&&/7 B/Ju)se-

Pascal News

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

PASCAL USERS GRGUP

o
o

o
~ =
o —
w
2 o
5 ]
= =]

jru)

[

e}

a

718 5.1

Recommendedi

Return to:

PASCAL USERS GROUP
P,0. Box 888524
Atlahta, GA 30338

Return postage guaranteed
Address Correction requested

ATIN: ROUOM 217 BROUSE COPY [&1)
UNIV, UF MINNFSOTA

ycc ¢ 227¢€X
MTIANEAPDLTS,

Wi

55455

Bulk Rate
U.S. Postage
PAID

Atlanta, Ga.
Permit No. 2854

S ety gy



POLICY: PASCAL NEWS (15-Sep-80)

*

*

*

Pascal News is the official but informal publication of the User's Group.

Pascal News contains sll we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we ,
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
“concentrators” (our phones and mailboxes). We are trying honestly to say:

"We cannot promise more that we can do."

Pascal News is produced 3 or 4 times during a year; usually in March, June, ;

September, and December.

ALL THE NEWS THAT'S FIT, WE PRINT. Please send meterial (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 cm lines!

Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST :
T0 THE CONTRARY. ;

Pascal News is divided into flexible sections:
POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among t
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and :
quantitative descriptions and comparisons of various implementations are

publicized. Sections contain information about Portasble Pascals, Pascal

variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

RN

------ ALL-PURFUSE COUPON - - = - - = (15-Sep-80)

Pascal User's Group, c/o Rick Shaw
P.0. Box 888524
Atlanta, Georgis 30338 USA

**Note**

Membership fee and All Purpose Coupon is sent to your Regional
Representative.

SEE THE PoLICY SECTION ON THE KEVEK d

) | SE SIDE FOR_PRICES AND
ALTERNATE ADDRESS if you are located in the European or
Australasian Regions.

Membership and Renewal are the same price.
Note the discounts below, for multi-year subscription and renewal.
The U. S. Postal Service does not forward Pescal News.

USA Europe Aust.
X [ ]1 year "$10. £6. AS 8.
Enter me as a new member for:

[ ] 2 years $18. £10. A$ 15.

Renew my subscription for:
[ ] 3 years $25. £14. . A$ 20.

] 1
Send Back Issue(s) ] i

My new address/phone is listed below

Enclosed please find e contribution, idea, erticle or opinion
which is submitted for publication in the Pascal News.

Comments:

1 ENCLOSED PLEASE FIND: A$

™~

t CHECK no.

NAME

ADDRESS

PHONE

COMPUTER

DATE




i s S RV

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

Please enclose the proper prepayment (check payable to "Pascal tUser's
Group"); we will not bill you.

Please do not send us purchase orders; we cannot endure the paper work!

When you join PUG any time within a year: January 1 to December 31, you
will receive 3}l issues of Pascal News for that year.

We produce Pascal News as a means toward the end of promoting Pascal and
communicating news of events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do.

American Region (North and South America): Send $10.00 per year to the

address on the reverse side. International telephone: 1-404-252-2600.
European Region (Europe, North Africa, Western and Central Asia): Join
through PUG 1U ). Send £5.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton 509 SNH,
United Kingdom; or pay by direct transfer into our Post Giro account

(28 5137 4000); International telephone: 44-703-559122 x700. s
Australasian Region (Australia, East Asia - incl. Japan): PUG(AUS). Send
$A10.00 per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

PUG(USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

Please renew early (before November and please write us a line or two to
tell us what you sre doing with Pascal, and tell us what you think of PUG
and Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a year means that we eliminate many requests for
backissues shead of time, and we don't have to reprint important information
in every issue--especially about Pascal implementations!

Issues 1 .. 8 (January, 1974 - May 1977) are out of print.

(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

Issues 9 .. 12 (September, 1977 - June, 1978) are available from PUG(USA)
all for $15.00 and from PUG(AUS) all for $A15.00

Issues 13 .. 16 are available from PUG(UK) all for £10; from PUG(AUS) all
for $A15.00; and from PUG(USA) all for $15.00.

Extra single copies of new issues (current academic year) are: $5.00 each
- PUG(USA); £3 each - PUG(UK); and $A5.00 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, spplications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm. wide) form,

All lettera will be printed mlo-‘:‘&!y‘ contain s roguesl to tha controry.

PASCAL NEWS #20 DECEMBER, 1980

Editor’s Contribution

RENEWING

This is the-last issue of the year,

;g:ég agzeﬁ'?et here!!) So if you have not renewed yet

becgusaod 4t It is easy to tell if you need to renew’

pesaus (gxcepytoui:avtehetoA d(; i]s look at your mailiné
) ustralasian Region.

number in square brackets says 80 (ie. igk%g])“lf t;Zﬁ

this is your last is i
subscription expires.sue' This number is the year your

THIS ISSUE

—— e

{Bet you thought it

This issue contains the full tex

t of the “Sec "
?:Sghgnfroposed IS0 Pascal Standard. 1 hoie 9&? ?:a:;e
Micker we publish; because it is the last onel AndyA
mackel ( :fmember Andy?! ) was present at the X3J9
nee dq n untsvllle{ and has also been doing plenty of
he g ;;tanpe politicing for this standard. He asked if

cou write a guest editorial and the text follows.

Il

m UNIVERSITY OF MINNESOTA University Computer Center

TWIN CITIES 227 Expenimental Engineering Build
208 Union Street S.Eg ng Bullding
Minneapolis, Minnesota 55455

1981-01-08

This special issue of Pascal News presents the second d

raft proposal of the IS0
gazgal Standard now out ?gr pubTic comment and voting by the apgropriate national
odies. More formally this document is known as (revised) DP7185.1.

{Alice Droogan, ISO TC97/SC5 Secretariat said to send
i . 0 all comment to:
Joint Pascal Committee, c/o Larry B. Weber, IBM, General Products Division,

555 Bailey Avenue, San Jose, CA
Pascol News. 1on. , 95150 USA. See also bottom of page 69,

’



lii :

P e PR . . AL i R R SRR ;u,.;,m,,gmﬁ,
PASCAL NENS #20 DECEXBER, 1980 ; v PASCAL NEWS #20 DECEMBER, 1980
As was reported by Jim Miner on page 74 of Pascal News #19, the first draft
received 11 yes and 4 no votes. Most of the people 1 know associated with & american national standards institute. i
IS0 Pascal Standards activities (including myself) expect unanimous approval ute, inc - 1430 broadway, new york, n.y. 10018 - (212) 354-3300
on this draft. There are several things I can say about this: Cable: Stendards, New York
B - B W Yor

internationst Telex: 42 4296 ANSI Ut
1. The ISO Pascal standard is badly needed now and is overdue, but it
will have set speed records in approval.
2. Even though the draft standard is imperfect (and always will be) the
realization among those experts from the IS0 Working Group is that Januvary 21, 1981
extra time spent on the draft in an effort to perfect it has reached
the point of diminishing returns.

3. This draft can be expected to be very close to the final standard.

Pascal users will at last benefit from a single standard when it
will be adopted by the national standards groups in IS0 member

countries (such as in the USA by ANSI/IEEE/NBS and the Federal Govt.). Dear Mr. Shaw:
What I wrote two years ago in an editorial in Pascal News #14 which introduced E
the third BSI working draft of a Pascal Standard still applies: fzﬁliﬁﬁdcﬁiﬁﬁiirfiﬁigsﬁzﬁzd d;:ft proposal ISO/DP 7185 - Specification
- ) X n -
Pascal Standards should be given special consideration (in other words, circulated to 97/5 commitceg mezgzzgeforP::§:i' O:hi’ document is being
there are not necessarily applicable precedents found in the standards 8 by March 31, 1981,
processes of other languages). The Pascal Standards process has been a Comments on the document are wel
model phenomenon in Computer Science history. in written form and must be r::e§3:§ :;dM::i; g; °f§§id°r§f ou m::t be
March 31, 1981, ease address

First and foremost Pascal was designed by a single person (Niklaus Wirth) 21l comments to ANSI's X3J9 Chairman:

and is not a committee-designed language. Pascal Standards Committees

have so far rightly refrained from adding committee-designed features. Dr, Carol Sledge

Secondly, Pascal is the first major programming language standardized On-Line Systems, Inc.
outside the United States. As I've said before, it has European origins ) 115 Evergreen Heights Drive
but to be more accurate, Pascal is truly international. 1 think that's Pittsburgh, PA 15229

wonderful and neat! :
Comments should be clearly marked with the name, address and telephone

Pascal is in very wide use (even though there are dozens of programmers ignorant . number of the commentor, the

of its impact and uses). Its design goals mentioned in my Pascal News #14 : comment applies, and a ;ac1on:i:tisne;n§a::::e0t;on so which the

editorial have been met and exceeded {even though there are pienty of computing ' changes. Specific proposed text ch-ng:s are Z:e :; :nz proposed text

people who deny this). : for comments, but general changes or eriticisms, or‘que:::::‘c’lenf:m
H ’

also welcome.
Finally, let me reiterate the implications of an imperfect Pascal standard. In

i Sin
the time given, with the people involved, and with the resources we've had, . cerely,
it's a remarkable achievement. (Thank you, Tony Addyman!) And it is still . (/,7 . Aé%
imperfect. But now the existence of a finished standard is more important : : v/(4£9‘<f/ /b¢477'vx_~_
thatn spending any more time. ' Alice Droogan
In spite of the attitude of many of us technical people, you can't always Secretariat IS0/TC 97/SC 5
fix certain things--technical probiems don't always have clean solutions.
not clear in some cases that solutions can be attained. In other words, if
you put enough constraints on a problem, it could be the case that the set of
solutions is empty.

f AD/MAC
It's Encl.

Therefore, regarding the conformant-array feature I am happy; after having .
listened to the large volume of discussion, I know that it is equivalent in

quality to any alternative. To repeat a familiar refrain, if there had been i
a natural solution, Niklaus would have incorporated it in the first place. )

N |
S0k |

N

He's said so himself.



DECEMBER, 1980

ISO/TC 97/SC S N
January 1981

PASCAL NEWS #20

DP718S SPECIFICATION FOR THE COMPUTER PROGRAMMING LANGUAGE Fascal
CONTENTS P?se
Foreward

0. Introduction 2
1. scope of this standard 2
2. References g
3. Definitions

4, pefinitional Canventions 3
S. Compliance 2
5.1 Processors :
5.2 Prosrams 2
[N Requirements

6.1 Lexical Tokens &
6.2 Blocks: scoper activations 9
4.3 Constant-definitions i1
6.4 Type-definitions . ) 12
6.5 Declarations and denotations of.varxables 24
b.é Procedure and function declarations 28
6.7 Expressions 43
6.8 Statements S1
6.9 Input and outeut 59
6.10 Pro9rams &5
4.11 Hardware rerresentation 67
APPENDICES

A. Collected syntax &9
B. Index 77
C. Reauired Identifiers 83
TABLES

1. Metalansuagse symbols 3
2. Dvadic arithmetic orerations 47
3. Monadic arithmetic omerations 47
4. Set orerations 48
5. Relational operations 49
6. Alternative symbols 68
Foreword

The lansuagse Pascal was desioned by Frofessor Niklaus Wirth to satisfy

two princiral aims: ) ) ]

(a) to make available a lansuase suitable fop teaching prosramming as
a systematic discipline based on cergaxn fundamental concerts
clearly and naturally reflected by the lansuase.

(b) to define a lansuase whose implementations could be both reliable
and efficient on then available computers.

i N R——————
DECEMBER, 1980

e

PASCAL NEWS #20

Second Draft Prorosa)

However:, it has become arrarent that Pascal has attributes which wo
far bevond these orisinal scals. It is now beins increasinsly used
commercially in the writine of both system and areplication software.
This standard is Primarily a consesuence of the erowins commercial
interest in Pascal and the need to mrromote the eaortability of Pascal
programs between data processine systems.

In draftine this standard the continued stability of Pascal has been a

eprime obJjective. However» amart from chanses to clarify the

smecification: two maJjor chanses have been introduced:

(a) the syntax used to sepecify mrocedural and functional pParameters
has been changed to resuire the use of a procedure or function
headings as arprorriate (see 6.6.3.1). This chanse was introduced
to overcome a lansuase insecurity!}

(b) a fifth kind of Parameter, the conformant array eparameter, has
been introduced <(see &4.46.3.7). With this kind of rParameters the
required bounds of the index~-tyme of an actual marameter are not
fixed,r but are restricted to a seecified ranse of values.

0. INTRODUCTION

The aprpendices are included for the convenience of the reader of this

standard, They do not form a rart of the reauirements of this
standard.,

1. SCOPE OF THIS STANDARD

1.1 This standard seecifies the semantics and syntax of the commuter
rrosramming lansuase Pascal by srecifyins resuvirements for a erocessor
and for a conforming prosram., Two levels of comeliance are defined for
both erocessors and erosrams.

1.2 This standard does not smecify .

(a) the size or comelexity of a prosram and its data that will exceed
the capacity of any seecific data erocessines system or the
caracity of a particular processors

(b) the minimal reauirements of a data erocessine
carable of supportine an imerlementation
Pascals

(c) the method of activatine the erogram=block or the set of commands
used to contro) the environment in which a Pascal erogsram s
transformed and executed’

(d) the mechanism by which prosrams written in Pascal are
for use by & data mrocessins system}

(e) the method for reeorting errors or warninsss

(f) the typowrarhical representation of a rrosram published for human
readine.

system that is
of a eprocessor for

transformed

2. REFERENCES

None,

-~ .



N —-«;M

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

3, DEFINITIONS

3.1 error. A violation by a Program ofA thetqequirements of this
) ard whose detection by a Processor 1s optiona .
3.2 §;:?3mentation-defined. Fossibly differing between rrocessors» but
defined for any particular Processor. ‘ )
3.3 implementation-derendent. Possibly dxfferxns be{ween pProcessors
and not necessarily defined for any pParticular Processor. hich
3.4 processor. A compiler: interereter,» or other mechanlsq w h
) acceprts the program as input and either executes il, prerares i
for executions or both.

4, DEFINITIONAL CONVENTIONS

i i Ci % of the
in this standard to seecify the_synta» 1}
Backus~Naur Form. The notation has been
orisinal to prermit 9reat:2 con:enle?c:]azg
. ) - ) .
iption and to allow for iterative ProquL ons 1] ]
2::5:;:v: ones. Table 1 l1ists +the meanings of .the .zaaxogi
meta-symbols. Further specification of the constructs is o9ive

The metalansuase used
constructs is based on
modified from the

i i frasments. Any
and in some cases» by equivalent fProsram asm
:g:::ifier'that is defined in <clause & as the 1dent1f;:r bOfit:
predeclared or eredefined entity shall denote that entity by

such
i rosram frasment. In all other FE§PECtSJ any c
A P i ) pertinent reauirement of this

msrosram frasment is bound by any
standard.
Table 1. Metalansuase symbols
Meta~symbol Meaning .
- shall ke defined to be
> shall have as an alternative definition
H alternatively
. end of definition
[x] 0 or 1 instance of x
{x) 0 or more instances of x
(xiy) arouringi either of x or v
“xyz" the terminal symbol xvy2

meta-identifier a non-terminal symbol

[———— R L g

_semantic srecifications arprly.

e g

T R

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Proposal

A meta-identifier shall be a seauence of letters and hyrtens besinning
with a letter.

A seauence of terminal and non-terminal symbols .in a pProduction
immlies the concatenation of the text that they ultimateiy reepresent.
Within &.1 this concatenation is direct’ no characters may intervene.

In all other parts of this standard the concatenation is in accordance
with the rules set out in 4.1,

The characters resquired to form Pascal erograms are those implicitly
required to form the tokens and serarators defined in &.1.

Use of the words of» ins containine and
exeressing a relationshier between
shall have the followins meanines.

closest-containine when
terminal or non-terminal symbols

the x of @ vt refers to the x occurrins directly in a
defining v.

production
the x in a v: is synonymous.with “the x of a y".

a vy containins an xt
derived from vy.

refers to any x directly or indirectly

the y closest-containing an x: that vy which contains an x but does
not contain another y containins that x.

These syntactic conventions are used in clause & to specify certain
syntactic reauirements and also the contexts within which certain

3. COMPLIANCE

NOTE. There are two levels of tomeliance - level O and level 1.,
Level O does not include conformant array marameters. Level 1 does
include conformant array rarameters.

S.1 Processors

A processor complyins with the reauirements of this standard shalls

(a) if it comPlies at level O, accert al1 the features of the lansuase
specified in clause &) excemt for 6£.6.3.6(0)y 6.6.3.7 and 6.6.3.8»
with the meaninss defined in clause 6%

{b) if {t complies at level 1, accert all. the features of the lansuase
specified in clause & with the meaninss defined in clause 43

(c) not reauire the inclusion of substitute or additional lansuase
elepents in a erosram in order to accomelish a feature aof the
lansuawe that is specified in clause 63 :

(d) be accompanied by a document that erovides a definition of all
implementation-defined featurest

(e) detect any violation by a erosram of the reauirements of this
standard that is not desisnated an errort

(f) treat each violation that is desisnated an error in at least one
of the followins wavs!

-



| .

PASCAL NEWS #20 DECEMBER, 1980 ,

Second Draft Promosal

1) there shall be a statement in an accompanyine doucument that the
error is not remorted: ) i
2) the processor shall have reported & erior warning that an!
occurrence of that error was Possibles :
3) the erocessor shall rerort the error durine preraration of the,
prooram for executions i
4) the processor shall rerort the error durine execution of thef
programe and terminate execution of the prosram. :

(8) be accompanied by a document that serarately describes any:
features acceerted by the eprocessor that are not specified in:
clause &. Such extensions shall be described as beins ‘extensions’
to Pascal srecified by IS071385: 196-‘.

(h) be able to process in a manner similar to that sreecified for
errors any use of any such extensions

(i) be able to process in a manner similar to that specified for
errors any use of an imelementation-derendent feature.

5.2 Prosrams :

A prooram complyins with the reauirements of this standard shall: i

(a) if it complies at level 0, use only those features of the lansuase
specified in clause &» excert for &.46.3.4(e)y &.&.%.7 and &.6.3.838 1

(b) if it complies at level 1, use only those features of the lansuasge
specified in clause &3

{c) not rely on any particular

interpretation of
implementation—-derendent features.

erogram by different complyins Processors are not resquired to be !

!
NOTE. The results eproduced by the eprocessins of a comp]yins:
11
the same. '

e

PASCAL NEWS #20 DECEMBER, 1980

$. RCQUIREMENTS
é.1 Lexical tokens

NOTE. The syntax given in this sub-clause (4.1) descrites the
formation of lexical tokens from characters and the seraration of
these tokens, and therefore does not adhere to the same rules as
the syntax in the rest of this standard.

4.1.1 General. The 1lexical tokens used to construct Fascal prosrams
shall be classified into sepecial-symbols, identifiers, directives,
unsisned-numbers,» 1labels and character-strinss. The representation of
any letter (upper-case or lower-caser differences of font, etc)
occurring anywhere outside of a character-strins (see 4£.1.7) shall be
insienificant in that occurrence to the meaning of the rrosram.
]ettep = llall=llbll:'lcll:"dll:Ile“:llfil:”sll=llhll:l‘ill:uJH:ukll:“‘il:ilm“:
llnllluolll.'irll:llqllgllr‘l5l|sll:“tn=llull:"vll=l!w“=llx0l5ll’":llzﬂ
dislt = "0“:"1":“2“|"3":"4"3'5“:“6-1“7“:"8“3"9“ -
6.1.2 Seecial-symbols. The smecial-symbols are tokens havine special

meanings and shall be used to delimit the syntactic units of the
lansuase.

SPGCi‘]"SYmbO] = u+u=u_nzn*u:u/nzngu:u<u:n>n=utn:n]n:

' H 2";“:“/\“:“("‘")":

“HOM = oa Ngan i % word-symbol .
word-symbol = "and"i"array"i{"besin"i"case” ! "const"i"div"}
"do"!“downto"!"else" i "end"{"file" " for"!
“function" i"eoto"i"if" {"in"{"label" "mod"!
“nil"i"not"i"of"!“or"!"Packed" | "pProcedure”!
“mprosram”!"record"i"rereativset” ! "then"!
“to"i"type" i "until"!"var"!“while" ! *with" .

6.1.3 Identifiers, Identifiers may be of any lensth. All characters

of an identifier shall be sisnificant. No identifier shall have the
same srpelling as any word-symbol,

identifier = Jetter {letter ! disit)

Examples:
X time readinteser WG4 AlterHeatSettins

InquireWorkstationTransformation
InquireWorkstationldentification

é&.1.4 Directives. A directive shall occur only in a
procedure—-declaration or function~declaration. The dire-tive forward
shall be the only required directive (see &.46.1 and 6.6.2). Other
implementation~derendent directives may be mrovided. No directive
shall have the same srelline as any word-symbol. '

directive = letter {letter | disit) .

NOTE. On many erocessors the directive external is used to serecify
that the erocedure-block or function~blgqck corresron.ding to that
rrocedure~heading or function-headins is external to the
srosram-block. Usually it is in a library in a form to be fnmut

&



LR

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

tor» or that has been produced by, the processor.

6.1.5 Numbers. An unsigsned-inteser shall dencte in decimal notation a
value of inteser—tyre (see 46.4.2.2). An unsigned-real shall denote in
decimal notation a value of real-tyre (see 4.4.2.2). The letter “e"
precedine a scale factor shall mean ‘times ten to the eower of’., The
value denoted by an unsigsned-integer shall be in the closed interval O
to maxint (see 6.4.2.2 and 6.7.2,2). :
digit—-seauence = digit {disit) .
unsisned-inteser = digit-seauence .
unsisned-real =
unsisned-inteser "." digit-sequence ["e"
unsigned-integer "e" scale-factor .
unsisned-number = unsisned-inteser | unsisned-real
scale-factor = sisned-integer .
sign = "eV | M
sisned-inteser = (sisn] unsisned-inteser .
sisned-real = [sisn) unsisned-real .
sisned-number = sisned-inteser ! signed-real

scale-factorl !

Examrles:
le10 1 +100 -0.1 Se-3

é6.1.,6 Labels. Labels shall be digit-seauences and shall be

distinsuished by their arrparent intesral values: that shall be in the
closed interval O to 9999.

87.35E+8

label = disit-sequence .

4.1.7 Character—strines, A character~strins sinsle
string-element shall denote a value of char~tyme (see 6.4.2.2). A
character~strine containine more than one strins-element shall denote
a value of a strins-tyre (see 6.4.3.2) with the same number of
comronents as the character-strins contains strins-elements. If the
strins of characters is to contain an arostrorhe, this arastrophe
shall be denoted by an arostrorhe—imase. Each strins-character shall
denote an implementation—defined value of char~tyre.

containing a

character-strins = "‘" strins-element
{strins—element? “‘" .,

strins-element = arostroprhe-imase ! strine-character .
arostrorhe-imave = '

string~character =
one-of-a-set-of-implementation-defined-characters .

Examplest

‘A’ r3 ter s

‘Pascal’ ‘THIS IS A STRING’

e e s e

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Promosal

4.1.8 Token serparators., The construct
uLn any—sequence—of-characters-and-separations-of—lines—not-
containing~risht-brace “2}"

shall be a comment if the “{* does not occur within a character~strine
or within a comment. The substitution of a srace for a comment shall
not alter the meanins of a Prosram.

nts, spaces (excert in character—strings), and the separation of
s::?icu:iva lines shall be considered to be token serarqtors. Zero or
more token seerarators may occur between any two consecutive tokens, or
before the first token of a Prosram text. There shall be at least one
serarator between any Prair of consecutive tokens made ue of
identifiers, word~symbols, labels or unsigsned-numbers. No serarators
shall occur within tokens.




PASCAL NEWS #20 DECEMBER, 1980

6020 ek TR Bl tivations i 4 -
wh;ch a label occurs shall closest—congzgz leiﬁfi—diﬁlariiﬁiz;:22t ;2
N T s e P N
label for the resion which i; the bf:cg.be 145 defininecroint as a

block = label~declaration-part
constant-definition-part
type~-definition-part
variable~declaration-rart
procedure-and-function-declaration—-part
statement-part .,

label-declaration-Part = ["1abel" label {"»* lakell »;v3 ,
constant-definition-epart = ["congt" constant-definition “j¢
{constant-definition "3%31 .

tyre~definition-rart = ["type" type-definition “s*
{type-definition “;")1 .

variable~declaration-rart = ["var" variable-declaration *3*
{variable-declaration ";“3}1]

rrocedure~and~function-declaration-part =
{{procedure-dectaration ! function-declaration) "33

The statement-part shall specify the al i i i
]
executed upon an activation of the block. orithmic actions to be

statement-part = comround-statement N

All variables contained by an activations excert for thase listed as

Prosram- - i
ros act;:::?::frs. shall be totally-undefined at the commencement of

2.%.% Score
+2.2,1 Each identifier or label ¢ i
o gave atdetinion o lat ontained by the mrosram—block shall
2.2, ach definins-point shall have a resion that i
is a mart of the
rrog i
resi::T text:» and a scoere that is a rart or all of that
6.2.2.3 The resion of each definine-poi 1 i
~point is defined e}
6.2.10 6.2.2,100 6.3+ 6.4.1, 6.4.2.3, 6.4.3f§?her2 és:e
6.5.3.3) 6.6.1) 6.6.2 6.6.3.1, 6.8.3.10. e
4$.2,2.4 I?:c]zgg:e o{' each. defining-point shal) be its resion
orae 352.2'5 a:d 2.2.2tz?10ns enclosed by that resginn) subiect to
w2:24 en an identifier or label that has a definins-
resion A has a further definins~point for some :Z:?gnfog
izg:?s;: by] Ay then regsion B and al) resions enclosed by B
tas St A.ex:: uded from the scope of , the definins-point for
e2.2.6 The field-identifier of the field ifi
b ! -8 f
fgeld-qesxsqagor (see 6.5.3.3) shall Pe:: !::e :: th:
field-identifiers associated with a compPonent of the

record-type Possessed by - ia
fie1dodesionatye the record-variable of the

e IR LRI Y o X

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Froposal

é.2.2.7 The scome of & definins-moint of an identifier ur label shall
include no other definins~moint of the same identifier or
label.

£.2.2.86 Within the score of a definins-point of arn identifier or
label,» all occurrences of that identifier or label shall be
designated arplied occurrences» except for an occurrence that
constituted the definins~-moint of that identifier or labels
such an occurrence shall be desisnated a definine occurrence.
No occurrence outside that score shall be an arplied
occurrence.

6.2.2.9 The definins—-point of an idantifier or label shall eprecede
all applied occurrences of that identifier or label contained
by the eprosram-block with one exception: namely that a
type-identifier may bhave an applied occurrence in the
domain-tyme of any new—pointer~types contained by the
tyme-definition—-rart that contains the definine-point of the
type~identifier.

6.2.2.10 ldentifiers that denote reaquired constants, tvees, procedures
and functions shall be used as if their definine-moints bhave
a resion enclosing the prosram.

6.2.2.11 Whatever an identifier or label denotes at its definine—moint
shall be denoted at all apelied occurrences of that
identifier or label.

6.2.3 Activations
6.2.3.1. A procedure-identifier or function-identifier havins a
definine-pogint for a resion which is a block: within the
rrocedure-and-function—-declaration-rart of that block shall be
designated local to that block.

6.2.3.2. The activation of a block shall contain

(a) for the statement—-part of the block) an alsorithm,» the completion
of which shall terminate the activation (see also 6.8.2.4)3%

(b) for each label in a statement, havins a definins~mpoint in the
label-declaration-sart of the block, a emrosram—-mroint in the
alsorithm of the activation of that statements ’

(c) for each variable~identifier havins a definine-point for the
resion which is the blocks a variable prossessing the type
associated with the variable—identifiers

(d) for each procedure—~identifier local to the block: a rrocedure with
the formal parameters associated with: and the procedure-block
corresponding tor the procedure-identifiers and

(e) for each function—identifier local to the blocks @ function with
the formal parameters associated with,» the function-block
corresponding tor and the tyre rossessed by, the
function-identifier.

6.2.3.3. The activation of a procedure or function shall be the
activation of the block of its erocedure~block or function-block,
respectively) and shall be designated within:

(a) the activation containings the pProcedure or functioni and

(b) all activations that that containine activation is within.

10




|
|
i

I s PR P oA .5 R

*:aww .- e

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal 5

NOTE. An activation of a block B can only be within activations of
blocks «containine B. Thus an activation is not within another |
activation of the same block.

Within an activationr an aPplied occurrence of a label or
variable-identifier, or of a procedure—identifier or
function-identifier local to the block of the activation: shall denote

the correspondinge erosram-Point, variable: rrocedure: or functions !
respectively, of that activation.

6.2.3,4. A procedure-statement or functiaon-desisnator cantained in the !

alsorithm of an activation and that seecifies the activation of a !

:;ocg‘sh:ll be designated the activation—-point of that activation of
e ock.

6.2.3.5. The alsorithm,
functions» if anys shall
activation.

Pprogram-pointss variables,

rrocedures and |
exist wuntil the §

termination of the

6.3 Constant-definitions. A <constant-definition shall introduce an
identifier to denote a value.
constant-definition = identifier "=" constant .
constant = [sisnl (unsisned-number | constant-identifier)
i character—-string .
constant-identifier = jdentifier .

The occurrence of an identifier in a constant-definition of a
constant—definition-part of a block shall constitute its
defining-point for the resion that is the block. The constant shall
not contain an applied occurrence of the identifier in the
constant-definition, Each applied occurrence of that identifier shall
be a constant-identifier and shall denote the value denoted by the
constant of the constant-definition. A constant-identifier in a
constant containing an occurrence of a sion shall have been defined to
denote a value of real~tyre or of integer-tyre.

PASCAL NEWS #20 DECEMBER, 1980

&.4 Type~-definitions
6.4.1 General. A type-definition shall introduce an identifier to
Jenote a tyre. Tyre shall be an attribute that is Possessed by everr

‘value and every variable. Each occurrence of a new-type shall denote a

type that is distinct from any other new-type.

type-definition = identifier "=" type-denoter .

type—-denoter = tyre—identifier ! new-tyme .

new-tyre = new-ordinal~type | new-structured—-type |
new—-pPointer-type .

The occurrence of an identifier in a tyee-definition of a
tyre~definition~part of a block shall constitute its
for the region that is the block. Each arrlied occurrence of that
identifier shall be a type-identifier and shall denote the same tyee
as that which is denoted by its tyme~denoter. Excert for arplied
occurrences as the domain~tyepe of a new—pointer—tyme, the type-denoter
shall not contain an aeplied occurrence of the identifier in the
tyre-definition,

Tyres shall be classified as simepler» structured or mointer tyres. The
required types shall be denoted by predefined tyme-identifiers (see
6.4.2.2 and 6.4,3.9).

simple-type-identifier = type-identifier .
structured-type-identifier = type-identifier .
pointer~tyre~identifier = tyme-identifier .
tyme~identifier = identifier .

A type-identifier shall be considered as a simmle-type-identifier, a
structured-type-identifier,» or & pointer~tyme~identifier, accordins to
the tyre that it denotes.

é6.4.2 Simple~-types . .
6.4.2.1 General. A simple-typ shall determine an ordered set of
values. The values of ¢ach ordinal-tyre shall have inteser ordinal
numbers, An ordinal-tyme~identifier shall denote an ordinal~tyre.

simple-tyre = ordinal-tyre ! real-tyme .
ordinal-tyme = pew-ordinal-tyme !
integper~tyre | Boalean~tyme ! char-tyre |
ordinal-type-identifier .
new-ordinal-tyre = enumerated-tyme ! subranse-tyeme .
ordinal~type-identifier = identifier ,
6.4.2.2 Required simple~tymes. The followins tymes shall existt
inteser-tyre The reauired inteser~tyme-identifier inteser shall
denote the inteser—tyme. The values shall be a subset
of the whole numbers, denoted as srecified in 46.1.5 by
the sisned-inteser values (see also 6.7.2.2)., The
ordinal number of a value of inteser—-tyre shall be the
value itself.

The required real-tyme—identifier real shall denote the
real-type. The values shall be an
imelementation-defined subset of the real numbers
denoted as specified in &.1.5 by the sisned-real
values.

real-type

12

defining-proint



PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

'

}

i
reauired Hoolean-type-identifier Foolean shalj

Boolean-type The
denote the Boolean-type. The values shall be the
enumeration of truth wvalues denoted by the require§

constant-identifiers false and true, such that false is
the epredecessor of true. The ordinal numbers of th
truth values denoted by false and true shall be th
inteser values O and 1 respectively. ’ |

The resuired char-tyre-identifier char <hal)l derote thé
char-tyrPe. The values shall be the enumeration of a set
of implementation-defined characters, some Possibly
without srarhic rerresentations. The ordinal numbers of

char~-type

the character wvalues shall be values o inteser~typre
that are implementation-defined, and that are
determined by marping the character values on to
consecutive non-nesative inteser values startine at
zero. The maPpines shall be order ereservins. The
following relations shall hold:

(a) The subset of character values rerresenting the
diaits 0O to ¥ shall be numerically ordered and
contisuous.

(b) The subset of character values reeresenting the
upPer—-case letters A to 2» if avaiiable, shall be
alrhabetically ordered but not necessarily contisuous.
(c) The subset of character values rerresenting the
Tower~case letters a to z» if available, shall be

alphabetically ordered but not necessarily contisuous.

(d) The orderins relationshie between any two character

values shall be the same as between their ordinal
numbers.

NOTE. Orperators arplicable
specified in 6.7.2.

to the required simrle-tyres are

6.4.2.3 Enumerated-typres. An  enumerated-type
ordered set of values by enumeration of the identifiers that denote
those values, The orderins of these values shall Le determined by
the seauence in which their identifiers are enumerate<d: i.e. if x
precedes y then x is less than vy. The ordinal number of a value that
is of an enumerated-tyre shall be determined by marpins all the values
of the tyre as their identifiers occur in the identifier—list of the
enumerated—tyme on to consecutive non-nesative values of inteser—~type
starting from zero.

shall determine an

enumerated-tyme = “(" jidentifier~list )" .
identifier-list = identifier ¢ "," identifier } .

The occurrence of an identifier in the identifier-list of an

i

13

[

-, %}W"" v g

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Promosal

defining-pPoint as

which is

enumerated-type shall constitute igs
constant-identifier for the resion
closest~containineg the enumerated-tyme.

a
the block

Examples?
(red:yellowssreensblue,tartan)
(clubsdiamondsheartsspade)
{marriedrdivorced,widowedssinsle)
(scanning, foundinoteresent)
(Busy:InterruprtEnablesParityvError.OutOfParer/LineBreak)

é6.4.2.4 Subranse-types. The definition of a tyre as a subranse of an
ordinal-tyre shall include identification of the smallest and the
larsest value in the subrange. The first constant of a subranse—tyre
shall specify the smallest value, and this shal)l be less than or eaual
to the larsest value which shall be specified by the other constant of
the subranse-type. Both constants shall be of the same ordinal-type,
and that ordinal-tyre shall be desisnated the host tyme of the
subranse-tyre,

subrange-type = constant ".." constant .
Examrles?

1..100

-10..+10

red,.sreen

Iol..l9l

6.4.3 Structured-typres

6.4,3.1 General. A new-structured-tyre shall classified as an
array-tyme, record-tyre, set-tyre or file-tyre accordins to the
unracked-structured-tyre closest-~contained by the new~structured-tyee.
A component of a value of a structured-tyme shall be a value.

be

structured-tyre = new-structured-tyre |
structured-tyme—~identifier .
unracked-structured-tyre = array-tyre ! record-tymre ! set-type !
file-tyre .
new-structured-tyre = ["pPacked"] unpacked-structured-tyre .
racked in a shall

The occurrence of the token new-structured-tyre

desisnate the tyre denoted thereby as macked. The desisnation of a
structured-tyme as packed shall indicate to the rrocessor that
data-storase of values should be economised, even if this causes

orerations on, or accesses to comronents ofs variables rossessineg the
tyere to be less efficient in terms of smace or time.

The desisnation of a structured-tyme as wmpacked shall affect the
rerresentation in data-storase of that structured-tyme only; that is
if a commonent is itself structured, the comeonent’s representation in
data-storase shall be packed only if the tyee of +the comeonent is

designated racked.

14




i‘v

1

i

!
M -

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

NOTE. The ways in which the treatment of entities of a tyvpe isi
affected by whether or not the tyre is desisnated packed are
specified in &.4.3.2) £.4.5) 6.6.3.3 A.A.3.8, £.6.5.4 and £.7.1.

&.4.3.2 Array-typPes. An array~type shall be structured as a marPine
from each value specified by its index-tyre onto a distinct component.
Each comronent shall have the tyre denoted by the type-—deroter of the;
comronent—-tyre of the arrav-type. :

array-type = "array" "[" index—type { "+»" index—-type 2 "1" “of"
companent—-type .
index—tyre = ordinal-tyre . 4

component—-tyere = type-denoter . !

Examples?

array [1,.100]1 of real !

array [Booleanl of colour

An array-type that specifies a sequence of two or mnre index—tyees
shall be an abbreviated notation for an array—-tyre speci1fied to have
as its index-tyre the first index-type in the sequences and to have a
component-tyme that is an array-type specifyving the seauence of
index-types without the first and specifvine the same component-tyme
as the orisinal specification. The comeonent-tyme thus constructed
shall be designated Ppacked if and only if the orisinal array-tyee is
designated packed. The abbreviated form and the full form shall be
eauivalent,

NOTE. Each of the following two examples thus contains different
ways of exprressing its arrav-tyre.

Exammele 1.
arraylBooleanl of array(1..10) of array(sizel of real
array({Boolean) of arrayl1..10:sizel of real
arrayl[Boolean,1..10,sizel of real
array{Boolean,1..10] of arravlsizel of real

Example 2.
racked array(1..10,1..81 of Boolean
racked arrayl[1..10) of Packed array(1..8] of Boolean

Let i denote a value of the index-tvee? let vIil dennte a value of
that component nf the array-tyre that corresponds to the valuye i by
the structure of the arrav-type: let the smallest and larsest values
specified by the index-tvpe be denoted by m and nt and let k =
(ord{n)-ord(m)+1) denote the number of values smecified by the
index-tyme. Then the values of the array-tyre shall be the distinct
k-turles of the form:
(vimly ... »vLnl)

NOTE. A value of an array~tyee does not therefore exist unless all

of dits component values are defined. If the component-tyre has ¢
valuet, then it follows that the cardinality of the set of values

15

e A A Pt s

e IR B S

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Promousal

of the array~tyme is c raised to the rower k.

Any tyme desisnated racked and denoted by an array-type havine as its
index-tyrpe a denotation of a subranse-tyre srecifring a smallest value
of 1» and havine as its comeponent—tyme a denotation of the char—type:
shall be designated a strins-type.

The correspondence of character-strinss to values of strins-tyres is
obtained by relatine the individual characters of the
character—-string, taken in left to risht order, to the components of
the values of the strins~type in order of increasins index.

NOTE. The values of a strins-tyee pPossess additional eprorerties
whichs allow writins them to textfiles (see 6.9.4.7) and define
their use with relational-operators (see 46.7.2.5).

6.4.3.3 Record-tyres. The structure and values of a record-type shall
be the structure and values of the field-list of the record-tyre.

record-tyre -= “record” field-list "end" .
field-list =
C (fixed-part [ "3" variant-part 1 ! variant-sart) ("3;"]] .

tixed-part = record-section { "i* record-section } .
record-section = identifier~list “:" type—denoter .
variant-part = “case" variant-selector "of"

variant ¢ "i" variant ) .
variant~selector = [tag-field ":"] tas-tyme .
tas~-field = identifier .
variant = case-constant=list ":" “(" field-list ") .
tag-tyre = ordinal-tyee-identifier .
case-constant-list = case—constant { “»* case-constant } .
case-constant = constant .

A field-list which contains neither a fixed-sart nor a variant-rart

shall have no components: shall define a single null value, and shall
be desisnated empty.

The occurrence of an identifier 1in the identifier-list of a
record-section of a fixed-mart of a field-list shall constitute its

defining-moint as a field-identifier for the resion which is the
record-type closest-containins the field-list: and shall associate the
field-identifier with a distinct commonent, which shall be desisnated
a fielde of the record-tyre and of the field-list. That commonent
shall have the tyee denoted by the tyre~denoter of the rocord-section.

The field-list closest-containins a variant-eart shall have a distinct
component which shall have the values and structure defined by the
variant-part.

a non-empty
field-list

comronent of
values of the

Let Vi denote the value of the i-th
field-1ist havins m compronents; then the
shall be distinct m-tumles of the form

16

2



}
{
i
i
i e i

PASCAL NEws #20 DECEMBER, 1980

Second Draft Froposal :

(V1» V2y soer Vm). :
NOTE. If the tvee of the i-th component has Fi values, then the
cardinality of the set of values of the field-list shall ke :
(Fi #» F2 # .., # Fm). :

I
A tas-tyepe shall denote the type denoted by the
ordinal~-type—identifier of the tas~type. A case-constant shall denote
the value denoted by the constant of the case-constant. ;
The tyre of each case-constant in the rcase-constant-list of a variant
of a variant-part shall te comratible with the tas-tyee of the’
variant~setector of the variant-rart. The values denoted by all
case—-constants of a type that is reauired to be compatible with a
given tas-type shall beé distinct and the set thereof shall be eaual to
the set of values specified by the tas-type. The values denoted by
the case-constants of the case-constant-list of a variant shall be.
desisnated as corresponding to the variant.
With each variant-eart shall be associated a type desisnated the,
selector-tyre Possessed by the variant-part. If the variant-selector:
of the variant-rpart contains a tas-field, or if the cace-constant-list
of each variant of the variant-epart contains only one <case~constant:
then the selector~tyre shall be denoted by the tas-tvepe, and each
variant of the variant-rart shall be associated with those values
srecified by the selector-tyre denoted by the case-constants of the
case-constant-list of the variant. Otherwise, the selector-type
rossessed by the variant-part shall be a new ordinal-tyre constructed
such that there is exactly one value of the tyere for each variant of
the variant-part, and o otherss and each variant shall be associated
with a distinct value of that tyre.

Each variant—-part shall have a component which shall be desisnated the
selector of the variant-part, and which shall rossess the
selector—tyre of the variant-part. If the variant-selector of the
variant-epart contains a tao-field) then the occurrence of an
identifier in the tas-field shall constitute the definins-roint of the
identifier as a field-identifier for the resion which is the
record-tyre closest-containine the variant-part, and shall associate
the field-identifier with the selector of the variant-rart. The
selector shall be designated a field of the record-tyepe if and onlty if
it is associated with a field-identifier.

Each variant of a variant-epart shall denote a distinct component of
the variant-part; the component shall have the values and structure
of the field-list of the variant, and shall be associated with those
values specified by the selector-tyre rossessed by the variant-part
which are associated with the variant. The value of the selector of
the variant-epart shall cause the associated variant and component of
the variant-rart to be in a state that shall be desisnated active.

The values of a variant-part shall be the distinct mairs

ks Xk)*

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Promosal

where k represents a value of the selector of the variant-eart, and Xk
is a 'value of the field-list of ¢the active variant of the
variant-part.

NOTES .
1. If there are n values specified by the selector-tyre,» and if
the field-list of the variant associated with the i~th value has
Ti values: then the cardinality of the set of values of the
variant-rart is (T1 + T2 + ... + Tn). There is no component of a
value of a variant-part corresprondine to any non-active variant of
the variant-pPart.

2. Restrictions Prlaced on the use of fields of a recard-variable
pertainine to variant-parts are specified in 4.5.32.3, 6.6.3.3 and
&.8.5.3.

Exameles?

record
vear 3 0,.20003
month ¢ 1..12%
day ¢ 1..31

end

record
name, firstname : strins;
age : 0..993
case married ¢ Boolean of
trye ¢ (Spousesname : strineg)}
false: ()
end

record
xry ¢ reals
area ! reals
case share of
triansle 3 !
(side 3 reals :
inclination, anslel, ansle2 : ansle);
rectansle @
(sidely side2 ! real$
skew ¢ ansle):
circle @
{diameter : real)s’
end

4.4,3.4 Set-tyres. A set—tyme shall determine the set of values that
is structured as the eowerset of its base-tyme. Thus each value of a
set-tyme shall be & set whose members shall be uniaue values of the
base-tyre.

set~tyre = "set" "of" base-type .

18



|

|

““—J s e Qs
ansac

PASCAL NEWS #20 DECEMBER, 1980

€econd Diraft Frorosal

base-type = ordinal-tyme
ZO;E; 3P|rators arplicable to values of set-types are srpecified id
Examples? ‘
set of char
set of (club, diamand, heart, spade)

NOTE, If the base~tyre of a set-type has b values then thé
cardinality of the set of values is 2 raised to the rower b.

For every ordinal-tyee S, there exists an unpacked set desisnated the,
unpgcked canonical set-of-T tyee and there exists a rpacked set type
desx!naged the macked canonical set-of-T tyrpe. If S is a subranse-tyre'
then T is the host tyre of S5 otherwise T is S. Each value of the type’
set of S is also a value of the unracked canonical set-of-T tyre,» and!
each value of the tyre Packed set of S is also a value of the packed:
canonical set-of-T tvre. t

t

6.4.3.5 File~typres. %

NOTE. A file-tyre describes sequences of values of the srpecified
component-typg. tosgther with a current Position in each sequence
and a mode which indicates whether the sequence is being inspected
or senerated.

file-tyre = "file" “of" component-tyre .
A_ tyre-depoter shall not be Permissible as the comeponent-tyre of a
file-tyme if it denotes either a file~tyre or a structured-type

havins any component whose tyre-denoter is not ‘missi
comranent-tyme of a file~tyre. rermissible as the

Exammles?
file of real
file of vector

A fglt-tyre shall define implicitly a tyre designated a
havgns exactly those values» which
defined by the followins five rules.

sequence-tyre
shall be desisnated sequences,

NOTE. The notation x™y rerresents the concatenation of sequences x
and vy. The exelicit rerresentation of seauences (e.9. S(c)), of
concatenation of sequences: of the first, last and rest selectors:
and of seauence eauality is not part of the Pascal lansuase.
Thesg notations are used to define file values, below, and the
required file omerations in 6.46.5.2 and 6.6.6.5.

(a) S() shall be a value of the seauence~tyre S,

desionated the empty sequence. The empty sequence
components.

and shall be
shall have no

19

e m————— i T

g SR AR T

P eI

PASCAL NEWS #20 DECEMBER, 1980

Second Uraft Proposal

(b) Let.c be a value of the smecified component-tymes and let x be a
value of the seauence-type S. Then S{c) shat} be a seauence of
type S, consistins of the sinsle component value ¢» and S(ci™x
shall also be a sequencer distinct from S()» of tyee S.

(c) tet ¢» S, and x be as in (b)s let vy denote the seauence S{c)™xs
and let z denote the sequence x~S(c)$ then the notation v.first
shall denote c (i.e.r the first commonent value of y?» y.rest
chall denote x (i.e.s the seauence obtained from vy by deleting the
first component): and z.last shall denote ¢ (i.e.» the last
comeonent value of 2).

(d) Let x and v each be a non-emPty seauence of type S; then x = vy
shall be true if and only if both (x.first = v.first) and {x.rest
= y.rest) are true. If x is the emsty seauence» then x =y shall
be true if and only if ¥ is also the empty seauence.

(e) Let x» ¥+ and z be seauences of type Si then X (y~z) = (x™7y)™~2»
S()~x = x, and x~S() = x shal) be true.

A file~tyre also shall define imPlicitly a tyre designated a mode-type
havine exactly two values which are desisnated Inspection and
Generation.

NOTE. The explicit denotation of these values is not rart of the
Pascal lansuase.

shall be structured as three components. Two of these
components, desisnated f.L and f.R, shall be of the imPlicit
sequence~typre. The third component, desisnated f.M. shall be of the
imelicit mode-tyme.

A file-typre

Let f.L and f.R each be a sinwle value of the seauence-tyre; let .M
be a sinsle value of the mode-tyrei then each value of the file-typre
shall be a distinct triple of the form

(f.L» f.Ry f.M)

where f.R shall be the empty seauence if f.M is the value Generation.
The values f» of the file-tyme shall bea desisnated emety if and only
if f.L~f.R is the emrty seaquence. :

NOTE. The two comeponents, f.L and f.Ry» of a value of the file-type
may be considered to rerresent the sinsle seauence f.L~f.R
together with a current mosition in that seauence. iIf f.R is
non-emety, then f.R.first may be considered the current component
as determined by the c¢urrent position: otherwise) the current
position is designated the end-of-file mosition.

There shall be a file-tyme that is denoted by the required
structured-tyre~identifier text. The structure of the tyre denoted by
text shall define an additional seauence-tyre whose values shall be
desionated lines. A line shall be a seavence x~S(e)» where x 1is a

20

oo S




!

|

ukmﬂﬂﬁ.‘ﬁ‘ﬂﬂ.i’ ~ - o R

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Proposail

sequence of components havins the char-type,

srecial comeonent value, which
which shall be indistinsuishabl
the resuired function eoln ¢
reset (£.6.5.2), writeln (6.92.5)) and rase (&,
then no component of x other than x.last shall
definition shal) not be constryed to det

representation, if any, of an end-of-line
Processor,

A line-sequence, z, shall be either the

empty
X~y where x is a line and Y is a line-se

quence

Every value t of
fallowins two ryles.

(a) If t.M = Insmection, then t.L~t.R shall be

(b) If t.M = Beneration, then t.L~t.R shall be

line-seaquence and ¥y is a seauence of
char~typa,

NOTE. In rule (b), y may be considered,
non-emrtysy to be a rartial line which js
rpartial line cannot occur dur

= Generation.

A variable that POSSesSses the
structured-type—identifier text shall pe

NOTE. AN required procedures and  func
variable of type file of char are aen
Additional resuired mrocedures and functi
textfiles, are defined in 6.6.6.5 and 6.9,

6.4.4 Pointer-tymes, The values of a
sinsle nil-value, and a set of identifying-va
distinct variable Ppossessing the domain-type of
set of identifyins-values shall be dynamic, in
the values identifying them, may be created and
execution of the prosram.

identified by them shall be created only by the
(see 6.6.5.3),

NOTE. Since the nil-value is not an
identify a variable.

The token nil shall denote the nil-value in all?

rointer—type = new=pointer~tyme |

A i pointer-type
nNew-Pointer~type = nan domain-tympe ,

domain-typg = tyre-identifiep ,

21

e from the char valye Space excert b
4.6.6.5) and by the reavired procedure

the tyre denoted by text shall satisfy one of the

ing inspection of a file,
does not corresmond to t.R since t.R is the emmty

tyre denoted by the required
desisnated a textfile

licable to textfiles,

rointer~type shall consist of a

Identifying-valyes and the variables

identifyins~value it does not

9.6). If x is a lin
be an end-of-line. Thi
ermine the underlyind

comporient used by §

Sequence or the sesquency

a line-sequence.
X"y where x ig
components having the

especially if it jg
being senerated. Such a
Alsosr y
sequence if t.M

tions arplicable to a

ons: arplicable only to

lues each identifying a
the mointer~type. The
that the variables and
destroved durins the

resuired mrocedure new

Pointer~tymes,

~identifier ,

i

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

i inale tyrer, but assumes a
cen nil Joes not have a sinslé _ e s
Nozi.bizhepozgt:r-type to satisfy the assxvnm:gtpg::::f:.
:gle:o qr the compatibility rules for orerators.

i ted
d T2 shall be desisna
ible types. Tyres T1 an ! X
g;:;gtib?gmzﬁt;ny of the four statements that follow is true
(a) T1 and T2 are the same tyre. branse of Tis or both T1 and
(b) T1 is a subranse of T2, or Tzhi’tat::e
. f the same hos . ) both
LER §§b2¢29§:t3types of comPatible'base-tyPes: $2di:x;2:;snated
(e ;: :23 T2 are desionated packed or neither Tl nor T2

(d) ;?c::g.T2 are strino-tyres with the same number of commonents.

" shall be

3;2i‘é’nat'lé‘ii2?32&%5‘53‘235.‘,%25%?2'wm“. onet1i%ir Tans ot the m:
wis . ] ) L .

Bl s o e R et be setther s iy g
o e L e T I IR e
< I; :2: I?ozgg 2222?:;?,:P22i;22d by.zge :::o IA; members of the
(@ I;I::d Z? a;sp:om;;txﬁl: ‘;:- :;:sclosed interval srecified by ‘the
(e) ?fsigsy?s ::.Tiampatible strins~-tymes.

ibility is used:
le of assisnment—comratgbxll i s
RN Pla?? ::egz ::io:uig Ti and T2 are compatible ordinal t{:::dagg
(e :;esh:alue of tyre T2 is not in the closed interval smec
e ;y;: Z:.an error if Tl and T2 are comgatlblo so?-:y;osizggrcg7
b ;zm;e: of the value of tyere T2 is not in the <close
specified by the base-tyepe of the tyme T1.

6.4.7 Example of a tyrpe—-definition-part

P
tyn:tural = Q,.maxint}
count = 1n:eserl
& integer;
2:?§3r al(rcd» vellow: green: blue)s
sex = (male, fem;le):
= .o 19993
::::Q =1?22ianslep rectanesler circle)s
sunchedcard = array(1..801] ?f char}
charsesuence = file of char;
polar = record
r ¢ real;
theta : angle
ends

22

e NS el I




) ~M~ . .
PASCAL NEWS #20 DECEMBER, 1980

Second Draft Fromosal

indextyme = §,.,1imit;
vector = array [indextypel of reals
Person = “mersondetails;
Persondetails =
record
name,» firstname ! charsequences
age ¢ intesers I ce
?aggied ¢ Booleans
athers» child, siblins : 4
Ccase s : gex of rersont
male @
(enlisted,bearded : Boolean);
female ¢

onds (mother,prosrammer @ Boolean)
FileOfInteser = file of integer:

NOTES

1. In the above example co t
tyme. The types dencted g: ;e::nse Shaturs)Tengdenate the
but not the same as, the type deno

2., Tyres occurring in examples |
should be assumed to have h dect

and natural are compatible with,
ted by ranser count and inteser,

he remainder of this st
been declared as specified in 6.4-;?dard

B AR

[

¢
1

same

AR b

PASCAL NEWS #20 DECEMBER, 1980

4.8 Declarations and denotations of variables

6.5.1 Variable-declarations. A variable is an entity to which a
(current) value may be attributed (see 6.8.2.2). Each identifier in
the ddentifier-list of a variatle~declaration shall denote a distinct
variable rossessine the tyme dJdenoted by the tyme-denaoter of the
variable~declaration.

variable~declaration = identifier-1ist "% type-denoter .

The occurrence of an identifier in the identifier-list of a
variable~declaration of the variable~declaration-rart of a block shall
constitute its definins—roint as a variable-identifier for the region
that is the block. The structure of a variable rossessing a
structured-tyre shall be the structure of the structured-tyre. A use
of a variable~access shall be an access: at the time of the wuse» to
the variable thereby denoted. A variable—-access» according to whether
it is an entire-variable, a component-variable, an
identified-variables or a buffer~variable, shall denote ‘either a
declared variable, or a comronent of a variable» a variable which is
identified by a rPointer value (see 6.4.4)y or a buffer-variable,
resmpectively,
variable-access = entire-variable ! commonent-variable !

identified-variable ! buffer-variable .

An assignins-reference to a variable shall occur if any of the six

statements that follow is true.

(a) The variable is denoted by the variable-access of an
assisnment-statement.

(b)) The wvariable is denoted by an actual variable pParameter in a
function-desisnator or procedure-statement.

(¢c) The variable is denoted by an actual rarameter in a
rrocedure-statement that specifies the activation of the rewsuired
rrocedure read or the reauired mrocedure readln.

(d) The variable occurs as the control-variable of a for-statement.

(e) A rrocedure-statement or a function-desisnator contains a
rrocedure~identifier associated with a mrocedure-block containine
an assignins-reference to the variable.

(f) A pmrocedure-statement or a function-~desisnator contains a
function-identifier associated with a function-block containins
an assisnins-ereference to the variable.

Example of a variable-declaration-mpart

var
Xoyr2Zemax? reals
irdt intesers
kt 0..93
Prasr¢ Booleans
operatort (plus» minus, times)s
at! arrayl(0..43] of real;
€t colours
ft file of chars
huel,hue2: set of colours
P1,P2! mersont
memism2 ¢ arrayl[1..10+1..10] of real;
coord t polars
rooltare 2 arrayll1..4] of FileOfIntesers

24

e ]

o e




PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosa)

date t record
month ¢ 1,,12%
vear t integer

end?
NOTE. Variables occurring i i
standard should In examrles in the remainder of thj
6.5.1. be assumed to have been declared as srecifieq i.

6.5.2 Entire~variables.

entire~variable = variable-id ifi
variable-identifier = identifier. o °

6£.5.3 Component-variables
6.5.3.1 General. A compone i
e al. nt of a variable shall
::?::2:2:’v:21§b1g shall denote a component g: : :::i:g;’. A
e con‘tzésgéns-;efere?co or access to a comeponent of a var:;blc
) reference: assi - c
respectively, to the variable. The value.x??i::y:.;:rzgzeco::onzzgess;
[

& variable shall
variable. be the same comronent of the value, if any, of the

component-variable = indexed~variable ! field~desisnatar

6.5.3.2 Indexed-variables.

array-type shall be dengtod A component of a variable

: POSSESS]
by an indexed-variable, seine  an

indexed-variable =

array~variable "{" jndex~

€ ", index-exrression ) :;:ression
array-variable = variable-access ’
index-expression = exPression . )

An  array-vari * i

rassessi::v:;ngl:y—:c.'] 20 & variable~access that denotes a variable
Tisses index—oxpressip.' or an indexed-~variable closest~containine

assisnment-compatible 3?;h v?;g:xo{ e i?dox—exrression pet!! b:

2 ~tyme o th -
omronent deno:;: e:lscooing:xcd—variablo shall be.th:r::;r:;::@ that

e index- i i
by the array-variable (see 6.4.9.2;, (1¢ M3rring of the

Examplest
al121
ali+j)
mlk]

If the array~vari i

may be Gsed able is itself an
sequence “J"
and the full

t indexed-variabte a i
ﬁgnt::a:b22::::t:: :zrm; a sinsle comma shglllﬁgc?:é:t:::
form shal) LY e~uival:nt?" form. The abbreviated form

25

e

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

Examples?

mlklC1]
mlk,13]

The two examples denote the same component variable.

6.5.3.2 Field-desigsnators. A field~desisnator either shall denote
that comeponent of the record-variable of the field-desisnator which is
associated with the field~-identifier of the field-serecifier of the
field-desisnators by the record-tymre possessed by the record-variables
or shall denote the variable denaoted by the
field-desisnator—identifier (see &.8.3.10) of the field-desisnator. A
record-variable shall be a variable-access that denotes a variable

Possessing a record-tyme.

NOTE.

The occurrence of a record-variable in a field-designator shall
constitute the definine-point of the field-identifiers acsociated with
components of the record-tyre Possessed by the record-variable, for
the resion that is the field-specifier of the field-desianator.

record-variable field-specifier !
field-desisnator~identifier .
record-variable = variable-access .

field-specifier = field-identifier .

field-identifier = identifier .

field-desisnator =

Examples:
p2* . mother
coord. theta
An access to a component of a variant of a variant—-prart: where the
attribute to the

selector of the variant-part is not a field, shall
selector that value seecified by its tyme which is associated with the

variant.

It shall be an error unless & variant is active for the entirety of
each reference and access to each comronent of the variant.

When a variant becomes not active, all of its components shall become
totally-undefined.

yndefinedy then no

NOTE. If the selector of a variant-eart is
variant of the variant-part is active.

An identified-variable shall denote the

6.5.4 Jdentified-variables.
pointer~variable of

variable (if any) identified by the value of the

the identified-variable (see 6.4.4 and 6.6.5.3).
identified-variable = pointer-variable *~% .,

rointer~variable = variable-access .

6.4.5.3) shall

A variable created by the reaquired procedure new (see

26




.

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Promosal

be accessible ynti} the termination of the

prosram-block or yntil the i
reauired procedure dismose, 6.6Y§r§??'e

NOTE. The accessibility

7 of the i
existence .of a pointer-variablev"ub]e
corresrondins identifying value.

A pointer-variable shall b i
: e av
POSSesSsing & Pointer~type. ar;:bleshall

or 1is undefined. It shall b
the identifying~valye of Tdent:

an identifi i
reference to the identified variab):egxrscszl

Examples:
[ .23
i~ . father~
PI*.siblins”, father~

6.5.5 Buffer-variables, A file-variable shall pe

that denotes g variab} i
e Posse
:2?llv::2:§; a v?ri:blc associatess;?:h
- e of he buffer-variabl
:i;? a textfile shall nossess‘ t:;
urfer-variable shall POSSess the
rossessed by the file-variable of the

buffer-variable = file~v,
-vari “a
file—variable = variable—ac::l: . "

Examples:
inmsuyt~
rool tamel21~

It shall be an errop t

reference to the buffer-v:r?;:;: ;2'
buf!or—variayio shall constitute a
to the associated file-variable.

value of a

reference or

is made inaccessible (see the

. ~access that deriotes a variablel
rointer-variable of an identified—variable eit::r d:n e nilivaing

rror to remove from its Pointer-type

a file-type. A bufter-vari
t . a
the variable denoted bvl :A:
A buffer~variable associated
come::::-:yrol otherwise, a
~tyrme of -
buffer~variable. the file-tyre

exists. A reference or access to a

o
o i S s R

activation of th;

é also derends on
which has attributed to it :::

notes a nil~valye

& variable~access

file-varjable f when a

access, respoctively,

o T

PASCAL NEWS #20 DECEMBER, 1980

b.48 Procedure and function declarations

&.4.1 Procedure-declarations. A erocedure-declaration shall associate
an identifier with a mrocedure-block so that it can be activated by a
Procedure-statement. Activation of the mrocedure shall activate the

rrocedure~block.

srocedure-declaration =
rrocedure—-heading "3" directive |
procedyre~identification ;" merocedure-block !
procedure-headine “;" eprocedure-block .
procedure-heading =
“erocedure" identifier [ formal-pParameter—list 1 .
procedure-identification =
"procedure" procedure-identifier .
procedure—identifier = identifier .
procedure-block = block .

The occurrence of a formal—parameter-list in a procedure-headins of a
rrocedure-declaration shall define the formal rarameters of the
procedure-blocke if any, associated with the identifier of the
procedure-headins to be those of the formal-parameter-list.

The occurrence of an identifier in the procedure-headins of a
procedure-declaration shall constitute its definins~eoint as a
procedure~identifier for the regsion that is the block
closest-containins the the procedure-declaration.

Each identifier havine a definins-point as a eprocedure-identifier in a
rrocedure~heading of a rprocedure-declaration closest-containins the
directive ‘“forward" shall have exactly one of its correspondine
occurrences in a procedure—-identification of a mrocedure~declaration:
and that shal) be in the same procedure-and-function-declaration-mart.

The occurrence of a procedure-black in a eprocedure-declaration
associates the procedure-block with the identifier in the
procedure-heading, or with the rrocedure~identifier in the
procedure~identification, of the procedure-declaration.

Examerle of @ mrocedure-and-function-declaration-marts

mrocedure readinteser (var f: text? var x: inteser)t
var
iinaturals
besin
while f~ = ¢ ¢ do get(f)}
{The file buffer contains the first non-serace char)
i = 0t
while f~ in [‘0’..’9‘) do bewin
i 1= (10 # i) + (ord(f"*) ~ ord(’0’'))1}
pet(f)

ends’
{The file buffer contains a non-diesit)

x =
{Of course {if there are no disitss x is zerol

ends

28



i
!
!

«ﬂmﬂhﬁ.‘i‘ﬂl‘i‘m

PASCAL NEWS #20 DECEMBER, 1980
Second Draft Fromosal
C;:coduro AddVectors{(var A)B,Cs arrayllow..hish? naturall of real)s
i ! naturals
besin

for i t= Jow to hish do A[is 1= i i
end { of AddVectors >3 Bril + e
procedure bisect(function f(x ¢ real) : real:
arb: reals
var result! real):

{This procedure attempts to ind a zZero o (x in (arb) by
the method of bisectlo"- It is suyme t tt PP r i
. v assumed ha he ocedure is

$ of a and b
(f(a)<0) and (f(b)>0) such that

The estimate is returned i
comhe n the last

Emg = 19-103

Parameter.)

var

midroint: real;
begin '

{The invariant P is true i i
eldroinganiant ue by callins assumption)

while.abs(a-b) > Eps*abs(a) do besin
T:d;oint s (a+b)/2}
(mideoint) < O then a t= pi i
:&:g g i=midroint droint
ich re-establishes the invariant:
P = (f(a)<0) and (f(b)>0)
and reduces the interv

) C al (arb) provid
ends of midroint is distinct from both ala:g ;?gt the value

{P tosether with the loge exit iti
is contained in a smal] sub- Cerval LR
the zero.)

result I= midmpoint
end3

t d assures that a zero
interval. Return the midrPoint as

29

e

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

procedure FrepareForAprendine(var fi: FileOfInteser):
{This procedure takes a file in an arbitrary state and sets
it ue in a condition for arrending data to its end. Simrler

conditioning is only rpossible if assumptions are maide about the
initial state of the file.?}
var

LocalCopry : FileOflInteger:

procedure CopyFiles(var from.into 2 FileCfInteser);
besin
reset(from); rewrite{into):}
while not eof(from) do besgin
into® = from”™;
putinto) get(from)
end;
end { of CopyFiles )}

begin {of body of PrepareForArrending)
CoryFiles(fsLocalCopPy);
CopyFiles(LocalCopry,f)

end { of PrepareForAprrendins 33

b6.6.2 Function-declarations. A function-declaration shall associate
an identifier with a function~block so that it can be activated by a

function-desisnator. Activation of the function shall activate the
function-block.

function~declaration =
function-headine "3" directive |
function—-identification "i" function-block !
function~headine ";" function-block .
function-heading =
“fynction" identifier [formal-rarameter-listl
":' pesylt-tyre .
function-identification =
"function” function—-identifier .
function-identifier = identifier .
raesult-tyme = simple-type-identifier |
pointer-tyme-identifier ,
function-block = block .

The occurrence of a formal-rarameter-list {n a function-headins
function—-declaration shall define the formal
function-block, if any:» associated with the
function-headins to be those of the formal-parameter-list. The
function-block shall contain at least one assisnment-statement that
attributes a value to the function-identifier (see 6.8.2.2). The valye

of a
raraneters of the
identifier of the

af the function shall be the last value attributed to the
function-identifier. It shall be an error if the function is undefined
umon commeletion of the alsorithm of an

activation of the
function-block.

30

o S T Y

g T




i

@‘W,mns

Second Draft Prorosal

The occurrence of an identifie i
function-declaration shall con:ti::}tethe
function-identifier rossessing the tyre deno
the resion that is the block clo
function-declaration.

Each identﬁfier havins a definins-point as
the function-heading of a function~declarat

g:::ctxve "foqward" shal! have exactly one of its corresponding
rrences in a function-identification of a function-declaration

and that shal) be in the same Procedure-and-

The occurrence of a function-block in

associates the function-block with the i ifi i
late t A identifier
:unct}on beadxpso or with the function-identifier i;n :m
unction-identification, of the function-declaration. 3

Exammle of a rrocedure—and-function-declaration-nart

:ggctign Sartixireal): reals
is function comeutes
usine Newton’s method.)the sauare root of x
var
old:snew! reals
bewin
new Ix 3
rereat
old = news
new i= (old + x/01d)#0.5;
until abs(new-old) < Emps#new;
{Ers beins a ®lobal constant)
Sart = new
end { of Sart )

31

& function-identifier |

T e i s R ... . ...
PASCAL NEWS #20 DECEMBER, 1980

function-heading of
its definins-pPoint as
ted by the result-type fo
sest-containing the the

o b

ion closest-containing th

e

function—declaration—rart

a function-declaratiof

(x>0)

oy

e — R

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorgsal

function max(a: vector): reals
{This function finds the largest component of the value of a.l}
var
larsestsofar: real:
fence: indextyres
besin
larsestsofar 3= alll} .
{Establishes larsestsofar = max(al1l)}
for fence 2= 2 to limit do begin
if largestsofar < alfencel then larsestsofar :=
{Re-establishing larsgestsofar = max(alll, ... .
end;
{So now larsestsofar = max(alll, ... rallimitl))
max := largestsofar
end { of max 2};

[fencel
f

a
alfencel))

function GCD(m/n: natural): naturals
besin .
if n=0 then GCD := m else GCD := GCD(n.m mod n)3

end;

{This exammele of the use of forward demohstratos how mutual recursion
is helpful in readins a Parenthesized expression and converting it to

some internal form)
function ReadOprerand ¢ formulaz forwards

function ReadExpression 3 formulas
var
this : formulas
begin
this = ReadOrerand:}
while IsOrerator(nextsym) do
this t= MakeFormula(this, ReadOrerators, ReadOrerand)t
ReadExmression 3= this
end}

function ReadQrerand {( ! formula )3

besin

if IsOpen(nextsym) then
begin
SkirSymbols
ReadOrerand := ReadExmressions
{nextsym should be a close)
SkipSymbol
end

else Read0Operand := ReadElement

end:
6.6.3 Parameters

6.6.3.1 General. The identifier~list S in a
value-pardmeter-srecification shall be a list of value rarameters. The

32



g

PASCAL NEWS #20

DECEMBER, 1980

Second Draft Proposal

identifier~list in a variable

of variable Parameters,

formal-marameter-list =
M(ll

formal-parameter-section

[ B formaI-Parameter—section) L

formal-rarameter—~section

>

va?pe-warameter—specification !
varxab!e-Parameter—snecification H
ProcequraI—Parameter-SPecification !
functxonal—Parameter—specification .

NOTE. There is also
b6.6.3.7

a syntax rule for farmal-Parameter—section

value-»arameter-specification =
) identifier~list "3v type~identifi
varnabls—Parameter-specification = e
var" identifier-ljgt "2v tyvre-i ifi
uroceduraI-Parameter-specification = dentifier .

procedure~heading

functional—rarameter~specification =

function-heading ,

An identifier ¢ i i i ifi
resiog oiiie i‘h:;.x:og;;;ned to be a Parameter-jdentifier
be desisnated a formal Par
if any, associated with
i:gngifier that is defined
whic is the formal- =1i
designated a formal raaneneter-list of
anys associated with

The occuyrrence of an
::l::—raram:tar—sreclficati
a constitute its definins-poi
:o:{on that is the al-rarameteny o
efinine-proint as the associated varjiable~i i
that {s the block, if any» of which it i: a'féfﬁgf’:

The occurrence of the i i
dentifi
::oce:ural-Parameter—specificatione:haOf °
rarameter—identifier for the i
- 1 r
formal Parameter-Jist closest-containing it :Z§°?ts et

the associated Proced -i ifi i
it anys of oracnroS i:r: identifier for the resion that is the block.

The occurrence of the

functional-rarameter
as

formal

~parameter-list of a pr

ameter of the block of the proc -
the identifier of the Proce Nehomdioglcks
to be a Parameter-identifje

formal-parameter-

ormal Parameter.

for

identifier in the identifier- is

on or a variablc-#aramnter—srlci:ic::ion
as a Parameter-identifier for the
list closest-containing it and its §
ier for the resion

arameter,

Procedure-heading in

formal parameter.

~Parameter-seecification shall be a Hi

ig

the
ocedure-headine shall

dure-heading. An

LTident 2 for the resion
unction-headi

rarameter of the block of the functionfglggzzl 0

the identifier of the function-headins, i

i a
11 constitute its definins-point
s the
defining-point as

identifier of a function-heading in a

33

~spPecification shall co i i ini i

f Parametgr~identifier for th.nst::::gnltsf:::xnxqs-ﬂoxnt

o rarameter~list ;losest-containins it an

i associated function-identifier for the r
any, of which it igs a ¢

e e RPN
PASCAL NEWS #20 DECEMBER, 1880
Second Draft Prorosal
NOTE . If the formal-parameter-list is contained in a
rrocedural-rarameter-specification or a
functional-rarameter~specification, there is no corresronding

procedure-block or function-block.

&.6.3.2 Value parameters. The formal pParameter and its associated
variable~identifier shall denote the same variable. The formal
rarameter shall Possess the tyre denoted by the tyme~identifier of the
value-parameter-specification., The actual-parameter (see &4.7.3 and
4.8.2.3) shall be an expression whose value is assisnment-compatible
with the type Possessed by the formal marameter. The current value of
the expPression shall be attributed uron activation of the block to the
variable that is denoted by the formal rarameter.

6.6.3.3 Variable parameters. The actual-marameter shall be a
variable-access. The actual-rarameters (see &4.7.3 and $.8.2.3)
corresponding to formal Parameters that occur in a single

variable-parameter—specification shall all mossess the came tyme. The
tyre rossessed by the actual-rarameters shall be the same as that
denoted by the tyre-identifier+ and the formal rParameters shall also
possess that tyme. The actual-parameter shall be accessed before the
activation of the block, and this access shall establish a reference
to the variable thereby accessed durine the entire activation of the
block3 the correspondins formal pParameter and its associated
variable-identifier shall denote the referenced variable durins the

activation.

An actual variable parameter shall not denote a field which 1is the
selector of & variant-mrart, An actual variable rarameter shall not’
denote a comronent of a variable that mossesses a typre that is
desisnated macked.

6,6,3.4 Procedural rarameters. The actual-marameter (see 6.7.3 and
6.8.2.3) shall be a-rrocedure-identifier that has a definins-point
contained by the eprosram~block., The erocedure denoted by the
actual-parameter and the procedure denoted by the formal marameter
shall have consruous formal-rarameter—-lists (see 6.6.3.8) if either
has a formal-parameter-list. The formal marameter and its associated
mrrocedure-identifier shall denote the actual mrarameter during the
entire activation of the block. ‘

6.6.3.5 Functional parameters. The actual-parameter (see 6.7.3 and
6.8.2.3) shall be a function-identifier that has a definins—-moint
contained by the prosram-block. The function denoted by the
actual-marameter and the function denoted by the formal rarameter

“‘shall have the same result-type and shall have .consruous

formal-marameter-lists (see 6.6.3.6) if sither has a
formali-marameter-list. The formal eparameter and its associated
function-identifier shall denote the actual rarameter durins the

‘entire activation of the block.

6.6.3.6 Parameter list consruity. Two formal-rarameter~lists shall be

34




. M%M R

'

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

consruous if they contain the same number of formal-parameter-sectiong
and if the formal~Parameter-sections in corresponding positions matchg

Two formal-pacameter—-sections shall match if any of the statement
that follow is true.

(a) They are bath value-parameter~specifications containing the sam
number of parameters and the type~-identifier in eac
valuye-parameter—-specification denotes the same type, !

(b They are both variable-rarameter~specifications containine the
same number of parameters and the tyre-identifier in each
variable-rarameter—srecification denotes the same tyre. 4

{c) They are both procedural-rarameter-specifications and the
formal-parameter-lists aof the erocedure—headinss thereof ar
CONBryous.

(d) They are both functional-rarameter-specifications: the
formal~marameter-lists of the function-headinss thereof areg
congruous, and the type-identifiers of the result-tvres of thef.
function-headings thereof denote the same tvre. A

(e) They are both . conformant-array-rParameter—specificationsg
containin® the same number of parameters and equivalent§

conformant-array-schemas. Two
eaquivalent if all of the four statements which follow are true.
(1) There is a single index—-type-specifiecation in
confarmant-array—-schema.

(2) The ordinal-tyre—identifier in each
denotes the same tyre.

(32 Either the (component) confarmant-array-schemas of
conformant-array-schemas are eauivalent or the
of the conformant—-array-schemas denote the same tyre.

(4 Either both conformant-array-schemas are -
packed~conformant-array-schemas or both are g

ynmacked-conformant-array-schemas. 1

NOTES

1., The abbreviated conformant-array~schema and its corresprondins
full form are eauivalent (see 4.6.3.7)

2., The contents of (e) above do not armly to level 0.

6.6.3.7 Conformant array parameters.

NOTE. This clause does not ammrly to level O.

The occurrence of an identifier in identifier-1list of a
conformant-array-rarameter-sprecification shall constitute its
defining-moint as a earameter-identifier for the resion that is the
format-Parameter~list closest-containing it and its defining~-Point as
the associated variable~identifier for the resion that is the block:s
if any, of which it is a formal parameter.

The occurrence of an identifier in an index-~tyre-smecification shall

constitute its definins-moint as a bound-identifier for the resion
that is the

region that is

the

formal-marameter~list closest—containine it and for the
whose

the blocks, 1if any, formal mrarameters are

AR - 1 oA

confarmant-array-schemas shall bel¥
eachf.
index—type-spoclfication1d

the §
tyre-identifiers §

PASCAL NEWS #20 DECEMBER, 1980

second Draft Propasal

seecified by that formal-~parameter-tist,

al-parameter—section > o )
form conformant-array—ParameterjsP:gxfxcatxon .
—array-parameter—specification =
conformtsgrﬁ jdentifier=list "3" conformant-array—-schema .
nformant-array-schema =
©e (Facked—conformant—array—schena H
unPacked-conformant—array-schema) N
ced-~ ant-array-schema = . ) .
racked iiﬁiﬁ:ﬁn “array" "C" index-type-smecification 1
“of" type—identifier ;
cked-conformant—array=schema = )
unpas e“array" g index—tyre—spec;fxcat:o? .
[ s index—-type—srecification b 2 | of
{ type-identifier i conformant—array—-schema ) .
dex-tyre~smecification =
in identifier “.." identlfxqr
e ordina\—type-idgntxfxer .
bound—identifier = iqeqtifxer .
factor > bound-identifier .

- ter-gsection in
. There is also a syntax rule for formal—parame
Q?ZFs.x?'rh.r. is alsa a syntax rule for factor in &.7.1.

- -schema, then
mant-array-schema contains a conformant-array-s .
ig a:bﬁztigied form of definét:?n ma: b.th:‘:g;ueggc E?f “gggrszi:::g
ingle semi—colon sha remlace )
gtzanai :22:rs in the full form. The abbreviated form and the full

form shall be eauivalent.

1 H
Ex:?::::u..vt T11 of arravli..k: T21 of 13

array{u..vi T11 J..k1 T2) of T3

the first bound-identifier

the entire activation of the blacke

index~tyre-specification shall denote the sg?liest ‘5:31:;
the corresponding index—tyre (see 6.6.3.8) Posscf A

and the second bound-jdentifier of A
shall denote the larsest value srecifie Y

Durins
of an
specified by
each actual-parameter:
index~tyre-smpecification
that index-tyre.

The actual-earameters (see 6.7.3 and 6.8.2.3)_correcrondi9i to formal

in a sinole

parameters that occur if 11 sossess the same
- ~parameter—-smecification shall a

::gzor?::tt;::a:o:sessed by the actual-rarameters shall be conformable

- 4 the formal
.5.3.8) with the conformant-array—schema, an the
i:::metessa shall PosSess ha?la;ra:-:y::m:::i:tizzll b:hizstzgiglfrgt
ich sha av
:::tathOSe::::é andb:hxc the type~identifier contained by :::
in
conformant-arcay-schema ) ) Lich shall have the
- y—rarametcr-snncifxcatlon and whic _sha
§z§:3t§32§s':?‘ the tyre wpossessed by the actual-parameters that

346

'S s

:
%




N

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

corresrond (see 6.6.3.8) to the index~tym i i

e—sp i
the conformant-array-schema : ecifzcag:ons contained b
conformant-array-rarameter-srecification. l “t

NOTE. The tyepe of the formal rar
f ameter can not b ing~
(see 6.4,2.2) because it is not denoted by an arrZy—in:trlng typ:

The actyal-rarameter shall G i ;
¢ a ‘@ either a wvariable-acc A
:z:::?i:::a;:i:rlsinot @ factor that is not a variablefa:EQ::s I:r t;'
; 8 an exeressions the value of the expr i ]
be attributed before activation of the block to an auxfff;::SISQPIQSJE

this variable shall be the same as that Possessed by the

variabler or the actual-parameter if it i ey Soiong

denoted by

access

:g:;:?ed g:rxnntthe entire qctivation of the blocks the correspondin

for ¢ rameter and its associated variable~identifier 1
resent the referenced variable durine the activation.

NOTE. In wusine an array vari
J iable A as C
corresronding to a formal parameter i:h‘:LtUa]
52::2:?:nt-:rray-narazoter-sPecification the use of an
$ ensure b
Moy AL Y enclosing the

; auxiliaryf
variable~access A ing

An actual-parameter that is a

variable-ac
component of a variable pocess

shall not

racked. that rossesses a type that is desisnated
If the actual-parameter is an e i
< xPression whose value is d k-
Za;?aple_access that c]osest-contains an identifier 52?§§d hby a
efining-occurrence in the identifier-ligt of as : p

conformant-array-paramutor—trccifi i
- cation, t
(a) that identifier shall be contai;edh.gy an

contained by the exepression: and indexed-variable

:?;seztgcoztizgp ‘:losgzizgont:inins the indexed-variable shall §
gonformant—array-narametor—SPeci:icarfgz {ndex-exeressions avtaine k
1ndex—type-6Fecifications. contains §
NOTE. This ensures that the
A t tyre of the . i
zgzg:mous variable will always be known ‘n;xpr::::on “ag the
quencer the activation record of a procedure c;n b:'of :

fixed size.
6.6.3.8 Conformability.
NOTE. This clause does not aeely to tevel O,

Given a tyere denoted by an

_ array-tyre closest~c ini
:ngex_tyrco and & conformant-array-schema closestgzgzt:%n? .
hdex-typd-srecification, then the o

single
| & singl
index-tyme and :h:

37

rrosram does not otherwise contain, The type Possessed b

P

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

index-type-srecification shall be designated as corresponding. Given
two conformant-array-schemas closest~containine a single
index—-type~specification: then the two index-type-specifications shall
be desisnated as corresponding. Let T!1 be an array-tyre with a single
index—typme and let T2 be the tyre denoted by the

ordinal-type-identifier of the index—-tymre—sprecification of a
conformant-arrav-schema closest—-containing a single
index-type~specifications then T1 shall be conformable with the

conformant-array~schema if all the following four statements are true.

(a) The index-type of Tl is compatible with T2.

(b) The smallest and larsest values specified by the index~type of Tl
lie within the closed interval specified by T2,

(c) The component~tyre of T1 denotes the same tyre as that which is
is denoted by the tyre-identifier of the conformant-array—-schema,
or is conformable to the conformant-array-schema in the
conformant-array-schema.

(d) Either T is not desionated Packed and the
confarmant~array-schema is an unracked-conformant-array-schema,
or T1 is desisnated rpacked and the conformant-array-schema is a
racked-conformant-array-schema .

NOTE. The abbreviated and full forms of a conformant-array—schema
are eauivalent (see 6.4.3.7). The abbreviated and full forms of
an array—-typre are eauivalent (see 4$.4.3.2).

It shall be an error if the smallest or largest value specified by the
index—tyre of Tl lies outside the closed interval smecified by T2,

6.6.4 Reauired procedures and functions

b.6.4.1 General, Reauired rrocedures and
rredeclared. The required emrocedures and functions
specified in 6.6.5 and 6.6.6 respectively.

functions shall be
shall be as

NOTE. Resuired procedures and functions do not necessarily follow
the rules siven elsewhere for erocedures and functions.

6.6.5 Reauired procedures
6,6.5.1 General. The required procedures shall be file handlins
rroceduresy dynamic allocation pProcedures and trnnsfar procedures.

6.6.5.2 File handline procedures. Excemt for the arplication of
rewrite or reset to the prosram parameters denoted by inrut or output,
the effects of arr'vins each of the file handling mprocedures rewriter
rut, reset and sget to a file-variable f shall Le defined by
rre—-assertions and Post-assertions about f» its components f.L,» f.R»
and f.M» and about the associated buffer-variable f~. The use of the
variable fO within an assertion shall be considered to rerresent the
state or value, as areroprriater of f prior to the orerations and
similarly for f0~ and f*, while f (within an assertion) shall denote
the variable after the oreration.

It shall be an error if the stated mre-assertion does not hold
immediately mrior to any use of the defined oreration. It shall be an

38



1
H

i

WWWNﬁﬁﬁﬁm#&'

PASCAL NEWS #20 DECEMBER, 1980

Second Lraft Frorosal

error if any variable exrlicitly denoted i i
) 1n an assertion

::bs::S:fgnEd. The Post—a§sertxon shall hold prior tzf the nexth
buffer—vgri:isgssT;: gget fxle,t its comeonents, or its assoriatetV'

yle. st-assertions imply correspondi iviti i
the external entitiess jif any: to whi i abTes ane fhes ony

e ch the file-variabl 3
These activities, and the poi IL‘- toallyee '
M, imP)emenéation—Jefig;gf at which they are actually performed,f .

equalijt

rewrite(f) pre-assertion: trye.
Post-assertiont (f.L = f.R = S0)) and
(f.M'= Generation) and
(f~ is totally-undefined).
put(f) Pre-assertion: fO.M = Generation) and
fO.L is not undefined) and
;g.R = S()) and
"~ is not undefined).
rost-assertion: (f.M = Generaéion)nasd
f.L = (fO.L~S(f0"))) and
f.R = S()) and
f~ is totally-undefined).

reset(f) e components fo.L and fO.R are not

rre-assertion: Th
undefined.

rost-assertiont (f.L = SO)) and

(f.R = (fO.L~FO.R~X)) and

(f.n = Inspection) and

(if f.R = S() then (f~ is

totally-undefined)

else (f~ = f.R.first)),

where, if f is of the type denoted b E
required structurod-tyre-identif;er yt::: :
and :f fO.L~fO.R is not empty and if
(fO.L fO,R).last is not desisnated an
endfof—!xneu then X shall be a sequence
havins an end-of-line component as jts
only commonents otherwise X = S().

set(f) pre—assertiont (fO.M = Insrection) and

(neither fO.L nor foO, i

ook o5 03k R are undefined) and

rost-assertion: (f.M = Inspection) and

(f.L = (fO.L~S(fO.R.first))) and

(f.R = fO.R.rest) and

(if f.R = S{) then (f~ is

totally~undefined)

else (f* = f.R.first)).

When the file-variable f Possesse
s
:::;o the reauired Procedures r:aste other than that
ows.

denoted by
and write shall te defined as

9
&

b

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Promosal

where vi...vn denote variable-accesses

read Read(fivlseearvn)
shall be eauivalent to
besin read(fsvi)t ... 3 read(fevn) end
Read(f+v) where v denotes a variable-access shall be
equivalent to
besin v t= f*; get(f) end
NOTE. The variable-access is not a variable marameter.
and the

Consequently it may be a comronent of a racked structure

buffer-variable need only be assisnment-comratible

value of the

with it.

Write(f,elr...7en)s where el...en denote exrressions shall be

enuivalent to
besin write(f,el)t ... 3 write(f,en) end
Write(f,a)s» where e denotes an exmrression shall be eauivalent to
besin f~ = ¢f suyt(f) end

NOTES. 1. The resuired mrocedures read) writer readln» writeln:
and raves as applied to textfiles, are described in 4.9.

2. Since the definitions of read and write include the use of wet
asracts of their

and rut, the imriementation-defined
rost-assertions also arply.
6.6.5.3 Dvnamic allocation msrocedures
" new(m) shall create a new variable that is
totally-undefined, shall create a new
identifrins-value of the wmointer—tyre associated
with m»» that identifies the new variable, and
shall attribute this identifyins-value to the
variable denoted by the variable-access r». The
tyme that is

created variable shall rossess the
of the painter-tyre mossessed by

the domain-tyee
.

new(Picly,..oCn) shall create a new variable that is
totally-undefined, shall create a new

the pointer—-tyre associated
the new variable, and
identifyins-value to the

identifyins-value of
with »» that identifies

shall attribute this
variable denated by the variable-access ». The
created variable shall rmossess the record-tyre

that is the domain~tymse of the pointer-tyme
possesed by e and shall have nested variants that
correspond to the case-constants clr...vcn. The

40




S IR e

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

case-constants shall be listed in order [4
increasins rnesting of the variant-parts. Ang
variant not srecified shall be at a deePer level
of nestips than that srpecified by ~n. It shall b
an error if a variant of a variant-eart within th§
hew  variable becomes active and a differeng
variant of the variant-part is one of thé
specified variants.
shall remove the identifrins-value denoted by thE
expression a from the pointer~type of a, It shallk
be an error if the identifvine-value had beef”
created usine the form new(Piclse..rcn). b
dispose(askles...skm)shall remove the identifvins-value denoted by the
exPression a from the pointer—type of a. Th
case-constants kl,...,km shall be listed in 4
of increasins nestins of the variant-erarts, I&
shall be an error if the variable had been create
usins the farm new(micls...scn) and m is less thag
Ne {t shall be an error if the variants in th€
variable identified by a~ are different from thosg
specified by the case~constants kloowarkm,

dispose(q)

NOTE. The removal aof an identifrvine-value from the pointer-t 4

zhécz)it gelozss regd:ys ;he,{dentified variabhle inaccessibl:P?s: 
.3, and makes undefined a variables and f

that value attributed (see 6.8.2.2). nd functions that hav .

It shall be an error if @ has a nil-value or is undefined,

It shall be an error if a variable created usins the sec ;
s ond f ;

new is accessed by the identified~variable of the variable~acces:r:f°’

factors of an assienment-statement, or of an actual-parameter.

6.6.5.4 Transfer procedures.
that can be denoted by
array [s1d of T,

iet z be a variable mossessine a type th :
racked array [$2] of T, ¢ at can be denoted by

and v and v be the smallest and larsest values of the

Let a be a variable Possessing a tymef

2 3
the statement mack(arirz) shall be equivalent to tyre sz theng
besin
k t= {}
for J 1= y to v do
besin
2Ll = alkl:
if J <> v then k = gucc(k)
end
end

A oo . .. ..

e e LW e
R et i b e L AT S e A

DECEMBER, 1980

\’VPASCAL NEWS #20

Second Draft Frorosal

and the statement unmack(zrari) shall be eauivalent to

begin
k t= i3
for J = y to v do
besin
alkl = 20J1s
if J <> v then k = succ(k)
end
end
where J and k denote auxiliary variables which the prosram does not

otherwise contain., The tyre mossessed by J shall be s2) the tyre
rossessed by k shal) be s1+ and i shall be an exmression whose value
shall be assisnment—commatible with sil.

6.6.6 Reaquired functions
b.6.,56.1 Genera!. The reauired functions shall be arithmetic functions,
transfer functions, ordinal functions and Boolean functions.

b.6.6.2 Arithmetic functions. Far the following arithmetic functions,
the expression x shall be either of real—tyre or inteser—tyre. For the
functions abs and sar, the tympe of the result shall be the same as the
type of the rarameter) x. For the remainins arithmetic functions, the
result shall alwars be of real-tyre,.

abs (x) shall comPute the absolute value of x.
sar(x) shall comepute the square of x. It shall be an error if
' such a value does not exist.

sin(x) shall compute the sine of x» where x is in radians.

cos(x) shall compute the cosine of x, where x is in radians.

exp(x) shall compute the value of the base of natural lesarithms
raised to the power x.

In(x) shall compute the natural losarithm of x» if x is sreater
than zero. It shall be an error if x is not sreater than
zero,

sartix) shall compute the non-nesative swuare root of x: if x is
not nesative. It shal) be an error if x is nesative.

arctan(x) shall compute the erinciral value, in ravians: of the
arctansent of x.

6.6.6.3 Transfer functions

truncix) From the exmrression x that shall be of real-tyme, this

function shall return a result of inteser-tyre, The value
of trunc(x) shall be such that if x is wmositive or 2zero
then O<=x-trunc(x)<1; otherwise ~1<{x-trunc(x)<=0, It shall
be an error if such a value does not exist.

Examples?

trunc(3.5) vields 3

trunc(-3.5) yields -3

round(x) From the expression x that shall be of real-tyre, this

function shall return a resclt of inteser—type. If x is

rositive or zero» round(x) shall be equivalent to

42




DECEMBER, 1530

s

e TR PASCAL NENS #20

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

Second Draft Prorosal

component (see &.4.3.5)r otherwise false.

trunc{x+0.5), otherwise round(x) shall be esuvivalent
trunci{x—-0.5}.

1t shall be an error if such a value does not exist.
Examprlest

round(3.5) vields 4

round(-2.5) yields -4

6.6.6.4 Ordinal functions

ord{x} From the expressian x that shall be of an eordinal-tyeper thi
function shall return a result of inteser—type that shall b
the ordinal number (see 6.4,2.2 and 6.4.2.3) of the value ¢

| the expression x.

chrix) From the expression x that shall be of intewser—typer this
function shall return a result of char-tyepe which shall bag
the value whose ordinal number is eaual to the value of the}
expression x if such a character value exists. It shall be anf
error {f such a character value does not exist.

For any value, ch, of char~tyrer» the followins shall be truetk
chr(ord{ch}}) = ch

succi{x) From the expression x that shall be of an ordinal-tvre: this
function shall return a result that shall be of the same tyra
as that of the expression (see 4.7.1). The function shall
yield a value whose ordinal number is one sreater than that
of the exsression x» if such a value exists. It shall be an
error if such a value does not exist.

predix) From the expression x that shall be of an ordinal-tyee, this
function shall return a result that shall be of the same tyre
as that of the exeression (see 4.7.1). The function shall
vield a value whose ordinal number is one less than that of
the exeression x» if such a value exists., It shall be an
error if such a value does not exist.

6.6.6.5 Boolean functions

odd(x) From the exrression x that shall be of inteser~tyre, this
function shall be emuivalent to the exrression
(absi{x) mod 2 = 1),

eof(f) The parameter f shall be a file-variables if the
actual~parameter-Yist is omitted, the function shall be
arplied to the remuired textfile input ( see 4.10). When
eof(f) is activated: it shall be an error if f is
undefined? otherwise the function shall vield the value
:r?e if f.R is the empty seauence (see 6.4.3.%), otherwise
alise,

eolnlf) The rarameter f shall be a textfile: if the r
actual-parameter—1ist is omitteds the function shall be
arplied to the reauired textfile ineput ( see 6.10). When
eoln(f) is activatedr it shall be an error if f is
undefined or {f eof(f) is true’ otherwise the function
shall vield the value true if f.R.first is an end-of-line

4+

43




o

R
5

S

DECEMBER, 198

PASCAL NEWS #20

6.7 Expressions
é6.7.1 General. &An
denoted by a variatle-access contained by the exeression is wundefin
at the time of its use» in which case that use shall be an error. ThE
uyse of & variable-access as a factor shall denote the value,» if anf
attributed to the variable accessed thereby. Omerator mrecedenc
shall be according to four classes of orperators as
operatar not shall have the hishest erecedence:
multiplyins-orerators, then the adding-orerators
finally, with the lowest rprecedencer the
Ceauences of two or more operators of the same
left associative.

followed by t
and
relational-orerator
precedence shal)

unsisned-constant = unsisned-number ! character-strins |
constant-identifier ¢ “nil" .
factor > variable-access ! unsisned-constant |
function—-designatar | set-constructor !
w(v exeression ")" ! "not" factor .

NOTE. There is also a syntax rule for factor in 4.6.3.7

set-constructor = “{" [ member-designator

: { "+* member~designator » 1 "“3" .
member—~desisnator = expression { ".." exeression 1 .
term = factor { multiplvine-orerator factor 2} .,
simple-~exeression = { sisn ) term { addins—orerator term }
exeression =

simple~exmression [ relational-omerator simele-exmrression 1 .

Any factor whose tyme is S, where S is a subranse of T, shall b
treated as of tyre T. Simitarly, any factor whose tyrpe is set of
shall be
factor whose tyre is Packed set of S
canonical macked set~aof-T tyme.

NOTE.
of tyme S shall itself be of tyre T+ and an expression
congists of a single factor of tyre set of S shall
tyre set of T and an exeression that consists aof a single
of tyee macked set of S shall itself be of tyre packed set of T.

A set-constructor shall denote a
set~constructor {1 shall denote that
cantains na members. A set-constructor cantainins
member—desienators shall denote either a value of
canonical set-of-T tyme or
canonicel set-af-T typer where T is the tyme of every expression of
sach member-desisnator of the set-constructor. The tymre T shall be an
ordinal~tyme. The value denoted by the set—-constructor shall contain
Zero or more
member—desisnator of the set-constructor.

shall be treated as of

value of a
value in every

set-tyme.
set-tyre
one or
the

that
mare
unrpacked

The member-designator x» where x is an exepression, shall denote the
member that shall have the value x. The member—desisnator x..v:» where
% and v are expressions, shall denote zero or more members that shall

have the values of the base—type in the closed interval from the value
of x to the value of v,

NOTE. The member-desisnator x..y denotes no members if the value

43

exrrescion shall denote a value unless a variabf

follows. Thl

sisns, ang

treated as of the unracked canonical set-of-T tvee, and anvfg
thep

Conseauently an exmrression that consists of a single factorle

thatl
itself be of
factor f

The k-

if the context so resuires, the racked E

members each of which shall be denoted by at least one ]

e’

TR TBE e

DECEMBER, 1980

< sesenen

PASCAL NEWS #20
Second Draft Proeosal

of x is sreater than the value of v.

Exameles are a5 follows?

torst X
(a) Fac s
(x+y+2)
sinl(x+y)
fred:croreenl
£1+5:,10..19,231
not »

X*y
iz(1-1)
(x <= ¥y) and (y € 2}

(b) Terms?

(c) Simple wxeressions?
P or N
X+y

-x
huel + hue2

in] + 1
3 x'1.5
(d) Exeressions X =
s »w« and ¢
(i ¢ 3) = (J < K)
c in huel
6.7.2 Omerators
6.7.2.1 General

aultiplyinp—-operator = "#* | wyu | wdiv* t “mod” | “and” .

addinv-omerator = “+" | Hat | gp*

- ator =
nlntio?‘:!- c:P:f(‘)_ L R 1w

wGun | *ym® | “in* .

or a term, oOr a simple~axeression shall be desisnated an

tor
:ro:::d? ;ha order of svaluation of the orerands of a dvadic orerator
shall be implementation-derendent,
NOTE, This means, for examele, that the orerands mayr be evaluated

in textual orders or in reverse ordars or in marallel or they may

not both be svaluated.

46

e s
evrim e e
oo

e op———
e



s e ke ik

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Froposal

6.7.2.2 Arithmetic orerators.
dvadic and monadic orerations shall be as shown in tables 2 and
respectively,

Table 2. Dvadic arithmetic orerations

operator oreration type of orPerands tyrpe of result
+ addition integer~type Jinteser—type
or real-type )if both
- subtraction inteser-type JoPerands are
) ) or real-type Jof inteser-type
* multimlication inteser-type Jotherwise
L or real-typre Jreal-tyre
/ division inteser-type real-type
. o or real-type
div division with inteser-tyre inteser~tyre
truncation
mad modulo inteser-typre inteser-tyre
Table 3. Monadic arithmetic operations
orerator orperation tyre of orPerand tyme of result
+ identity inteser~type inteser—type
) real-type real-tyme
- sisn~inversion inteser~-tyme inteser-tyme
rgal—tyre real-tyme

NOTE. The symbols ¢, ~ and # are 1
6.7.2.4). also used as set orerators (see

A term of the form x/v shall be an error if v is zero h i
value of x/y shall be the result of dividins x by vy. ' otherwise the

A term of the form i div J shall be an error if 4 is i
the value of i div J shall be such that zeror otherwise
a:s(x)t; abs;J) < abs((i div j) # j) <= abs(i)

where e value shall be zero {f abs(i)<abs(J), otherwise the sisn f
the value shall be rositive if i and 4 have th i iv
if i and J have different sisns. ¢ fame sish and nesative

A term of the form i mod J shall be an error if J is zero or nesat

R ives
otherwise the value of i mod i shall be th i- )
intesral k such that 0 <= { mod J < J. At value of (i=tkwi)) for

47

oSSt

I R T

The types of operands and results forg

s o, P AR

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

NOTE. Only for { >= O does the relation
(L divJ) # J + imodJ = |
hold.

The required constant—identifier maxint shall denote an
implementation-defined value of inteser~tyee. This value shall satisfy
the followins conditions?

(a) A1) intesral values in the closed interval from -maxint to +maxint
shall be values of the inteser-type.

(b) Any monadic oreration mrerformed on an inteser value in this
interval shall be correctly rerformed accordins to the
mathematical rules for integer arithmetic,

(c) Any dvadic inteser omeration on two inteser values in this same
interval shall be correctly rerformed accordins to the
mathematical rules for inteser arithmetics mravided that the
result is also in this interval.

(d) Any relational oreration on two inteser values in this same
interval shall be correctly rerformed according to the
mathematical rules for inteser arithmetic,

The results of the real arithmetic omerators and functions shall be
arproximations to the corresrondine mathematical results., The accuracy
af this arrroximation shall be imeliementation-defined.

It shall be an error if an inteser oreration or function is not
rerformed according to the mathematical rules for inteser arithmetic.

6,7.2.3 Boolean omerators. Operands and results for Boolean orerations
shall be of Boolean—tymre. Boolean omerators or: and and not shall

denote resmectively the losical orerations of disjunctions conjunction
and nesation. :

Boolean-exmpression = exeression .

A Boolean-exrression shall be an exrression that denotes a value of
Boglean-tyre. ’

6.7.2.4 Set orerators. The tymes of omerands and results for set
omerations shall be as shown in table 4.

Table 4. Set orerations

oreratar oreration tyre of orerands tyme of result
+ set union ) )
la o)
- set difference Jcanonical - )same as the
)set-of-T tyre Jorerands
L] set intersection ) )
48

o,



. - i

£R, 1980

T o T < ,@‘@unua-ihn#w‘waﬁ$¢»ﬂ'*'“fﬂ ; o PP DECEMB
o PASCAL NEWS #20
PASCAL NEWS #20 DECEMBER, 1980

Qb i S

Second Draft Prorosal
Second [raft Prorosal

i tue of the orerand
tor in shall vield the value true if the va F :
I?.o:;:;:l-tyro i; a member of the value of the set-types otherwise it

4.7.2.5 Relational orerators. The tyres of orerands and results for shall vield the value false.

relational orerations shall be as shown in table S. s X et the
7. tion desisnators. A function-desisnator shall
ea?uf F:?c the function denoted by the function-identifier of the

ify the
ion-desisnator. The function-desisnator shall speci
12255;:?o:e of the function. I[f the tfunction has any formal parameters

Table 5. Relational omrerations

omerator tyre of oPerands tyre of result ion- i 11 contain a list of actual-parameters that
function-desisnator sha é "
:::Ilub: bound to their correspondlgs form:l1?agam:i::;‘?:azzedbin ::2
ion- tion. The correspondence sha e
" Tointer or Boolean-tyre :32?§;32sd°§}ar:h. parameters in the lists of actual and formal

pointer or strins—type

parameters respectively. The number of actual-rarameters shall be
or canonical set-of-T tyme

to the number of forma) parameters. The tyres of the

vy f the formal
- ters shall correseond to the tymes of R
¢’ anv sinele or strins-tvre Boolean-tyre :gﬁzzlt:::‘m:s specified by 6.6.3. The order of evaluation, accessxgs
and bindine of the actual-rarameters shall e
(= = any simele or string-tyre Boolean-tyme

tion~derendent.

or canonical set—-of-T tyee implementa .
ion-desisnator = function-iden or

in left omerandiany ordinal tyee T Boolean-tyre functio [ actual-rarameter-list 1 .
riosht operands

-parameter-list =
a canonical set-of-T tvme (see &6.7.1) actual-e

w(n actual~marameter { “»" ac:u::—rarametef h 2 R
—parameter = expression | variable—access .
actuai=rs procedure-identifier !

function-identifier .

The omerands of =, <> <» >, >=, and <= ghall be either of comratible
tymes:, the same canonical set-of~T tyres» or one orerand shall be of
real-tyre and the other shall be of inteser~tyme.

Examples? Sum(a,63)
6CD(147,k?
The orerators =, <>, <, > shall stand for “equal to"» "not emual to". sin{x+y)
“less than” and "sreater than” respectively. eof(f)
ord{(f™)

Excert when arrlied to sets)» the orerators <= and >= shall stand for
“less than or ewual to" and “sreater than or eaual to" resmectively.

Where u and v denote simmle~exrressions of a set-tympe) u <= v shall
denote the inciusion of v in v and u >= v shall denote the inclusion
of v in u.

NOTE. Since the Boolean-tyme is an ordinal-tyre with false less
than true, then if r and « are orerands of Boolean-tyme) P = o
denotes their eauivalence and » <= 4 means r imrlies «.

When the relational orerators = 5 <> » { » > 4y <m , >= are used to
compare omerands of compatiple strins—-tryres (see 4.4.3.2)y they denote
lexicosraprhic relations defined below. Lexicosrarhic orderins imroses
a total orderine on values of a strins-tyre. If s1 and s2 are two
values of comeratible strins~tymes then,

sl = g2 iff for all § in £1..n): s1(i]l = $2(i1

s1 € 2 iff there exists a » in [1..n11
(for all i in (1..,-132 s1{i] = s2[i)) and s1lr,rl < s2{Pr)

49

M e



P iy ATy i e v }l

i T TR . . e .
PASCAL NEWS #20 DECEMBER, 19

R N S

DECEMBER, 1980

PASCAL NEWS #20

Second Draft Prorosal

4.8 Statements i

4.8.1 General, Statements shall denote alsorithmic actions, and shal i 1= gar(k) - (i%J)

be executabie. They may be prefixed by a Tabel, hu;l = C(bluersuccl(c)]

-~ = [

A latel occurrine in & statement S shall be desierated as mrefixins SF *1%.mother try fy th

and  shall be allowed to ocrur in & 9oto-statement G (see 4.2.2.4) i _ A procedure—statement shal) specify e I
' and only if any of the followins three conditions is satisfied. iéfif;ii§;°cziupthzta;?$§2ts;f the procedure—block .ssocjateddw:th ;:: i

(a) € contains G procedure—identifier of the Procedur:-st:t::::;;n:f ﬁﬁ:;?r°§§n¥a§n an

(k) S is a statement of a statement-sequence containing G. 4 any 'jormal t:::??::fr:higzeisP;?:: :;.a:tual-rarameters that .shall

(2§ is = a statement of the statement-seauence of the :ituiouzzpaxz their corresronding formal pParameters defined in the

comPound-statement of the statement-part of a block containing B, procedure~declaration. The corresrondence shall be established by the

i i 1 and formal
- W ; , iti f the parameters in the 1lists of actua
statement = [ lavel ": 7 ( Z;?ﬁli;igﬂt:?:::m;nt ) i :::;;;:::s :espettively. The number of actual-parameters shall be

esval to the number of formal Para?:ter:. TheoftY::: o:or;Q:
es
NOTE. A soto-statement within a block may refer to a label in a actual-earameters shall c°'2°2’°3"drh:°opaei of evaluations accessins
enclosine blocks  provided  that the label Prefixes Paramiteg? d?:s spec;;led b:he' "Tactual-parameters shall be
simele-statement or structured-statement at the outermost leve)l off ?"d 1nc -d ndent
nesting of the block. imrlementation-dere )
4.8.2 SimPle-statements rrocedure-statement = P"?“*:ﬁ::fﬁfjp:g::::_;1;t 1.
4.8.2.1 OGeneral. A simele-statement shall be a statement not @
containine a statement. An empty-statement shall contain no symbol and . : {
shall denote no action. Examples: erintheadins

transrose(arsnem)
bisect(fcts=1.0,+1.0sx

simrle-statement = AddVectors(mL13,(m[2])s(mlk1))

empty-statement | assignment-statement |
Procedyre-statement ! soto-statement .

- . to-statement shall indicate that further
empty-statement = . &.8.2.4 Goto-statements A @0

i - the label in

i is to continue at the program—moint denoted by ]
:;:c':z:gistatement and shall cause the termination of all activations
5.
excemt L . i
k ctivation containins the prosram-eoint and . b
::; :A: :ctivation containins the activation-eoint of an activation ;
reauired by these excertions not to be torpinated. :

4,8,2.2 Assignment-statesments, An assignment-statement shall
attribute the value of . the expression of the assignment-statement
either to the wvariable denoted by the variable~access of the
assignment-statement, or to the function-identifier of the
assianment-statements the value shall be assisnment-compatible with
the tyre rossessed by the variable or function-identifier. The
function-block associated (4.46.2) with the function-identifier of an
assignment-statement shall contain the assisnment-statement.

goto-statement = “soto" label .

6.8.3 Structured-statements 0

assignment-statement = 4$.8.3.1 General,

( variable-access | function-identifier ) "gav expression . structured-statement =

compound-statement | conditional~statement!
repetitive-statement | with-statement .
statement-seauence = statement { ";" statement ) .

The decision as to the order of accessing the variable and evaluatine
the expression shall be imrlementation—-derendent; the access shall
establish a reference to the variable durins the remaining execution
of the assionment-statement.

ifi tion of the
h cution of a statement-sequence specifies the execu
It;te;::ts of the statement-sesuence in textual order,» excert as

The state of a variable or function when the variable or function does modified by execution of a soto-statement.

not have attributed to it a value specified by its type shall be ;

desianated undefined. If a variable Possesses a structured-types the - tements. A comeound-statement shall seecify
state of the variable when every comeonent of the variable is 4.8.3.2 Comround-sta

i f - t.
totally-undefined shall be desisnated totally-undefined., execution of the statement-seauence of the commound-statemen

Totally~undefined shall be synonymous with undefined if the variable

L]
- tement = "besin" statement-sesuence "end” .
does not rPossess a structured-tyee. compound-sta

52
Examples: ¥

<=i) and (i7100)

N s




|
|
i
i

i T

,waiﬂﬂlﬂﬂﬁniiilﬂiv

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Proposal

Example? besin 2z 3= x ) x =y} y t= z end

6.8.3.3 Conditional—-statements.
conditional-statement = jif-statement ! case-statement .

46.8.3.4 [f-statements

"if" Boolean-expression "then" statement

[ else-part 1} .
else-pPart = "else" statement .

if-statement

If the Boolean-expression of the if-statement yields the value true.,
the statement of the if-statement shall be executed. If the
Boolean-exeression vyields the value false,» the statement of the
if-statement shall not be executed and the statement of the else-rart
(if any) shall be executed.

An i'f-statement without an else-part shall not be followed by the
token else.
NOTE. An else~rart is thus Praired with the nearest rrecedins

otherwise unmraired then,

Examples!?
if x < 1.5 then 2 1= x+y else 2 1= 1.5

if ol <> nil then w1 t= p1~, father

if J = O then
if 1 = O then writeln(’indefinite’)
else writeln(‘infinite’)

else writeln{ i /7 J )

6.8.3.5 Case~statgments. The values denoted by the case-constants of
the case-constant-lists of the case-list-elements of a case-statement
shall be distinct and of the same ordinal-tyre as the exrression of
the case-index of the case-statement. On execution of the
case—-statement the case-index shall be evaluated. That value shal}
then smecify execution of the statement of the case-list-element
closest-containing the case-constant denotins that value. One of the

case-constants shall be ewual to the value of the case-index uron
entry to the case-statement.
It shall be an error if none of the case-constants is ewual to the

value of the case-index uron entry to the case~statement.

NOTE. Case-constants are not the same as statement labels.

S3

PASCAL NEWS #20

DECEMBER, 1980

Second Draft Frososa)

case-statement =

"case" case-index "of"

case~list-element {“;» case-list-element > [*;") "end" .

case-list-element = case-co t - i
case-index = exepression . PreantTiist it statement .

Example:

case orerator of

Plus:
minuse
times:

end

6.8.3.6.

that certain statements are to be

X = x+y}§
X 8= x-y}
X Im y#y

Reretitive-statements. Reretitive-statements

executed remeatedly,

shall specify

reretitive-statement = rereat-statement |

while-statement | for-statement .

6.8.3.7 Rereat-statements

rereat-statement = "pepoat"

The statement-seauence of the

executed
until the
on

shall be executed at least onces

statement-sequence
"until" Boolean-exeression .

rereat-statemen

(excert as modified by the cxecutzon'z:"
Boolean-exmression of the rereat-statement
completion of the statement-seauence.
because the

be rereatedly
a soto-statement)
vields the value
The statement-sequence
Boolean-exmression is

evaluated after execution of the statement-seaquence.
Example:
repeat k 1= § mod Jj
i t= §y
J 1= K
until J = 0

6.8.3.8 While-statements

while-statement = “while* Boolean-exrression “do* statement .,

The while-statement

while b do body

shall be ewauivalent to

54

v |



< ORI

o U S SR

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

beain
if b then
repeat
body
until not (&)
end

Examples:

while i>0 do
besin if oddi(i) then 2z = z#x}
i = i div 2%
X &= sar(x)
end

while not eof(f) do
besin Process(f~ )5 aet(f)
end

&.E.2.9 For—-statements. The for-statement shall specify that the
statement of the for-statement is to be rereatedly executed while a
prosression of values is attrituted to & variable that is desianated
the control-variable of the for-statement.

for-statement = "for" control-variable ":=* initial-value
¢ "to" | “downte" ) final-value "do" statement .
control-variable = entire-variable .
initial-value = eurression .
final~-value = expression .

shall be an entire-variable whose identifier is
dJeclared in the variable-declaration-rart of the block
closest-containine the for-statement. The control-variable shall
rossess an ordinal-tyres and the initial-value and final-value shal)
e of a tyre compatible with this tyee. The statement of a
for-statement shall not contain an assienina-reference (see 6.5.1) to
the control-variable of the for-statement. The value of the
final-value shall be assianment—compatible with the <control-variable
vhen the initial~value 1is assisned to the control-variable. After a
for-slatement is executed (other than beina left by a soto~statement
leadine out of it) the control-variable shall be undefined. Amart from
the restrictions imPosed by these resuirementss the for-statement

The control-variable

for v := el to eZ do body

-hall be esuivalent to

]
h

ST R

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Fromrosal

beoin
tenml 3w g1
temp2 t= ¢23
if temrl <= temp2 then
besin
v i= templ}
bodys
while v <> temmr2 do
begin
VvV i®m succ(v)s;
body
end
end
end

and the for-statement
for v i= @1 downto e2 do body
shall be esuivalent to

besin
temm!l 1= 13
tempr2 1= @2
if temml >= temm2 then
besin
vV = temmpi}
bodyty
while v <> tems2 do
besin
vV Is pred(v)}
body . : -
end
end
end

where temr! and tems2 denote auxiliary variables that the
not otherwise contain, and that mossess the tyme pos;-s:::'rzr d:::

variable v if that tyre is not a subranse-t H
tyre of the typee rossessed by the variable v, Yrei otherwise the host

Examrles?

for { 1= 2 to 43 do
if alid > max then max 1= alil

34



M!m L L R e

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

for i t= 1 to 10 do
for J 2= 1 to 10 do
besin
X = O3
for k 3= 1 to 10 do
X 3= x + mili k)*m2Lksdlds
mliril 2= x
end

for is= 1 to 10 do
for Jj t= 1 to i-1 do
mlil(J) t= 0,0

for ¢ t= blue downto red do a(c)
6.8.3.10 With-statements

with-statement =
“with* record-variable-list “do"
statement .

record-variable~list =
record-variable { "," record-variable ) .

A with-statement shall smecify the execution of the statement of the
with-statement. The occurrence of & record-variable as the only
‘ecord-variable in the record-variable~-list of a with-statement shal)
‘onstitute a definine-point of each of the field-identifiers
issaciated with comeonents of the record-tyre mossessed by the
~ecord-varjiable as a fiold-dcsisnator-ident!fier for the resion which
8 the statement of the with-statement; each amplied occurrence of a
‘ield-desisnator-identifier shall denote that comeonent of the
ecord-variable which is associated with the field-identifier by the
ecord-tyre. The record-variable shall be accessed before the
tatement of the with-statement is executed: and that access shall
stablish a reference to the variable durins the entire execution of
he statement of the with-statement.

he statement
with visv2y ...»vn do s
qall be esuyivalent to

with vi do
with v2 do

with vah do s

57

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

Examplet

with date do

if month = {2 then
besin month 1= 15 year t= year + 1
end

else month t= month+}

shall be eauivalent to

if date.month = 12 then
besin date.month 1= 1t date.vear = date.year+1
end

else date.month 1= date.month+l

e
T

k¥



.

AN Y T e TR B0 LT

PASCAL NEWS #20 DECEMBER, 1980

&.9 Inrut and outeut

4.9.1 General. Textfiles (see &.4.3.5) that are identified in the
erogram-rParameters (see &.10) to a Pascal erosram shall provide
lesible inrut and outeut.

é6.,9.2 The mrocedure read. The syntax of the marameter list of read
when arriied to & textfile shall bes

read-rarameter-list =
w(uCfile-variable ",»"] variable-acrcess
{"s+" variable-access?")" .

If the file-variable is omitted, the procedure shall te arplied to the
reauired textfile input.

The followins reauirements shall apply for the eprocedure read (where f
denotes a textfile and vi...vn denote variable-accesses Possessing the
char-tyre (or a subranse of char-type), the inteser-tyre (or a
subranse of inteser~tyre),» or the real-tyre):

(a) read{fsvis...rvn) shall be eauivalent to
begin read(fsvl)3 ... $ read(f.vn) -end

(b) If v is a variable-access Possessing the char-type (or subranse
thereof),» read(f,v) shall be eauivalent to

begin v = f*3 get(f) end

NOTE, The variable-~access is not a variable rarameter.
Consesuently it may be a component of a macked structure and the
value of the buffer-variable need only be assisnment-compatible
with it.

(c) If v is a variable-access Possessing the inteser—tyre (or subranse
thereof)s read(fs,v) shall cause the readins from f of a sesuence
of characters. Preceding sraces and end—-of-lines shall be skimrmed,
It shall be an error if the rest of the seauence does not form a
signed-inteser accordine® to the syntax of 6.1.5, The value of the
sisned-inteser thus read shall be assisnment-compatible with the
tyre rossessed by v» and shall be attributed to v. Readins shall
cease as soon.as the buffer—variable f~ does not have attributed
to it a character contained by the lonsest setuence available that
forms a sisned-integer.,

(d) If v is a variable-access Prossessing the real-tyre, read(f,v)
shall cause the readins from f of a seauence of characters.
Precedine spaces and end-of-lines shall be skirped. It shall be an
error if the rest of the seauence does not form a sisned-number
accordines to the syntax of 6.1.5. The value denoted by the number
thus read shall be attributed to the variable v. Readins shall
cease as soon as the buffer-variable f~ does not have attributed
to it a character contained by the lonsest sequence available that
forms a sisned-number.

(e) When read is armlied to f» it shall be an error if the

buffer-variable f* is undefined or the mre-assertions for eset do
not hold (see 6.4.3.5),

S¢

P “"@ﬁﬁﬂ&fﬁﬁﬂlﬁakm~«. [ R - -
PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

6.9.3 The mrocedure readln. The syntax of the marameter list of readln
shall be:?

readln-rarameter-list =
[“¢(" (file-variable ! variable-access)
{"+" variable-access} ")"1 . B

Readln shall only be arplied to textfiles. If the file-variable or the
entire readin-parameter—list is omitted: the mrocedure shall be
arplied to the reauired textfile input.

readin(fivis...ovn) shall be eauivalent to
besin read(fisvis...»vn)3 readin(f) end
readin(f) shall be eaquivalent to
besin while not ealn(f) do set(f): set(f) end

NOTE. The effect of readln is to emlace the current file
rosition Just mast the end of the current 1line in the
textfile. Unless this is the end-of-file rmosition, the cuyrrent
file mosition is therefore at the start of the next line.

6.9.4 The procedure write. The syntax af the rarameter list of write
when applied to a textfile shall be:

write~rarameter—-list =
"(“CLfile-variable ","] write-marameter
{";" write-rarameter)")" ,
write-parameter =
exmression ["I" exmrression [“3" exrression ] ] .

1t the file-variable is omitted, the mrocedure shall be arelied to the
reauired textfile outeut., When write is armlied to a textfile f, it
shall be an error if f is undefined or f.M = Ingrection (see 6.4.3.3),
An arrlication of write to a textfile f shall cause the
buffer-variable f~ to become undefined. .

6.9.4.1 Multirle Parameters. Write(fsemlr...emrn) shall be eauivalent to

besin write(fir1)s ... 3 writ;(fnrn) end
where f denotes a textfile) and ris...oPn denote write-rparameters.

6.9.4.2 MWrite-parameters. The write-marameters p shall have the
following formss

etTotalWidthtFracDisits eiTotalWidth - .
where e is an expression whose value is to be written on the file f

and may be of inteser-tyre, real-tyre, char-tyre, Boolean-tyre or a
strins~-tyréd, and where TotalWidth and FracDisits are exrressions of

60




. - S “CEES
e 8 S S o

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Promosal

inteser—tyme whose values are the field-width rarameters. The values
of TotalWidth and FracDisits shall be greater than or eaual to ones it
shal) be an error if either value is less than one.

Write(f,e) shall be eauivalent to the form write(f,esTotalWidth),
using a default value for TotalWidth that derends on the tyre of e:
for inteser—types real-type and EHoolean-tyre the default values shall
be implementation-defined.

Write(fretTotalWidth:FracDisits) shall be arrlicable only if e is of
real-type (see 4.9.4.5.2).

6.9.4.3 Char-type. If e is of char-tyrer the default value aof
TotalWidth shall be one. The representation written on the file f
shall be:

(TotalWidth - 1) spaces,
the character value of e.

6.9.4.4 Inteser~tyre. If e is of inteser—-tyre, the decimal
representation of e shall be written on the file f. Assume a function

tunction InteserSize ( x ¢t inteser ) 2 inteser 3
{ returns the number of disits, z» such that
10 to the rower (z~1) <= abs(x) < 10 to the mower z )}

and let IntDisits be the mositive inteser defined by!

if e = 0
then IntDipits 1= 1
else IntDipits t= InteserSize(e)s

then the rerresentation shall consist oft

(1) if TotalWidth >= IntDiesits + 1 @
(TotalWidth = IntDisits - 1) seaces»
the sisn character: =’ if e < 0y otherwise a srace:
IntDivits disit~characters of the decimal
rerresentation of abs(e).

(2) If TotalWidth < IntDisits + 1t
if @« < O the sisn character '-*,
IntDigsits disit-characters of the decimal
rerresentation of abs(e).

6.9.4.5 Real-Tymre. If @ is of real-tyres» a decimal representation of
the number e» rounded to the smecified number of significant fisures
or decimal mlacess, shall be written on the file f.

6.9.4.5.1 The floatins~moint rerresentation.

Write(f,etTotalWidth) shall cause a floatins-roint rerresentation of e
to be written. Assume functions

61

N

PASCAL NEWS #20 DECEMBER, 1580

Second Draft Prorosal

function TenPower ( Int ¢ inteser ) & real
{ Returns 10.0 raised to the power Int 2

function RealSize ( ¥y ¢ real ) ¢ inteser 3
{ Returns the value: 2z» such that
TenFPower(z-1) <= abs(v) < TenPower(z) 2

functian Truncate ( ¥ 8 real 3 DecPlaces : inteser )
: real

{ Returns the value of y after truncation

to DecPlaces decimal mlaces )

et ExPrDisits be an imelementation-defined value representins the
number of digit-characters written in an exronents

let ActWidth be the positive inteser &efincd by:

i1f TotalWidth >= ExpDigits + &
then ActWidth :i= TotalWidth
else ActWidth s= ExpDisits + 63

and let the non-negsative number elWritten and the inteser ExmValue be
defined by: ’

if e = 0.0
t?en besin eWritten := 0.0 ExerValue = O end
else
besin
eWritten t= abs(e)s
ExrValue = RealSize ( eWritten ) - 13
eWritten = eWritten / TenPower ( ExmValue ) !
DecPlaces t= ActWidth-ExrDisits-33
eWritten 1= elritten +
0.5%TenPower( ~Decrlaces )t
if eWritten >= 10.0
then
besin
eWritten t= elritten /7 10.03
ExpValua = ExrValue + |
ends
eWritten t= Truncate ( eWritten, DecPlaces )
end’

t?on the floatins-moint rerresentation of the value of e shall consist
ofs

the sisn character:,
¢ ’=’ if (e < O) and (eWritten > 0)y» otherwise a srace )
the leadins disit-character of the decimal
rerresentation of eWritten,
the character ‘.’ »
the next DecPlaces disit-characters
of the decimal rerresentation of elritten,

é2



i
|
!

. ——— AN e
PASCAL NEWS #20 DECEMBER, 1980
Second Draft Promosal
an impiementation~defined exronent character
(either ‘e’ or ‘E’)»
the sisn of ExpValue
( "=’ if ExeValue < O, otherwise ‘+’ ),
the ExprDisits disit-characters of the decimal
rerresentation of ExpValue
(with leadins zeros if the value reauires them).
6.9.4.5.2 The fixed-point representation. ]
Write(f,e:TotalWidth:FracDiaits) shall cause a fixed—point
representation of e to be written. Assume the function InteserSize

described in clause 6.9.4.4, and the functions TenPower and Truncate
described in clause 4.9.4.5.113

let eWritten be the non-nesative number defined by:

if e =0.0
then eWritten = 0.0
else
besin
eWritten 1= abs(e):;
eWritten t= eWritten + 0.5
# TenPower ( - FracDigits )3
eWritten 1= Truncate ( eWritten: FracDisits )
ends
tet IntDisits be the Positive integer Jdefined by?
if trunc ( eWritten ) = 0O
then IntDigits 3= |
else IntDigitsi= InteserSize ( trunc(eWritten) )3

ind let MinNumChars be the mositive inteser defined brs

1inNumChars t= IntDisits + FracDisits + 13
if (¢ < 0.0) and (eWritten > 0)

then MinNumChars 1= MinNumChars + 15{’~’ reauired)

hen the fixed-moint reeresentation of the value of o shall

fi

consist

if TotalWidth >= MinNumChars,
(TotalWidth - MinNumChars) spaces:

the character ‘=’ if (e < 0) and (eWritten > 0),

the first IntDisits disit~characters of the decimal rerresentation
of the value of eWritten,

the character ‘.’

‘he next FracDieits digit-characters of the decimal rerresentation
of the value of eWritten.

NOTE. At least MinNumChars characters are written. If TotalWidth
is less than this value, no initial sraces are written.

63

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

6.9.4.6 Boolean-type. If e is of Boolean—type, a representation of the
word true or the word false (as appropriate to the value of e) shall
be written on the file f. This shall be e«quivalent to writing the
arPropriate chara:zter-strinss ‘True’ or ‘False’ (see 6.9.4.7): where
the case of each letter is implementation-defined, with a field-width
parameter of TotalWidth.

6.9.4.7 String-types, If the tyre of e |is
components, the default value of TotalWidth
representation shall consist of:?

a strins~tyre with n
shall be n. The

if TotalWidth > n»
(TotalWidth -~ n) sPaces,
the first throush nth characters of the value of e in that order.

if 1 <= TotalWidth <= n.
the first throush TotalWidthth characters in that order.
of the parameter list of

&6.9.5 The procedure writeln. The syntax

writeln shall be:

writeln—-parameter-list =
[“¢" (file~variable | write-parameter)
{"+" write-rParameterl")")

Writeln shall only be arPlied to textfiles.
the writeln—-rParameter—list is omitted,
to the reauired textfile outeut.

If the file-variable or
the procedure shall be arppPlied

writeln(f,prls... Pn) shall be equivalent to

begin write(fiPls...omn)} writeln(f) end
Writeln shall be defined by a Pre-assertion and a post-assertion usinse
the notation of 4.6.5.2.

rre-assertiont (fO is not yndefined) and (fO.M = Generation).
rost-assertiont (f.L = (fO.L.~“S(e))) and
(f~ is totally-undefined) and
(f.R = S()) and (f.M = Generation),
where S(e) is the sesuence consisting solely
end-of-line comronent defined in 6.4.3.5.

of the

NOTE. Writeln(f) terminates the wmartial line, if any, which is

being senerated. By the conventions of 6.46.5.2 it is an error if

the rre—-assertion is not true prior to writeln(f),
6.9.4 The procedure Pase. It shall be an error if the pre-assertion
required for writeln(f) (see &.9.5) does not hold eprior to the
activation of wpage(f)., If the actual-parameter—-list is omitted the
procedure shall be arplied to the reauired textfile outmut., Pase(f)
shall cause an implementation-defined effect on the textfile f,» such
that subséauent text written to f will be on a new erase if the

64



|
|
*‘M' i N -

. v PR e mwwvmu.uuilﬂﬁ””?“~m"*H&ﬂ-W¢9lﬁﬁwmvf
PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

textfile is Printed on a suitable device, shall wperform an implicit
writeln(f) 1if f.L is not empty and if f.L.last is not the end-of-line
component (see &4£.4.3.5)) and shall cause the buffer—-variable f* to
become totally—undefined. The effect of insrectins a textfile to which
the mase procedure was aprlied during seneration shall be
imelementation—deprendent.

6.10 Prosrams.

program = mrogram—heading "3i" prosram-block "." .
prosram-headins =

"program" identifier [ "(" prosram-earameters *“)" 1 .
Program—~parameters = identifier~list .
program-block = block .

The identifier of the program-headins shall be the erogram name which
shall have no significance within the prosram. The identifiers
contained by the program-parameters shall be distinct and shall be
desisnated prosram parameters. Each prosram parameter shall be
declared in the variable-declaration-rart of the block of the
prosram-block. The bindins of the variables denoted Ly the erosram
Prarameters to entities external to the Prosram shall be
implementation-derendents excert if the variable Possesses a file-type
in which case the bindines shall be implementation—defined.

NOTE. The external representation of such external entities is not
defined by this standard: nor is any prorperty of a Pascal erosram
derendent on such representation.

The occurrence of the identifier input or the identifier outmut as a
progsram parameter shall constitute its Jdefinines-eoint for the region
that is the errosram-block as a variable-identifier of the rewauired
tyme denoted by text. Such occurrence of the identifier inmut shall
cause the p,ost-assertions of reset to holds, and of outeut, the
rost—assertions of rewrite to hold, mrior to the first access to the
texntfile or its associated buffer-variable. The effect of the
arplication of the reauired procedure reset or the rewuired procedure
rewrite to either of these textfiles shall be implementation-defined.

Examplies?

rrosram cory(f,9)}
var fi9: file of reals
besin reset(f); rewrite(s)s
while not eof(f) do
besin 9" = f*; get(f); rput(s)
end
end.

63

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Promosal

prosram copytext(input.outrut)i
{This prosram corpies the characters and line
textfile inmut to the textfile outeut.}
var cht chari
besin
while not eof do
begin
while not eoln do
besin read(ch)s write(ch)
end;
readini writeln
end
end.

&6

structure

of

the



DECEMBER, 1980

PASCAL NEWS #20

Second Draft Prorosal

rrosram t&pbp3P3d2revised(outrut)?
var slobalone: slobaltwo ¢ inteser:

procedure dummy;
besin
writeln(’fail4...6.6.3.3-27)
end { of dummy ):

procedure m(mrocedure f(procedure ff: Procedure g99)3
Procedure 9);
var localtor & inteser:
rrocedure r3
besin
if slobalone = 1 then
besin
if (slobaltwo <> 2) or (localtor <> 1) then
writeln(’faill...6,.6.3.3-2")
end
else if slobalone = 2 then
besin
if (slobaltwo <> 2) or (localtor <> 2) then
writeln(’fail2...6.6.3.3-2')
else
writeln(’'rass...6,6.3.3-27)
end
else
writeln(‘fail3...6.6.3.3-2/);
slobalone = slobalone + 1
end { of r );
besin ¢ of » )
flobaltwo = globaltwo + 13
Jocaltor 1= gigbaltwo?
if slobaltwo = 1 then
e(fsr)
else
f(er)
end { of m)t

rrocedure a(procedure f3 rrocedure 9)3
besin
fi

L
end € of «);

besgin

olobalone 1= 33
olobaltwo 1= O3
r(srdummy)

end.

6.11 Hardware remrresentation. The rerresentation for lexical tokens
and serarators siven in 6.1 constitutes a reference rerresentation for

67

T “&ﬁﬁlﬁlﬁﬁﬁh&&fn*

PASCAL NEWS #20 DECEMBER, 1980

Cecond Draft Promosal

rrosram interchanse. A Processor shall accert all the reference
symbols and all the alternative symbols excemt for anhy symbol whose
representation contains a character not available in the character set
of the processor. The reference symbols and the alternative symbols
are given in table ¢.

Table 6. Alternative symbols

Reference Symbol Alternative Symbol

€or ¢
(*
*)
(.
“)

(WY T TP

NOTES. 1. The alternative commant delimiters are esuivalent to the

reference comment delimiters, thys a comment may besin with “¢v

and close with "#)", or besin with “(#* and close with AN

2. For any other purpose than prosram interchanse, this
rerresentation is not reauired, and so does not exclude the
existence of other alternative symbols.



e U P e e e TR SR
PASCAL NEWS #20 DECEMBER, 1980

APFENDIX A. COLLECTED SYNTAX

actual-parameter = exeression ! variable-access |
procedure—identifier |
function—identifier .

actual-parameter-list =
“(" actual-parameter { "»" actual-parameter 3} ")"

adding-orPerator = "+" | "-" | tgopv |
arostromrhe-imase = "‘'’"

array-tyre = "array" "[" index—tyepe { "»" index—type > "J" "of"
component-tyre .

array-variable = variable-access .

assisnment-statement =
( variable-access | function-identifier ) "i=" exPression .

base-tyre = ordinal-tyre .
block = Ytabel-declaration-rart
constant-definition-pPart
tyre~definition—-rart
variable-declaration—-rart
procedure-and-function—~declaration—-rart
statement-part .

Boolean—expPression = exeression .
bound-identifier = identifier .
buffer-variable = file-variable “~"
case-constant = constant .,
case-constant-list = case~constant { "," case-constant )} .
case~index = exeression .
case-list—element = case-constant-list “:" statement .
case~statement =

“case" case-index "of"

case-list-element (“3" case-list-element } ["1"] "end"” .,

character-strins = “’* gtprjins-element
{string-element) “‘"

component—-type = type~denoter .
comeanent~variable = indexed-variable ! field-designator .
compound-statement = "begin" statement-seauence "end" .

conditiohal—-statement = if-statement | case-statement .

49

- e R R

PASCAL NEWS #20 DECEMBER, 1980

Second Draft FProrosal

conformant~array-rarameter-specification =
“yar" ijdentifier—list “:* confarmant—-array-schema .

conformant-array—-schema =
(packed-conformant—-array-schema |
unpacked-conformant-array—-schema) .

constant = [sian] (unsisned-number ! constant-identifier)
{ character-string .

constant~definition = identifier "=" constant .

nanu

constant-definition-rart = [“const"” constant-definition *i
{constant—definition "$"21 .

constant-identifier = identifier .
control-variable = entire-variable .

digit &= MOUUguuZn N3 inguuGT eIt I B "
digit-seauence = disit {disit) .

directive = letter {letter ! disgit) .
doméin-type = type-identifier .

else-part = "else” statement .

empty-statement = .

entire-variable = variable-identifier .
enumerated~type = “(" identifier-list ") .

exerression =
simmple~exrression [ relational-orerator simele-exPression 1 .

factor = varjiable~access | unsisned-constant | bound-identifier !

function—-designator { set-construyctor !
“(" expression ")" | "not" factor .

field-desisnator = record-variable “." field-srecifier |
field-designator—~identifier .

field-identifier = identifier .

field-list =
[ (fixed-part [ ";* variant-rpart 1 ! variant-eart) [*3") 1 .,

field-sprecifier = field-identifier .

70



y
i

Nﬂ.ﬂﬁi‘i‘.‘.“iﬁ%ﬂaﬁﬂmﬁw*&4M&&M

PASCAL NEWS #20

R o N .
DECEMBER, 1980

Second Draft Frorosal

file—tyre = "file" "of" compPonent-tyre .

file-variable = variable~access .

final-value = expression .

record-section J .

£ e n

fixed—part = record-section { "3

initial-vatue
“do" statement

“for" control-variable ":="
( "to" | "downto" ) final-value

for-statement =

formal-parameter~list =
“(" formal-rarameter-section
{"s" formal-rparameter—section} ")" .
formal-parameter—-section =
value-parameter-specification |
variable-parameter~specification |
procedural-rarameter—specification |
functional-rarameter~specification |
conformant-array—-prarameter-specification .
function-block = block .
function-declaration =
function—heading "3" directive |
function-identification "3" function-block !
function~headine "i1" function-block .

function-identifier
[ actual-rarameter—-list 1 .

function-desisnator =

function-headine =
"function" identifier [formal-parameter-list]
“i* result-type .

function-identification =
“function" function-identifier .
function-identifier = identifier .
functional-earameter-specification =
function—headins .

soto-statement = “"goto" label .

identified-variable = pointer—variable “~*

identifier = letter {(letter | disit) .

identifier—1list = identifier (""" identifier )} .

71

PASCAL NEWS #20 DECEMBER, 1980

Second Draft FProrosal

“if" Boolean-expression “then" statement

[ else-part 1 .

if-gstatement =

index—expression = exPression .

index~tyrPe = ordinal-tyre .
index~type~-specification =
identifier ".." identifier
":* ordinal-type-identifier .

indexed-variable =
array-variabtlie "["
{ "+" index—exeression J}

index-expPression
ol L

initial-value = expression .

label = digit-sequence .

label-declaration—-prart = [“label"” label {“," label) "“3"1

LU R A N L PO N LN LR LR

i LSRR L]
LR L R L N N P R R ITLE VA

1
€
HEPLERERE ST

letter = !

Y
L

member-desisnator = expression [ “.." expression ] .

multielying-orerator = "#" | "/" | “div" | "mod" | "and* .

new-ordinal~tyre = enumerated-tyre | subranse-tyre .
new—-Pointer—-tyre = """ domain-tyee .
new-structured-trvre = ["packed"] unracked-structured-tyre .

new-type = new—ordinal-tyre | new-structured-type |

new~-pointer~tyre .,

new-ordinal-tyre !
inteser—type | Boolean-tyee |
ordinal-tyme-identifier .

ordinal-type =
char-tyre |
ordinal-tyme-identifier = identifier .
racked-conformant-array-schema =
“packed" "array" "[" index-tyre-specification “1"
"of" type-identifier .
rointer—tyrPe = new—Pointer-typre | mointer—tyre-identifier .
pointer—type-identifier = tyme-identifier .

Ppointer-“variable = variable-access .

72



IE!

!

i

1
Ms%ﬁﬂ%&.ﬁww%!ﬂ“ ey

PASCAL NEWS #20 DECEMBER., 1980

Second Draft Frorosal

procedural-marameter~specification =
procedure-headins .

procedure~and-function-declaration-mart =

{(mrrocedure-declaration | function-declaration) "“i"}

rrocedure-block = block .

rrocedure-declaration =
procedure-headine "3" directive |
rrocedure~identification "3" mrocedure-block |
rrocedure-headins “3" procedure-block .

rrocedure~heading =
“procedure” identifier [ formal-parameter-list 1]

rrocedure-~identification =
“mrocedure” mrocedure-identifier .

procedure-identifier = identifier .

rrocedure~-statement = procedure-identifier
[ actual-rarameter~list 1 .

srosram = prosram-heading "3" prosram-block “." .
prosram-block = block .

rrogram—headins =

“prosram” identifier [ "(" prosram-pParameters “)" 3 .,

prosran—prarameters = identifier-list .
read-rarameter-list =

"{"[file-variable "+"] variable-access

{*+* variable-accessl")" .
readin-parameter-list =

"(* (file-variable ! variable-access)

{"+* variable-access) ")"1 .
record-section = identifier—-list ":" type-denoter .
record-tyre = “record” field-list “end" .
record-varjable = variable-access .

record-variable-~list =
record-variable { "»" record-variable ) .

relational-omerator =
Il=ll = Il<>ll = “(ll : ll)ll : ll<='l : Il>=ll ’ "ih”

73

SRS s i i ¥ s

PASCAL NEWS #20 DECEMBER, 1980

Se-ond Draft Frorposal

repeat-statement = "rerepat"” statement-seauence
"until" Boolean-exmression .

repetitive-statement = rereat-statement !
while~statement | for-statement .

result-typre = simple-tyre~identifier !
pointer—-type—identifier .

scale-~factor = signed-inteser .

set-constructor = "[" [ member—desisnator
{ "+" member-desisnator > 2 "1" .

set-tyre = “"set” "of" base-tyre .
sign = "% | v
sisned-inteser = [signl) unsisned~inteser .
sisned-number = sisned-inteser | sisned—re;l .
sisned-real = [sien) unsioned-real .
simple-expression = [ sien 1 term { addins-orerator term 2
simple-statement =
empty-statement | assignment-statement !
procedure—statement ! soto-statement .
simprle~tyme = ordinal-tyre ! real-tyre .
simmle-type~identifier = type~identifier .

$PECial-Symbol = "4 {U—tiugnin i nmnjuguiusuiupuiugny
u.“:ll’l‘:Il:ll:“;ll:l‘&“:“‘.‘“)l‘:

UM INE D s (N, " word-symbo] .

statement = [ label ":" 1 ( simple~statement |
structured-statement ) .

statement-part = compound-statement .
statement-seauence = statement { "3" statement } .

strins-character = .
onp-of~-a-set-of-imelementation-defined-characters .

strins-element = arostrophe-image ! strins-character .

Pl

74



i

aﬁﬂﬁﬁﬁl‘.ﬁ.""‘ﬂ%ﬂuﬂﬁ

RN R SR o - i, - C
S N - DECEMBER, 1980
PASCAL NEWS #20 DECEMBER, 1980

PASCAL NEWS #20

Second Draft Prorosal
Second Draft Frorosal

variablie-declaration-part = [“"var" variable-declaraticn "y

structured-statement = {variable-declaration "$"31 .
commound-statement ! conditional-statement
rePetitive-statement | with-statement . variable-identifier = identifier .
structured—type = new-structured-type | variable-parameter-specification = . o
structured-type-identifier . © "var" identifier-list “:* tyme-identifier .
structured-tyre-identifier = type-identifier . variant = case-constant-list ":" “(" field-list ")*
subrange-tyee = constant “.." constant . variant-part = “case" variant-selector “of%

variant "$}* variant )} .
tas-field = identifier .
variant-selector = [tas-field ":"] tag-tyre .

tas-type = ordinal-tyre-identifier . )
while-statement = “while" Roolean-exrression “do" statement .
term = factor ¢ multierlyins-omerator factor 3} . , .
with-~statement =
tyre-definition = identifier “=" tyrpe~denoter ., “with" record-variable-list “do"
statement .
tyme-definition-part = L"tyre" type~definition i

{type-definition ";"33 . word-symbol = “and"!"array"!"besin"!"case" | "conct" ! div"!
“do"i"downto"!"else"{"end" {"file" ! "for"]
tyre-denoter = tyre-identifier ! new—type . "function“:"9oto“:"if":"in“2“lnbel"!“mod"!
"nil”:"not“:"of“2“or“:“racked“:"Procedurg“:
tyre~identifier = identifier . ] “Program"{“record"!“repeat"!"set" ! "then"!
"to":"tyPe"f“until“}"var“:“while"i"with“
unvacked—conformant-array-schema =
“array" (" index-tyme-specification write-rarameter = expression [“1" exmression [*:1" exmrrassion 1 J .
[ A index-typre-specification } "3 Mof
( tyre-identifier | conformant-array-schema ) . | 4 write-rarameter~-list =
“"("[file-variable ","] write-marameter
unracked-structured-type = array-tyere | record-type | set-type | {"+* write-parameter)*)" .

file-type .
writeln-parameter-list =
unsisned-constant = unsisned~number ! character-strine | ] . LU (file-variable | write-parameter)
constant-~identifier | "pjij" . ("> write-rarameter}®)®] .
unsisned-inteser = disit-sequence .
unsisned-number = unsisned-inteser ! unsisned-real .
unsisned-real =
unsisned-integer ", v digit-seayence ["e" scale~factor] |
unsisned-integer “ev scale-factor .

value-rarameter~snecification =
identifier-ligt "3 tyre-identifier .

variable-access = entire-variable | compronent-variable |
identified-variable ! buffer-variable .

variable-declaration = identifier-1igt “zv tyrre~denoter .

75




g ok

AT

DECEMBER, 1980

PASCAL NEWS #20

Second Draft Frorosal

(=)

2 N oy v N w - 00Mm 3 VNG menN o o 246 0,2 N o

« % . @ ® & 8 e s = ¢ g o R Y . s % o 8
36335365 DGING G Omm 3235232333 N N ™ 6556-134 356.1.&4.
- - - - - L] - . . . . . . . . - . - . . L - L] . - - . . - L] . L]
TTNOQGW I TED @ LOY TIVIANTNGG ¢ O @ THNOYRDO OCINOO
- L . - . - . L . . L] L] 1 3 - - - L] L - - . - - a -
B VR RV RV s VMO8 U YO0 VOOV OIVIVIVYOVY ¥V b ¥V VIOYOVOVOIY VOVYLVOY
- 1) v 7,2 NE~ =N ~NiD [ X n ™~ 3 Ballu‘w QJOwJ 9

- e = ® » . - 0 .
y DON OO0 N NG A - 22 THOOMEONIDLOMH
. e » L N A I N A Y =] . 2 ¢ & @ B @ & 8 8 v & 8 ¥
NGSINNTNEG= 00 5415666899666&78
ANAIN09 19 rQegn®

V00 VIO G VOV GVVOINGD FVNDBL00G0000300

3paﬂ4ﬁuogqiqh3ad MmN

TNV QLEITYN IO

VOOV LOVOIVQUVLY Vo9

6.8.1
.3
[
4

“ 365 SN MmOoN NO« bl ol 0 <= 0N Sl T 34& 2744352
. e - L] - .

2313362331373341333 NLT OO Ne 3 M 34&1& 3256&253356234
* ® 4 ® a % 3 & o B 5 8 4 " o w g s % g ® s 8 g e * o B s o & g s * . * . * s 8 4
2455&694635145928663615667234A68 J1854 56667995&6&78o
s 8 3 3 4 8 4 ®w a ®W g 8 g ® 3 8 a5 ® 4 . o @ " s 8 o ® 4 " % 9 * 4

6&&&&&&h&b666bbb6666666666666666466666366666666666666

conformant-array-schema

conoruous

compound-statement
constant

comronent
component-type
comPonent-variable
component-variables
comPonents
correseondine
definins-roint
definition
directive
empty—statement
entire~variable
enumerated-tyre
error
exeression

DECEMBER, 1980

PASCAL NEWS #20

APFENDIX B. INDEX

access

actual

4...4
v on 3 ™~ G M -

_op~:us q~ P ® N
. ON N R
. .« e . ) * » . .
SR 0 B98¢ N &&&JOJJ JAJJ DNn< S o
RN > I S MR —=Ln N
/. 10 < IV WU @ L::C; 6lu4r..lr.-4/u- - -4O-°” ew4c—_v..9 o 0 elaR TN
R N I N

.a ?u7 P ~
R N o @

23ﬁn y 3 ‘ OGN

;d Toan J3522Zé CQQ&Q&&& MJ e % o ®

b e & & . . TS n > . .

VNORVnS o e NSO NON .
VW9 MR S Ry .J¢66888 s e TN
VY 990 $99desd V0L G009 Gegy 3w 69HL

ence
atible

actual-parameter
actual-narameter-list
array-type
array-variable
assisnings-refer
assisnment-come
assisnment—statement
base-type
base~-tymes
block
Boolean-exrression
Boolean-type
buffcr-variable
case-constants
char-type

body
Character-string

character
closed
comeatible

77




e <o 5

n ®
N ON—@E n NO NN Q0N n=n aho<n JMJ&A “5
™ ONOON  —iv o 23J3352125 Nodle qNN NNm9m J.J..O.&
(4 . e e e . . . « 2 . -t
O VEQVN MO N DRIV AENDRe OB ARK IRE90 000V 76
S $90993 $v 9 VOV 0V 209UV VOVY WYY VVVUY VWYV 0
N o
N N Toe NoQinn Ny o SAg ¢ Qeesn 09y o 4M
M M A « o & o & . . -t -
N M YT YMm o ONONOT NN NNOSTINN NINON JM&AH9S&&L
? 00 ¢4 09
¥ NOEINS AN N ANLLCRQINNDO, TIROORNRA YN ©Y9o WHURN
8 O GO0V GVV0 U VLYW IV0OI0 G000V 000 GOG00 V0000
—f
- Lond vy
] 3 3 m o NON 9 -
8 o D= MO NE - ol 4 Do NE N AN PO NS ®
=) S OGN ONT NGO — 43314353330J£A2J2123&A2£131£JJ&%JL .
» - - . - - a . 3 . - L N .
a & 465146%012847.1A45§A&JﬁﬁlJAJ&&JJJ£A&AAJ£JAAAJ.A&.4A
v 099000V CT L0000V G0 G660 00 0090606000 60000000634¢
het
o
[
o
o
[ =4
Q
o
@
o
(=) [N
&~
- 2 2
"
= r < -
] .ﬁe (] " Lo
o o a . » » Ve
- N> n + 3 L oaq
S L >4 v < " e L &€ ¢
& > 1! 2 o - - - C ke3>
= - O 1 < c+ . P o ® Yuyuro
1 o [ o s c ¢ € e L )
X x® -~ ¢ o o P - L] cC€CoDU
a ww o Scow & o v. v < " & W0
2 2¢ - mm.ﬂ 2 o a [ [ ON"NP
m amm .M EEC c -N-} -] o [ § [ 8 a
m
g
3 =
% © M 0 L Y T N, TP S o~ To ~ ~ N
, VU C0m 9 O NGO OmONOmE  —ao N NO NONN~=0 - ANe 0o
. e e = . » u P * s e g 8 o @ « 4 ® . 8 AR T Y . P »
Y YN 00 D000 VITIING NP0 0 O~ DONTNGS NS AN aNo
- L] - . . L] . . - - . . L] . - . - L] L4 - . . I . . . . - - L] - - - 4 -
VMO9S 0 WY 9000 G00GV0E V9w ¥ w9 COVVIIV V9 Vo0 16909
vy
71.....,.13 N A... [$ e RV 5 324 - n -~ MM 374 25 - ()
. 0 10 . ) P FA A ¥
32:33 P 313322331624 M= - 23313330333 o< N
Lo el D LRNTINNT 907 ma-mn NN ne :
CRINT 200 G000 TNOIN o NGl NND 9 RO~ E TN OD =GO e D
sarTeTe TONE IaNeagene ey nunne VN R irirhdAelel
8 COO00 YV0Y VVVVVVIVVVI0 YO0 V0930 V0V VVVVIVVINVGGID 00
L |
e -
g . o o
5 m N ...o 1.1 - < 5525 135 - [y ] M (NN o~
5 2 . oo oaa {
L g c 5132233552513333132 BONS E N 0 e 0205 403 e (3 NNNGBNG® Neo <o
L % e % 4 s 5 @ « o . L - " % e " 4 v 4 n o, me e w * 5 & o 0 a L
B @ 17422845599526&7661666£9161727268688.345684&8 T g
) - - . . - - . . - 1 a 4 L] . - 4 L] 4 - - N [ - - 4 - 4 - 4 L] L] . g L - I L] - . . . .. 8 -
] P ébé66666666666666666666666666666666646666666636663666
3 L]
g [
: a
R
[~ -
o c
: . x £
[0 w [~4 c .M
-y -] [ o had [
o iy - o w -~ a
N i + o e - ]
I . . I3 L L b v
w ow o L & e & | h
24 o - x O & o - - c c
M L B od L] L & (V] ~— e [ =4 < e Q -]
C - -~ [ € 0 vV »w @ - - ot
- o o < - - o & © € | % o
<L - L ] (3 [ L h- h - R — [ [ e ]
r.\‘w w o ¢ - [ L] ] ] ] ] g - [ E ™
=< [T - a [N - [ 8 (-4 < < [ c cw “ve oy [T o
a h-Bo B S ] [ ] ] o o o o o G+ - - g o
< [ -~ > b~ ~—~ e . e Rl . W B ad - [ 3 €
o ©wvdo ] 1 wn N & L o L o > | -~ ~ oy M
- - - L] [ '] [ -3 & (7] (1] v v (V] (V3N - c [ B —
\¥] v aw L o~ e G & < [ = [ [~4 [~ -] L3 » I a [
L ] e el ] -t o0 Q 2 - 2 =4 d 50 © h- - e
- e e - .- - L -0 . - et e =

b=
@

79



[ "2} o~ 38 59 51 22 w 333& ™
. ® - . L - 9 I
MOTI Q- TV =~ NV 43326353343513 OMINN 0 <
a ® . L] . -y . LI ] . . L] . L] . g L L Y . . LY . g a * ¢ . -
QOE F N mw DR w0 466&6894536679 NOvQW 0V =
. o . - - - . . - . = . . . - L] - - s . . e -« . - . . -
B B T TR T e R A R - I 1) 666/t6l6t66éé6 WOV v <
22 NN ™~ N 27 32 M-NT O ™ 2 31
P . [ ]
3454325 N NOn e ™ 13345241133353035533333
. . a . - - - . . - L] . . L) . « @ - = a * L ] LI L] . L] . s o L] .
4049454 N NGO w—in® 46&56894556668155679581
e 8 s e ww . . e e e s s 8 ® s 8 s ®os & 8 8 a @ * s o 8 4 s s s 8w e
m VIOVOVOVVY O VYUY VLY b6666666666666666666666
— !
o - i - o)
W m MaN- ¢ On - n 90N N MmN N M
. « ® o « & 9
a ° 7:323122 33240 2156233351234353522143J2332
- s 4 % o @ . o » ® o 8 4 0 o = g v o a % o & g u'® o . . .
e G 17474549 OO 12692665679245566895567948l
» & @ % g ® g & 3 8 4 5 g e 4 9 ® 4 ® e B o @ 2 8 o @& 5 8 5 & 4 ® g 3
- 6666666646666646666&6666666666666666666666
-
L
<
4
hel
<
o
w
@
%]
I )
I 7]
c 3 n
2 a - . " -
[¥9) Y Y -4 @& c
= w [ - v -
—J [ [ I b e o & -
=< e a © c - N K-
2 > 2 2 2e P§ 3 . . i€
L - [N [ -
= [} 1 -] [ v e~ » s a — — tﬂv
[ 1] Y < —_—r w — Rl B o 0 C oW
c < v [ ] Q= s - i - L] L] LA
- -] C @l e [ o [ o - s - T
o « [N ) EB® X X e A (A (& L G
- e 2 »Tw (=3 o » c L4 ld G-~ 0
a- =w " w R - +~ 2 > > >33
R
L=} (o]
~ (o] 1255313 7 331 34 2 l 58 n Lol 1 R
. . ce s e n . . «'s .
T OMO NI M e 02624333 4313233062 3225323312 - NO®
. " . s - . o a . @ o @ 5 8 5 . o s .® o o . 8 s ® o @ ® ¢ & a ® - « ® 8 ®
€090 NEE YN 4 STIRATAN BEmATWIRIN —SNITTBIGINN K NDHd
6&66-6 VY E VO O YOI wo-ad 66666666tb é(ééb(bééb W YO0
o
< - < o 22133 331 122 2 MONSG T < L)
. N . . MR « s . . ..
MFPONED DM~ ~N wNw— 624353 3332112362 713713362 NG OO

DECEMBER, 1980

PASCAL NEWS #20

Second Draft Frorosal

« s % & .« . e * a « s a @ " e s e @ » & ® o e s & a s & o o » . « » s @

ARGRe YN W9 58%34794&4 5652456867 ANTTEVO00ON NE NOD®

[ .« . « » 2 e . a » o s a ® @ w e e & » w e

00000 666 0 6666666666 6666666666 6666666666 V0 VWYVO

o
2] o - - 23 0 - ] “o o~ 45 < 22&225 15 o D
2112404l42332321526223233521 313162 43&6333623 32 nNmHmom
. " e ® . a g4 @ q 8 g & ® 4 8 4 8 4 8 4 ® 4 s & 4 € 4 @ LY L *« ® @ .- 3 @
1568911618268282A4e925285592£466667212445666782471688
*® o @ ® o & g ¥ 4 B 5 & 5, B 4 . ® g *® ® a2 = o & g s @ g ¥ 4 @ ¢ 0 5, & 4 8 g 8 g ® 4 8 o ® g8 g ®

VOOV O O QO IY IV IOI IOV IOV VIO YUY VIOV VI YOOIV OV VYOIV IOINIO VIOV VOV I VIO VIV VIO IN VYO

[~
o <
Hal L] -~
) -~ [~ w
L I o [ [N
[N -y E L]
X N & [ ]
v e~ < + [ -
a v @ s € F-]
— ® v - o L 1
LH D - w [ ® -
1 1 | 1 L] [
[ L] L] [ [ a % > Ld L -~
& L L . P S = > v o
B 3 > 3 I3 E N | [] c . o
b v O O T g v v e c -~ > &
« v o @ @ o C & C o - v+ ®
U ] v v (¥} [ Rt o [ L - 9 [} a -
(-] o Q o o o v v -~ [ ] " & (- [ ]
(8 L e & L @ *» & @ v [ 5 e
e Q [ § [ S [} ac [ [ [% (3 < n (" "]

——allly

81



PASCAL NEWS #20

AFTFNUIX C. REQUIRED IDENTIFIERS

ILENTIFIER

abs
arctan
Eoolean
char
chr

cos
disrose
eof
eoln
exp
faise
get
input
inteser
In
maxint
new
odd

ord
outeput
pack
Page
Pred
put
read
readln
real
reset
rewrite
round
sin

sar
sart
succ
text
true
trunc
unPack
write
writeln

REFERENCE CLAUSE(S)

. s »

(NS LVE R TS TN TR

Nt

PUBDWNL

NM.& :'h

hNN;\)LJ;\);\)N

NB&WN O

v 6.9.4.1, 6.9.4.2

8%

DECEMBER, 1980

IMPLEMENTATION NOTES ONE PURPOSE COUPON

DATE
IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give o person, address and phone number. °)

MACHINE/SYSTEM CONFIGURATION (* Any known Smiks on the confi fon or support quired, e.g.
operating gystem. °)

DISTRIBUTION [ Who to ask, how it comes, in what options, and st what price. *)

DOCUMENTATION /* What is avaliable snd where. *)

5. MAINTENANCE (/i i d, fully mak d, etc? %)

6. STANDARD (* How does it messure up to standard Pescal? Is It a subset? Extended? How.*)

7. MEASUREMENTS (* Of &s speed or spece. *)

8. RELIABILITY * Any information about fisid use or sites instatied. *)

9. DEVELOPMENT METHOD /* How was It developed snd what wes it written in? *)

10 other source Nbraries. etc. *)

10. LIBRARY SUPPORT [ Any other support for complter in the form of Nnkag




o RS §STH A L e o L A

(FOLD HERE)

PLACE

POSTAGE

HERE

Bob Dietrich

MS. 92-134

Tektronix, Inc.

P.0. Box 500
Beaverton, Oregon 97077
US.A

(FOLD HERE)

NOTE: Pascal News publishes all the checklists it
gets. Implementors shouid send us their checklists
for their products so the thousands of committed
Pascalers can judge them for their merit. Otherwise
we must rely on rumors.

Please feel free to use additional sheets of paper.

IMPLEMENTATION NOTES ONE PURPOSE COUPON




e TR R A R it e

SEEFEL

L R -

POLICY: PASCAL USERS GROUP . (15-Sep-80)

Purpose: The Pascal User's Group (PUG) promotes the use of the programming
language Pascal as well as the ideas behina Pascal through the
vehicle of Pascal News. PUG is intentionally designed to be non
political, and as such, it is not an "entity” which takes stands on
issues or support causes or other efforts however well-intentioned.
Informality is our gquiding principle; there are no officers or
meetings of PUG.

The increasing availability of Pascal makes it a viable alternative
for software production and justifies its further use. We all
strive to make using Pascal s respectable activity.

Mewbership: Anyone can join PUG, particulerly the Pascal user, teacher,

maintainer, implementor, distributor, or just plain fan.
Memberships from libraries are salso encouraged. See the
ALL-PURPQOSE COUPON for details.

Facts about Pascal, THE PROGRAMMING LANGUAGE :

Pascal is a small, practical, and general-purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and read by
humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:
* teaching programming concepts
* developing reliable "production" software
* implementing software efficiently on today's machines
* writing portable software

Pascal implementations exist for more than 105 different computer systems, and
this number increases every month. The "Implementation Notes" section of
Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.

Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There"
section of Pascal News.

The programming language, Pascal, was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individusl member's group. We currently

have more than 3500 active members in more than 41 countries. this year Pascal

News is averaging more than 100 pages per issue.

Ao1od



