not appZyto 1.erJeZ 0

in sections 6.6.3.6, page 35; 6.6.3.1, page 35; and 6.6.3.8, page 37 (and any other
occurrences) by:

[do] not appZy to Standard Pascal

Wherever any further occurrences of levels 0 or 1 appear, replace them by appropriate
text; a full cross-referencewas DOt available to us to check that all have been
detected.

DETECTION O~ VIOLATIONS

PROBLEM
Section 5.l(e) requires the detection of violations that are not errors. However,
it does not require that the detection by the processor be reported to the user
of the processor.

Secondly, it is unreasonable for the Standard to insist on processors reporting
all violations. Parasitic effects of one error may mask some violations and often
do; other processors often have error-limits. Interpreters,of course, adopt a
different approach to error-detection. The thinking in this section is confused:
the appropriate requirement is that the processor be able to classify programs
into two.classes:

1. The class of compliant programs, and
2. The class of non-compliant programs.

However, if the processor has not completely examined a program
in processors with an error limit, processors which abort under
conditions, or direct execution or interpretermachines, then a
is permissible:

3. The-class of programs in which no non-compliantfeature has yet been
detected, but which has not yet been completely examined.

text, as ,occurs
some table overflow
third response

Processors should report accordingly, and this should be the Standard's stance.
More information about the source of non-compliance in such programs cannot be
legislated for as it is heavily dependent on technique.

RECOMMENDATION
~~~lace section 5.l(e), page 4, by:

(e) determine whether Or not a program violates any requirement of this
standard that is not designated an elTor and report the result of this
determination to the user of the processor. In the case where the
processor does not examine the whoZe of the program, the user shan be
notified that the determination 'is inacmplete whenever no violations have
been detected in the program text examined.

Add a NOTE at the end of Section 5.1, page 5:

NOTE. Normally a processor whiah consists of a ccmpiler and ancillary
components wiZZ be abZe to classify programs into the ccmpliant or
non-ccmpZiant categorie~ in accordance with cZause 5.1(e) after examining
the program text. However, in cases where the ccmpilation is aborted
due to some limitation of tabZes, etc, an incomplete determination
of the kind "No violations were ektected, but the examination is
inacmplete" wiZZ satisfy the requirements of clause 5.J(e). In a similar
manner an interpretive or direct exe~tion processor may report an
inacmplete determination for a program of which an aspects have not
been examined.

-0»
'"m



PROBt.tI!
The require\ftent "torted in section !'i.lff) does not r!!Outre that all the S1:<!:tements
relating to e~t>I'-reporting be easy to find, a~indeed they may be obscurely hidden
in a.n obseure par1: of the documenta.tion and widely sca1:tered. '!'his is undesirable.

RECOMPI'EN'DA1'10111'
Add the t'61~~owing to 1:he end of 5.1(0, pages" & 5:

If <'DIY"ioktti0ft6 that gt! d86'i(fMted as _!'s l12'e treated in the man>le1>
&66<Tri1>edin 5.1(/)(1), then a Mte 1>efe1>enoi~ each swh treatment shaH

~' i... a ~ IU~ of t1ts ~ng docuntent.

PROBLEM

Though the DI' addresses the pt'obledls 6f specHying' ex1:ensi6ns in seedotll 5.Hg),
nowhere is it sta'1:ed what ac1:i6n' proees~rs nlust ta'ke with respect t6 res1:ric1:ions.
11: is possible to a'rgue tha.t nO 'res1:r'ictions are possible, a.nd' processors must comply
",Hh all requirements of the' Standar>d if they "'e

1:0 claim' cOnlplfance ..i 1:h i1:, but
Australia considers that'thiS is u",rea1i...tic. h'oeessors will contain res1:ric1:ions,
even if Only a few.

In additi6n" ignOl'ing the problem. effecdvely prohibi1:S any new reserved words, since
these restrict the se1: of pet'missible identifiers, 1:hus encouraging overloading
6f ex.isting CipeI'a'to~S~, wbt'ds 1 and: otherex-tension mechanisms.

AuBtrslia a1'gues thirl the DI>should contain a statemen1: eontrolling the use of
compliaDce statements, which specifies action with respec::1:to res1:ric1:ions.

RECOMMENDATION

Add at the end of secdort 5,i. page 5', bU1: ~ dependent on en, 1:he following:

A prodesso!' that PW'pC>!'ts to "emply" wholly 07' partially, ..nth the
1>equi1>enre1I:tsof this Standm>d shaH db so only in the' foUo..nng terms.
A cQ!\\liJ,iance statement My be produced by the p1>ocesso1>as a "oneequence
of us-.ng t/iB p'POOesso'l', 01' may be included in a"dOrtrpanying documentation.
If the p1'O'!YesSO'l'~tie8' in aH !'espe"tS' ..nth the 1'equirements of this
S~d the t!OmpUance statemetlt shall be:

<Thisprocesso1'> compHes wi1:h 1:herequiremen1:s of <S1:andard Pascal>
as stated in 1S011BS, 19S~.

if the p1>iX>6SS0r"OrtrpUes .nth some but not all of the !'equirements of
this Standal'd then it shall Mt use the abotYe statement. but shaH instead
uSe the foZZOrJing cemplianae statement:

<This proeessor> complies wi1:h 1:herequiremen1:s of <Standard Pascal>
as S1:a1:edin 1S07185, 198-, with the following excep1:ions:

<folloYed by a reference to, or a complete list of, 1:herequiremen1:s
Of 1:he S1:andard wi1:h which 1:heprocessor does not comply.>

In 1:><>thdases the t6$t <This processor> My be replaced by an unambiguous
_ identifying the p'l'ocetlsor,and the te:£t <S1:andardPascal> may
be replaced by Extended Pascal if appropriate to the level of implementation.

1ICI11:.Processors that do Mt cowrpty fully ..nth the requi'l'etnents of the
StaMatod a!'e not l"squi'l'ed to give full de'taUs of thei'l' failW'es to "Ortrply
in the oowrpUanctf state1llerlt; a brief 1'I!IflTl'ertce to ac"orrrpanying docuntentation
",hich "ontains a complete list in sufficient detail to idsntify the
defects is suffioient.

COMPLYING P~OGRAMS

PROBLEM

'!'heNOTE a1:1:he end of section 5.2. page 5. is grossly misleading. The resul1:s
produced under the condi1:ions s1:a1:edcertainly are requ'i>'ed1:0be 1:he same for
a elass of programs, while o1:her classes have cons1:rain1:S which permH different
resul1:s. The re..ul1:antconfusion requires 1:ha1: th.. Standard say precisely what is
implied, no1: an incorreC1: S1:a1:ement.

RtCOMMEKDATIONo

~elete1:he NOTE a1: 1:he end of 5.2, page
5"

and replace i1: by 1:he following:

IW'J'E. A fiPOfP'OI'It1Iat' """'PU.es with the NqUiJ'elllents ofthisclause may
r>ely on panicutar implementation-defined values or features, and it may
"ontain R1'ors which will only be evoked by particular data values.

NClfE. The 1'equ{1"6ments fO!' compliant prDgl'<illfts and conrpliant p1'Ocessors do
not requi'l'e that the l"esults pl'Oduced by a conrptiant pI'ogram aI'e alwys
the same IJ1henp1"o(Jessed by a cempliant p1'O<JessoI'. They may be, or they
may dilf e1", or potentia l el'I'O!'s may be evoked, depending on the pl'Dg1'Q17!.
The .imptest Pl'Dg1'Q17!to illustmte this is:

proga>am :iI:(output); begin lhiteln(ma:ti.nt div (ma:cint-32767)) end.

CHARACTER-STRINGS

PROBLEM
The descrip1:ion of charaC1:er-s1:rings and 1:he deno1:a1:ionof string-elemen1:S
in 6.1.7,pag,"7. is confusing,andomi~ 1:0give the apoS1:rophe-imagea value
of char~1:ype. excep1: by implica1:ion. Also1:he 1:erm "s1:ring of charac1:ers" is
used in a context where "character-string" is nore appropriate.

RE COMI'IE IfDA TI Olf

Delete the tex1: paragraph in 6.1.7, page 7, and replace by:

6.1.7 CharaC1:er-S1:rin~ A chaJoacrtel'-string containing a single
IItJoing 'Lement .han te a value of the J'equired <:haI'-type
(see ~. 4. 2. 2). A "haractel'-string containing

""'re
than one

I1tring-elerrent I1haU denote a vaJ:ue of a string-type (see 6.4.3.2)
with the same n:.urVer of CO"f'onents as the aharactel'-string contains
string-elementS'. Ea<Jhstring-element s-haH denote an implerrentation-
dsfined valwe of the J'equired char-type, subject to the 1'estriction that
no such value may be denoted by ""'J'e

than one string-element.

NOTE. Conventionally, the apostrophe-irrrzge is regarded as a substitute
for the lIp08trophe characteI', which C!a1I1IOtbe a string-chaPactel".

SUBSIDIARY NOTE
The required values of char-1:ype are:

the ten digit-values denoted by '0', '1', '2', , '9'
the space-value denored by

, ,
the number-values denoted by t+ I,1_',t..

1:he exponent-value deno1:ed either by
'e'

or 'E'
whatever case letters are required for 'True' and 'False'

6.4.2.2
6 3.5
6.9.4.x
6.9.4.5.x
6.9.4.6

I-'cD
00
I-'



In the preceding redraft, the value denoted by the apostrophe-image is added
as a required value, but it need not tlenote a value whose graphical
representation is indeed the 'character. This is exactly the same situation

as exists with the other required values: the external graphical representations
of the values are not controlled.

LEXICAL ALTERNATIVES

PROBLEM 1
The second NOTE in section 6.11, page 68, is incorrect. The Standard does indeed
exclude the existence of other symbols, since processorswhich accept them
are probably (dependingon the symbol) accepting programs which are not compliant
Pascal programs, and therefore contain extensions.

RECOMMENDATION
Delete NOTE 2 on page 68, and the numeral "1" from the first NOTE.

PROBLEM 2
This whole section is at variance with section 6.1, which sets out the requirements
for lexical tokens. Properly, it belongs there, not here at the end of the
Standard,which is simply where Niklaus Wirth put it originally in the User Manual.

RECOMMENDATION
Delete section 6.11 and insert a ~ section 6.1.9 as follows:

6.1.9 Lexical alternatives. The l'epl'esentatiem fol' le:r:iool tokens and
sepa1'atol's given in sect~ems 6.1.1 to 6.1.8 constitutes a reference
representationfol'these tokens and sepa1'atol's which shall be used fol'
pl'ogl'am interehange.

To facilitate the use of Rascal em pl'ocessol's which have a cha1'actel' set
which mll not suppOl't the l'efel'ence l'epl'esentatiem, the follMng
altel'natives al'e pl'OVided. All pl'Ocessol's which have the l'equil'ed cha1'actel's
in theil' cha1'acter set shall pl'ovide both the l'efel'ence 1'epl'esentations
and the altel'native l'epresentations, and the c01'1'esponding tokens 01'
separotol's shaU not be distinguished.

The altel'native l'epl'esentations fol' tokens al'e given below:

Referaence token

A

Altel'native token

@
(

.

.)

-- --------

NOTE. The charocte1' t which appeal's in some national val'iants of the ISO
cha1'actel' set is l'egal'dedas identical to the cha1'acte1'A.

The altel'native forms of COt/1/Ient al'e all forms of corrrnent whel'e one 01'
bothof the following substitutionsaPe made:

Del imi ting charocte1' Altel'native delimiting
pail' of charoctel's

(*
*)

NOTE. A corrrnent may thus corrrnence mth "{" and end mth "*)", 01'
corrrnence mth "(*" and end mth ")".

IDENTIFIER AND lABEL TERMINOLOGY

PROBLEM
'i'iie1'OIlowing problem was drawn to
the solution differs slightly from
comments received, but modified to

Australia's attention by W.Price, but
that proposed. It is however based on the
cope with labels.

In section 6.2.2 the word identifiel' is used with at least four meanings. The
one attached to the syntactic definition should be left untouched, but the
others need to be distinguished to clarify the DP. Labels are equally affected.

RECOMMENDATION

1. Change the second sentence of 6.1.3, page 6, to read:
All chal'actel'sof an identifiel'shall be significantin distin~Bhing
between identifiers.

2. Replaceclause 6.2.2.5 by:
When an identifier 01' Zabel has a defining-point foY' 1'egicm A
and an identifiel' or labe l that cannot be distinguished from it
(see 6.1.3 and 6.1.6) has a defining-pointfol'some 1'egionB enclosed
by A, then 1'egiem B and all nagions enclosed by B shall be excluded

fl'Om the scope of the defining-point fol' 1'egiem A.

3. Replace clause 6.2.2.7 by:
The scope of a defining-point of an identifiel' 01' label shall
include no defining-point of anothel' identifiel' or label that
cannot be distinguished from it (see 6.1.3 and 6.1.6).

4. Change
. . . al l OCCU1'1'encesof that identifiel' 01' labe l shall be designated
applied OCCU1'1'ences...

in clause 6.2.2.8 to read:
. ..each occurnance of an identifiel' 01' label which is indistinguisabZe
from the identifiel' 01' Zabel of the defining-point (see 6.1.3 and 6.1.6)
shall be designated an applied OCCU1'1'ence of that identifiel'...

5. Change
... a type-identifiel' rrrzy have an applied OCCU1'1'encein the
domain- type. . .

in clause 6.2.2.9 to read:
... an identifiel' may have an applied OCCU1'1'encein the type-identifiel'
of the domain- type. . .

FUNCTION ~TVLISTICS

PROBLEM
An examDle of a procedure-and-function-declaration-part is given in section 6.6.2,
pages 31 & 32. Amongst the examples is an example of functions using mutual

recursion, and illustrating the fo~ directive. This example is written with
poor stylistics, in that:

*
the mutuality of the recursion is disguised by the layout, in which
the two procedures are written differently;

*
Apart from the Standard-oriented comment ~l the top, the mutuality of

the recursive references is not documented; and

* a pseudo-repetition of the parameter list of ReadOperand suggests that
this poor practice of repeating information (possibly el'roneouslv) be
copied. -

......
cD
00
......



,-

RECOMMENDATION

Replace the text beginning "{This example of ..." to the end of the section by:

FOR-STATEMENT SPECIFICATION

{ The following two functions analyse a
to an internal form. They are declared
they call each other. }

function ReadExpression : formula;
forward;

function ReadOperand : formula;
forward;

PROBLEM
In 6.8.3.9, pages 55 & 56, a circular argument is introduced in following the
consequences of making the limit expressions el and e2 "compatible" rather than

"assignment-compatible" with the control-variable. Firstly, the fourth sentence
of the second paragraph states:

The .vaLue of the finaL-variabLe shatL be assignment-compatibLe with the
controL-variabLe when the initiaL-vaLue is assigned to the controL-variabLe.

Later, the paragraph goes on:
Apart from the restrictions imposed by these requirements,the for-statement

for v := e1 to e2 do body
shaH be equivaLent to

parenthesized expressionand convert it
forward since they are mutually recursive

function ReadExpression; {See forward declaration of heading. }
var

this : formula;
begin

this := ReadOperand;
while IsOperator(nextsym) do

this := MakeFormula(this, ReadOperator, ReadOperand);
ReadExpression .- this

end;

and this shows that an over-riding restriction is specified in terms of a subsidiary
specification (which is valid only where not in conflict with the previous
resti~ictions). Secondly, the similar restriction on el is not mentioned at all,
and is only implied by the equivalent program-fragment.

The problem is derived from the decision to abandon "assignment-compatibility"
as the prime requirement for the limit expressions under all uses. However, if
that decision is left, then it can readily be seen that the proper restriction is
related to the execution or not of the controlled statement ("body"), not of
components of a (virtual) equivalent fragment, and its execution-sequence.

functionReadOperand; {See forward declarationof heading. }

begin
if IsOpenParenthesis(nextsym)then
begin
SkipSymbol;
ReadOperand := ReadExpressioD;
( nextsym should be a close-parenthesis.
SkipSymbol

end
else
ReadOperand ReadElement

end;

RECOMMENDATION
Delete the sentence given above (first italicised entry) and replace it by:

The initiaL-vaLueand the finaL-vaLue shaLt be assignment compatibLe
with the type of the controLLed-variabLe if the statement of the
for-statement is executed.

TRIVIAL MISTAKES

CONFORMANT ARRAY SYNTAX PROBLEM

The DP contains several trivial punctuation and grammatical mistakes.

PROBLEM
RECOMMENDATIONS

The syntax for index-type-specification does not use bound-identifier.
1. Delete second comma in second sentence of 6.4.4, page 21.

RECOMMENDATION 2. Delete comna in NOTE on page 16 of 6.4.3.2.

Replace the syntax for this in section 6.6.3.7, page 36, lines 16-18, by: 3. In 6.4.3.4, page 19, line 9, insert the word type so that the 'firstsentence
of the paragraph begins:

For every oiodi.naL-type S, there exists an unpacked set type,
designated.. .

index-type-specification =
bound-identifier ".." bound-identifier
":" ordinaL-type-identifier .

4. In 6.4.3.2, page 16, replace characters by string-eLements and Left to right
by textuaL in lines 7 and 8 respectively.

5. In 6.5.1, page 24, line 3, delete the text
(curren t)

or remove the parentheses.

-0
>G>

'".<=
<D



ATTACHMENT B

Canadian Standards Association
Association Canadienne de N ormalisation

COMENT ON Error Handli",. (S.lf!
STATUS Editorial
PF:OIclEII STATEIIENT

hrts 2 and J of this s@dion (5.1 f! 51"

Rexdale, Ontario '2) tM ..rac@ssar sholl haw n..ort@d a ..rior warnint that
ar. OC'["urr~c~ of that .@rror was p'o5sible;
J) tM ,.,Dcessar shall report t.he error durin!! ,.reparation
of tM f"NJ~rit. for -exeC'ution.-COMMITTEE COItRESPOND£NCE

, ..ply
""

fill,

Anthony BiCkle
.....-eo......._
=:.:..."'":::...~
~,=--tCtA1C7
...........

1M t.e". '..rior w.rnin!'" ,.resua8bl~ .eilns a u.fniml ,..rior to
e:.;eC'ulion. Thilt is, this warnins OC'<'\Jrsdurin!i f'T'eF'sration of
the ,.ro!llr.a for execut.ion. R...ordin!ll Foilrt 2 .at~e5 it clearer
t.h.t ..arts 2 ...cI J ..1 with distinct. but r@l.at@d.is>.""s.

PROPOSED CHANGES

Ref'13ce 5.11 Plrt 2 with

March 6, 1981

112) t.he f'J't)cesor Soh.11 'f'ep'ort. durin!f f'f"e,,.aJ'ation of the
,..ro!!ra. for e~ecution that an Ot'c\lrreoce of that error was
1-os"$iblej'

COIIIIENT ON tlu..bns 16.4.2.2)
STATUS Edi tortal
f'~'OIfLEII STATEIlEIIT

CNC/ISO SecretariatLett~r

Thi. s~~ti<m san 'TM val...,s shall boo . s~nt of UN!whol@
b@rs' .nobd .5 w.cifi",d in 6.1.5 b" tM silln@d-intu.r

valu@s (n@ also 6.7.2.2),' Th@ val s ar@ d@"at@d not bv
val s. but b.. tM s t..ctic .,tass si_d-inu!I@T.

CAC/ISO/TC97 /SC5Positioft to

FUe No. SCC ID 504 (97/5 )-2

DP 7185

P~1IPOSEI' CHAIIGES

In section6.".2.2, replace. ..."" the '5i~ffed-lnt.*r
values bv .".b,. si~-inte_:r..'-. Aftd 'r2',.1...("I' -tub,.
'the si!lMG-nal valu.s,1 .b, ~ si~d-rN.l,,".

COIIIIENTON Fne-t"pe. (6.4.3.5'
STATUS{rra,.
PROIclEII STATEftEJ!IT

We approve DP 7185 as present~d, though asking
In ~art d of the d@finition of .

s"'
nc@-t"~@. t:h@~as~ in

which v is ~.tv and x ie5 nDn--rIlPt" isnot.cawr.d.

the folloving comments of an ~ditorial nature:
PROPOSEl' CHANGES

,
I f xi. the @..~tv s@"""'''~e.

th@f,
x=" shoII b. tr 1f .nd

Doh. 1" ~ is als.o the ea,.tl4$e8Uen~." --c»
'"mwith

Irr eiUwr ~:or ¥ is the ea,.tvSIPRu.nce. then }:=v 'shall ,be
true if .nd orll!!! i1 :both x _rid v .r ,.tv.1

U1
o



COI1I1ENT OMExa..~la in 6.6.2
STATUS Protra.. lIut
f'ROllLE" STATEHENT

with

'. t .~hal1 not d@not.e a C08,.onlml of I variable where that
variabla ~oss.ses a tyP. which is dnitnat..d ~ac~...d.'

would not ba standard-confor..in!! if both R...dOpa..tor and
R...dO~ nd w..ra functions th.t adv.nca th.. iMut str -it
r..Un on thl! l..ft-to-rillht ..valuation of tha actu.l
...raa.ters.

COHtlENT ON Confor.ant arr.y ~.ru..t..rs (N..w 6.6.3.7)
STATUSEdi torial
"ROBLEH STATE"ENT

'function R...dEx~i'..nion : for..u181
var

this : fo..ulal
D~ : o".1'.t.or;

b..tin
lhis :c; ReadOperar.d;
whil.. hO~ tor (MxtS

)
do bUin

op := RndOparatorl
this :.. tlall.ForllUla (this. op, R...dO~ar.nd);

..ndl
RudExPrhsion :. this

end;'

'... and which sh.ll hav.. a co.pon.nt-hp.. that shall b..
that d..nobd b.. th.. b~..-id..ntifi..r cont.in..d by th..
conforasant.-arral:ll-sc:he8. in the
cor,for.ant-array-para..br-sp..ci fication and which shall
hav.. th.. ind..x-h~n of th.. tyP" poss..ss..d by th..
actual-~ar brs that corrn~ond (se.. 6.6.3.8) to th..
ind..x-tYP..-s~..cific.tions contain..d bv th..
confor.ant-array-sch in th..
conforaant.-arrav-,..r.llet.er-s"ec:i ficalion.'

PROPOSED CHANGES

R..~lac.. 'function R...dEx~r..ssion ... andl' with

""N
.......

Since Pascal does not have t.rue 8ulti..diaension .rraYs, the
senteooce should be ,.hrased in t.er.s of nested C'onfofllant arrav

schell' s.

PROPOSElI CHANGES

R..plac.. th.. ""nbnc. tai 1 Guot..d abov.. with

'.. .and which shall h.v.. a co.pon..nt-t..p.. that shall b..
that d..r,ot..d b.. th.. t"~"-ld..ntifi..r or
confor.ant-ar..y-sch closnt-cor,taiMd bY th..
confof.anl-arrav-par.8eter-Sfoeci firation and which shall
h.v.. th.. ind..x-typ.. ~ossn""d by th.. actual par ters that
corrnpond e"".. 6.6.3.8) to th.. sinlll..
ind..x-t..~..-sp..ci fication closnt-cont.in..d b.. th..
conf'oraanl-arrav-sch.lla in t.he
c:onforaanl-a rr.'='-,..r l. r-s,..ci fic.lion. I

.......
cD
00
.......

COtlHEKT ON Actu.l para.et..rs with ~ac~.l!d h~l!~ (Nl!w 6.6.3.1 .nd 6.6.3.7)
STATUS Editori.l
F'RO~LEtI STATEHENT

'An actu.l variabl.. paralieLtr ~h.ll not d..not.. a co..pon..nt
tlf a variab'" that ~oss..nl!S a tY~f that is dnilnat..d
,..c~~.d..

As is th.. cu.. "',,",wh...a. this ddinition a~~li..s to th..
lont-hand fora of confor..nt-.r ra t..r-s~..cific.tions.

.un that thl! co.pon..nt's t"~10 8ust not b.. ~acll..d. or that th..
variablo's tYP. .ust not b.. pack..d1 Th.. lathr intl!r~rl!tation
is th.. d.sir..d on... COtltlENT ON A.si!lnir.!I-r..hr..roc.. (6.5.11

STATUS Error
F'ROIlLEtISTATEtlEKTf'ROF'OSED CHANGES

In 6.6.3.1 r..plac.. th.. a.billuous s..nt..nct! with

'. ..sh.ll not d..noh a cOIiPonl!nt of a variabl.. that
posstnu a tY~1!that is duitroat..d ~'cll..d,'

Th.. d..rini tior, of assillnin5-nhr..nc.. in s..ction 6.5.1 do..s
not say an..thiM about actual para...t..n to naui red
Proc..dur..s oth..r than read and rudln. As it turns out. th..r..
is no real need since the not.ion of assi!lnin!!-reference IS
or,1II us..d in lh.. d..fir,i tior. of the for-stat nt. and thl! tYP"
of the 100,. variable cannol be an arriS~-, p'oint.er-, or
file-t.,=,pe. T~ ler. 'assi!lnin~-ref.rence' and it.s "lace.ent
in 6.5.1 !liv.. on.. th.. .isl...dinll i..pr..ssion that it is a
lI..n...al'" us..ful notion.

-0
»

'"rn
IJ1
.......

'An actual variabl.. p.r tn sh.ll not d..nob . co.pon..nt
of a variabl.. whn.. that variab'" poss..ss..s a t..~.. which is
d..si5nat.d pack..d.'



F'ROF'OSE!o CHANGES
If the lera t1ssiSninS-refereonce
ordinal-lypn th@n @ilh@r a)
.ordirtal-a~5i!fnin!i-reff'ref)C'e' r or
(6.5.1) lo 6.8.3.9 (for-slat@a@nls).

is to rea.in SF-(lci fie to
chanse lhe na.. to

b) lIove the definition

On the other hitnd, the let. 'exterlsions.' is useod rar
'.. ,an~

f@atur@s acupt@d by th@ proc@ssor that ar@ nol sp@cifj@d
in

('lause 6.' The intention of lalldns aboul e>:tensions in the
standard is to allow an iapln@ntation to aU!la@nt th@ lan!lua!I@
d@fin@d in th@ standard. Exbnsions hav@ th@ followin!l
characteristics:

If th@ t@ra is to b@ aad@ !I@nHalh us@fulr th@n to th@

definition of assisning-reference, append

I (s) The variable is denoted b':l the variable-access in it
,..rocedure-slaleaenl that specifies the activation of
the reQui red procedure new.

2) Standard-conforain!l procnsors aust
use of 8nv extensions in 8
speci tied for errors....

b@ abl@ to procns lh@

aantler Slail.. lo lhal

(h) Th@ variabb is d@nobd by lh@ lhi rd act.ual paraa@l@r

in it proC'pdure-statelttmt that specifies the activation
of the reoui red procedure ,.ack.

3) Slandard-conforl,in!l
exlensions.

all

(i) Th@ variabl@ is d@nobd by th@ ucond act.ual paraa@hr

in a Hoc@dur@-slahunt lhal sp@cifin lh@ activation
of the reQui red procedure un,..ack. F'ROF'OSED CHANGES

(oi) Th@ variabl@ is d@nobd (possibly iapliciUy) by lh@

fi le-tsf"e iJ~tu.I par.lleler in. procedure-state.ent
lhal sp@c;fin th@ aclivalion of any of lh@ followin!l
reQuired ,.rocedures: re.d, r..dln, write, writeln,
.et, put, reset, rewrite, and pa...

It would see.. .,.,.ro,.riale to define the ter. extensions in
uction 3 inshad of in s@ction Sol by addin!l

.3.5 e):tension. A feature ac~e,.ted b':!! a f'rocessor that is
not specified in c]ause 6.'

NOTE: It is possibl@
.s5i !&nin.-re'erences
execute t.he ,.ro.ra..
for-stat...ent..

for a ,..roc.ssor to deter..ine all
in a statn@nl wilhoul havin!! lo

It is uwd in lh@ d@finihon of th@
In seclion S.1, we find

.(i) be able to f'rocessin a .anner
specified for errors an':!!

illf'l e'lientation-dependentfeature..

si.ilar lo that
use of an

COMMENT ON I.plu@ntalioro-O@p@nd@nc,@s v.s. E>:l@nsions
STATUS Enor
PROFlEM STATEMENT

Th@ standard is confuwd wi lh r@sp@cl to th@ nalur@ and
varieties of i."leaentalion-dependencies. We proPose t.he
followin!l charact@rizatioros of th@ l@rllS.i liP 1eaental i or,-depende.nt. and 'e):tens i on' .

This clause ir. .eanimtless: an!ll proSralll corltaHIH.!i an
as~i9nl.ent slateAtent can be said to use an
illlf'lelller.tation-deF'endent feature, The violation is in rehdns
on a F'articular illf"lel.entation of an i,,~leltE"nlation-deF-endenl
feat.ure. Since detectior. of such violations is illpossible in
!!@r,@ral, claU5@ 5.1 (i) should b@ d@l@t@d.

......
<.D

""
......

An .iliPlelienlati on-deF-endent
,

aspect of the ]an~ua!le is one
for which lh@ shndard do@s nol !liv@ a coapl@l@ o@finition.
The intention is to allow the i.~leaentor a .realer de!lree of
fr@@doa lhan is noraall.. lh@ CBS@. Th@ followin!l

characteristics Ire desi reable:

A b@lt@r wordin!! for 5.2 (c) is

'(c) not reI!:' on iln':f particular inler,.retation of
i.,.leaentation-deF-endent aspects of the lansua!ie
conco8it.ant with lhe proSlrall's cOIiF-liance ]evel.'

1) A starldard-confor.in. processor ..!If choose an!lf
iliPlellenlation of an i8ple8er.t.ation-de,.endent feat.ure IS
1on!i as it lIeels the reouireaents set down b':f t.he starldard.

Sect.ion 6.1.~ taU~s about i.plellentation-dependenl directives.
tal] ins such di recti yes ia,. lellenlalion-dep.mdent is incor rect

- lh@ iapl@unlor would not @v@n
hav" lo docua@nl thn! Th@s@

are extensions - and the star.dard has adeauate ~onstrlints on
e:-:tensions. Therefore, delete the sent.ence .'Other
i."lellentat.ion-de,.t!ndent di rectives ..':1be provided.. Ind
chan8@

-0
»
m
m

2) A standard-conforain!l procnsor n@@d not docuunl lh@
way(s) in which lh@ iapln@nlalion-d@p@nd@nl asp@cls. of lh@

lan.ua.e .re i.ple.ented (c.,. illp]eaentatior,-defineod
.sP(lcts) . V1

N

3) A standard-conforains. pro.ra. lIa':f not relv on the aanner in
which .n i.~le.er,talion-dependent. aspect is i.F-le8ented.

8NOTE: On .anv ...rocessors the directive external is used to
speci fv thlt the ....



\.0

'NOTE: "_nv ,.,oce5S0rs provide, .~ an .xt..nsion, t.he
dir."Uv. .,,\..rnal ..hi"h h und \.0 s~.df.. \.hat ....

The i8").lIent..tior,-dependencif's aentioned in sect.ions 6.7.2.1.
6.7.3. 6.8.2.2. and 6.8.2.3. ar. tru.
illl"lelllenlalion-dependencies - f.o chan!fes are needed.

COIIIIENTONPra".dur. ..a~. (6.9.6)
STATUSEdi taria!
F'ROBlEH STATEHENT

'The bindiM of th. variables
p. rallelers t.o enli lies exlernal

ill") .lIIentali on-dependent, exce,.t
a fil.-h... in whi"h "ase
illlf'lE>lIent.at.ion-def'ined. .

d.r,at.d b.. the ~ran..
to \.h... ro~ ra.. sha 11 b.
if th. variabl. ~ossesses

\.h. bindin~ shall b.

'Th. .ff."", of ins..."tin~ a hxtfi 1. to whi"h the .u.
procedure was applied durin~ !lenerat.ion shall be
ill~le..entation-de,.endent.' It would be lIore ClF'proP'riale if
thIs aSf-eel was illlpl mtat.ion-defir,ed, not
i leooentation-de..ndent. This would also be "onsistent wIth
stan"e ta~en in 6.10 where the effect of the applioation of
fe-set. or rewrit.e to eit.her input Or output was classed as
i."l elllent.at ion-de' ined.

As su~~ested in anoth.r "o nt. \.h. .ff."t of ins.."tin' 10
hxtfi 1. to, whi"h ~a~e hay. been a.~li.d should b.
i.,.lelllenlation-defined, not iIllPleaentation-def'endent,

In s.dion 6.10 we find

f.ROF'OSED CHANGES

As is the case with directives, w~ don't want t.he illlPlel,entor
!ioin~ off and Pfovidin!i non-file-t~pe F'ro!!raa f'ara.eters
withoul doeua.mliml the..; this should be called .n extension,

Re.la"e the abovo sent.n"e wi th

Chan~e the ser.tenet" to: 'The effect of insf'ectins ". shall be
iaF'le.,mtation-defined. .

'The variables derooted by

possess it fi le-t':l"e and the
vntities e>:ternal t.o

i8r-leller,latior.-defined. .

the pro!!ra.. ..an..etors shall
bindin. of the variables to

the pro~rlo" shall be

'NOTE: The external representation of such external
entities is not defined in this standard, nOT is any
proF-ertv of . Pascal ,.ro.r.a de,.,mdent on such
represent..lion. As an e;:tensioru .anY processors per.it t.he
variables denot.ed b", t.he pro!ll'._ paraaeters to pos.sess a
\.,,~. o\.her \.han 10fi 18-\,,,... .

Sect.ion 5.1, part i, subpart 3 sass 't.he ,.rocessor shall
report the error durin!! e;:ecution of lhe ,.ro!!r... and

terainate e>:l!'cution of the pro!!ra.,.' An i.f'le'henlaliol) sholJld
be free to decide (and doculller,l) what for. of corrective
action, if anY, wi 11 be ta~en in the eyent of a

runt:..e-delect.ed problea. For p;:allf'h~, the processor IlI1!1ht
want to ast. the uspr what value his uninit.ialized varIable
should have, and then reSIJlle e>:ecution.

If it is still d@,Plied necessarv t.o 8erltion the coaaon

e~-!tensior" extend the rlote as follows:

COIIIIENT ON Te..,iroatin! e"e"ution of ~ro!ra..s (5.1 i 3)
STATUS Editorial
PROfllEH ST ATEHENT

COMHENT ON If state.,e"ts (6.8.3.4)
STATUS Editorial
f'ROfllEH STATE/tENT

PROf.OSH CHANGES

Charl!le the spr.tence to: ."') the F'rocessor shall report the
error durir'9 e~:ecution of the progra.,'

This seotion saYS 'An if-state..!!nt WIthout an olse-.art shall
not be followed by the to~.en else.' It is onl" a ",obi if
an if-st.te..ent without an else-.art is IHHE(,IATElY folIow!!d
bv the loken else,

f'ROPOSEI' CHANGES
"'0»
G1
rn

Chan!!e the spoterlce
.Iso-.art shall root
.lse, .

read: 'An
illl8lediatelv

i f-stateaent WIthout an
follow.d bY tho to~.en



An actual-parameter corresponding to a confo~nt-array-parameter-
specificatil>n is allowed to be an expression (that is not a variable-
access). This results in copying of the value of the actual-parameter.

This approach is conceptually inappropriate.. inconsistent with
the rest of the language. and error-prone. In PASCAL.it has been
the programmer of the prl>cedure declaration who has decided (by ch<>osin9
between the variable and value forms of formal parameter specifications)
Whether a Il>cal copy of an actual-parameter is necessary. This
responsibility should nl>t fallon the callers of a procedure because,
in principle, they need only concern themselves with what the procedure
does. and should nl>t be concerned with how this is done. If
parenthesization of an actual conformant array parameter is by
accident omitted. the result will often be a subtle logical error
because of unexpected storage sharing. with no compile-time or
run-time warning.

Czechoslovak comments of an editorial nature on
ISO/TC 97/5C 5 N 595 - DP 7185

1) In our opinion, the incorporation of levels

the specification of Paecal 1n fact defines

languages, being inconsistent with the need

of programe.

Va suggest therefore to retain one level

preferably level 1 (including con formant

fl>rce compiler producere to include thie

into their products.

ATTACHMENT C

document
Comment on Value Cl>nfOnlant Arrays (6.6.3.7)

Status: technical comment

Problem Statement:
o and 1 into

two prograllllRing

of portability

of compliance only,

array schema) to

required feetura

Proposed Changes:

I.A110w value as well as variable forms of conformant-array-
parameter-specifications.

2.kequire an actual-parameter which corresponds to a variable
conformant-array-parameter-specification to be a varriab1e-access.

3.Modify the r~striction in the last paragraph of 6.6.3.7 to
apply only wh~n the actual-parameter corresponds to a value
conformant-array-parameter-specification.

2) In section 6.4.3.4 a statement limiting the largest snd

smallest values of the basa-type was deleted. We are

convinced that sucb limits exist 1n each implementation

and are usually low.

~e suggest to add a etatement to section 6.4.3.4, atating

Dn existence of limits of the cardinality of canonical sets

(these limits being implementstion-defined) and requiring

their minilll8l range to allow for eet of char.

3) The behaviour of the procedures read

satisfactorily resolved when reading

values.
~e suggest to adjust parts (c) and (d) of section 6.9.2 in

such a way, that if rest of file being scanned for in~eoer

or real values consists of epacee and end-of-linse only,

then reading shall cease, eof and eoln being true and value

of variable v being left undefined.

and readln ie not

integer- or real-type
......
cD
00
......

4) The production rule for procedure-etatement conflicts with

the dafinition of parameter-lista for proced~reo read, readln,

write, writeln.

I/e suggest to formally complete the production rule for

procedure-statement as follows 1

procedure-statament .
procedure-identifier [actual-parameter-l1st] I

read-procedure-identifier read-parameter-liet I
readln-procedure-identifier reodln-parameter-list I

write-procedure-identifier write-parameter-liet /
IVriteln-procedure-identifier writeln-parameter-liet



ATTACHMENT D

COMMENTS OF SFS ON DP7185 "SPECIFICATION FOR THE PROGRAMMING LANGUAGE

PASCAL"

In chapter 6.4.3.1 order of productions is wrong,

i~ome other chapters too.

Finnish comments arermainly based on the paper prepared

at the Helsinki University of Technology and made by

the PAX-Pascal Group (Jukka Korpela,Pertti Tapola,

Timo Larmela, Ahti Planman). I have collected some

other opinions listed below.

In chapter 6.4.3.3 (record type variant part) it

should be possible to have as an element of case-

constant-list some kind of subrange expression of

form case-constant "..." case-constant. Same form

is also usefull in case-statement (6.8.3.5). In

addition this form of case-co\tant is compatible with

set expressions.

Layout of the draft is incomplete: It's very difficult

to find starting points oh chapters from the text,

because there are no extra e~y lines between chapters,

Darker chapter headings or headings written with

letters differing from normal text would help. Contents

(page 1) is incomplete and doesn't include all chapter

headings. Index (pages 77-82) is very uncomfortable

to use because of several references to same objects

(for example term "variable" has 23 references).

References should be grouped into "sub-terms" or/and

main references should be underlined or written with

different type. Some terms (for example "comment")

'are missing.

Basic principles of garbage collection system should

be formulaten in spite of it's hardware-dependence.

Thats important because different implementations

have different properties (e.g. what to do with dynamic

allocated variables referenced with pointers written

into file-variable.

Tampere 1981-03-16

In chapter ~.1.2 characters "L" and .1" are missing

from the production special-symbol. It would also be

usefull to have reference to the chapter 6.11 (Hardware

representation) where alternative symbols are listed.

~~
Acting member of SFS on the area of ISO TC97/SC5

In chapters 6.1.8, 6.4.3.1.2 and 6.5.3.2 references

to chapter 6.11 as above. Thats important for

scandinavian Pascal users, because we use scandinavian

letters X,B,A having same code as r ,\,]. Just a

few terminals have characters {and}

U
J>
G>
m



HELSINKI UNIVERSITY OF TECHNOLOGY
Computing Centre
PAX-Pascal Group/Jukka Korpela 4-MAR-1981

COMMENTS ON THE 2ND DRAFT PROPOSAL FOR THE ISO
SPECIFICATION FOR THE COMPUTER PROGRAMMING LANGUAGE PASCAL

CONTENTS

CHAPTER 1

1(19) STRUCTURE AND TERMINOLOGY

1.1 OVERALL STRUCTURE AND COMPLETENESS OF THE DRAFT

The draft being commented contains significant improvement3

to the first draft, and is, in general, sufficiently comp!eta
and well-structured t. become a standard.

The main disadvantage is the alteration of terminology and
style for semi-formal definitions. This draft, as well as the
first draft, contains a great amount of terminology which is
not commonly known and used in the Pascal community, or even
differs from the terminology currently in use.

3
4
6
6
8

For example, the definitions in clause 6.2.3 are difficult to
understand, and assumably extremely obscure to ordin3ry

Pascal programmers. What makes them strange for experts to)
is the obvious attempt to avoid references to implementatlon.
The definitions become understandable to a compiler writer
when the .within. relation is conceptually associated with
what is known as static link in implementations.

C/J

CHAPTER

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1

1.1
1.2
1.3
1.4
1.5

CHAPTER 2

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

Foreword

.
STRUCTURE AND TERMINOLOGY

OVERALL STRUCTURE AND COMPLETBNESS OF 'l'HE DRAFT

THE STABILITY OF PASCAL . . . . .

CONCEPTS AND DENOTATIONS . . . . .

THE STRUCTURE OF LANGUAGE DEFINITION
TERMINOLOGY . . . . . . . . . . . .

DETAILED COMMENTS AND SUGGESTIONS

LEXICALTOKENS . . . . . . . .

BLOCKS, SCOPE AND ACTIVATIONS
CONSTANT-DEFINITIONS
TYPE-DEFINITIONS .

General
Simple-types . .

Structured-types

DECLARATIONS AND DENOTATIONS OF VARIABLES

PROCEDURE AND FUNCTION DECLARATIONS
EXPRESSIONS
STATEMENTS . . . . . .

INPUT AND OUTPUT . . .

PROGRAMS . . . . . . .
,

. .

HARDWARE REPRESENTATION ....
TYPOGRAPHIC ERRORS AND STYLISTIC MATTERS

This paper has been prepared at the Helsinki university of
Technology Computing Centre. It does not present any official
statement of any organization but reflects the observations,
suggestions, and opinions of several specialists actively
working on the fields of systems and applications
programming, including .pascal compiler writing and
maintenance, and teaching of Pascal.

On the other hand, the last note in clause 6.6.3.7 makes a
rather explicit reference to implementation, using the notion
of activation record.

10
11
12
12
12
12

It is difficult to define some features of pascal in a n-,"iC, -

which is both general (not referring to a particular m( t'10:,

of implementation) and understandable, and possibly tJ',e
difficulty is inherent.

13

In spite of the criticism above, the difficulties or
specification should not be allowed to postpone the
standardization of pascal. Probably a sufficient solution
would be to add a few notes referring to implementatio~
aspects, particularly to clause 6.2.3 but possibly also to

clauses 6.6.6.3 (about the fact that in practise the address
of an actual variable parameter is passed and all reference]
to the formal parameter use the address passed), 6.6.3.4 am'
6.6.3.5 (an analogous note would be useful), 6.6.3.7 (e.o.
that both the address of an actual parameter and the actua!
index bounds are passed), 6.8.2.4 (a non local GOTO requ;,cs
an appropriate context switching), and 6.8.3.10 (the adj,~ss
of a record variable in the record variable list of a WITri
statement is calculated once only).

,.

.4

17
IB
18
18

The structure of the draft is similar to previous
descriptions of Pascal. However, the order of presentation
should be reconsidered in the following respects.

1. Clause 6.3 bears the title constant-definitions, although

it also describes constants. Splitting it into two part~
would not be worth while, but 'the title should be
changed.

C)
»
G>IT!



1.2 THE STABILITY OF PASCAL

fa~ f~om being a pure exten.ion. A fundamental diff~rpn~p
between Ada and Pascal is that Pa8cal can be learned in toto
within reasonable time,. even by a person with no previous
experience about computer8, whereas Ada is -everything for
everybody" which make, the language conceptually difficul~
and large in contents.

There is no need to sugge8t what the -level 2 Pascal" would
contain. Instead the problem i8 to limit the extensions to a
conceptually clear repertoire which increases the expressive
power of the language without sub8tantially decreasing
efficiency of implementation. In our opinion, the following
extensions (possibly together with some ainor extensions)
would constitute such a repertoirel

1. Use of static expressions instead.of constant8.

2. Some kind of module structure.

...,

»
en
C"">»,...--

z:,..,.,
:Ii:
en

2. Similar C08ment applie8 to clause 6... Bowever, the
importance of the 8ubject and the length of the clause
suggest that the clause 8hould be divided into several
major sub-clauses of clause 6. At present clause 6.4
describes type definitions, denotations of types, and the
meanings of type denotations. These subjects shouln ~~
treated separately.

3. Rules for procedure and function declarations in clause
6.6 exhibit great. similarity of 8tructure. Integra~ion of
the specifications would increase readability and reduce
the size of the standard.

The two major changes 8tated in the foreword are U8eful. The
first one is to be regarded a8 a nece8sary language change.
The second one is rather strong extension to the language
defined .by Niklaus Wirth but is very useful. The solution
adopted, to make it a sort of -recommended extension", is
elegant.

They are some features of Pascal in which the draft differs

from Wirth's definition and/or most current implementations
in a manner which makes them important for ordinary users.
Mentioning them in the foreword would be worth while. This
applies in particular to type compatibility rules in t',,,
broad sense, the semantics of WITH statement, the meani"g ",
IN operator, and the format of output of real values to a
textfile. The changes involved are definitely improvements.

3. separate compilation of aodule8,
definition of the propertie8 of
needed.

together with the
the 80ftware 8upport

4. Dynamic arrays, which could be added to
simply by allowing the use of a parameter
or function in the same manner as constant
type definitions.

the language
of a pro('e'::1uJ:'!
identif t<,r" :,

5.

6.

7.

Double-precision real numbers.

The LOOP EXIT construct.

OTHERS branch and/or 8ubrange notation for ca8e constant
lists in CASE statement.

The deftni tion

given in the
however, some
exactly.

Moreover, after the official approval of the standard by ISO,
a project should be started in order to define "level 2
pascal", i.e. to standardize some extensions to the language
described by the document being currently prepared. It is
well known that there are several extensions to pascal in
existing implementations. Often the extensions serve similar
purposes but differ in their 8yntax and/or details of
semantics. Given that extensions are available and are used.
portability of programs could be increased if the most com~on

extensions were standardized.

of pascal 8hould
draft in any
features which

not be changed from
essential respect. There
should be specified

that
are,
more

8. Additional predefined procedures and functions for file
operations (close, delete, append, etc.), including tools
for control over input errors like invalid format of
numeric data.

9. Standardization of the feature
declared as array variables
access files.

that program parameters
represent external random

1.3 CONCEPTS AND DENOTATIONS

The project suggested would inevitably encounter serious
problems because of the varying needs of the users as well as
the different opinions of language implementors and computer
scientists. Anyhow, the Pascal language was designed for
teaching - and is undoubtedly the best language for that
purpose but is being used for the construction of
complicated "real-life" programs and systems as well. The
true applications of pascal require carefully selected and
defined extensions to the language.

When describing a programming language, clear distinction
should be made between an underlying concept (an abstract
entity) like a variable, and its denotation like a variable

denotation. The draft is incomplete in this respect. For
variables, such distinction is made in most contexts; but for
types not. Moreover, the production rule for variable
denotation ("variable-access" in the draft) uses terms like
"entire-variable"; a more adequate term would be
"entire-variable-denotation". ...,

»
'"
m

Admittedly, Ada is an extension of Pascal, but in roughly the

same sense as Pascal is an extension of Algol 60, i.e. very

Consider, for example, clause 6.4.3.5. It first specifies
Wfile-type" by a production, i.e. defines the term
"file-type- as one form of type denotation. However, t~e tex~
then uses the term "file-type" as being something which can
be denoted by a type-denoter. Such confusions could be
avoided by the systematic distinction mentioned.



1. 4 TilE STRUCTURE OF LANGUAGE D~FINITIOIt TO make the suggestions more concrete, here is a revised form
of 6.5.5 (with no changes to the cont"nts):

6.5.5 Buffer-variables.
The dt"aft Uses the verb -shall-.excessively. A standard, by
its '�ery nature,' say.s how. things shall (or should) be;
undi'scriminsted UM of "sball" 1s redundant.

Moreover, excessive use of "shall-" hides the fact that the
different statements ira the drat:t standard have varying
logical sta1:us. Language definitions (excluding exper im('ntll1
formalized systems) in general consist of (a) rules for
context

..
free syntax, usuaLly given in SNP' for18 , (b)

additional syntactic rule_, g:iven in prose, and (c) semantic
rules, given in prose and being somewhat less exact than
syntactic rules. The draft uses' "shall" ~oth in class (b) and
in class (0) rules. It would be' ",ore natural tc. restrict the
use of "shall" to class (b) rules, class (c) rules just
stat ing wha1: IS the mearting of' a language construct.

In addition, there are the specifications for error
conditions, with the word "error" used to designate what is
commonly known as runtime error. (A processor may of course
be able to detect a ruratime error dUring: compilation,

i"special cases.) In these specifications, "shall" is not
necessarily strange but useless-.

Yet another group of statements ira language definition
consists of nominal definitions (tor auxiliary concepts). In
a sense, a language standard as suoh. is. a n018inal definition
of a language. Prom the reader's point of view at least, it
would be very useful to separate nOllina1 definitions (in th",
str ict sense) from the. other cont.ents of the staradard'. Th..."
rteitlier describe the language nor set any requirements up,,"
complying programs or processors, but serve for the purt'OS.,
of description and specifying requirements.

buffer-'�ariable . file-variable "~-
file-variable. variable-access .

A file-variable shall be a variable-access that denotes a
variable possessing a file-type.

A buffer~variable denotes a variable associated with the
var iable denoted by the file-var iable of the buffer-vaT Lc,i",.
A buffer-variable associated with a textfile possecc.; t.
char-type; otherwise, a buffer-variable posS<?';~C5 "',.
component-type of the file-type possessed br .,1.',
file-variable of the bUffer-variable. A reference or ,,,.,..'"
to a buffer-variable constitutes a refe~ence or ac~~ss
respectively, to the associated file-variable.

Examples:'
lnput~
pooltapeK2A~

It is an error to alter the value of a file-variable f when a
reference to the buffer-variable f~ exists.

corasequently,the lowest level clauses of the staradard (i.e.
clauses not containing any other clause) should be organ'zeJ
as follows. First the relevant production rules are given U'-
BNF) . Then the additional syntactic requi rements .1< ,;

speCified, in prose, but exactly, using whatever a~xil'ary
technical terms are needed. Next, the semantic rule. a-'
given, in prose, and this specification is somet mc:
unavoidably inexact (but uniquely interpretable by
experienced benevolent readers). P'inally, the e:ror
conditions, if any, are specified.

The revised form uses the terminology of the
not to be taken as a final suggestion
illustrate the method of presentation.

The term "i.mplementation-defined" is defined (clause 3.2) t:>o
vaguely. In particular, may the corresponding definition (f0r

an implementation) specify additional error conditi0ns
restrictions or even changes to the specifications in th;
standard?

draft, ana
but rather

i5
to

J>
-c
=

Nominal defiraitions sRould, if possible. be collected in~o
separate clauses, and clearly distinguished as such, e.<}. Jj
beginning them with "Definition." or "Convention.". The'1 it
would be unnecessary to use clum.sy constructs in .Eng] j

"h;
instead of "a shall be designated a"Sb" one may specify "a is
called b8, "a is said to be b", or dimply "a is: b" ,.

Especially important problem arises from the fact that
bindi~g of program parameters of file type to extprnal
entities is "implementation-defined". Does this imply that
there must be some binding? If not, it is possible to providr
a processor which strictly conforms to the standaTd b~~

"
completely useless. Moreover, it is assumably intended ~hat

"program parameter of type Text can be bound to a dev ice i 1 <,'
terminal. line printer, or card reader, Now suppose that Wi:!
bind a such a program-parameter, say f, to a terminal, writ,

to the file f, and then try to do Reset(f). Strictly t""i"c;this should give us the opportunity to read back what
"'0wrote. (Clause 6.6.5.2 implies that Reset(f) does not ch",,'J"the sequence of components associated with the value of f,

except that it may append an end-of-line component to it.1
Although this is implementable (by making, say, a, disk CO';(
of 'everythingwritten to f) it pragmaticallymakes no s..ns':'.
The problem'. is even clearer for a file bound to an unsp<)('l"d
card reader, first opened by Reset and then re-opene.ih".
Rewrite; sirace the pre-assertion for Rewrite is TruE>, th~
operation should definitely be possible. One solution i:,[
course to prevent the binding of a program param('ter oth"r
than Input or Output to. a device; but such a restricti,m
seems unacceptable and it probably is not the intention that
the standaTd would implicitly require it.

......
cD
00
......

Whether the sugge3ted structuring is reflected by appropriate
sub-titles, parngraphing, layout, or similar method~. is a
rnatt~r o.f convenience. In mostcases,paraqraphingseem.?to
be the most adequate method. The first p~~s(' p"'"

,,~-"
(syntactic rules) may well use the word "shall", whikt ti,,,

others should use "is".

-c
»

'"IT!



consequently, one should either specify that the definition
of an implementation-defined feature introduces modificRtlo~s
to the language specification, or to remove any need ~or ~c: I
modifications. (The latter alternative is definitely ~_'("~c' .
and would require changes to the specification of Reset ~-..'

Rewrite at least, probably also the specification of rea:
arithmetic operations which should be specified to bl' an

error if the operation is not carried out with sufficie~t
accuracy. )

There seems to be no good reason to use the attribute
"required" instead of ~predeclared" or "predefined", except
that it may shorten some specifications (sometimes "r..qu' .-.,

'"should be replaced by "predeclared or prede(',,:.''').
Admittedly the existence of e.9. the type int~r"r
"required"; but the potential existence of enumerJtc',]

.

is "required" as well. Moreover, t:he "requir..d"
identifier Integer can appropr iately be called "prede(:"
whereas the type denoted cannot adequately be c'
"re9u~rt;d" or "predefined". It is" introduced by lan,) .:ag'~
def1n1t10n", but such a term would admittedly be clumsy.

1.5 TERMINOLOGY

The following changes of terminology are 8uggested. They
would be motivated by the terminology currently in use, or by
simplicity, or by a clearer distinction between "things and
names., i.e. between (abstract) entities and t~..ir
denotation.

CHAPTER 2

DETAILED COMMENTS AND SUGGESTIONS

z:,.,.,
~
en

"The y closest-containing an x. should be replaced by "t:J.:
smallest y that contains an x". ("Closest-containing" does
not correspond to normal rules of formation of words i:1

English. )

These comments are organized according to the structure 0"
the draft.

"New-type", "new-ordinal-type., etc. should be replace;1 by
"type-description", "ordinal-type-descript,ion". etc..
"ordinal-type" by "ordir.al-type-denotation" (or -denoter).

and so on. A type-denotation is a language construct th~t
denotes a type: a type is an abstract entity (and the ...c",j
· type" as such should be reserved for that purpose); :lad d

type-description is any type-denotation which is not a
type- ident if ier .

Similar changes should be made to terminology r..latp' '0
variables. "Variable-access"should be replaced .

"variable-denotation". The variable (as abstract eroticv;
associated with a file-variable should be coI]"';
"buffer-va~iable.; it can be denoted
buffer-variable-denotation of the form f" but it

nepj r0t

(for example. a formal parameter may denote a b"f ~,>-

vat iable).

"Identified-variable- should be replaced by
"referenced-variable" or "referenced-variable-denotation". a"
appropriate.

The phrase "the type possessed by x" is strange o~j
artificial. It should be replaced by "the type of x". T'

will be possible when "type" is restricted to refer to O~
entity, not to a syntactic construct (because "of" applied to

syntactic constructs has a specific technical meaning by
clause 4).

The relevant clauses of the draft are referred by t~~ic
number only, so that: these comments should be read tog':-~"" .
with the draft.

2.1 LEXICAL TOKENS

The statements "Identifiers may be of any length. A"
characters of an identifier shall be significa"t." ;"'"redundant and should be made into a note. Ho...~:~- ,

restricting the number of significant charactprc .

identifiers to, say, 10 wo~ld not decrease the e'prc :v~

powt;r _ of Pascal, would allow compilers to be slightly '0<'["
eff1cient, and would promote portability of programs (be.-",,'
in any case programs will be used in environment:; 'We
supporting infinite recognition length).

The statement "A directive shall occur only i~

procedure-declaration or function-declaration." cou:"
misinterpreted so that, for instance, "forward~ could ,0t
used as identifier (which is the case in
implementations). A clarifying note should be added.

r

......

<D

""
......

I.

'1(

Clause 6.1.5 states that "An unsigned-real shall de"00, ,"
decimal notation a value of real-type". The mean,', (

"denote~ in this context requires clarification, si~cc .
unsigned-real in general does not exactly cor respond t" cn','
value of rt;al-type (the internal representation of real
nu~bers being what it usually is). Moreover, it cann0C be
un1quely derived from 6.1.5 what a processor should do ..ci.

~n unsigned-real whose mathematical value is outside t:;"
1mplemented range. Consider le-1000 (assuming a tv~iC~1
floating J?oint representation in which no aC~~""l
representat10n for it exists); should the processor repr<>on:

the value as 0.0, or as the smallest positive real n',
representable,or shouldit give an error message? And

'0
I,,'

about le+1000?

"0
J>

'"
'"\Jl
<D



The pseudo-production fbr string-character should be repl~c~
by a more adequate formulation, e.g. by the followi~g:

The syntax rule for string-character I:
implementation-defined and shall have the form

string-character = al 6 a2 0 ... 0 aN .
where each of al, a2, ..., aN is a terminal symbol denoti~9
single character.

2.4 TYPE-DEFINITIONS

2.4.1 General

The ..tate:oent "The required types shall be denoted
",'predefined ty~e-identifiers

" is redundant.

2.2 BLOCKS, SCOPE AND ACTIVATIONS 2.4.2 Simple-types

The draft requires, for a change, that every declaced
must be used. Ad~ittedly it is good programming pra:tiCr ~~
to declare labe~s which are not used; but why ~'o.:' 't>e treated differently from identifiersin this r"£~)-
processor may give warnings about unused ide~tif .£'
labels or it rnav not; but to specify such redunla[lC~ ~
violation of the" rule~ of language is questionaole.

,
\
'..~'

~

'1,1

The alternatives integer-type, Boolean-type, and char-tv:'"
should be removed from the production for ordinal-type. '
are redundant (being special cases
ordinal-type-identifier), there are no productions for ,
and the terms are used to refer to the abstract type-ent, I,
(instead of identifiers) in the sequel.

The production

real-type = type-identifier .
should be added.

A note should be appended to clause 6.2.2, saying t~.c.t ~'.,
scope of an identifier shall not contain applieJ occurr- ".
of sy,",onymous identifier (from outer scope), if .'1
principle is to remain. However, the proposeJ sco?~
unnecessarily complicate compilers, and it is unli~~ly ~
any st.3ndard can enforce such rules to be im?ler,;':'nt
pascal processors. We strongly suggest that the definiti
scope be revised back to the principle that the SC~?C s'
from the defining-point. It would hardly decreJse '1~ .,
security, and ",'ould be intuitivelymore understand~r'.-
the princirle that the scope begins at a point precl?di,,:
defining-point.

Clause 6.2.3.2 would be easier to understand if some nIt,
were appended, e.g. a note stating (as in the first,drif'
that each activation of a block introduces a collectlo~ 0
distinct local vaciables.

Clause 6.2.3.3 is extremely vague. Is the first stw':-'
nominal definition of "within" relation between aCtiv3;.
or does it prescribe where an activation can be d~.,~
(bi' what?). The statemer.t after the !"Iote uses ~,.
"withi~" to denote a relation between occurrences 0< I
and identifiers, on one hand, and activations, on the c 0"

presumably the word "within" should in that contex' '.
understood in some intuitively evident sense; but in .hot
sense can an occurrence be within an actlvatio~? ~!:
occurrence of an identifierprimarilyappears (text"" ~.."
within a block,and it obviouslydenotes some entit" 1<

;,
'belongs to some activation of that block: but the pru '10~

remains: what is the corresponding activation?

The specification of the
clarified by referring
numbers" instead of just
real numbers.

required numerical types would be
to "the mathematical set of whole

"whole numbers" and similarly ~0C

Since the specification of integer-type in 6.4.2.2 n;Qh~
interpreted as excluding the possibility of exist':'r.c~n:,
yalues of that type outside the interval -Maxint. .M",,;'.'
1S suggested that the sentence beginning with .T~e ..

shall be a subset of the whole numbers
---" be trun,'a,,',

that part cited: the denotation of values of intege:-c,
signed-integers is sUfficiently described by claus~s

"and 6.3, provided that the latter is extendea ~y ~
description of the semantics of a sign, as suggested earli0.
in these comments.

,.

The rules for subrange-types (in 6.4.2.4) are inexact anr!
given in a confusing order (syntactic requirements

:''\
:.,

intermixed with semantic specifications). For exa~ ,\. ,
starting the description by "The definition of a type

"may suggest that sub~ange type denotations would on1\
0'.'allowed in type definitions, and leaves unspecified

wh"t ',.definition of a type.

2.3 CONSTANT-DEFINITIONS

2.4.3 Structured-types

The specification of the effect of PACKED should be
J:""clearer. The phrase "should be economised" can be interDc,'t,.'

so that PACKED is a suggestion only, and the proce,s,;r
"

choose not to a~ply a,y effective packing even i~ it wou'
possible, or a processor may ignore PACKED entirely. Thi,.
assumably the 1ntenaed interpretation: the next paragr,

';',however! refers to the representation of a type
(val"es of' ~type) 1n data storage as being "packed". Evidentl'.'

t',"
i.,

some c0nfusion, b~caus~ nothing prevents the pr.)ce~~or r~~
represe~ting a structured type not designati?c1 P-h:-KPd

t".
,~

form WhlCh is packed (in the sense that minima~
st:"- _q'used) .

CJ
»

'"JT1The semantics of a sign in a constant, however obvi0u
should be explicitly specified. (Notice that such a sic!]
not an operator, so that the semantic rules for unary "+' a ,;

"-" are not applicable.)

0"1a



consequently, clause 6.4.3.1 should be modified as f~]'
First, the only statement that is strictly relaV
language definition is made: "The occurrence of the .~..,

packed in a new-stcuctured-type shall designate th, .....

denoted thereby as packed." Then the following is st,3t,,:;'.~

note: "The designation of a structured type as paC"
,,]

11".'
not designate any component of the type as packed." Th.'
note about the logical effect is given; this note may CP. 'i.'
the note in the draft. Finally, a third note (whi~

practically ver.y important but logically irrelevant) s' ".,1
be given, e.g. as follows: "On many proceSSl'rs,

"

...

designation of a structured-type as packed may c"u!'. ,'.

representation of values of the type to requi re 1css ~ \
storage than otherwise would be the case; on the ot:,cr
it ~ay cause operations on, or accesses to cornpon"nl:' ,',
values of the type to be less efficient in terms of space, c.,
time, or both."

2.5 DICLARA'l'IOtiS UtI DENO'1'A'l'IQIS
'"

VAJtIABLES

~l.use 6.5.3.2 does not specify the order in which the

indices of an indexed variable are evaluated, neither does it
state that the order is impleaentation-dependent. Analogously
with e.g. 6.7.2.1, it should be specified that the order of
evaluating the index-expressions in an indexed-variable is

iaple..ntation-depandent.

'!'he produCtion
field-designator-identifier . identifier .

should be included into clause 6.5.3.3.

In 6.4.3.2. as well as in 6.5.3.2 and 6.6.3.7, cel' "i~
syntactic constructs are defined to be "equivalent". Thf'
precise meaning of such definition is left unspecified. ':>..
"equivalent" presumably r.\eans is roughly what i~

,""""identical" according to Leib~iz' definition of irl"
("Eadem sunt qui inter sibi salva veritate suo

.

possunt"). Thus, a definition (convention) should be
stating that when two syntactic constructs are def in.",
equivalent, this means that either of the two constru.,'
be replaced by the other without affecting the correct"..'
meaning of a program, and that any rule .given for e i.r.~1":'
construct is applicable to the other as well.

. .

2.6 PROCEDURE AJII) Pt1JICTION DBCLARA'l'J';...i

Clause 6.6.3.1 specifies that with each formal value or

variable parameter there is an associated variable. Th:s
spacification is somewhat obscure because of the

pre.-'"
,;r .1"the article "the" (" --- defining-point as the ass.", .at

variable-identifier ---"). Similar comment appU..." ;:.;
procedural and functional parameters. The use of

"the" ~('C".'to suggest that the existence of such an associated entio.

has been previously postulated, which is not the case. .

Clause 6.6.3 does not spacify any restrictions on the allowed
types of a formal value parameter. Clause 6.6.3.2 specifies

that the actual parameter must be assigmaent-compatible wi t!,
the type possessed by the formal parameter. This means that
it is legal to declare a procedure with a value paramete,' of
a file type but illegal to call such a procedure. This is
so_what strange; in general, language def ini.tion should not
foraally allow constructs which are useless. The followL,~ ir,
sugge.sted:

1. Add th~ following definition to clause 6.4.3.5, bef0r~
the flrst paragraph of the very text:

"A type is said to
have a file component if it is a file type, or an array
type whose component type has a file component. Or a

record type such that at least one of its fields i~ or a
type that has a file component." Change the pa;ac];.!Dh

mentioned to read as follows: "The type-denoter Of' a
file-type shall not denote a type that has a fil~
component."

......

<D
00
......

A note should be given in 6.4.3.3, stating that for a variant
part without a tag-field, the select~r of the variant ~art
does not necessarily have a physical correspondence in th~
representation of the record type.

Clause 6.4.3.3 allows empty field-lists which. implies th.) t ,r.
empty record is allowed. However, the question arises whet'1<'r

a variable of an empty record type is initialized or not; o~

one hand each variable is uninitialized when it com.c" t..-
existence; on the other hand, a record is initialized ~hen
all of its fields are initialized, which means that an

c'' ;>t:'
record would always be initialized. Since empty records ar"
useless, a minor change of definition would remove this
theoretical but irritating problem: remove the outermosl;
brackets from the production for field-list, enclose the
symbol field-list into brackets in the production for
variant, and add (into the text) the requirement that for a
field-list with no fixed-part, at least one variant of the
variant-part shall contain a field-list.

The draft does not specify any restrictions on the use of
ordinal types as the base-type of a set-type. This
effectively means that implementation of sets will be rather
inefficient, which causes set types to lose a lot of !.',eir
usefulness. (So this change to the language is an operatlo~
which may succeed but the patient NY die.) The restri(;'t '.:n.',
as specified in the first draft, should be restored.

2. Change statement. (a) of 6.4.6 to read as follows: "(a)
'1'1and '1'2 are the same type which does not have a Ejle

component."

3. Add the following sentence to 6.6.3.2: "The tY?e of
formal parameter shall not have a file component."

By 6.6.3.3, "An actua~ variable parameter shall not der.ct..' ..
component of a variable that possesses a type t~Jr
designated packed." However, there is some doubt aboat

t:"relation of componentship. For clarification, the fOllowinl
note should be added: The relation of componentship is

"""transitive; that is, if a is a component of band b io

"
component of c, then a is not a'component of c.

"»
'"m
CTI......



In 6.6.3.7, it is said that the actual para"'C'~e"
corresponding to a conformant aH.ay schema "shall be eith"r .\

varlable access or an expression that is not a factor tha, i~
not a var iable-access" . Thi s is not very expl ic it, II"'; it
seems that the contents of that specification is not what is
intended: probably the second "not" should be removeJ? Of
cburse, any variable-access is an expressio~ that is not a
factor that' is not a variable-access, so the subsequent ruIns
are ambiguous. What is effectively meant is probably t-at
such an actual parameter shall be ei ther a var iable or ,.,

expression that is either a string constant (possibly !r
parentheses) or a variable enclosed in parenthes~s.

On the other hand, the differences between the first or?:
and the second draft in the specification ~
conformant-array-schemas clearly show that the authors of thp
second draft wish to allow conformant-array-schemas as ,..~"~
parameters. We have no strong opinion about such

c''''extension. However, if accepted, the extension should be mode
in a less confusing way. In general, value and varia~le
parameters are d~stinguished by the absence or presence of
the token VAR in a parameter-specification. We can see no
reason why this method should not be used ~~=
conformant-array-schemas, too.

2.7 EXPRESSIONS

The note in clause 6.6.4.1 should not be a note but a part of
the very specification of the language. Moreover, it laav"s
undefined what rules, if any, given for user-dec]~'e1
procedures and functions are applicable to r"q.,;,aJ
procedures and functions. This incompleteness is particularly
important to the semantics of Write, Writeln, Read, Reddln.
Pack, and Unpack.

Clause 6.6.5.2 specifies the semantic of Read and Write in

terms of an expansion into more primitive statements (cr.
also 6.9 for similar expansions). Now if Read(f,a,b) sha]l ~e
equivalent to BEGIN Read(f,a); Read(f,b) END we have t~ ~c~:'

1. shall the variable f be evaluated several times

2. shall such evaluation be affected by the effects of the

previous operations caused by the statement (consfder
Read(fAiA,i,j) )

Clause 6.7.1 says that "An expression shall denote a value

---", .and clause 6.7.2.1 speaks of "evaluation" Qf
express10n. However, it is not defined what is the value ~~
an exp:ession, or what constitutes the evaluatic",'
expressIon. It would not be very difficult to sc'p"l,
sufficiently precise definitions.

According to clause 6.7.2.2, 8The results of the eee
arithmetic operators and functions shall be approximatio~~

t'the co~res~onding mathematical results. The accuracy of ~h'~
approx~mat~on shall be implementation-defined." Such ill
~pecific~t~on is definitely an improvement but is
~nsuffic~ent. For what is an approximation? Suppose that we

have a floating point system where the range of ab,,;,,] u Lc>
values ~f representable numbers is roughly le-38 to 1.,+38,
and cons~der the operation of squaring the number Ie-3D. I,
0.0 an approximation to the result? Most mathematicians ~'"u],!
say no. And what about squaring le+30? Notice t:,at whJl :.,

commonly known as floating point overflow or underflow
S'h"

,

not be. an error according to the draft. Assumably a proce.;s"
may 2~ve a. runtime warning; but it must also proceed '-'~_Iqsome approx~mation" to the result. Notice also that cl,w;(
6.6.6.2 specifies that sqr(x) is an error if the square of

>does not exist; this can be interpreted so that underflow
c'overflow in the calculation of sqr(x) for real x would be 3;

error; why 'should sqr be exceptional in this respect?

It should be specified that the order of evaluation of t:,n
expressions of the member-designators of a set constructo' i~
im~lementation-dependent. Currently no order is specified;
~hlCh should probably be interpreted so that the order i~
~mplementation-dependent, but this should be stated
explicitly.

2.8 STATEMENTS

.....
cD
00
.....

Obviously it is intended that access to the fil~ variable i3
established as the first operation in,the executio~ or t~:
procedures mentioned; this should be specified.

Clause 6.,6.5.4 defines the transfer procedures Pac;' ar.<1
Unpack as "macros" 'whose calls must be equivaleTtt to t'"ogiven expansions. However, it makes no sense to inter~r~t
this literally because it would imply that the parameters ar~
name parameters, quite contrary to the nature of the PaSCl;
language. (Literally, 6.6.5.4 would imply that if in. naj.
Pack(a,i,z), a is an indexed variable (of an array type. (f
course), its indices should be evaluated N times whe::...

"
b

the number of components of z. Consider the (admitte,jJ)
theoretical!) possibility that the evaluations of, a a:.,i '
.ffect each other!) - Thus it should be specified that t',
parameters of Pack and Unpack shall be evaluated once orl,.
in an implementation-dependent order.

The requirement (in 6.8.3.9) that "The statement c'
for-statement shall not contain an assigning-reference t~
the control-variable bf the for-statement." is understan~ C1.
from the security point of view. However it reG.
complication of processors which would not' be oth~:'" _',
necessary (at least partial cross-reference information ,~.
be gathered). This means extra costs, the benefits I','.in,'

questionabl<;" ~hese commentsof courseonly apply to che,': i"'"~gainst as':<lgr;nng references in procedures and rune:,
""~nvoked wlth~n a for-statement. One solution would be I .

require that the variable used as a control variable
C'~

not be used outside that statement part in which
correspondingfor-statementoccurs. This would t><1''''decrease the expressive power of Pascal. It is moreaver 'c),

programming practise to reserve the control variables
f<"

that purpose only. Such a restriction would allow the rulp
mentioned to be formulated in a manner which can be
implemented with no significant extra costs. Notice hat
speaking of implementation in this context refers to inhe M.t
problems of implementing the requirement of the draft, no

<"any particular implementation.

"»
'"IT!
m
N



--

2.9 INPUT AND OUTPUT
2.12 TYPOGRAPHIC BRRORS AND STYLISTIC MATTBRS

The effect of read(f,v) when f is a textfile and v is ~f
integer or real type is incompletely specified in C}3U"O:

6.9.2. It is said that it causes "reading fro. f a sequence
of characters", and assu.ab1y reading involves the s<!;n<>
operation as get. However, the details are unspecified. The
error condition descriptions use the notion of "the rest of
the sequence", but it is left undefined what "the sequenC!e"
is, a related r.ule ("Reading shall cease ___OJ is given, but
it is obscure. For instance, if the characters "1", "E", ~n~

"X"
are, encountered, in that order, when reading a re.,,;

number, what happens? Most existing runtime systems r~por' )

format error, but the specification of the draft would ,~~~
to imply that the input should be accepted, "1" beil\g

t",'
longest sequence available that forms a signed-number. It' ir,

not only difficult to implement the lookahead required; .;uch

look ahead would be quite contrary to the fundamental ideas of
file handling in Pascal.

It is said, in 6.9.2 (b), that "It shall be an error if the

rest of the sequence does not for. a signed-number acc~rdin~
to the syntax of 6.1.5.". This purely syntactic approa~~
gives no answer to the question how underflow or overflow
should be treated.

The definitions (c) and (d) in clause 6.9.2 should be given
by appropr iate equivalent progrUl fragments or other uniqciely

interpretable methods.

The table of contents does not correspond to the titles
the text (e.g. for clauses 6.1 and 6.2).

Clause 3.4 should say "accepts a program" instead of "accepts
the program", i.e. accepts any program (subject to 1.2 (a».

The specification of char-type in 6.4.2.2 would be better
formulated" if the beginning of the second statement would
read as The values shall be the enumeration of an
implementation-defined set of characters". Similar comment
applies to the pseudo-production for "string-character" ir
6.1.7.

In 6.2.2.9, the word "new-po inter-types" should appear ir
singular, because it is preceded by "any".

In the final note in clause 6.4.3.2, the comma following
ho'word "which" is ungrammatical. (Possibly it should pr",ced"

the "which".)

In 6.4.3.5, the paragraph beginning with "Let f.L
each be a single value ---" uses the word
redundantly in two occurrences.

In 6.4.4, the comma after the word "them" in. the s"",cc':1J
statement is ungrammatical.

and f.R
.single.'

:z.10 PROGRAMS

The abbreviated notation specified in 6.5.3.2 and 6.6.3.7
described by saying that "a single comma" or "a 3 ','
semicolon" replaces a certain syntactic construct. T~e ~c:
"single" in these contexts is redundant.

The note in clause 6.10 is very obscure. What are the
properties of . pascal progrUl?

The pragmatic meaning of sample program t6p6p3p3d2revised ~~
test program should be enlightened. Moreover, the program iR
related to earlier versions of draft standards (the pr~gram

is not related to clause 6.6.3.3 as one would expect), ar~
should be accordingly updated.

.

In 6.6.3.6 (e) (1), the word "index-type-specification"

misspelled as "index-type-specifiecation".

In 6.6.5.3, the second statement of the specification of the
second form of new contains the misspelling "possese~" 0f

"possessed".

.....
cD
00
.....

2.11 HARDWARE REPRESEN't'ATION

Co..-nt delimiters should be required to be ..tching, so that
comment beginning with "(." is only closed by".)" and
comment beginning with "i" is only olosed by"'". In fact,
clause 6.1.8 should be rewritten in this respect, so that
there would be two different forms of comments. The character

"'"
(as well as Wi") has been replaced by a national lett~r

in several modifications of international charact~r code~

In 6.9.4.5.1, the specification of the condition under ..."i,-',
the sign character is '-' involves the condition (eWrit"
0). However, it seems to be so that (e<OJ i~F'
(eWritten>O) so that the latter can be omitted. Probably _

redundancy results from an analogy with 6.9.4.5.2. (For f:,~
point representation the condition (e<O) and (eWritt~~'G
does not contain redundancy, of course.)



ATTACHMENT E

COMMENTS FROIf, THE FRENCH MEMBER BODY
ON ISO/TC '!1 /SC 5 11' 595

SECOND DP 7185 - SPECIFICATION FOR
COMPUTER PROGRAMMINGLANGUAGE PASCAL

GENERAL

The French committeevoted positivelyabout this second draft proposal,one
of its main motivations being that the standardization of PASCAL will be useful
o~ly if it is completed very soon. As a further way to speed up the remaining
part of the standardization process, the French member body strongly suggests
that the next meeting of WG 4, whose main purpose will be to revise and incor-
porate if possible those improvements suggested during the vote, do not wait
until the next meeting of SC 5 in London, but is convened before summer.
The French member body officially offers to organize such a meeting in NICE,
France, in June or July of 1981. This should allow the completion of the standard
to be ,done in the present year.

The following comments are devided in two parts : technical comments, which deal
with the languagaPASCAL as described in the second DP 7185, and editorial comments,
which deal with the description itself. Comments considered especially important
by the Fren~h member body are emphasized y;

th an asterisl:.

COMMENTS

The French committee tried several times, but with no success,to obtain the
specification in Standard Pascal of a required character set, and to obtain a
clear separation between the description of the reference language and its
various hardware representations. The current state of the draft proposal shows
that these proposals were not so bad, since, while the printing quality and the
character set of the descriptions of Pascal are quietly worsening from one version
to the next, they become at the same time more and more similar to the current ISO
standsrd chsracter set. The last evidence of this progressive modification is the
replacement of the character

"f ", the only remaining one that was not in the ISO
aet, by the character""". Although thesemodificationsresult only from successive
changes in the printing devices used for the successive descriptions, some benefit
can be got. Hopefully, the final version of the standard description will not use
a printer with only the 48 character set of Fortran !

The main concern of the French committee is that the lexical description of Pascal
does not prevent the use of good printing devices with their full range of capabi-
lities, i.e. that Pascal programs printed with boldface keyboards, italics identi-
fiers and not-too-offending operators (for exemple, in both Wirth's books published
by Printice-Hall) are legal Pascal programs.

This does not deal only with books, after all, since the time when phototypesetters
or printing devides of an equivalent quality will be usable for ordinary computer
output is probably not so far.

Although a clear distinction between the reference language and its hardware repre-
sentations would have been considered by the French committee more appropriate for
such a purpose, the current draft allows almost completely what we need, in a
different way. Since the representstion of letters is considered insignificant, the
only remaining problem is with special symbols. Alternative representations were
provided for implementations which lack some good quality characters, like square
brackets or braces. In the present draft, an alternative is provided for implemen-
tationswhich have a better character than

""", i.e. the up arrow.We propose to
prusue in such a direction, and to provide good alternatives for unsatisfying special
symbols. No implementation is required to provide these alternatives if they are not
available in its character set, but a program which Uses them is legal. Our proposal
of course, does not include bad representations for existing good symbols, made
only for using available characters,like "&" for "and", tor example, or worse,

" -If" for "::F".

~ : table 6, page 68

Add the following alternative symbols, which appear in the order of decreasing
importance :

reference

alternative

<) <=
4 ~ ...,

>=

~
and or not

v

The French committee tried to compare the four successive variants of the proposal
that were done in the first DP 7185, in WG 4 documenta 11'5 and N 9, and in the
current DP. The main critic we made about the current state of the proposal is that
a feature added for a very precise purpose (i.e. to allow character string constants
as conforment, array parameters) is now used for s completely different thing, remi-
niscent of PL/1 (i.e. simulating value parameters with dummy variables).
Vhat is worse, the first intended purpose is not completely achieved, since a formal
conformant array parameter cannot be a string variable, which greatly weakens the
advantages provided by the feature. Several possible solutions were considered.

The proposal we made seems to have only very simple consequences on both the descrip-
tion of the language and its implesentation, it needs no modification to the level

o conformity, and its has interesting consequences on most uses of conformant array
parameters.

Proposal 1 : Section 6.6.3.7, pages 35 to 37

Come back to the wording of WG 4 11'9, or somethingequivalentwhich uses an auxi-
liary'variable only when the actuel parameter is a string constant, and moreover
which does not force any implementation of the feature.

Proposal 2 : Sections 6.4.3.2, 6.6.3.7 and 6.6.3.8

In Section 6.6.3.7, allow the lower bound of an index-type-specification to be
a constant of the suitable type, in which case the correspondingactual parameter
sust have an index type with the same lover bound.

"»

'"IT!



Conformant arrayparameters witha constan~ lower index bound would probably be
the great majority, and they can be implemented more efficiently. Moreover, in
Section 6.4.3.2, extend the definition of e string type to include the Case of a
packed conformant array of characters with a constant lower bound of 1. Thus the
formal parameter is a string, comparison operators can be used as well as the
procedure wri te, and it should only be stated that it is an error .hen upper bounds
differ in an assignment involving such "conformant strings".
Of course, the two preceeding proposals should be carefully worded, and all conse-
quencss on the full draft. taken care of. This could be done for the next meeting
of VG 4.

On page 12, Section 6.4.1, the last sentence of the paragraph that follows the syntax
makes an exception to a general rule, especially for allowing the use of a type-
identifier in a pointer-type, while it is not entirely defined, as in the following
example :

.

~ TI = record ... X : 'tTI ; ... ~ ;

Of course this is not necessary, since the type tTI may be defined ans named before,
an probabiy this definition is needed anyway for other purposes, because of the s~rict
compatibility rules. Vhat is worse, this exception legalizes 80me absurd type def~-
nitions, as in the following example :

~ T2 = array [1. .100] .2!.. 1'T2

T3 = tT3;

Proposal: Section 6.4.1, page 12

Remove the first half of the last sentence of the second paragraph, which thus
becomes :

"The type-denotershall not contain an applied occurrenceof -theidentifierin
the type-definition".

On page 48, Section 6.7.2.2, the first paragraph implies that there may exist some
values of the integer-type that are not in the closed intervsl -maxint..+maxint.
This seems useless. On the contrary, on machines using two's-complement arithmetic,
the negative number with the largest absolutevalue could be used as an "undefined"
value, extremely ussful for checking that variablesare initialized.

Proposal: Section 6.7.2.2, page 48

Reword the first paragraph so that the integer-typeis exactly the interval-maxint..
+mexint.

EDITORIAL COIOIElI'1'S

- page 2, 1.2 (a)

Add the sentence ", and the actions to be taken when the corresponding limits are
exceeded".

This suggestion was triggered by the constatation that nothing was said about what
happens when the procedure DeW finds no more availablespace.

page 7, 6.1.5

Iothing is said about the meaning of the period and the digit-sequence that follows
it, in an unsigned-reel. A possible solution would be to replace "digit-sequence"
with "fractional-part", defined elsewhere as a digit-sequence.

page 10, 6.2.3

This ~hole section ie very difficultto understand.A possible solution wouJd be
to use a simple stack impl88entationmodel,not compellingforimplementaters,but
much clearer.

- page 11,6.3

This is the first occurrence of a systematic principle used in the whole standard,
i.e. identifiers are always quelified in syntax rules, except for their defining-
point. This is pretty good, but a note should explain it, for example, at the end
of Section 6.2, or in Section 4.

pages 15, 18, 19

Exaaples use type identifiersthat are defined only on page 22 (colour, vector)
or not defined at all (string, angle). Something would be done.

......
cD
00
......Boring repetitionsoccur every time somethingis saif about procedures and

functions. By defining the term "subprogram", and by specifying a uniform subs-
titution with either "procedure" or "function", it should be easy to simplify and
shorten the second paragraph of page ", thelasttwo paragraphs of the same page,
and Sections 6.6.3.4 and 6.6.3.5 on page 34.

page 34, 6.6.3.3

Since the types possessed by the actual-parameters are the same aa that denoted
by the type-identifier, they must be identical. The second sentence of Section

6.6.3.3 is consequentlyuseless.

page 35, 6.6.3.6

II)' replacing in (a) the two occurrences of "valus" with "value(resp. variable)",
it is possible to entirely omit (b).

page 36, 6.6.3.7

A note should be insered before the last paragraph of page 36, explainingthat
bound-identifiersare neither constantsnor variables.



ATTACHMENT F

page 37, 6.6.3.7
1981-03-02 German Comments on Second DP 7185

Part I. Technical reasons

Page 1

The first sentence of the second paragraph is impossible to understand, and
probably wrong. The fourth paragraph is extremely difficult to understand, and

should be either worded differently or illustrated with an example, or both.
In the third note of the page, "anonymous" should be replaced with "auxiliary",
for uniformity.

page 43, 6.6.6.4

1. Call-by value for conformant array parameters

We do not approve that the call-by-value of con formant array

parameters is specified by enclosing the act u a I para-

meters in parentheses. In Pascal, the parameter access method

is always specified with the for m a I parameters. There

should be no exception for conformant array parameters.

The descriptions of succ and pred differ only by one word ("less" instead of
"greater"). A simplification in the same way as page 35, 6.6.3.6 should be possible.

The last three paragraphs of the page begin with a sentence stating that a term is
an error if something occurs. Given the definition of an error, it should be better
to state that it is an error if y

= 0 in a term of the form x/y, etc.
2. Use of "denote"

page 47, 6.~.2.2

page 50, 6.7.3
The use of "denote" in Second DP 7185 is not consistent. See

the accompanying notes "German concerns on the use of 'denote'''.

For the sake of uniformity with Section 6.8.2.3, the second sentence should end
with "... sctivstion of the block of the function-block associated with the function-
identifier of the function-designator".

page 52, 6.8.2.4 Part II. Editorial comments

The wording is extremely unclear, especially in (b). What are "these exceptions" ? O. INTRODUCTION

Delete this heading and include the text as new paragraph 1.3 .page 53, 6.8.3.5

By adding", otherwise it shall be an error" at the end of the first paragraph,

the second one can be omiHed.

4. DEFINITIONAL CONVENTIONS, Table 1

Delete the line "> shall have as an alternative definition".

page 55, 6.8.3.9 5.1 Processors (h) and (i)

Replace "specified for errors" b1 "specified for violations".

r-
Nothing is said ~bout the assignment-compatibility of the initial-value.

page 59, 6.9.1 6.1.5. Numbers
Change the sequence of the syntax to run from signed-number to

digit-sequence (top-down) in accordance with usage in other places

of the Second DP 7185.

It seems that only textfiles occurring as program-parameters could be used at all.

This relates to nothing elsewhere, and should be omitted.

page 68, 6.1.1

page 67

6.2.3.2 (d) and (e)

Formal parameters are associated to the b I 0 c k , not to the

identifier (see 6.6.1). Change, therefore, the wording as foolows:

(d) for each procedure-identifier local to the block, a procedure

with the procedure-block corresponding to the procedure-identi=

fier, and the formal parameters of that procedure-block; and

!e) for each function-identifier local to the block, a function.

with the function-block corresponding to, and the type posses-

sed by, the function-identifier, and the formal parameters

of that function-block.

-.:J
»

'"m

The lastpartof note 2, dealing with the possibility of national variants, disap-
peared during the summer. Why ?

The chosen example cannot be considered a significant demonstration of the capsbili-
ties of Pascal. A better example could be found in one" of the numerous textbooks
about the language.

Appendices

Syntax diagrams are recognized as an excellent means for syntactic descriptions,
especially for Pascal. They should be included in an additional appendix.



6.4.2.2 integer-type

Include after "see also 6.7.2)." the following text taken from

6.7.2.2: "The required constant-identifier maxint shall denote

an implementation-defined value of integer-type. All integral

values in the closed interval from -maxint to +maxint shall be

values of the integer-type."

6.4.3.4 Set-types.

Replace "of its base-type" in the first sentence by "of the

base-type of the set-type".

Replace "an unpacked set designated" in the last paragraph

by "an unpacked set type designated".

6.4.3.5 File-types. Last four paragraphs.

6.4.1 General. Second paragraph.

Replace "as the domain-type" by "in the domain-type".

Replace "a sequence xNS(e), where x is" by "a sequence cs..o(e),

where cs is".

6.4.1 General. Third paragraph.

Delete the sentece "The required types shall be denoted by

predefined type-identifiers (see 6.4.2.2 and 6.4.3.5)."

Replace "If x is a line then no component of x other than x.last"

by "If 1 is a line, then no component of 1 other than l.last".

6.4.2.2 char-type

Insert after "without graphic representations" the following

text n, the others denoted as specified in 6.1.7 by the

character-denoter".

Replace "A line-sequence, z, shall be either the empty sequence

or the sequence x"'Y where x is a line and y is a line-sequence"

by "A line-sequence ls shall be either the empty sequence or the

sequence l"ls' where 1 is a line and ls' is a line-sequence".

Replace in (b) the text "shall be x~y where x is a

line-sequence and y is a sequence of components" by "shall

be ls~cs where ls is a line-sequence and cs is a sequence

of components".

6.4.2.3 Enumerated types.

Delete "as their identifiers occur .., enumerated-type" and

add after "from zero." the following: "The mapping shall be

order preserving."

In the NOTE following (b) replace y by cs in two places.

6.4.7 Example

In NOTES 2. replace "to have been declared" by "to have been

defined".

6.4.3.1 General.

Change the sequence of the syntax to run from new-structured-type

to structured-type (top-down).

6.6.1 Procedure-declarations. Third paragraph.

Replace "the the procedure-declaration" by "the

procedure-declaration".

6.4.3.2 Array-types. Next to last paragraph.

Insert after "a smallest

largest value of greater

the use of string types.

6.4.3.2 Array-types. Last note.

value of 1" the following: "and a

than 1". This is a clarification for

6.6.3.6 Parameter list congruity.

In (e) (1) replace "index-type-specifiecation" by

"index-type-specification".

6.6.3.7 Conformant array parameters.

Delete comma after "which".
We propose to use the syntax as stated in "Notes on US concerns".



6.7.2.5 Relational operators. Table 5.

Delete "(see 6.7.1)" after "a canonical set-of-T type".

In the fourth paragraph after Table 5, replace "Where u and v
denote simple-expressions" by "Where u and v denote operands".

6.6.5.2 File handling procedures. First paragraph.

Move the clau~"and similarly for fOA and ~" to the end of

the sentence.

6.8.2.3 Procedure-statements. First paragraph.

In the text "which is list of" insert an
"a" after "which is".

6.6.5.3 Dynamic allocation procedures. NOTE.

Replace "see 6.8.2.2" by "see 6.8.2.2 and 6.6.3.2"

6.8.3.5 Case-statements.

Delete last sentence of the first paragraph
"One of the ...

to the case-statement."

6.7.2.2 Arithmetic operators.

The paragraph after the NOTE shall read as follows:

"Any monadic operation performed on an integer value in the

interval -maxint..+maxint shall be correctly performed according

to hte mathematical rules for integer arithmetic. Any dyadic

integer operation on two integer values in this same interval

shall be correctly performed according to the mathematical

rules for integer arithmetic, provided that the result is also

in this interval. Any relational operation on two integer values

in this same interval shall be correctly performed according to

the mathematical rules for integer arithmetic."

(Note that the other parts of this paragraph have been shifted

to 6.4.2.2.)

6.8.3.9 For-statement.

Replace "The value of the final-value shall be assignment-com=

patible with the control-variable" by
"The value of the

final-value shall be assignment-compatible with the type

possessed by the control-variable".

6.8.3.10 With-statements.

Replace "as the only record-variable" by "as single
record-variable".

In the Example replace "shall be equivalent to" by "shall
"has the same effect on the variable date as" .

6.7.2.4 Set operators. Table 4.

Insert after "a canonical set-of-T type" the following: '~ee 6.7.1)".

6.9.2 The procedure read.

(c) Delete the clause "the longest sequence available that forms".

Change the sequence of the last sentences.

(d) same as section (c).

.....
>L>
00
.....

6.9.4.1 Multiple parameters.

Delete the heading; preserve the text as part of 6.9.4.

6.8.1 General.
6.9.4.2 Write-parameters.

Change to 6.9.4.1.
Replace "A label occurring in a statement" by "A label, if any,

of a statement".

6.8.2.2 Assignment-statements.

6.~0 Programs. First paragraph.

Replace "Each program parameter shall be declared" by
"Each

program parameter except the identifiers input and output, if

occurring, shall be declared".

Second example: Replace "t6p6p3p3d2revised" by
"t6p6p3p4d2revised" .

"»
'"/T1

0">
00

Delete the last paragraph "The state of a variable ... possess

a structured-type." Insert this text under 3. DEFINITIONS as

3.5 undefined. and 3.6 totally-undefined.



German concerns on the use of .denote. 6.6.3 Parameters: Formal parameters and actual-parameters are
syntactical entities and do not possess a type! The type is
possessed by the variable denoted by the parameters. .
P.ere we have a real clash in terminology, because we shoulo
better associate the type of a formal variable parameter
with the parameter-identifier, not with the denoted variable,
since the denoted variable is the variable denoted by the
corresponding actual-parameter.

6.6.5.2 File handling procedures: On p. 38 the verbs .to
denote" and .to ,be" are used just the false >lay round. Some
examples: "vl...vn denote variable-access" should reao
"vl...vn are variable-accesses", .Consequently it may be a
component of a packed structure" should read "Consequently
it may denote a component of a packed structure", since
variable-accesses are pieces of text (like vI) denoting
variables (like components of packed structures).
Additionally, only the variable denoted by the file-variable
f possesses a type, and read, readln, write, writeln are not
procedures, but procedure-identifiers.

In the use of the word 'denote', we realize the insight
that there exists a sharp difference between the 'thing'
meant by a certain piece of program text, and the program
text itself. All kinds of syntactic constructs never are
those mysterious Pas c a 1 things, but only denote them.

NOTE: This distinction may be found in some formal language
definition techniques, especially the denotational semantics
(see Gordon, Stoy, Tennent, Bjorner/Jones).

We fully agree with an approach allowing us to treat the
Pas c a 1 objects without need to refer to some syntactic
instances, and we feel it the only way to succeed in drafting
an unambiguous and yet understandable standard.

Unfortunately, however, the promising approach has not been
carried throught the whole draft, what lack, on the one hand,
makes'it even more ambiguous than former, not formally based,
drafts, and on the other hand, at Some points totally unclear. 6.6.5.3 Dynar.>icallocation procedures: P

(a statement missing in the draft!) and
which possesses a type an~ r.>ay be

is a vuri~ble-access
denotes a variable,

attributed a v~luc.~s an e~ample for the latter conjecture look at 6.6.3.7 of
119. There is stated on p. 1£, line Cf: the formal parameters
shall possess an array-type ...", and in the NOTE on the same
page: "The type of the fon"al parameter cannot be a string-
type (see 6.4.3.2) because it is not denoted by an array-type."

For the initiated, the word "denoted" in the note makes clear
that the latter "array-type" means a piece of text derivable
from the syntactic non-terr;:inal array-type (1'.15 of t~4), whIle
the forr;:er means a semantic entity, a property of a varlaole
structured as an array. Is every reader of the standard initiated?

6.6.5.4 Transfer procedures; A can
a variable, j and k don't possess
does not have a value.

ROT E: It is ir.>possibleto list
6.6.5 and 6.6.6. t'leassur.>ethat
untergone careful reading when
between syntax and semantics.

be a variable-access, not
types, and an expression

all inconsistencies of 6.6.4,
these section have not Lccn
introducing the distinction

The follo\oling lines list those places in 1.14/119,where we
found errors in the two drafts related to the "denote"-
distinction bet\oleen syntactical and semantical entities.
We do not claim for completeness!

6.4.2.1: Simple Types General: We are not able to derive the
real-type (integer-type, boolean-type, char-type) from simple-type,
but only the denoting identifiers.

simple-type = ordinal-type I real-type-identifier

ordinal-type = new-ordinal-type I integer-type-identifier I
Boolean-type-identifier I char-type-identifier

6.4.3.2 Array-types: the second to sixth occurence of the
word "array-type" in the section address the synctactIc
entity, the others the semantical thing, the mapping.

NOTE : He aSSume that all sections on type specify the same mess,
but do not list all of them.

6.7.1 Expressions General: The first sentence states, how
it should be: "An expression shall oenote a value". The last
paragraph on p.43 and the NOTE, how~ver, miss a number of
IIcenote"s: "shall have the value denoted by x", l'froD the
value denoted by x to the value denoted by y", "if the
value denoted by x greater than the value denoted by yO.

r

......
'..0
00
......

6.7.2.5 Relational operators,

6.7.3 Function designators,

6.4.3.4 Set-types: In the last paragraph .S. seems to be
the name of the semantical thi~g, but the wording .set of S.
instead of set-of-S supports the syntactical view. In either
case, it is used wrongly.

6.B.3.4 If-stater.>ents, and

6.B.3.7 Repeat-statements: Here we find
which (possibly) reflects the fact, that
by the expressions are time-variant. We
point later.

6.9 Input and output: The points of 6.6.5.2 as to .to be",
.to denote", .to possess a type" and to the distinction
between procedures and procedure-identifiers apply here, too.

the word "yields",
the values denoted
will comDe to this

In the second paragraph, .buffer-
the syntactical structure and the

As we have tried to show, the introduction of the syntaxl
semantic-distinction, which made the draft much harder to
read than its predecessor s, resul ted, as undergone only
half-hearted, in a draft being neither exact nor readable,
while former ones were at least readable.

-0
»

'"
'"

6.5.1 Variable-declarations:
variable. is used for both,
semantical entity.

0->..0



We do not think that correction of all errors (or laxities)
will do, as the standard; then, will be totally unreadable.
tnstead, we have two alternative proposals for further
processing:

1) Pull the approach tD its end, but in a more suitable
form, Le. give a fOrIJal definition of PASCAL based
on Oxford notation or the related and .more convenient
Vienna Development IIethod. This >lill establish an
unambiguous reference for implementors and debuggers.
Additionally, for the informal reader (he who would
have been content >lith one of the former drafts)
annotate the formal definition with some text along
the lines of one of the former drafts.

ATTACHMENT G

Japanese Cohents

We saw th~t the .: Diid .draft p~-osal IN -595) Md been extre.eh ial'rove.:f. the
elaboration. <lOne b~ the editors shall be hi~hl~ apPreci.ted. HINeve.. the
propos. I still cont..ns severil ..oble.s to be considered £Irtfullw and, beciNSe

S~t of theil, are verv "sential, we ~te YVt!:i sorry 1.0 disapprove tht draft t.his
t18e on~e .1I.ln. Our coeaenls are as follows.

2) ~ake the distinction between syntax and semantic totally
clear by consequent wording, e.g. a syntactical non-
terminal denoting Some semantical entity x should be
Specified an "x-denoter". Pushing this approach through
the draft will at least Convert all inconsistencies
and ambiguities into errors, which may be fixed by two
ways, an exac~ one and a lax one:
The e>:act one proceeos by inserting the words
"denoted by" at all places where they are needed. As we
mentioned earlier, the draft will Frobably become un-
readable. The lax one includes. the sentence: "Uherever
context makes clear whether an x or an x-denoter is
addressed, the x-~enoter is used to name the x". Then we

m"y throve a\-lay a lot of "6cnote"s and have to correct
only some places (e.g. the first mentioned section on
conformal-array paraIToeters).

1. Scope rules (6.2.2)

1.1 Accordin~ to 6.2.2.4, the ruIn 6.2.2.5 and 6;2.2.6 sh.ll be exc1..sion
Pfu,clples. Fro. t.his ...ilPwpoinb rule 6.2.2.5 ."eas 8111riltht. HoweYII",
6.2.2.6 shall be "~ded .s:
-~.2.2.6 th@ re~ionth~t IS the fleld-s,;ecifl@rof a fi@ld-desi~nator shall be
exclrJded froll the .rlclo'Sin~ Scopes.
The ori!!iil"lal 6.2.2.6 eHPnsses the saa. rule n on@expressed in 0.5.5.3 and
thlJS see-illSslJPerfllJOus.

NOTE: ~..]e like
and .,:hus

proposal I
more suited

better, since it is more clean
for an international standard.

1.26.2.2.7 oMII be Hended .s:
6.:.2.7 Th@ro sholl not

bel"" d@nrii;"I~poinj,sHOft.he sHe identifier or lab I
:or- ~~ SSlbe reSliD~. The ori!linal 6.2.2.7 8The Scope of I definin5 point af :n
IdenhflE~r Shill It'lc1 IJdfl no other definirl~ point of the saae identifier. does
not. allow, sa!;l, the o:curerlce of the value paTaut.er identifier because (see
..33) the sco.e tMt lS the fOf'1oal paraoeter list of the defini,,~ Point as a

. ~a~aa:t~r___ id!~ti!~!r_ _
~
~_of)tilins the _definirll point as the associated variable

lder,hfter for the rUlon th.t is the block. --.

At last, a few words on the c1efe,rEd time-vari~nce problem:
ThE relation betIJeen a v<:riable-access or a function-designator
and its value is not as simple as the relation between a type-
denoter and its type, but is tIJofold: the variable-access
denotes a variable, and that variable "denotes" the value
actually attributed to it. The semantics of an assignment
statement is a ch~nge only of the second relation, while a
procedure call ~ffects the first one. So we should not use the
word denote to describe the rel~tion between a variable-
access and its value, and, as expressions incorporate variable-
access, an expression and its value.
In the denotational semanti cs tIle t,,,o-stageness is reflected by
the Use of tVIO different mappings, one relating the synctactical
to the semantical entity, and one relating that to the value:
By this, you can clearly describe how different operations
(assignment versus call) affect different changes in meaning.

Conforlllant arts':I f'.raa.ter's

?tl We _~~ve dis~_u~sed on t~is liatter very intensivel':l artd caa. to conclude that
the cOlilforllarlt-arr.':I-~ara"elers in to-h. --present---f-or. fs--stiil too ad hOc arid
prer.,at.~~e. I~ .a~,es it ,vers hard to teach or Ixplain the lan:!Jua!le. It
~'LJr,lt'a~lL'ts .

wIth the ori!hnal ai.. t)f the langua.. that is Ita ..ke aVlil.bIe a
langu~~e sUItable for teaching prosra..ins as it svsteaatic discipline based 01"1
corhtr, f'1r,d..ont.1 contepts cl...rJ~ .nd natur.ll~ reflected b~ the lan "e..
If __th" __c~nfor..~t

. parauters shall be introduced for 'writin~ Of both
s':Istelll and BFrf'licallon sott.wa-".' J - "the ir;clusl0n o{- of.iy canfarasnl' arras
h3ral1E-leT"S seeliS not erIOIJ!ih. We need "Ort~ feallJres. So, we stronsly reco..tmd
tu r~ove the canfarll,ant

arr.'=! para.ete"s frail the current. draft. It shall be
:econSldere~ _to"ether with other iworhnt extension.. after tIW current draft
IS standardIzed. -. -- -

>->
<D
00
>->

I!eferences:
Bjor ner D., Jones C.B (eds): ThE: Vienna Development Ilethod:

The Meta-Language, LNCS 61, Springer 1978
Gordon N. J. C.: The Denotational Description of Programming

Languages, Springer 1979
Stoy J.E.: Denotational Semantics: TI~ scott-Strachey Approach

to Programming Language Theory, HIT Press 1977
Tennent R.D.: The Denotational Semantics of Programing

Languages, CACn 19 (1976), 8, 437 - 453

--:r.:' -rspeCi,,1ril-.w,; -60r,'t 1n~e--U'e--'-,;.nur'" -t"-liiififfi.-v,,Iii..- ana-virTa&Ii!-
..r..et...s at the c.llin~ site. This is not the principle of Pasc.1 but of
Forto.ran. W@can oot acc.pt the 8ixture of P,sc.l and Fortran.

2.3 Descriptior,s for the confor8anl
&1"1"."paralUt.rs hay. not b..,.. brUSMd UP

_T_~_ :;e~t!"ce lik~_ ._the _~ctu~_l_~a!~...~!~._~~ll.~e either a variable acc... or .;,
expruslor,. that lS not a foctor that is is not . -"ir,.6i.access' is.bewond-cN-"-
und.rst~ndln.1 Mor.over, in the sa.. claus.e, there Ire s.vwral places wher. the
e"Presslons are uant in this sense without an~ cOHents. lie think it would
take 19n. to IIiPrOy. the !dea of the confor..nt ilrr.~ ..ar..t.rs. So. in order
to a~Prove the dr.ft ln one or two .ore editin~., the discussion of the

m_c~nforu~t_ar:.r.~. !a!al~e!:.ers ~~ll_~ ~~~oned __to
~~ l~~er ~e_r_s!O!'.

"»
'"m



3. Syntax rules

~. 8 character rule for identifiers and ~ disH rule for labels
If the eisht character rule is not ado.ted then the four disit rule shall be
I'elko'Jed.

. -~ ---------------------
0.1.0 .th~t shall be in the closed internal 0 to 9999' -) ...tv.

- > F.ack.d~corlfor.ant~arr.y-.sche.d I un,.acked-contaraant-ar ra.v-schea.
h3(. 1.~3 contairls -) closest':conl.-ins- -- . --- .--
p.3t, 1.25,26 IJI

'of' lar-rav' Ip -) )
of array [ (Word I"abals are not Ducted

olJtside the syntax rules,)
..38 1.13,1~ is is -> is

".40 1.11 Irlf.ert 'write' and adjlJst indentation.
___~_..~O_new!!): Indicate that. is the variable .araaeter.

h~l pack(od,z): Indicate that z-is-the varIable"para..tior. And so on.
f'.4S 1.1 Add land

j
:> O' .tttH Ii >= 0',

p.51 1.-20 or to the function-identifier -) or to the turrelion denoted bv the
fUflc~ion-identifier (se. 1.-9 wtKtn tM Yilriable Dr function does not hlv.
attributed ...)

p.52 Ins@rl 1(*This Ixa.,.le is not for level 0.*)1 to procedure statuer.t
- Add,I~c\,ors. -.

p.53 1.2 6.8.3.3 conditional-state.ents. 6.8.3.3 condltional-stat'llents

(reltoye F'eriod. see 6.8.3.~ if-stat..erlts)
f'.S:; 1.-6 Delete 'orle of the case-constants t.o t.he case-statellents.1

because the wae .earlins is containded in thl next sentlOC'. lit. ~all be an
.rror if ... _~!on .nt!~_t~_~~~~S!-st..!~.!.e,!~_____

3.1 Grauf's of-s~nlah-'r-u1es in i- crausi are ,,-resent.ed -boit.o.-uP (cf. 'xPrlssion
6.7.1> or to.-dowr. (cf. record t~.~s 6,~,3.3) or in ai.ed order (of,
struct'Jred t""e 0.4.3.1>. The" shall be .resented in a s~ste..tic wa~.

3.2 ThrolJSholJt the whole s~rlta~: rules, there are nonter.inal '':Iabols which Ire

defilied but not referred to in other rules. TheY are onl1:1 used in se.antics.
The~-- Ire1 F-oinle-r':'tYF>e, f'rO~ralb. ilad":p-arallet.er--lfsb relldln-parHet.-r-:list,
51--f"cial-syabol. siined-nulllber, si..pl.-t1:lpe, struct.ured-tvpl'
write-r--.He;n'fter-list and writeln-paraaeter-list. The":1 shall be indicated as
such. (For instance with arl asterisk as in ALGOl 68.) There are oont.r.in.l
s':Ir:lbols that are referred to blJt not defined. Thel:J are:
fit'?ld-desiinator-ideotifier, inteSer-t~pe, boolean-tvpe, char-type and
reai-t"... fielFdes-isnai:or-identHior- '-shall -be definiiC mOthers - sh-all -be
indicatt'?d.

5. S~OIJerIC~ hl~e tlJles b.~.3.5
In rule (c), COIiPorlent c is also eoraeatfoated fro. the ri.ht to define .last
like :;"'5(c). 50-' 'the- rlJle-

(b) 5hall-be .IIEmdedf land S(c)"')( and x"'S(c) shall

also be a seoue'lce, I As a whole, the precis.n.,s of description of the draft
varies e}:cessi el~ fro. ,.laee to place. Act'ordin.ly the draft a.kes readers
fj;~d ti'£I cO*f<osjtion Vfry unbalanced We be-lieve Erlslish spealdnSi people will
roat.ur-;11:: feel the f'oirlts b':l far lIare sensibl':l than we did.

6. New-t;sr:oe

T':IF"es are del"Jated either b~ t':lF<e-identifier or nN-type. See ,.12.
t.':IF"e-denater

;;: tYFoe-identifier I new-tvPI
urdinal-t'::tpe ;;: new-ordinal-t':lpe I I

ordinzl-to::lF"e-identi fier .
.SQ~- si.ilarr~ ar-ras-l':lpe- shan be

.

.,1fr:""--t~,~€!
;;: rlew-arra~-t':lpe I arra':l-t'::lF<e-identitier

Tt.e l';;:F'c'-ijenbfi~r vector shall be the arra':l-type-identifier, not the
structlJred-t,:,,,e-identi tier. And so on.

--
. -

USA Comments on 97/5 N 595 - 2nd Draft Proposal 7185 - Pascal

Co...nt on Section 6.6.5.3

StatWl: Error

ATTACHMENT H
PART I

--------
PROBLEM:

-"';---E"di"iorIal co r;-ts-
:-,,7 uns]!ined-real ;;: IJnsi!ined.-inte!ier(I.- '-el ... ).

h9 1.-14 Hdd 6.10 (definirlg point tor input and outftlJt)
r~.~2 1.17 (a) 11 and T2 are the saee t':lpe which is pereissible as a co.ponent

I.,"e of a file h.e. <This i. not th~ onl~ .lace where rubs are to be
inten.reted recursivel':!. Re.ark for rKursi."eness shan be treated ewnl,=,.)

-';~2a 1.23the-th.:Ytiie - .

".281.26 'forward' -> forward (In 6.1.~ forward is used withoutDuOtes.)
..29 Iro~ert '(* This exaa.le is not for level 0.*)' to .rocedure declaration

AddVectors.
..31 l.~ the the -> the

u p.31 1.8 Iforwardl -> forward
..j1 LIS [xa..le of.. procedure:a-nd:'u':;ctiOn-dpcla.-atton:'lrt -) [xaa.l.-of a

procedlJ re- and-function-dlc 1arati on-part :
fo.36 1.7, 8 (packed-confor..ant-arra~-sche.a 1 unPacked-conforaant-arrav-sche.iI)

The current 4n.tt (7185/2) a87a it 18 an error to pro..ide Diapoae vith
tefir tac arcwoenta than vere cban .av to craate the object. Tha
requira..nt that . DOtbe Ie.. than n 18 to a..oid d18poainc .ore apace
than vaa oricinal17 allocated. Bove...r it . 18 ereater than n. then
it ia approyad to diapoae lea. than va. oricinally allocated and lea..e
a danglinC piece ot atorace apace that cannot be reclaimed. It ahould
be an arror it the tac tield list in dispose ia not idantical to it.
correspondinc nev. The arcument that thia 8&Y be too hard to detect
1& ...cuoua because. in the tOnl "it .hall be an error. . . ". its
detection ia optional.

RECOHHEIItIAl'ION :

~.-lce f.. i. 1... tha.n D" to ". il Dot equal to D".



COIIII.nt r.prdin~ t'lmctioll. III 6.6.2. p&racrapb 2. d.l.t. the la.t 2 ..lIt.IIC.. (rwvi..d
re.trictiOll8 are incorporat.d into 6.1.3. whichi. wher.
th.)' alva)'. .hould bav. be.II.)

III 6.6.2. appelld the tollovinr the pararraph 5:
; the block ot the tuIIctioll-block .ball be a..ociated vith the
re.ult tJP8 that i. a..ociat.d vith the idelltiti.r or
tuIIctiOll-id.lltiti.r. r..pactively.

III 6.1.3. p&racraph 1. replace ..lIt.IIC.. 1 aIId 2 vith:
A tuIIctinll-d..irnator .hall .pacify the activatioll ot the
tuIIctiolld...ot.d by the tunctioll-idelltiti.r ot the tuIIctioll-
d..ignator. aIId.hall )'i.ld the value ot the re.ult ot the
activatioll upoll coapl.tioll ot the alroritha ot the activatioll;
it .hall be all error it the re.ult is und.fin.d Upoll
coapletioll ot the alroritha.

III 6.8.2.2. pararraph 1. replac. t.nc. 1 vith:
All a..irn t-.tat...llt .ball attribute the value ot the
.xpre..ioll ot the a..irn-."t-.tate,,"t .ither to the variable
d...ot.d by the variabl.-acc... ot the a..irn-.llt-.tate..llt or
to the activatioll re.ult that i. d.llot.d by the tuIIctioll- .
id.lltiti.r ot the a..irn t-.tat...llt; the value .hall be

a..irn-.llt-coapatibl. vi+b the tJP8 po d. r..pactiv.17.by the variable or by the activatioll re.ult.

III 6.8.2.2. paraeraph 3. ..lIt.IIC. 1. challp "variabl. or tuIIctioll"to

"variabl.or activatioll r..ult" (tvic.). aIId in ..nt.llce2 aIId
3 challc. "variabl." to variable or activatiOll re.uU" (Ii ti8a.).

STA:rUS : Error.

PROBLEM :

DPT185/..cond aditioll do.. IIOt curr...t17 lpecit)' tuIIctiollre.ult..
IlIjparticular. ...ilfll8entto . tuIIctiOll-id.lltitier ba. the ett.ct ot

attributiDe a value to the tunctioll in.t.ad ot to all activatioll ot
the tuIIctiOll. This ilftor.. the probl.. ot I'uIIctiOll. tor which thare
.xist mor. thall 011. activation.

Thua. tor .xuspl.. the tollovinC pr0rr&8 vill writ. the ..qu...ce ot
int.cer. (2.1.0) acccirdinc to the co_on17 held int.rpretatioll.but
vill write the ..qu.nc. (2.2.2) accordinr to the .pacification. in
DPT185/..cond aditioll.

~
p(o); {a "counter" eXUSP1.]

!lE! lIatu;val . O..maxint;
var 0: tU. ot natural;- eoun~ natural;
tunction t: natural;
begin

t : . eount;
it count <2 then
-be~in COunt:8 count + 1; write(o.t) !!!!

end;
begin r.writ.(o);count: . 0; writ.(o.t) !!!!.

Th. .olution to this probl.. requir.. the introductiOll ot a part
ot,aII activatioll ot a t'lmction which has 8&D7 ot the cbaract.ri.tic. ot
a variabl.. This is a lIolltrivial ch&IIC. aIId r.quire. alt.ratiOll. to
6.2.1. 6.2.3.2. 6.2.3.3. 6.6.2. 6.1.3. aIId6.8.2.2.

JUSTIFICATION :

Correct. aD error.

PROPOSED CllABGES:

.....
:.D
00
.....

III 6.2.1. la.t ..lIt.nc.. in..rt atter the ..cond C088&:
aIId &II)' r..ult ot all activatiOll.

Co_ent 011 dOCUll8l1t 13J9/81-001

(Dr. Arthur Sal. '. latter to Dr. AdcI)'8anot JaIIU8r)' 12. 1981.

Statui:ChaIIC.

III 6.2.3.2. replaca (.) .ith:
(.) tor .ach I'uIIction-id.ntiti.r local to the block. a
tunctioll vith the tOr8al par...t.r. a..ociated vith. th.
tunctioll-blockcorr..pondingto. aIId the re.ult tJP8
a..ociat.d.ith the tunctiOll-id.ntifi.r;alld
(t)if th.blockbe a I'uIIctiOll-block.a reaultpo iDe
th. a..ociat.dre.ult tJP8.

In 6.2.3.3. paracraph 2. append the clau..:
; .xc.pt that th. tuIIctioll-id.ntiti.rot alla..ign88l1t-.tata-
.ent .hall. .ithin allactivation ot the tunCtiOlld8llOtadby
that tuIIctioll-id.ntiti.r.d.llotethe re.ult ot that
activation.

We 1aav. revi.wad the dOCU88llt cited abov.. We took
particular DOt. ot it... AllJS-81/5 "d.tinitiOll ot .rror"
and AIIJS-81/6 .d.tinition ot proc...or".

We COIIcur vith Dr. Sal.'. .valuatioll aIId rec dation.
rerardiDeth... it.....

III 6.6.2. pararraph 3. ch&IIp .po inr the tJP8 dellotad" to:
a..ociat.dwith th. reault tJP8 d...otad

III 6.6.2. pararraph 2. r.plac. ..lItanc. 2 with:
A tunctioll-block.hall contain at l.a.t 011. ...illl88l1t-
.tat...nt auch that the tunction-id.lltiti.rot the ...illl-

t-.tat t i. a..ociat.d.ith the tuIIctiOll-block.

">
'"m



C ent on 6.9.1 I/O (pace 59) C ent on 6.4.3.5 Texttile.

Status: Editorial
Statu. : Error

Probl.:

The ten "l.Cibl."18 not well d.tiD.d aDd tha whole pararraph i.
UDD.C ,..

Propo..d Cbance:

011pace 21. the d18claill.r on t.xttil. .tructur. do.. not
CO t _ourb. Th.re 18 a real d8Drer that .0.. otticially .aDctioned
validation wit. _y contain t..t. wch &8 the attach.d procraa
(reprinted troa JPC/80-061).

Co...nt on 5.1 Proce..or Complianc.

Probl.: Clau.. (.) do.m't r.ally require 8DYthiDC.

Propo..d Chanc.: In clau.. (.>. r.plac. "d.t.ct"with"d.t.ctand
report"

"

011pace 21. tir.t pararraph. replace the la.t .ent.nce "Th18
d.tinition... proc...or" with:

"Th... provision. d..cribe the t'lmctionality only. ...d .hall not be
con.trued to d.t.rain. in any V&T the underlayinc r.pr...ntaUon ot
texttll..; in particul the relation.hip. 1t any. betwe.n .nd-ot-lin.
...d_lu.. ot the char-type .hall be illpl..entation-d.pend.nt."

Statu.: ChanC.

Just1tication:

Just1tication:

Th. chance to clau.. (.) require. the proc...or to diapo.. violation.

ot the .tandard. at l.a.t at u..r option.

C088ent on 6.2.1 Block.

Ther. 18 too auch ayth about t.xttiles to perai t the .t...dard to Clo..
ov.r ~ ..cbin. d.pend.nci.. with a di.cla1aer on _d-ot-line. It
WCC..t. that on. do..n't expect ~. .nd-ot-lin. to be a 8p&c. aDd
that aD illple..ntor 18 DOt requtr.dto bav. a charact.r (byt.) which 18
the and-ot-lin.. But it doe. DOt aaIr..cl.ar that the attached procraa
18 ~illpl_ntation-dep8Ddent.

Moreov.r.th. oricinal d..cription in the UMIdI: "t.Xt. til. ot char"
has led to aor. th8D on. illpl.entation-d.peDd.nt prorru vbicb the
author beli.v.d to contora to all rea.onabl. portability con.id.ration.
in tha UMIdI. It 18 th.retore nec ,. to dispel that notion in the
.tandard by .xpr...ly .tatiDc the illpl..ntation-d.pendency ot t.xttil.
I/O.

Status: Editorial

Probl..: Th. tir.t ...dla.t pararraph. ot th18 ..ction DOt about
blocks ...d.hould be .la.wh.re in the t.xt.

Pr~.ed Cbance:

A n.v wb clau..\betveea62 .ft"I:} l8bouldbe cr.at.C;\andtitl.d
"Labels". Th. tir.t pararraph ot 6.2.i .hould becoa. the text ot this
.ub clau...

prorru t..teol (output,textt);
{

Thi. prorram t..t. vb.th.r t.xttil.. b...dl. the charact.r ..t
aDd end-ot-lin. int.rrelations properly

The last pararraph ot 6.2.1 .bould beco.e the tint pararraph ot
6.2.3.5.

)
con.t

aaxchr . 121 {the aaxillulllordinal value ot type char

in this ca.. the value is 121 tor ASCII);
Ju£'tif'ic:atioD:

Each ot the oth.r d.claration part. ot the block bas a ..ction to
i~.elr, vi&.: 6.3 con.tant., 6.4 type.. 6.5 variabl... 6.6 proc.dur...
For parall.li... ...d .0 that the u..r ..)' be able to tiDd it, labels
.hould have a parall.l .ection. hovev.r small.

Th. la.t pararraph ot 6.2.1 is on. ot the activation rule. ...dbelonc.
n.xt to the rule on the lite ot variables in 6.2.3.5. This cb...C. also
.erv.. to orcanin the .tandard .0 that thiDCs

_y be tound.

textt:
!value:
c:
allok:

text;
char;
intecer;
bool ;

thi. ..ctionwrit.. allot the char valu.. to a texttil.
revrit.(textt);
tor c:.o to aaxchr do

vrit. (textt,chr(c»;
writ.ln(texU) ;



'!'h18 "CtiOIl read. .11 ot the char ..lu.. back
aIId ch.c... that they _tch what _. writte

p. 11: IIIthe la.t paracraph ot ..ctiOIl 6.3 challC' "'!'h.
COll.tallt.h.ll Dot

cOllt.iD" to "'ft1.COll.t_t iD . COft.t_t-d.fiDitioll .hall lIot cOllt.iD".

re..t(textt) ;

.llok:-true;
for c:-0 to aaxchr do beCill

if 8Olll(t.xtf) th.1I beCiD
writ.lII(output.

'.0111un.xpacted17 r.turned true for c-'. c:");
.110k:-ta18.

ed (if);

r..d (textf. tvalu.);
it tv.lu. .. CM (c) th.1I beCill

vrit.lII(output.

'til. value _. ditt.r...t tor chr ot'. c:".
,
..lue r.tuno.d _.'. or4(tvalue):");

.11010: -t.18.

.114 (it)

...d (tor c);

this ..ction t..t. tor ed-ot-liD. ...d 8Od-ot- fiLe
if lIot .01ll(textf) th80 beciD

vritelll(output,

'80111 did lIot retuno true afwr the last ..lue');

.110l<:-t.18.

...d (if);

read (t.xtt .tvalu.);

if tvalu. ..
'

,
tb. beCiD

write 111(output.
.

.lId ot liDe v.lu. va. IIOt spac.. It va. CM ot' ,

ord(tvalu.) :4);

.llok:-tal..

.lId (it);

if lIot .ot(textt) thell beCiD
writ.lII(output. '.ot did lIot r.turn true at .lId ot til.');
.llok:.tal..

80d (if);
it allok th.1I writ.lII.(output, 't.xttil. beh.ved a. expectd');
vrite(output, end ot t..t );

!. 15: III..ctioll 6.4.3.2. 111the paracrapb that tollowa Exampl. 2. chance
by ~ iDdex ~. 'ft1entha ..lue." to "by the 1IIdex tn>e; the the
..lu.. .

p. 16: IIIthe la.t .em: of "CtiOIl 6.4.3.2
chanc' "vbich, .llow" to "a.lh;t.~oUow"..

p. 19: In the paracraph tollovillC the ..cond lIot. ot ..ctioll 6.".3.4 challC'

"unpack.d ..t d.lipat.d th." to "unpack.d ..t type d'lilftated th.".

p. 57: In ..ction 6.8.3.10 add the .yntax detiDition:

ti.ld-d..icnator-id.ntitier . id.lltiti.r.
~

~,~~.{
f:tII{fQ/- re

p. 35: In .ection 6.6.3.6 .ubpar.cr.ph (.)
"iDdex-tn>e-.pacitic.-

tion".

p. 37: 1ftthe third not. ot ..ction 6.6.3.7 (tir.t not. .t top ot paC')

chalice "c...lIot" to cannot".

...d.

. t
.

tnLFier.'p. 36: 2nd paJIITaphtrOllthe IIott08.replace the.f,r~ boU"D-.
"€ bj

"of'f'li.e.a oc.c...,rre"'U!s o~ tIA~ ~'N~ Ld...t.i.f.u-.
?-"~

re, l.c.. ..~ s.c d b;;""",0E0m ...<.<\"

I...
II

l,r" DC.<."r~s of tl-t sec.mod Lde...t;",.r . . . . l t 0.('.-;) 4""
"

~ sed-o'(T1(.
"

g. 2. 3 cJ,.GN\~e.. which':> '5"
6 52' '1... ~e f,t:St l'0ro.,"'1' ~.

.
L

'
s-+- 0 -\ ~, +"..l-Jlam...e-fers- ...

.':t "w"',c:J.., ,s ~""~
.;1,. ~- .-

oc.tuo.l- par e+er.; 0

In 6.".1. paracrapb 2. the phra'. "it. t!J'8-dnot.r" is poor; chance to
"th. tn>e-dnoter ot the type-detiDitioll .

1116.6.1. del.t. the tir.t paracraph; the tir.t ..lIt.IIC. 18 iDCl....
the ..cond is r.dundallt (... 6.2.3.3).

III 6.6.1. paracr.pb 3. chance "th. the" to "the".

III 6 6 1 clarif7 the ine .t paracrapb "by challCine"111the .-
proc~.s.'ar~-alld-tUIIction-d'laratiOll-part" to "clo...t-cont.iD.d by the

procedur.-alld-tUIIction-d.claratiDll-part clo...t-cont&iDine the procedure-
h.adine" .

In 6.6.1. paracrapb 5. cJumc. oci.t to ".h.ll ...oci.t....

C..a...t 011various ..ctioll' ot the Secolld Dratt Propo..l tor Pa.c.l
III 6,6.2. del.t. paracrapb 1; the tir.t ..nt...c. is iDCl the ..cond
i. reduDdeIIt(... 6.2.3.3).

III 6.6.2. paracrapb 3. ch"'C. "the th." to "the".

III 6.6.2. clarity the iDc ot paracrapb 4 by chanCiDC "iD the ....
prftedure d tUIIctioll-d.claration-part" to "clo...t-collt.iDed by the
procedure d-tUIIctiOll-part clo.~-cont.w.nC the tUIIctioll-beadine".

III 6.6.2. paracraph 5. chanC. ociat to ".hall ...oci.t.".

Statu.: Editorial

Probl_ State t:

'ft1.re .,.. ..v.ral plac.. vber. the dratt proposal would be WproYed or
ooz:;rected b1 aillor chanc.. iD .palliDC. _rdiDc ...d punctuation.

Propo..d ChanC.. to the Dratt Propo.al:

p. 3: In the tir.t paracraph ot ..ctiOll
"

chanC'"the id8lltiti.r ot .
pred.clar.d or predetiD.d .ntit,.': to "th. id.IIUti.r ot a required entit,....

......
cD
00......

-c
»
G>

'"



e

I
i..to.....
~
A
8

j

u...

8

i
u

PASCAL NEWS #21

<
c ...
...

'"· :i A
o

...
..

'"...
..u.
.:I

.. j
S i

...

!....
...

o..
~
..
.
J
~.
'"

o.....
::
r:

.M
I
J
.!!
#
§
~
..

.
~
o

J
o..
~
..
.
J
~
.:I

J
'E
8
1.
t
a

APRIL, 19R1

II
..
A.
~

...
.....
k

o 0
... ..

i i

J

.

I..,.
a

10

\0

8

]

"'...'"
III .nA

A N;',r... .,; N..;
;'A"AA~':':'':'.0...0 0.0.0

PAGE 75

..o

...
!
,

!

1
i
.:

.!!
...
8



C088.nt on Seope of ~roe.dur. and funetion h.ad.r(s)

Problem Stat...nt:

IIoreo"er, tb18 probl_ 18 "1'.11' the let..t in a lonc .trinc of
difficult i.. in eettine a teehniea111' robu.t eonformant-array-
propo.al. It i. not elear that it i. tb. lest .ueh probl.., .ine.

..".ral diffieulti.s with the pr."iou. proposals r..ain un.ol"ed in
the current propo.al.

Statu.: Chanc.

TheSC»fe of identiri.rsappearinc in proe.dur. and funetionh~ader.
i. unn.e.ssarily eo.plieat.d by the ..paration into two r.C10ns
(and two seopes). This allow. procraa. whieh!PI!!!!: eontradietory,

and eOllplieat.. an aeeurat. d.seription in ref.rene. u.nua18.:rt appears
to ha". no eOllJ>8nsatincad"antac.s.

Th... problems aril. out of tb. att8llJ>tto put th. eonforllut-array-
extension into the .tandard and, in partieular. to do .0 in a stranc.
fa.hion .0 that .iniaal illp8et on .xi.tinC iapl...ntation. 8&Y be
f.lt. This approaeb has real penalti... W. .uCC.st four alt.mati"..
below, tb. tir.t on. be inC our pr.f.r.ne.:

funetion Fune(Param
type

Int.C.r . ehar;

beCin
/body of fune/

end;

int.eer;

(1)

(2)

Reao". the eontoraant array t.ature entire11' and l.a". on11' the le"el
o lane-C..

AIf''t'Allow both "nlu." and ""ar" eonforllant'pa.rallleters.without unu.ual
restrietions, in exaet11' tbe s_. .,ay that ""alue" and "Y&r"
parameter. of any other type 8&Y be .peeiti.d, adlllittinC that this

"'4'j
require runti8e .peeitieation of the .iz. ot th. aeti"ation r.eord in
8088 instane..; or
Del.t. tbe "nlu." eonforaant-array-param.t.r eonstruet entire11',
and ther.with th. att8llJ>tto perllit .trinc u.nipulation "ia eontoraant
array param.t.rs.

Consider a. an alt.rnatiY. for furth.r .tudy dOCUMnt JPC/80-246
(attaebed) .

Ex&llJ>l.:

(3)

In the .x&IIJ>l., th. appearanee.ot 'integer'in the funetionh.ad.r
do not eorr.spond to th. type 'Int.c.r' d.elar.d witbin th. funetion.
Speeitiea111', type id.ntifier. (and tb. proe.dure/funetion id.ntifi.r)
8&Y be red.fin.d within tb. proe.dure/funetion; paraa.t.r id.ntifi.rs
8&y not be red.fin.d.

(It)

Propo..d Chanc.:

R.eoaa.ndation: Th. abo". options are in ord.r of pref.r.ne.. If the t.atur. is d d
.0 d.sirabl. tbat it eannot be r..o"ed, it au.t be .ad. ad.quat.11' robu.t.

IIodity th. .eope rul.. .0 tbat any id.ntiri.r that appears in a
proeedure/funetion (ineludinc tb. header) 8&y ha"e only on. .eanine
throughout that proeedure/funetion.

A po.sible (and desirabl.) efteet ot th18 ehanCe would be toprohibit
red.elarationof a proeedure identifier 188.diat.lywithin the
oriiinalprocedure. (llotethat th18 redeclaration18 already
prohibit.d.tor tuneion identitier., a. no a.signaent to the funetion
nlue eould be .ad..) lIot. al~o that this would re.tor. the
eorreetn..s of state..nts in .ection. 10 and 11 of the R."ised Report:
"The use of the [proc.dure/function] id.ntiri.r ... within it.
d.claration illplies reeursi". .x.eution.~

Ju.titieation:

(1) 508. eo.piler. 8&Y ba". a .erious problem distinguishinc A trOll (A)

in an actual parameter .~ifieation, nOllinallybecause of th. u.. ot
botto.-upparsinC ..ehan18.. in the expr...ion par..r. Whil. on. 8&y
argu. that aarcinal eo8pilinC teehniqu.. should not be eneouraced,
other. 8&Y argue with as auehrichtthatruntta..torac. aanace..nt
..ehani..s .bould be .utfieient11'robu.t to tolerate runttae
epeeiticationot tbeaeti"ation reeord .iz...

>-'cD
00
>-'

Co_ent on 6.6.3.7 Confo...ant Arre7 Param.t.r.

(2) Consider the proe.dure WORKOIIdetin.d to produe. an array T by .088
aetiYity on the ele..nt. ot array :I, for ex&llJ>le, tran.poltion. With
tixed array type., tbeproeedurewouldlook like:

type ".etor . array [1..50J ot real)

proeedure WORKOII( :I: "ector; Y&rT,,,eetor);
Y&r i: 1. .50;

becin
tor i :. 1 to 50 do

T[iJ :. :1[51 -1];

Statu.: Chance

Problem:

'1'he teehnique new11' introdueed in dp7185 ot requirinc the ealline
pro~edure to d.te...tne whether a li"en aetual paramet.r i. to be pa..ed
by "reterenc." or "nlue" has .."eral proble.s:
(1) It a..ien. a n.w tic .eaninc to a .7J1tax whieb tOrMr11' bad a

dirterent .e..antic .eaninl - it .ake. the parens sienitie...t in (AI.
(2) It 18 unlike any .tailer eon.truet in the Pa.cal lancuaee detined by

tbe .tandard
(3) Th18...ry departure frOll the re.t ot tb. languace ereates eontusion

tor tbe user and leads easi11'.to in"alid programs.
(It) It ereates an unneeessary 11llitation on illple..ntations.

and it A 18 a ...etor, tben WORKOII(A, A); ean be .xpeeted to transpo.e
A OYer its.l~ eorreet11'.But it a eonfo t array .che.. i. u.ed:

proeedure WORKOII"ar :I, T : array [10. .hi: intecer) ot real);
then IIORJQ('A, A) will tail .trancely, and WORKOII«A), A) 18 required.

The annoyinl thinC about tb18 tailure is that the letter proeedure 18
the one whieb 18 expected to be put in a .ouree library to be eopied
into the u.er prograa and used without otheZ' th... bleek-box



documentation. Th. problem witb the propo.ed .yntax i. that the
procedure cannot protect it..lf fro. .i.u.e

-
it 8U.t depend On the

call.r to ua. it corr.ctly. And y.t the avowed int.ntionof the
con.truct in the fir.t plac. va. to per8it the con.tructionof
proc.dure li~ri.. which w.re ntially ind.pend.ntof the type. in
the callinlprocr...

Co_.nt on 6.6.3.1 Confor8ant-array-paraa.ter.(p. 31)

Statua: Error

Probl..:

(3) The propo.al .liminate. a de.irabl. i8pl...ntation ..thod. The

propo.al require. the callinl prorram to allocate the copy of the

variabl.. wh.re for code econo.,. the i8pl...ntor 88Y pr.fer the call.d
prorram do eo.

The beginninc of the pararraph followinC the fir.t not. On pap 31
_ contains an .laborat. .pecificationwhich r.duc.. to nothinc of valu...It contain. at l.a.t on. incorr.ct oceuncnce of "not" in "not a
factor"that is not a variable-acc It cl.arly do.. not r.pr...nt
the author'. intent.

(4) A nU8ber of obj.ction. to confor8&nt array ~.t.rs a. pr.vioualy
apecifi.d .till .tand a. obj.ction. to the curr.nt propo.al:

(a) Th.y ..,phuiz. .tructural c08patibility of type.. a ph.no..non

which i. avoid.d in the th.or.tical atudie. of Pa.cal and in the draft
proposed .tandard. in .ach caa. with Ireat deliberation. Several

other propo..d .odification. to per8it .tructural c08patibility of
anonY8ou. type. have been fir8ly rej.ct.d on the beaia of the
i8p0rtance of type id.ntification and n".-c08pltibility of type..
This f.atur. is d d to be of auch value that it. consi.tency vith
auch ch.ri.h.d charact.ri.tica of the !&neuaC. i. of no con..qu.nc..

(b) Conformant array .ch..a. provide no ..thod of construction of a

type-d.not.r for the type. th.y repr...nt. As a con..qu.nc.. no
r.lat.d c08patibiliti.. can be .pecifi.d. &8 between arraya and
v.ctor.. for .x&8pl.. and .uch compatibiliti.. a. 88Y be r.quired in a
liv.n procedure 8U.t be check.d by u..r cod. at runtia..

(c) Th. axpectation that .any proc.dur.. U.inl conforaant array
~.t.r. vill be includ.d from .ourc. librari.. cr.at.. a real
probl.m in the inte1lilent ua. of the "ordinal-type-identifi.r" in the
ind.x"-type-.pec1fication. Sinc. such type-id.ntifi.rs vould in
80st ca.e. be limits on the capabilities of the proc.dur.. and vould
have to be .ourc.-includ.d in a procram whlch has no other u.. for
th it is likely that in the av.rac. in.tallation the ordinal-type-
id.ntifi.r would usually d.c.n.rat. to int.C.r. Thu. in .o.t ca....
any limitation. the proc.dur. really has mu.t be prot.ct.d by u..r

code runtia. ch.ck..

Propo..d Chang.:

In the pararraph folloving the fir.t not. on page 31. d.l.te the fir.t
..ntence and the beCinninC of the ..cond ..nt.nc. up to ".xpr..sion".
and replace th... with:

"Tne actual-param.ter .hall be an axpre..ion. If the actual-paramet.r
i. Dot a ~ariabl.-acc "...

Justification:

~e only EnCli.h-laneuagepar.. of the fir.t .ent.nc.yi.ld.:
Th. actual-parameter.hall be .ith.r (a) a variabl.-acc or
~b) an .xpr...ionwhich is not denohd by a factor." (The claus.
not a factor that is not a variabl.-acc tran.late.to: "if
it i. a factor th.n it 8Ust be a variabl.-acc which i. allow.d
by the first .pec.)

Unfortunately. the only .xpr.ssion. allowed und.r (b) are tho.. which

contain rela~ioDal.operator.. adding-operators. or
~".1plying-operator.. non. of which can yi.ld a value of array-type
.xc.pt by .xten.ion to the proposed .tandard. Moreover, the
r.co_.ndation in the following !lote. that a "valu." parameter can be
construct.dby the form "(A)" conflictswith the .tat.d r.quir nt.
because the form .. (A)" is a factor which is not a variabl.-acce...
So it i. v.ry unlik.ly that this r..triction vaa intend.d a. writt.n.

. ...

It is not difficult to allow the I.n.ralization to ".xpression", .inc.
the conformability r.quir...nt vill .liminate .o.t po.sibl. production.
and l.ave .xactly thr.. pos.ibiliti.. within the propos.d .tandard:
variabl.-acc...,character-.tring.and "(variable-acc...)". (It also
allows any number of redundant par.nth around any of the thr..
po..ibiliti...) It ia not cl.ar wh.th.r the author intend.d to
pr.v.nt charact.r-.trinc a. a po..ibility. but it unn.c.s.ary to

do .0. Charact.r-.trine par...t.r. pres.nt no difficulty to the
c08pil.r-wri~.r and consid.rabl. advantac. to the u..r, wh.r.aa the
form (A), whlch va. cl.arly int.nd.d. caus.. additional h.adach.. for
the c08pll.r-writ.r and the author of this .tandard.

It .hould .lso be not.d that the I.neralization to "axpr...ion"
iJlpl_ntation. which .upport array arithmetic or array-valued
lunction. to be included autoaatically without turther local
8Odificationa to the conformant-array-paraa.t.r rul...

allow.

(d) Becau.. of the conformabUity"rul... the ua. of "ordinal-type-
id.ntifier"doun't pr.v.nt the .y.t.. fro. havinC to perform
runtime ch.cks for the compatibilityof index-type-.pecification..
Con.id.r:

type rllO .'1,.10; rc20. 1.,20;
var A: array[r,10]of r.al;

8: array,[rC20]of r.al;
proc.dur. pa~: array [lo..hi:rc20]of r.al);

procedure ci(,,;"~ Y:a.rra.j [lo..h~:~10J ofreq()j

If proc.dure I'
contain. the atat.ment Q(I);

th.n p(A); ia valid. but 1'(8) i. invalid. And if the call On Q ia
conditional...1. if h~lO th.n Q(I);
th.n .ven 1'(8)is valid. but the proof is in the ta8fl!- you findout
at run_tiJS.. So the ayst... has to perform the runtilo. check, or aay
that it doean't. of cour...

-c
»

'"m



(1) Th. .xpr..sion which is a .ariabl.-acc.s. is a~~~.~~'
expr ion whos. _lu. 18 c:I.notedby a Yariabl.-acc 1i'IiIIitat ions

shoulc:lnot be appli.c:I.siac. th. rule abo.. .peciti.. that th.
paralHt.r .hall be.Po. ss.c:I"by r.t.r.nc." ia th is cas..

(3) R.griltab17. ther. 18 no 100c:lvay to specify the particular syntactic

entit1 which ..y not contain a contoraaat-array-param.t.r unl... it i.
ac:I.quat.17sub.cript.d. Con.id.r th. d..c.nt tor (A[I]): .xpr.ssion.
8i8pl...xpr..siont term, t&c~or, (paren.) expressioD,
stapl.-.xpr..sion. t.ra. tactor, .ariabl.-acc compon.nt-Yariabl..
iad.x.c:I-.ariabl.. (a) array-.ariabl., Yariabl.-acc....

entir.-Yariabl., .ariabl.-id.ntiti.r. id.ntiti.r; (b) (brack.t.)

iad.x-.xpr.ssion,expr...ion It i. .asy to l.ap to th.
conclusioathat ind.x.d-_riabl. is th. tarl.t .ntity. but not. the
aac.stral tr.. you bav. to liv. to distiaCUish th. on. you ..aa troll
th.possibl. occurr.nc. ot aaoth.r oae ia th. iad.x-.xpre.sion.

Comm.nt on 6.6.3.7 Contormant-array-param.t.rs
(p. 37)

Status: Error

Probl..: Oa pal. 37 ia th. s.cond paraer-Ph att.r th. s.cond not.,
belinDial "It th. actual-par&88t.r18 aa .xpressionwhos. _lu. is denoted
by a Yariabl.-acc the conc:litioali..n is iacorr.ct ia tvo vays:

(2) When the actual-param.t.r is an iad.x.d-variabl., th. variabl.-acc..s
that i. th. actual-param.t.r is n.v.r th. .ariabl.-acc.s. that
clo..st-contains the contormant-array-paramet.r id.ntiti.r -- the

arraY-Yariabl. is.

Th. propos.d chaal. discards this approach ia tavor ot a much .or.
Ilobal, but appar.nt17 adequat.. lillitation. Th. v.akn... is that the
propos.d chaage assUllas that there can be no leeal operators on

contormaat-array-par&88t.rs per se. only on th. tixed-compon.nt-type.
Ot cour... it is alvay. possible tor the contormant-array-param.t.r
to be pa...d to a t\mction u..d in th. computation ot .om. .alu. in
th. actual-param.t.r .xpr...ion. So option (a) allovo this. notine
that th. contoraaat-array-param.t.r viII have to sati.fy th. usae.
co~raiat. as aa actual-param.t.r to tbat t\mction.

Propos.d Chaae.:

At the end ot the tir.t paragraph ot 6.6.3.7 (p.35). add:

"A paramet.r-identiti.r.0 d.tin.d shall be desicnat.da contoraaat-
array-paramet.r."

At th. .nd ot the paragraph at th. top ot pace 37. just betor. th. not..
insert :

"Th. type d.not.d by th. type-id.ntiti.r contaia.d by tb. contoraant-array-

.ch.ma in a contoraant-array-paraa.t.r-.pecitication shall be d.sienat.d
th. tixec:l-compon.nt-type ot th. contormaat-array-param.t.r. d.tia.d by that
contoraaat-array-par...ter-specitication."

Replace the second paragraph att.r th. ..cond aot. on pace 37 with: "It th.
actual-param.ter i. not d.not.d by a variabl.-acc..s and th.
actual-param.t.r contain. an occurrence ot a contormaat-arra,par&88ter.
then tor .ach occurr.nc. ot th. contormant-array-param.t.r contaia.d by th.
actual-parameter expression. either
(a) the occurrence ot th. contoraant-array-paraa.t.r .hall be contaia.d by

a t\mction-desicnator contaia.d by the actual-param.t.r .xpr.ssioa, or
(b) the occurlllnceot the contormant-array-paramet.rshall be contaia.c:Iby

an iac:l.xed-variable contaia.c:Iby th. actual-param.ter .xpr...ion, such
that th. type ot that ind.x.dYariabl. is the tix.d-compon.nt-type ot
the contormant-arra,param.t.r.

(4) Rot. that th. chanlas contaia two ia..rtion. to c:I.tinet.rm. so

that th. r..triction on actual param.t.rs is compr.hensibl.. They are
not strictly n.c.ssary. but th. .xistin, vorc:linetor
"contormant-array-parameter" requir.. an ac:lditionalclause:
"c:I.tinine-occurr.nce tor the block which contains the
actual-param.t.r Th. .xi.tin, (a) and (b) could be combined
iato a r.plac...nt tor th. propos.c:I (b). aad thus remove the n..d tor
c:I.tiaing"tix.c:I-compon.nt-type". l.aviae as much ot the .xistiae t.x't.",J
as little compr.h.nsibility. as possibl..

Cocaent on FOR stat.m.nt.

Status: Chane..

(2) Th. ic:l.ais tbat it the actual-param.t.rcontaia. a toraal param.t.r
tro. a bieb.r-l.vel acti_tion anc:ltbat toraal param.t.r is its.lf a
contormaat-array-paramet.r, we want to be sur. that ve are aot
requir.c:Ito pa.. on somethine ot unknown l.ncth, unl... .. can pass it
by r.t.r.nc.. UIItortunat.17, th. _riabl.-acc... which

CtW.t-co~..w Jh~ c!'~~'!5"'aa~.:~ter ~ th. ,Yariahle-acc.ss
&r-tI1:'"~*l""ba:acc.s,j''Vh''Fch'''rs~ &c'\~~.t~r:"""

e....

Probl..: DP7185/..cond ec:lition changes the status tro. .rror to
requir...nt ia 6.8.3.9 tor as.iening-ret.renc..vithin a tor-.tat nt.
This11&1 cau..ditficulti.storso..iIIpl ntation..Consider

proc.dur. p;
Yar i: iat.g.r; j: iateg.r;
t\mction t: iat.ger;
belia

t :- 0;

i :. 1
end;

beein
tor i :. 1 to 10 c:loj :. t

.nd
Without tlow analysis or other r.latively .xpensiv...chanisms it i.
v.rydifticultto d.tectth. 8Oc:\iticationot i withint. This probl.m
is ..ry elitticult ia pn.ral anel the spac.-ov.rheadia compilationcan be
a burden.

Ju.titication:

(1) It th. actual-param.t.r is an .xpr.s.ion whos. .alu. is eI.noteel by a
.ariabl.-acces.. itllllll!hll'th. tora V, wh.r.a. th. exprassioa the author
vants to lillit bas th' tora (V), because th. toner is pa..ec:Iby

r.t.r.nc. (anel th.r.tor. is no probl..), but th. latt.r is passed b.r
.alu., anel its size mu.t be known at compU.-till..

Propo..eI Chanc.: In 6.8.3.9. paragraph 2, replace ..nt.nc. 3 vith:

Reith.r th. statem.nt of a tor-.tate..nt nor any proc.dur.-
anel-t\mction-eleclaration-part ot the block that clos.st-contains
a tor-.tat nt shall contain a state..ntthr.at.nine th.
Yariabl. elenotedby the control-_riabl. of the tor-.tat...nt.



Allel a ..ew parap-apb to 6.8.3_9:
A .tat t S .b.ll be designat.d a.
V if 0... or .or. of tb. follovine i.
(a) S i. an a..ien-.nt-.t.t.m.nt and

variabl.-.cc.s. of S;
(b) S contain. an actual v.ri.ble param.t.r whicb d.not.. V;
(c) S is . proc.dur.-stat.ment tbat .peciri.s tb. activation

or the r.quir.d procedure r.ad or tb. r.quir.d proc.dure
r.adln. and V is denot.d by an actual par t.r contain.d by
S;

(d) S i. a for-.tat...nt and tb. control-variabl. of S d.not.s V.

thr.at.nine a vari.bl.
tru..
V i. d.not.d by the

eo...nt 0.. ..on-.xi.t.nc. of appli.d occurr.nc..

StatU8: Error

Justific.tion:

Probl..: I..8Ubclau.. 6.2.2. the vord identifi.ri. u..d with (at laa.t)
tour differ.nt..anine.. In 6.2.2.1. it conform. to the (.yntll$ic)
d.riDitio.. eiv... iD 6.1.3. I..6.2.2.5, it r.r.r. to homonym.: two
difJer...t.yntactic ide..tifier.havine identicalorthoerapbybut dijtere..t

deri..tio... and ..aniDl.. I..6.2.2.7. tbere i. tba .yntactic .eaniDl a.
..11 &8 the ..aniDe or boaoeraph: bavinl id...tical ortbocraph,.. Th... iD

. i unt...able. To corr.ct it, r.mov. all usal.. or id.ntifi.r (and
label tbat co..flict with the d.riDitio.. liv... iD 6.1.3.

hos 0 ...«\0\ · set 0\ )'0.',d~ (,,.5. c , s;"'" "VPropo..d can...:Th. pr...nt re.triction. are unn.c...aril,. compl.x and
co.t17 to .nrorc.; a. a cons.qu.nc. impl.m.ntation.are lik.17 to not
.nrorc. tb.m. It i. pr.r.rabl. rrom tb. u..r'. point of vi.v th.t .ucb
part. of the lan&'Ua...be .nforc.d to promote tb. d.t.ctionof programminl
.rror. and to .void tb. cr.ation of no..-conformin, pro..r Th. propo..d
cban... is .impl.r to understand. aor. lik.l,. to be .nforc.d. and iD
addition to the above advanta for u..r.. allow. tb. r.aov.l of run-time
checkstromfor-.tat.mentloops.

R.plac. 6.2.2.5 by

Wh.n an id.ntifi.r or label has a d.fining-point for r.eion A and
id.ntifin or label bavinC tb. .pelling bas a d.fiDine-poiDt
reeion B .nclo..d by A. tb.n r.eion B and all region. .nclo..d by
be .xclud.d from tb. .cope of the d.finiDc-pointfor r.eion A.

R.place 6.2.2.7 by

anoth.r
tor .08.
B .ball

Comm.nt on ..ction 6. .2.
and out ut

Proc.dure-.tat.ments and ..ction 6. In t

The .cope of a d.fininC-point of an identifi.r or label .ball include no
d.finiDc-point of anotb.r id.ntifi.r or labelbavine the .pelline.

I.. 6.2.2.8. cban... "all oceuztincn of that identifieror label .hall be
d.signatedappli.d occurr.nc to ".acb occurr.nc. of an id.ntifi.r or
label bavinc tb. .pelline .hall be d.signat.d an appli.d occurr.nc.
of tb. id.ntifier or label of the d.fininC-point".

I.. 6.2.2.9. change "a type-identifi.r.a,. b.v. an appli.d occurr.nc. iD
the dom.in-type"to "an id.ntifierma,. bav. an .ppli.d occurr.nc.iD the
type-id.ntirin of the domain-type".

St.tu.: Error

Probl.. Stat..ent: Th. ..on-t.rein.l .ymbol. r.ad-paramet.r-li.t,
ra.dln-param.t.r-li.t. writ.-par...t.r-li.t and writ.ln-par t.r-li.t
are ...v.r u..d in otb.r .yntax production..

!Topo..d Chane. to tb. Draft Propo..l:

In ..ction 6.8.2.3 add the followinC to tbe .nd or th. first paragrapb:

Justification: Witbout tbi. chanc. tb.r. are no appli.d occurr.nc...

Th. proc.dur.-id...tifi.r in a proc.dur.-.t.t.ment cont.ininc a r.ad-
paraa.t.r-li.t .ball d...ot.the r.quir.d proc.dure re.d; tbe
proc.dur.-identifi.rin . proc.dur.-.tat.m...t containin.. a
r.adln-param.t.r-li.t .b.ll d.note tb. r.quir.d procedure readln;
th. proc.dure-id...tifi.r iD a proc.dure-.tat.m.ntcontai..inea
writ.-param.t.r-li.t .halld...ot. tb. r.quir.d proc.dur. writ.; tb.
proc.dure-id...tifi.riD a proc.dur.-.t.t t co..tainiDca writ.ln-
param.t.r-li.t.hall d.not. the r.quir.d proc.dur. writ.ln.

Co t CD Fil. 8andling Procedur.. (6.6.5.2, 6.9.2. 6.9.3. 6.9.4, 6.9.5)

StatU8: Error

Probl.. St.t t:

I.. the ..ction aodif,. tb. d.finitio.. or proc.dur.-.tat..entto r..d:

Sectio.. 6.6.5.2 d.fiD.s re.d(f,v) to be .quival...t to:
~ belin v :. tA; pt(f) and

and writ.(f,.) to be equival...tto:
belin tA :. .; put(t) and

The p'<0f"!lltl.r.rtsr..JrJ...contaiD. a ..ot. aaltinc it cl.ar that r.ad is
equiv&l.nt to th. .pedti.d compound .tatement and ..otto a proc.dur.
who.. bod:y is th. coapound stat t.

proc.dur.-.t.t...nt

proc.dur.-id.ntitier
( [ actual-param.t.r-li.t]I

read -param.ter-li.t I

r.adln-par...t.r-li.tl

writ.-param.t.r-li.tl

writ.ln-paraaet.r-li.t ) .
Con.id.r th. fOllowi"l variable d.claration.:

var
fa : arra:y [1.. 10) of fil. of int.e.r;
tt.xt: arra:y[0 .. 256] of text;
a arra:y [1 .. 10) of realj'
i int.c.r;
e char i

-0
»
G'>m



Th. propo..d Pa.cal .tandard lead. on. to beli... that r.ad(ta[i] .i) 18
.qui .-lent to:

beCin i ,. tarijA; 18t(ta[i]) end

and that writ.(ta[ta[2jA].i) i. &qui.-l.nt to:
beCin ta[ta[2]A]A :. 1; put(ta[ta[2]A]) ~d

By ehoodn, the proper ..lu.. ter the iabl.. it. po.dbl. that the abo..
r.ad .tat...nt vill read an int.,.r .alu. from the tile butt.r ot on. tile
but do the C.t operation on a ditt.r.nt til.. Lit.v18.. the abo.. writ.
.tat...nt can do an a..icnm.nt to the tile butt.r ot on. t1l. but do the
put operation on a differ.nt til.. Th. abo.. beha.ior 18 ..en 8Or.
.pectacular vb.n texttil.. are u..d. Th. pr~..d Pa.cal .tanderd do..
not to ad.quat.lT d.tin. the .tt.ct ot:

readln(tt.xt[ ord(ttext[i]A)+ord(.ou.(ttext[ord(c)]» ]. 1. a[i], c)

Th. Palcal tile handlinl proceduru .hould not be d.tined .0 that the
tile yariabl. beinc acc d can ehanc. durinc the proc.dur. .x.~ution.

.qui..lent to

belin tf~ :. .; put(tt) .nd

vb.re tf d.not.. the r.t.r.nc.d tile .ariabl..

In ..ction 6.9.2 ehanc. .ubp&llJraph (a) to:

(a) read(t..l vn) .hall acc... the t.xttil. iable and ..tabli.h a
r.t.r.nc. to that t.xttil. .-riabl. tor the r.maininc .x.cution ot the
.tat..ent. Th. r...ininc .x.cution ot the .tat...nt .hall be
.qui.al.nt to

belin read(tt..l); ... ; nad(tt.vn) .nd

vb.re ff denot.. the r.t.r.nced t.xttil. .ariabl..

In ..ction 6.9. 2 ehanl. aubparagraph (b) to:

hopo..d ChanC. to the Dratt Propo.al:

JPCbeli that th18 18 an i8Iportant correction to the Pa.cal .tandard.
Bovey.r. the compl.xity ot the i..u. pr.clud.. a nliabl. .oluti~n in,th.
tim. allott.d. Th. .xact verdinc ot the correction .hould be conud.r.ci by
ISO/TC 97/SC 5/WG 4. An .xampl. ot an att..pt.d cornction tollov.:

In ..ction 6.6.5.2 ehang. the d.tinition ot nad to:

Let t be a tile-.ariabl. and .l...vn be iabl.-acc..~then the
proc.dur.-.tat...nt nad(t..l YD) .hall acc... the tile yariabl. and
..tabli.h a r.t.r.nc. to that tile iabl. tor the remaininl .x.Qtion ot
the .tat...nt. Th. r..aininc .x.cution of the .tat...nt .hall be
&qubal8l1t to

beCin r.ad(tt..l); .., ; r.ad(tt.vn) .nd

(b) It. i. a .ariabl.-acc... po ing the char-type (or .ubrang.
thereof). r.ad(t..) .hall acc... the t.xttil. .ariable and ..tabli.h a
r.t.r.nc. to that t.xttil. .ari.bl. tor the r..aining .x.cution ot the
.tat...nt. Th. n.aininc .x.cution ot the .tate..nt .hall be .qui.al.nt
to

becin. ,. ft~; I.t(tt) .nd
vb.r. tt d.not.. the ret.r.nced t.xttil. iabl..

In ..ction 6.9.2 ehanc. the tir.t ..nt.nc. ot .ubparagraph (c) to:

(cf It. 18 a .ariabl.-acc... po ing the int.C.r-type (or .ubrang.
th.reot). read(t..) .hall acc... the t.xttil. .ariable and ..tabli.h a
r.t.r.nc. to that t.xttil. .ariabl. tor the r.maininc .x.cution ot the
.tat...nt. The r..aininc .x.cution or the .tat nt .hall cau.. the
r.adinc tro.. the r.r.renced t.xtril. .ariabl. ot a ..qu.nc. or charact.r..

r

vb.re tr denotes the r.t.r.nced til., .ariable.

L.t t be a til iabl. and . be a yariabl.-acc...; th.,n the proc.dur.-
.tat...nt read(r..) .hall acc... the rile .ariabl. anJ ..tabli.h a
r.ter.nc. to that rile .ariabl. tor the r.maininc .x.cution ot the
.tat nt.' Th. r..aininc .x.cution ot the .tat nt .hall be .qui.al.nt to

In the la.t ..nt.nc. ot .ubparagraph (c) ot ..ction 6.9.2 chang.
"th. burr.r-.ariabl. fA do.. not" to "th. burr.r-.ariabl. or the rererenced
t.xtril. do.. not"

becin . :. tr~; C.t(rr) .nd

In ..ction 6.9.2 ehanc. the rint and la.t ..ntence. or .ubparacraph (d)
.imiliarlT to the change or .ubparacraph (c).

In ..ction 6.6.5.2 ehang. the d.rinition or writ. to:

In ..ction 6.9.3 chance the d.rinition or r.adln to:

R.adln(r..l vn) .hall acc... the t.xtril. .ariable and .stablish a
r.rer.nc. to that t.xtrile .ariabl. ror the r..aininr .x.cution or the
.tat...nt. Th. r_aininc ex.cution ot the .tat_.nt .hall be .qui.al.nt to

vher. rt denot.. the rer.r.nc.d tile .ariabl..

L.t r be a til iable and .1 n be .xpr.8Jion.; then the proc.dur.-
.tat nt writ.(t..l en) .hall acc... the rile .ariabl. and ..tabli.h a
.a:.'~nc. to that rile .ariabl. tor the r...aininc .x.cution ot the
.tatement. Th. remaininc ex.cution ot the .tat nt .hall be .qui.al.nt to

becin read(tt .d... . .vn); readln(rt) .nd

vb.r. tr d.not.. the rer.renc.d t.xttil. .ariabl..

becin writ.(tt..l); .,. ; writ.(rr.en) .nd In ..ction 6.9.4.1 chanc. the d.rinition or writ. to:

vher. ft d.not.. the r.t.renc.d rile iabl..

Let t be a til iabl. and . be an .xpr...ion; th.n the proc.dure-
.tatem.nt writ.(r..) .hall acc..s the rile yariabl. and ..tabli.h a
r.t.rence to that tile .ariabl. tor the r..ainlnc .x.cution ot the
.tat...nt. Th. re.aininc .x.cution or the writ. .tat...nt .hall be

Writ.(r.pl pn) .hall acc... the
rer.r.nc. to that t.xttil. yariabl.
.tat...nt. Th. r_aininc .x.cution
to

t.xtril. .ariable and ..tabli.h a
tor the re.aininc ex.cution or the
or the .tat nt .hall be equival.nt

)0

'-'

begin writ.(tt.pl); ... writ. (tt.pn) .nd



""e...
tt denotes the ...terenced tej<tti18 n.riable.

In section 6.9.5 chance the detinition ot writeln to:

Writeln(t.pl pn) shall access the texttile n.riable and establish a
reterence to that texttile veriable tor the remaininc execution ot the
statement. The remaininC execution ot the statement shall be equivalent.
to

Proposal

In section 6.2.1 modify the production for type-d.finition-part:

type-definition-part =
I "type"

( type-definition
I schema-definition) II."

{ (
type-definition

I schema-definition
)

";"
) ] .

becin writ.(tt.pl pn); writeln(tt).nd
Effect

""ere tt denotes the r.terenc. texttile veriabl..
This says that the type-definition-part of a block is composed of any num-
ber of type and schema definitions.

Schema Array Proposal
ATTACHMENT H
PART 2

USA Contribution on Schema Arrays for Pascal Modify the production in section 6.4.1 for a new-type:

new-type = Dew-ordinal-~ype
I new-structured-type

new-pointer-type
I discriminated-schema.

Abstract

This proposal introduces 8 Dew concept into Pascal ... the schema. Once
defined it solves the sSlDe problem that conformant arrays attempted to
address. The principle advantage with this mechanism is that it provides a
broader base on which to build; it resolves many of the probl found
with conforment arrays and offers the opportunity to provide other fea-
tures in the future should the Deed be determined.

Effec:t

This specifiesthat 8 new-typemay be createdby any of the existingmeans
in Pascal or by selectingone of the membersof a schema.

The problem addressed by conformant arrays is one of how to pass arrays
into a procedure or function in such a way that the bounds of the array are
provided by the actual parameter

-
rather then by the formal parameter.

This function is very desirable in the context of being able to write
generic procedures and functions. Add a section b.tween 6.4 and section 6.S:

This proposal will be based upon X3J9/80-192 with references to conformant
arrays omitted.

6.x Schema-definitions

6.x.l General. A schema-definition shall introduce an identifier to
denote a schema. A schema defines a collectionof new-typeswhose type-
denoteris a discriminated-schema.

Ov.rview schema-definition
ideDtifier formal-discriminant-part array-schema .

A schema can be thought of as a collection of types; each member of the
collection is related to the other members in that they each have the same
overall structure. The structure of eacb type is that of an array with the
same component type. However, each array has a different index-type.

formal-discriminant-part .:;;;

"(ft discriminant-specification
{

"j" discriminant-specification} ")" .

discriminant-specification =
identifier-list":11ordinal-type-identifier

We permit a parameter of a procedure or function to specify that it will
accept any actual parameter whose type is a member of a specified schema.

In this way we permit the procedure or function to operate on a number on
values with different types, although only from the same schema. array-sch:;m~ .:;;; f npa~ked" ] "arra(tll",f," ~chem8.-index-type{ ; schema-Lndex-type} ) of componenr-type .



schema-index-type= { constant
I discriminant-identifier

" "
( const:a.n~ I discriminant.-identifier ) .

Add a section after 6. x.2

8chema-identifier= identifier.

6.x.3 Discriminated-schema. A discriminated-scbemaselects one of the
members of a schema as a new-type. The discriminant-values are bound to
their corresponding discriminant-specifications in the formal-
discriminant-part: for tbe scbema. The number of discriminantvalues must
be equal to the number of formal-discriminants and each value must be
assignment compatible with the type of the corresponding formal-
discriminant.

discri8inant-identifier = identifier.

Tbe occurrence of an identifier in a schema-definitionof . type-
definition-part ahall constitute its defining-point for the region that
is a block. Each applied occurrence of that identifier shall denote the
s..e schema. Except for applied occurrences of the identifier in a
discriminated-schemaas the domain-type of a pointer-type. the schema
shall not contain an applied occurrence of the schema-definition.

discriminated-schema schema-identifier actual-discriminAnt-part

actual-discriminant"part = "C" discriminant-value{
".

It
discriminant-value} ) .

Effect discriminan~-v81ue =constant .

The above definitions add the mechanism by which to define a schema. The
leading iden~ifier on the schem8-defini~ion (schema-identifier) becomes
known. A schema may Dot have any referencesto itselfexceptwhen used as
~he domain of a pointer; and in that case, it must only be used with the
.ctual-discriminan~s (discriminated-schema). Thus, a schema bas the same
scopeas a type declared at the same place.

Any schema designated packed end denotes an array-schema having its

schema-index-type specifying its smallest value a constant whose value is
1, end h~ving as its component-type a denotation of the char-type, shall

be a str1ng-schema. Any new type specifying a discriminated-schema which
is a string-schema shall be designated a string-type.

Effect

A discriminated.schemais a type.denoter selected from the collectionof
type.denoters in tbe schema. The v~lues given in the actual.

discriminant-part are used (subs~ituted) for the formal-discriminants in
~he array.schema. Thus the discriminated-schema: "SmallVect (7)" selects
the member of the schema whicb is equivalent ~o (but not tbe same as) the
array:

Add a section after 6. x . 1

6.x.2 Formal-discriminant-part.The formal-discriminent-part in a
schema-definitionshall define the formal-discriminants.The occurrence
of a identifier in a discriminant.specificationshall constitute its
definingpoint as a discriminant-identifierfor that regionof the program
that is the followingarray-schema.

array [ 0 .. 7 ] of Real

For every discrimineQt-identifier in formal-discriminant-part, there
shall be at least one applied occurrence in the array-schema. The occur-
rence of a discriminant-identifier in a schema-index of an array-schema
shall specify that there is one type-denoter which is. a member of the

schama for each allowed value of the discriminant-identifier such that all
other schema-index values in the schema ere the same.

An attempt to specify the schema 85 "SmallVect(ll)" will result in an
error because the value 11 is not assignment-compatible with the type of
HighBound.

Note: this implies that the number of type-denoters in the domain of the
schema is the product of the number of values for each occurrence of each
discriminant-identifier.

It must be noted that 81 though a discriminated-schema is equivalent in
struc:u~e to an array-type, it never the same (in the sense of type com-
patib~llty). Moreover) two discrimina~ed.schemes that specify the same
discriminant-valuesare not the same. In the following fragmentV2 and V3
have the same type, and V4. V6 'and V7 have the same type.

Effect

type
Tl
T2
T3

var
VI
V2,V3
V4
V5
V6
V7

SmallVect(3) ;
SmaIIVect(3);
Tl;

The formel-discriminant.partis used to associate identifiers with tbe
schema so that the domain (members of the schema) can be determined. Every
identifier used in the formal-dsicriminant must be used at least once in
the following array-schema. In the following example, SmallVect is a col-
lection of ten type-denoters with index"'types "0. .1", tlO. .2",
"0. .10".

SmellVect(3) ;
SmallVect(3) ;
Tl;
T2;
Tl;
T3;

type
SmallInt.l .. 10;
SmallVect{HighBound: SmallInt).

array [ 0 .. HighBound ] of Real;



Modify the production in uction 6.6.3.1

formal-parameter-sectiOll ..

value-parameter-apecification I

variable-par ter-specification I
constant-parameter-specif1cation

I

procedural-parameter-specification
I

functional-pArameter-specification .

Add to section 6.6.3.3

Effect

If the formal parameters are specified in a variable-
parameter-specification in which there is a schema-identifier, ~he type
possessed by the actual-parameter shall be a discriminated-schema desig-
Dating the same schema-identifier as the formal parameter or the actual-
parameter shall be itself a parameter that was specified with the same
schema-identifier; and the type possessed by the formal-parameter shall
be distinctfrom any other type.

This introduces constant-pArameter-specification. Effect

variable-pArameter-specification =
"varn identifier-list ":"
(type-identifier

I
schema-identifier)

This states tbat a formal parameter that was declared with a schema will
only permit the actual parameter to be of type which is part of the same
schema. A formal-parameter which is a schemamay in turn be passed to as a
variable"parameter utilizingtbe same schema.

Modify the p~oduction in section 6.6.3.1

If the form of the parameter list includes an identifier-list, then all
tbe actual parameters must be of the same type: this is true for schemas
as well as other types.

Effect The following example adds two vectors, element by element, and returns
tbe result in the first parameter.

The modifiedproductionstatesthat a variable may be passed intoa proce-
dure or functionwhose type-denoteris a member of a schema. When a
schelDa-identifier is specified, then the parameter may be of any type
which is a memberof the schema.

constant-paraMeter-specification

"const" identifier-list

procedureAddVectors(varA,B,C SmallVect);
var

i : natural;
begin

for i :=0 to B.HighBounddo
A[i] .= B[i] + C[i]

end;
Add this production to section 6.6.3.1

n .. schema-identifier .

Effect

A constant-parameter-specificationis permittedonly to be used with
scbemas and permits literalcharacter-stringsto be passedefficientlyto
. procedureor function. It also permitsvariableswhich are array-schemas
to be passed as "read-only" variables. It should be possible to extend
this concept to other types in the future if it found to be desirable.

Add a uction between 6.6.3.3 and 6.6.3.4

Add th is to the text af section 6.6.3. 1

6.6.3.y Constant parameters. The actual-parameter shall be an expression.

The formal parameters that occur in a single
constant-parameter-specificationshall possess an array-type which is
distinct from any other type. The type possessedby the actual-parameter
shall be a discriminated-schemadesignatingthe same schema-identifieras
the formal parameteror the actual-parametershall be itself a parameter
that was specifiedwith tbe same schema-identifier;or the actual-
parametermust be a string-type and tbe formal parametermust designatea
string-schema.

The occurrence of an identifier in in the identifier-list of a
constant-parameter shall constitute its defining point as a
read-only-variablefor the region that is the block, if any, of which it
is a formal~parameter.

Effect
For an actual-parameter that denotes a variable-access, there shall be no
assigning-reference during the activation of the block of procedure or
function to tbe actual-parameter.All parameters that are specified with the constant mechanism are identi-

fied as being read-onlyvaraibles,this permits them to be limited to
being factors within the block.



Effect

This introduces a parameter mechanism into Pascal that permits may no~ be
alteredduringthe activationof the associatedprocedureor function.Any
expression may be specified by the actual parameter J however the only
expression that is Dot a variable-access will be 8 string literal. Thus,
the lDechanism achieves Dot only protection of the actual.parameter but
also permits literal strings to be specified.

Example

const
!laxMatrix a 100;

The method of passing the parameter may be chosen by the implementation,
one suitable method may by passing an indirect reference in the parameter
list.

typl>
Positive
!latrix (!I,N

array [
Square (Len

= 1. .1Iax.'1atrix;

: Positive)
=

1. .11, 1..N ) of Real;
; Positive) = lIatrix(L,L);

factorz variable-access
!~ction-de~ign8~o;.( expreSS10n )

schema-discriminant

unsigned-constant
set-constructor

"not" factor
read-only.variable

procedureTranspose ( var H : Square );
var
I,J
R

begin
for 1 := II.Len downto 2 do

for J := I-I downto 1 do
begin

R := II[I,J]
II[I,J] := II[J,I]
II[J,I] R

end

Positive;
Real;

Modify the production in 6.7 for a factor

schema-discriminant = parameter-identifier

"." discriminant-identifier . end;

read-only-variable = variable-access .

Effect ,.
Addition to factor is used to indicate that a factor .8Y also be a
schema-discrimiDant.

Add the production in 6.7 for a schema-discriminant

schema-discriminant = variable-access
I!
"

discriminant-identifier

Effect

A schema-discriminant is used to determine that. actual-discriminants of
the 'the aC'tual-parame'ter. Becausea factor can never appear as a targetof
an assignment., the discriminant lDay never be altered. The value of the
discriminantcould be tbought of as a "read-only" value .associated with
the variable (or parameter).

U
J>
G>
m



IMPLEMENTATION NOTES ONE PURPOSE COUPON

DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

2. MACHINE/SYSTEM CONFIGURATION (* Any known limits on the configuration or support sohware required, e.g.
operating system. *)

3. DISTRIBUTION (* Who to ask, how it comes, in what options, and at what price. *)

". DOCUMENTATION (* What Is avai/able and where. *)

5. MAINTENANCE (*Is it unmaintained, fully maintained, etc? *)

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How. *)

7. MEASUREMENTS (* Of its speed or space. *)

8. RELIABILITY (* Any information about field use or sites installed. *)

9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *)

1Q. LIBRARY SUPPORT (* Any other support for compi/erin the form of linkages to other languages, source libraries, etc. *)



(FOLD HERE)
I'-j-- -- - -- -- - - - -- - -- - - - -- - -- -- .".,..- - -- -- - ,.-- - -- ,,.- -- - -- -- - -- -- -- -- -- - -- -- - -

.
I

PLACE
POSTAGE

HERE

Bob Dietrich
M.S. 92-134
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077
U.S.A.

~--------(FOLD HERE)

NOTE: Pascal News publishes all the checklists it
gets. Implementors should send us their checklists
for their products so the thousand$ of committed
Pascalers can judge them for their merit. Otherwise
we must rely on rumors.

Please feel free to use additional sheets of paper.

IMPLEMENTATION NOTES ONE PURPOSE COUPON



POLICY: PASCAL USERS GROUP U5-Sep-80)

Purpose: The Pascal ~User's Group (PUG) promotes the use of the programming
language Pascal as well as the ideas behind Pascal through the
vehicle of Pascal News. PUG is intentionally designed to be non
political, and as such, it is not an "entity" which takes stands on
issues or support causes or other efforts however well-intentioned.
Informality is our guiding principle; there are no officers or
meetings of PUG.

The increasing availability of Pascal makes it a viable alternative
for software production and justifies its further use. We all
strive to make using Pascal a respectable activity.

Me.nbership: Anyone can join PUG, particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Memberships from libraries are also encouraged. See the
ALL-PURPOSECOUPONfor details.

Facts about Pascal, THE PROGRAMMINGLANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and read by
humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:
* teaching programming concepts
* developing reliable "production" software
* implementing software efficiently on today's machines
* writing portable software

Pascal implementations exist for more than 105 different computer systems, and
this number increases every month. The "Implementation Notes" section of
Pascal ~ describes how to obtain them.

The ~tandard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There"
section of Pascal News.

The programming language 1 Pascal, was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently
have more than 3500 active members in more than 41 countries. this year Pascal
News is averaging more than 100 pages per issue.

"
o
--.
n

'<

I
L-


