
PASCAL USERS GROUP

PASCAL NEWS
NUMBER 18

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

MAY1 1980

"
'~,,;,

.
1
,

,.

POLICY: PASCAL NEWS (17-Mar-80)

, Pascal News is the official but informal publication of the User's Group.

I Pascal News contains all we (the editors) know about Pascal; we use it as
the vehICIe. to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we

. unfortunately succunb to the reality of:

1. Having to insist that people wo need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand W"iat the collective effect of individual inquiries has at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot premise more that we can do."

I Pascal News is produced 3 or 4 times during an academic year; usually in
..

. September;-1k>vember, February, and May.

AU. THE NE1iS THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 em lines!) ----

'Remember: ALL LE'ITERS 1'0US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
1'0 THE CONTRARY.

, PascalNews is divided into flexible sections:

POLICY - explains the way- we do things (ALL-PURPOSECOOPON,etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS- presents and doclll1ents source prograns written in Pascal
for various algorit~ns, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program! algori thm certification, per formance, standards conformance,
style, output convenience, and general design.

IJITICLES- contains formal, suanitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
Comp,lter installations ,how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS ..; contains short, informal correspondence anong
members W"iich is of interest to the readership of Pascal. News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
formaintainers, implementors, distributors, and docunentors of various
implementations .as well as where to send bug reports. Qualitative and
quantitative descriptions and oomparisonsof various implementations are
PUblleized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
]mplementations.

~ .,---".

I
,

-I

POLICY: PASCAL USERS GROUP (17-Mar-80)

The Pascal User's Group (POO) pranotes the use of the prograulTling
language Pascal as well as the ideas behind Pascal' through the
vehicle of Pascal News. PUGis intentionally designed to be non
political, and as such; it is not an "entity" which takes stands on
issues or support causes or other efforts however well-intentioned.
Informality is our guiding principle; there are no officers or
meeti~s of PUG.

The increasing availability of Pascal makeslt a viable alternative
for software production and justifies Jts further use.' We all
strive to make using Pascal a respectable activity.

'

Membership: Anyone can join PUG, particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Memberships from libraries are also encouraged. See the
ALL-PURPOSE COUPON for details.

Purpose:

Facts about Pascal, THE PROORAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not .!!.!:'p'url?Ose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and read by
humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:
if teaching programming concepts
if developing reliable "production" softw-are
if tmplementing software efficiently on today's machines
if writing portable software

Pascal implementations exist for more than 105 different computer systems, and
this m.rnber increases every month. The "Implementation Notes" section of
Pascal ~ describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Nik1aus Wirth.
Springer-Verlag Publishers: NewYork, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

..

Introductory textbooks about Pascal are described in the "Here and There"
section of Pascal News.

: ~f

"

The progralTlTling language, Pascal, was named after the mathematician and,
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each indi vid ual member's group. We currentl y
have more than 3357 active members in more than 41 countries. this year
Pascal News is averaging more than 120 pages per issue.

"

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.
Please do not send us purchase orders; we cannot endure the paper work!
When you join PUG any time within an academic year: July 1 to June 30, you
will receive all issues of Pascal News for that year.
We produce Pascal News as a means-Toward the end of promoting Pascal and
communicating news ~ events surrounding Pascal to persons interested in
4PascaI. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do. ----

--
Amer ican Region (North and South America): Send $6.00 per year to the
address on the reverse side. International telephone: 1-404-252-2600.
European

U~e1t~n)
(Europe, North Africa, Western and Central Asia): Join

throughP . Send £4.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The Universit y, Southampton S09 5NH,
United Kingdom; or pay by direct transfer into our Post Giro account
(28 513 4000); International telephone: 44-703-559122 x700.
Australasian Region (Australia, East Asia - incI. Japan): PUG(AUS). Send
$A8.00 per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

PUG (USA) produces Pascal News and keeps all mail ing addresses on a common
list. Regional represent~es collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG (USA).

RENEWING?

Please renew early (before August) and please write us a line or two to tell
us what you are doing with Pascal, and tell us what you think of PUG and
Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a academic year (July 1 to June 30) means Ui'8£ we
eliminate many requests for backissues ahead of time, and we don't have to
reprint important information in every issue--especially about Pascal
implementations!
Issues 1 .. 8 (January, 1974 - May 1977) are out of print.
(A few copies of issue 8 remain at PUG(UK) available for £2 each.)
Issues 9 .. 12 (September, 1977 - June, 1978) are available from PUG (USA)
all for $10.00 and from PUG(AUS) all for $AID.
Issues 13 .. 16 are available from PUG(UK) all for £6; from PUG(AUS) all for
SAID; and from PUG(USA) all for $10.00.

- Extra single copies of new issues (current academic year) are: $3.00 each
- PUG(USA); £2 each - PUG(UK); and $A3 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
em wide) form.

- All letters will be printed unless they contain a request to the contrary.

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write lias above" if the same)

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop-
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc-
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur-
poses, and to make available the 1 istings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc-
uments, reference shall be made to the original copyright notice and its source.

~ Distribution charge: $50.00

~ Make checks payable to ANPA/RI in US dollars drawn on a US bank.
Remittance must accompany application. Mail request to:

Source Code Delivery Medium Specification:
9-track, 800 bpi, NRZI, Odd Parity, 600' Magnetic Tape

() ANSI-Standard

ANPA/RI
P.O. Box 598
Easton, Pa. 18042
USA
Attn: R.J. Cichelli

a) Select character code set:
() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.

() 40 () 20 () 10

() Special DEC System Alternates:
() RSX-IAS PIP Format
() DOS-RSTS FLX Format

lce use on y
Signed
Date

--

Richard J. Cichelli
On behalf of A.H.J. Sale & R.A. Freak

[] 1 year ending June 30, 1980
[] Enter me as a new member for:

[] 2 years ending June 30, 1981
[] Renew my subscription for:

[] 3 years ending June 30, 1982

[] Send Back Issue(s)

- ALL-PlJUUSECOUPON- - - - - (17-Mar-BO)

Pascal User's Group, c/o Rick Shaw
Digital Equipment Corporation

5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342 USA

Membership is for an academic year (ending June 30th).
Membership fee and All Purpose Coupon is sent to your Regional
Representative.
SEE THE POLICY SECTION ON THE HEVERS~ SIDE FOR PRICES AND
ALTERNATE ADDHESS if you are located in the European or
Australasian Regions.
Membership and Renewal are the same price.
The U. S. Postal Service does not forward Pascal News.

- -

[] My new/correct address/phone is listed below

[] Enclosed please find a contribution, idea, article or opinion
which. is submitted for publication in the Pascal News.

[] Conments:

$
ENCLOSED PLEASE fIND: A$

£

NAME

ADDRESS

PHONE

COMPUTER

DATE

PASCAL NEWS 118 MAY, 1980 INDEX

o POLICY, COUPONS, INDEX, ETC.

EDITOR'S CONTRIBUTION

2 SPECIAL ARITCLE
2 "ISO DP/7185 A Draft Proposed Standard for

the Programming Language Pascal" -- A. Addyman, et ale

--

Contributors to this issue (#18) were:

EDITOR
Here & There
Books & Articles
Applications
Standards
Implementation Notes
Administration

Rick Shaw
John Eisenberg
Rich Stevens
Rich Cichelli, Andy Mickel
Jim Miner, Tony Addyman
Bob Dietrich
Moe Ford, Kathy Ford, Jennie Sinclair

PASCAL NEWSff18 HAY, 1980 .'
.~ -. PAGE 1

Editor's Contribution

Wow! Bet ya didn't expect to see another edition of Pascal News
so soon! Actually, PN '17 was so late that we printed both
editions at the same time.

ABOUT THIS ISSUE

In an effort to keep our members up to date with activity on the
standards front, we have devoted this whole issue to the proposed
ISO draft standard.

It is very important that our members review this proposal and
comment if they feel it necessary. The national standards body in
your country, or a member of the standards committee is the best
person to send any comments. (See also Tony Addyman's comments on
returning comments.)

ON BEING ON TIME

As you have probably noticed, Pascal News is still not back on a
proper schedule. So, what are we doing about it? Well I'll tell
you. We are working very hard. Honest! The plan is to publish PN
'19 in June. This would get us almost up to date for this year.
Then work through the summer to get PN #20 out by September. This
would make us almost on schedule, right? The reason that we can
be so optimistic is that all the set up work for an operation in
Atlanta (as opposed to Minneapolis) has been completed. Now all
we have to do is crank out the news!

THE BAD NEWS

Inflation has hit PUG. As of l-July-80 the membership fee for
Pascal Users Group will have to be raised. It will not be much,
but at least enough to cover the cost of printing and mailing. We
are loosing money every issue now. In the U.S. at the moment it
is only a few cents a copy. But at $1.43 a copy for returned
issues by the Post Office we are getting killed. Note that you
members can help with this problem, by always informing us of
your new address when you move.

THANKS

We all owe Tony Addyman a debt of gratitude, for the years
(literally!) of work that has gone into the proposal for an ISO
standard for the language Pascal. Without his drive and
enthusiasm, the standard for Pascal would still be just a good
idea.

PASCAL NEWS 1118
MJ-11, l'jOU

A Draft ProDasal for Pascal

A.M.Addyman

Dept of Computer Science
University of Manchester

Ox ford Road

Manchester, M13 9PL, United Kingdom

CONTENTS Page
Foreword 1

1.

2.

3.
4.

5.
5.1

5.2
6.
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Scope of this standard

References
Definitions
Definitional Conventions
Compliance

Processors
Programs
Requirements

Lexical Tokens

Blocks and scope
Constant-definitions
Type-definitions
Declarations and denotations of variables

Procedure and function declarations
Expressions

Statements
Input and output

Programs

Hardware representation

APPENDICES

A.
B.

TABLES

1-
2.

3.
4.

5.

6.

7.

Collected syntax

Index

Metalanguage symbols

Dyadic arithmetic operations

Monadic arithmetic operations
Boolean operations

Set operations

Relational operations
Alternative symbols

o. FOREWORD TO THE DRAFT

2
2
2
3
3
3
4
4
4
6
8
8
18
21
34
39
46
51
54

55
61

3
36
36
37
37
38
55

The language Pascal was designed by Professor Niklaus Wirth to
satisfy two principal aims:
(a) to make available a language suitable for teaching programming

as a systematic discipline ba~ed _on certain fundamental concepts
clearly and naturan:y'''r~flect'e4' '61;,th~language..~-; 7 ;..-'.~ ":.~':'~~.. ;-

"

PASCAL NEWS" #18 MAY, 1980 PAGE 3

(b) to define a language whose implementations could be both

reliable and efficient on then available computers.

However, it has become apparent that Pascal has attributes which go
far beyond these original goals. It is now being increasingly used
commercially in "the writing of both system and application software.

This standard is primarily a consequence of the growing commercial
interest in Pascal and the need to promote the portability of Pascal
programs between data processing systems.

1. SCOPE OF THIS STANDARD

1.1 This Standard specifies requirements for
(a) the syntax of Pascal;
(b) the semantic rules for interpreting the meaning of a program

written in Pascal;
(c) the form of input data to be processed by a program written in

Pascal;
(d) the form of output data produced by a program written in

Pascal.

1.2 This standard does not specify
(a) the size or complexity of a program and its data that will

exceed the capacity of any specific data processing system or
the capacity of a particular processor;

(b) the minimal requirements of a data processing system that is

capable of supporting an implementation of a processor for
Pascal;

(c) the set of commands used to control the environment in which a

Pascal program is transformed and executed;
(d) the mechanism by which programs written in Pascal are

transformed for use by a data processing system.

2. REFERENCES

None.

3. DEFINITIONS

(a)~. A violation by a program of the requirements of this
standard.

(b) imDlementation-defined. Those parts of the language which may

differ between processors, but which will be defined for any
particular processor.

(c) imDlementation-deDendent. Those parts of the language which may

differ between processors, and for which there need not be a
definitionfor a particular processor.

(d) Drocessor. A compiler, interpreter, or other mechanism which
accepts the program as input and either executes it, prepares it
for execution, or both.

(e)~. The text for which the declaration or definition of an
identifier or label is valid.

(f) totally-undefined. If a variable is of a structured-type, the

state of the variable when every component ot the variable is
totally-undetined. Totally-undefined is synonymous with
undefined if the variable is not ot a structured-type.

PASCAL NEWS 118 MAY, 1980 PAGE 5

(a) accept all the features of the language specified in clause 6
with the meanings defined in clause 6;

(b) be accompanied by a docU8ent that provides a definition of all
implementation-defined features;

(c) treat each occurrence of an error in at least one of the
following ways:
1) there shall be a state.ent in an accompanying document that
the error is not reported;
2) the processor shall have reported a prior warning that an
occurrence of that error was possible;
3) the processor shall report the error during preparation of
t~e program for execution;
4) the processor shall report the error during execution of the
program.
The method for reporting errors or warnings shall be
implementation-dependent.

(d) be accompanied by a docuaent that separately describes any
features accepted by the processor that are not specified in
clause 6. Such extensions shall be described as being
'extensions to Pascal specified by ISO : 198-'.

(e) be able to process in a manner similar to that specified for
errors any use of any such extension;

(f) be able to process in a manner similar to that specified for
errors any use of an impleaentation-dependent feature.

5.2 Pr02rams
A program complying with the requirements of this standard shall:
(a) use only those features of the language specified in clause 6;
(b) not rely on any particular interpretation of

implementation-dependent features.

6. REQUIREMENTS

6.1 Lexical tokens

NOTE. The syntax given in this sub-clause (6.1) describes the
formation of lexical tokens trom characters and the separation
of these tokens, and therefore does not adhere to the same rules
as the syntax in the rest of this standard.

6.1.1 General. The lexical tokens used to construct Pascal programs
shall be classified into special-symbols, identifiers, directives,
unsigned-numbers, labels and character-strings. The case of any
letter occurring anywhere outside of a character-string (see 6.1.7)
shall be insignificant in that occurrence to the meaning of the
program.

letter = "a"l"b"l"c"l"d"l"e":"f"l"g"l"h"l"i"l"j"lirk"I"l"l"m"1
"n"l"o"!"p"l"q"I"r"l"s"l"t"l"u"I"v"l"w"l"x"l"y"I"z"

6.1.2 SDecial-symbols. The special-symbols are tokens having special
meanings and shall be used to delimit the syntactic units of the
language.

ra'::'\..d\L Nt:.WS 1118 MAY, 1980 PAGE 6

special-symbol= "+"1"_"1"."1"1"1"="1"<"1">"1"["1"]"1
"."1","1":"1";"1"1"1"("1")"1
"<>"1"<="1">="1":="1".."1 word-symbol

word-symbol = "and" I "array" I "begin" 1"case"1 "const" 1"div"1
"do" I "downto" 1"else" I "end": "file" 1"for" 1
"function" I "goto" 1"if" I "in" 1"label" I "mod" 1
"nil" 1"not" 1"of" I "or" 1"packed" I "procedure" I
"program" I "record" 1"repeat" 1"set"l"then"1
"to" I "type" 1"until" 1"var" I "while": "with" .

6.1.3 Identifiers. Identifiers shall serve to denote constants,
types, variables, procedures, functions parameters, bounds and
programs, and fields and tag-fields in records. Identifiers may be
of any length. No identifier shall have the same spelling as any
word-symbol.

identifier = letter {(letter digit)} .
Examples:
X time readinteger sum AlterHeatSetting
InquireWorkstationTransformation
InquireWorkstationIdentification

6.1.4 Directives. Directives shall only occur as a replacement for a
procedure-block or function-block. The. directive forward shall be
the only standard directive (see 6.6.1 and 6.6.2). Other
implementation-dependent directives may be defined. No directive
shall have the same spelling as any word-symbol.

directive = letter {(letter 1 digit)} .
6.1.5 Numbers. Decimal notation shall be used for numbers that are
the constants of integer-type and real-type (see 6.4.2.2). The
letter "en preceding a scale factor shall mean 'times ten to the
power of'. The value of an unsigned-integer shall be in the closed
interval 0 to maxint (see 6.4.2.2).

digit-sequence = digit {digit} .
unsigned-integer = digit-sequence
unsigned-real =

unsigned-integer "." digit-sequence ["en scale-factor]
unsigned-integer "en scale-factor .

unsigned-number = unsigned-integer : unsigned-real .
scale-factor = signed-integer .
sign = w+w : w_w .
signed-integer = [sign] unsigned-integer
signed-real = [sign] unsigned-real .
signed-number = signed-integer : signed-real

Examples:
1e10 1 +100 -0.1 5e-3 87. 35E+8

6.1.6 Labels. Labels shall be digit-sequences and shall be
distinguished by their 'apparent integral values, that shall be in
the closed interval 0 to 9999.

- ~.. ".~ .-.....

PASCAL NEWS #18 MAY, 1980 PAGE 7

"label = digit-sequence .
6.1.7 Character-strin,s. A character-string consisting of a single
string-element shall denote a constant of char-type (see 6.4.2.2). A
character-string consisting of enclosed string-elements shall denote
a constant of a string-type (see 6.4.3.2) with the same number of
components as the character-string has string-elements. If the
string of characters is to contain an apostrophe, this apostrophe
shall be denoted by an apostrophe-image. Each string-character shall
denote an implementation-defined value of char-type.

character-string =
",. string-element

{string-element} "'" .
string-element = apostrophe-image : string-character
apostrophe-image = """ .
string-character =

one-of-an-implementation-defined-set-of-characters

Examples:

'A'
'Pascal'

, .,, , , , ,
'THIS IS A STRING'

6.1.8 Token seDarators. The construct

ft{" any-sequence-of-characters-and-ends-of-lines-not-
containing-right-brace "}"

shall be a comment if the ft{" does not
character-string. The substitution of a space for
not alter the meaning of a program.

occur within a
a comment shall

Comments, spaces (except in character-strings), and ends of lines
shall be considered to be token separators. Zero or more token
separators may occur between any two consecutive tokens, or before
the first token of a program text. There shall be at least one
separator between any pair of consecutive tokens made up of
identifiers, word-symbols, or unsigned-numbers. No separators shall
occur within tokens.

6.2 Blocks and SCODe
6.2.1 Block. A block shall consist of the definitions, declarations
and statement-part that together form a part of a
procedure-declaration, of a function-declaration or of a program.

block = label-declaration-part
constant-definition-part

type-definition-part

variable-declaration-part

procedure-and-function-declaration-part
statement-part

The label-declaration-part shall specify all labels that prefix a
statement in the corresponding statement-part. Each declared label
shall prefix at most one statement in the statement-part. The

PASCAL NEWS 1118 HA Y t 198 ° PAGE 8

occurrence of a label as part of a label-declaration-part shall be
its defining-point for the region that is the block immediately
containing the label-declaration-part.

label-declaration-part : ["label" label In," label} "in] .

constant-definition-part : ["const" constant-definition
{constant-definition "i"}]

".",

type-definition-part = ["type" type-definition
{type-definition "in}]

".",

variable-declaration-part = ["var" variable-declaration "i"
{variable-declaration "in}] .

procedure-and-function-declaration-part =
{(procedure-declaration I function-declaration) "in} .

The statement-part shall specify the algorithmic actions to be
executed upon an activation of the block.

statement-part = compound-statement

All variables whose identifiers are declared in the
variable-declaration-part of a block, except for those listed as
program-parameters, shall be totally-undefined when execution of the
statement-part of their block commences.

6.2.2 Scooe

6.2.2.1 Each identifier or label within the block of a Pascal
program shall have a defining-point.

6.2.2.2 Each defining-point shall have a region that is a part of
the program text, and a scope that is a part or all of that
region.

6.2.2.3 The region of each defining-point is defined elsewhere (see

6.2.1, 6.2.2.10, 6.3, 6.4.1, 6.4.2.3, 6.4.3.3, 6.5.1,
6.6.1, 6.6.2, 6.6.3.1, 6.8.3.10).

6.2.2.4 The scope of each defining-pointshall be its region
(including all regions enclosed by that region) subject to

6.2.2.5 and 6.2.2.6.
6.2.2.5 When an identifier or label that has a defining-point for

region A has a further defining-point for some region B
enclosed by A, then region B and all regions enclosed by B
shall be excluded from the scope of the defining-point for
region A.

6.2.2.6 the field-identifier of a field-designator (see 6.5.3.3)
shall be one of the field-identifiers associated with the
type of the record-variable.

6.2.2.7 The scope of a defining-point of an identifier or label
shall include no other defining-pointof the same
identifier or label.

6.2.2.8 Within the scope of a defining-point of an identifier or
label, all other occurrences of that identifier or label
shal~ be designated corresponding occurrences. No
occurrence outside that scope shall be a corresponding
occurrence.

PASCAL NEWS 118 MAY, 1980 PAGE 9

6.2.2.9 A defining-point of an identifier or label shall precede
all corresponding occurrences of that identifier or label
in the program-block with one exception, namely that a
type-identifier T, that denotes the domain of a
pointer-type TT, may have its defining-point anywhere
within the type-definition-part in which TT occurs.

6.2.2.10 Identifiers that denote standard constants, types,
procedures and functions shall be used as if their
defining-points have a region enclosing the program.

6.2.2.11 Whatever an identifier or label denotes at its
defining-point shall be denoted at all corresponding
occurrences of that identifier or label.

6.3 Constant-definitions. A constant-definition shall introduce an
identifier to denote a constant.

constant-definition = identifier "="
constant = [sign] (unsigned-number

: character-string.

constant-identifier = identifier .

constant .

constant-identifier)

The occurrence of an identifier as the left-hand side of a
constant-definition shall be its defining-point, at the end of the
constant-definition, for the region that is the block immediately
containing the constant-definition-part in which the
constant-definition occurs. Each corresponding occurrence of that
identifier shall be a constant-identifier and shall denote the
constant of the constant-definition.A constant-identifier preceded
by a sign shall have been defined to denote a value of real-type or
of integer-type.

6.4 Tvee-definitions

6.4.1 General. A type shall be an attribute that is possessed by
every value and every variable. Each occurrenceof a new-type shall
denote a distinct type. A type-definition shall introduce an
identifier to denote a type.

type-definition = identifier "=" type-denoter .
type-denoter = type-identifier I new-type .

new-type = simple-type I structured-type : pointer-type

The occurrence of an identifier as the left-hand side of a
type-definition shall be its defining-point, at the end of the
type-definition, for the region that is the block immediately
containing the type-definition-part in which the type-definition
occurs. Each corresponding occurrence of that identifier shall be a
type-identifier and shall denote the same type as is denoted by its
type-denoter.

Types shall be classified as simple, structured or pointer types
according to the new-type with which they have been denoted. There
shall be in addition certain predefined types which shall be denoted
by predefined type-identifiers (see 6.4.2.2 and 6.4.3.5). A
type-identifier shall be considered as a simple-type-identifier, a

structured-type-identifier, or a pointer-type-identifier, according

to the type that it denotes.

PASCAL NEWS 1118 MAY, 1980 P AGE 10

simple-type-identifier = type-identifier .

structured-type-identifier = type-identifier

pointer-type-identifier = type-identifier
type-identifier = identifier .

6.4.2 Simole-~
6.4.2.1 General. A
values. The values of
numbers.

simple-type shall determine an ordered set of
each ordinal-type shall have integer ordinal

simple-type = ordinal-type : real-type .

ordinal-type = enumerated-type I subrange-type
integer-type : Boolean-type :

ordinal-type-identifier .

I
I

char-type

Where an appropriate word is substituted for x, an x-type-identifier

shall be a type-identifier defined to denote an x-type.

6.4.2.2 Standard
standard:

simole-tvoes. The following types shall be

integer-type The predefined integer-type-identifier inte~er shall

denote the integer-type. The values shall be a subset
of the whole numbers, denoted as specified in 6.1.5
by the signed-integer values (see also 6.7.2.2). The

ordinal number of a value of integer-type shall be

the value itself.

real-type The predefined real-type-identifier ~ shall denote

the real-type. The values shall be an
implementation-definedsubset of the real numbers
denoted as specified in 6.1.5 by the signed-real
values.

.

Boolean-type The predefined Boolean-type-identifier Boolean snall
denote the Boolean-type. The values shall be the
enumeration of truth values denoted by the predefined
constant-identifiers false and~, such that false
is the predecessor of true. The ordinal numbers of
the truth values denoted by false and ~ shall be
the integer values 0 and 1 respectively.

char-type The predefined char-type-identifier~ shall denote
the char-type. The type shall be the enumeration of a

set of implementation-defined characters, some
possibly without graphic representations. The ordinal
numbers of the character values shall be values of
integer-type, that are implementation-defined, and
that are determined by mapping the character values
on to conse~utive non-negative integer values
starting at zero. The mapping shall be order
preserving. The following relations shall hold:

(a) The subset of character values representing the

digits 0 to 9 shall be numerically ordered and

PASCAL NEWS #18 MAY, 1980 PAGE 11

contiguous.

(b) The subset of character

upper-case letters A to Z,
alphabetically ordered

contiguous .

values representing the
if available, shall be
but not necessarily

(c) The subset of character

lower-case letters a to z,
alphabetically ordered

contiguous.

values representing the
if available, shall be
but not necessarily

(d) The ordering relationship between any two

character values shall be the same as between their
ordinal numbers.

NOTE. Operators applicable to standard types are specified in
6.7.2.

6.4.2.3 Enumerated-tvDes. An enumerated-type shall determine an
ordered set of values by enumeration of the identifiers that denote
those valueS. The ordering of these values shall be determined by
the sequence in which their identifiers are enumerated, i.e. if x
precedes y then x is less than y. The ordinal number of a value that
is of an enumerated-type shall be determined by mapping all the
values of the type as they occur in the identifier-list of the
enumerated-type on to consecutive non-negative integer values
starting from zero.

enumerated-type

identifier-list
= "(" identifier-list ")" .

= identifier { "," identifier} .

The occurrence of an identifier as part of the identifier-list of an

enumerated-type shall be its defining-point as a constant-identifier

for the region that is the block immediately containing the
type-definition-part or variable-declaration-part in which the
enumerated-type occurs.

Examples:
(red, yellow, green, blue, tartan)

(club ,diamond ,heart ,spade)

(married,divorced,widowed,single)
(scanning ,found ,notpresent)

(Busy,InterruptEnable,ParityError,OutOfPaper,LineBreak)

6.4.2.4 Subrange-tYDes. The definition of a type as a subrange of an
ordinal-type shall include identification of the smallest and the
largest value in the subrange. The first constant shall specify the
smallest value which shall be less than or equal to the largest
value. Both constants shall be of the same ordinal-type, and that
ordinal-type shall be designated the host type of the
subrange-type.

subrange-type = constant" "constant.

PASCAL NEWS #18 MAY, 1980 PAGE 12

Examples:
1 .. 100
-10. .+10
red. .green
'0'..'9'

6.4.3 Structured-tvees
6.4.3.1 General. Structured-types shall be classified as array,
record, set or file types according to the unpacked-structured-type
immediately contained in their denotation. A component of a value of
a structured-type shall be a value.

structured-type = ["packed"] unpacked-structured-type
structured-type-identifier .

unpacked-structured-type = array-type : record-type set-type
file-type .

A structured-type which immediately contains an
unpacked-structured-type shall be designated packed if and only if
the token Dacked is immediately contained in the structured-type.
The designation of a structured-type as packed shall indicate to the
processor that data-storage should be economised, even if this
causes operations on, or accesses to components of, variables of the
type to be less efficient in terms of space or time.

The designation of a structured-type as packed shall affect only the
representation in data-storage of that structured-type. If a
component is itself structured, the component's representation in
data-storage shall be packed only if the type of the component is
designated packed.

NOTE. Sections 6.4.3.2, 6.4.5, 6.6.3.3, and 6.6.5.4 specify the
ways in which the treatment of entities of a type is affected by
whether or not the type is designated packed.

6.4.3.2 Array-tyees. An array-type shall be structured as a mapping
from each value of its index-type onto a distinct component. The
index-type shall be an ordinal-type.

array-type = "array" "[" index-type { "," index-type} "]" "of"
component-type

index-type = ordinal-type .
component-type = type-denoter

Examples:

array [1..100] of real
array [Boolean] of colour

An array-type that specifies a sequence of two or more index-types
shall be an alternative notation for an array-type specified to have
the index-type of the first index-type in the sequence, and to have
a component-type that is an array-type specifying' the sequence of
index-types without the first and specifying the same component-type
as the original specification. The component-type thus constructed

PASCAL NEWS #18 t:AY. 1 SuO PAGE 13

shall be designated packed if and only if the or~ginal array-type is
designated packed.

NOTE. Each of the following two examples thus contains different
ways of expressing its array-type.

Example 1.
array[Boolean] of array[1..10] of array[size] of real
array[Boolean] of array[1..10,size] of real

array[Boolean,1..10,size] of real

array[Boolean,1..10] of array[size] of real

Example 2.
packed array[1..10,1..8] of Boolean
packed array[1..10] of packed array[1..8] of Boolean

Let i denote a value of the index-type; let v[i] denote a value of
that component of the array-type that corresponds to the value i by
the structure of the array-type; let the smallest and largest values

of the index-type be denoted by m and n; and let k =

(ord(n)-ord(m)+1) denote the number of values of the index-type.

Then the values of the array-type shall be the distinct k-tuples of

the form:
(v[m], ... ,v[n])

NOTE. A value of an array-type does not therefore exist unless
all of its component values are defined. If the component-type
has c values, then it follows that the cardinality of the set of

val ues of the array-type is c raised to the power k.

Any type d~noted by

packed array[T1] of T2

where T1 is a subrange-type with a lower bound of 1 and T2 is the
char-type, shall be designated a string-type.

NOTE. The values of a string-type possess additional properties
which determine their correspondence with character-strings (see
6.1.7), allow writing them to textfiles (see 6.9.4.7) and define
their use with relational-operations (see 6.7.2.5).

6.4.3.3 Record-types. A record-type shall be structured as a fixed
number of components that shall be designated fields.

The occurrence of an identifier as a tag-field or as part of the
identifier-list of a record-section shall be its defining-point as a
field-identifier for the region that is the record-type immediately
containing the tag-field or record-section. Each field-identifier
shall be associated with a component of the specified type.

Let a variant-part contained in a field-list be considered as an
additional field with appropriate values, and let Vi denote a value
of the i-th field in a record-type definition with m fields. Then
the record-type shall have a single null value if it has no fields;
otherwise it shall have only the set of values:

PASCAL NEWS #18 MAY, 1980 PAGE 14

V1, ... ,Vm

NOTE. If the number of values in each of the fields is
F1,F2,...,Fm; then it follows that the cardinality of the set of
values of the record-type is (F1.F2 Fm).

If the record-type contains a variant-part, the tag-type of that
variant-part shall be an ordinal-type. All the case-constants of
that variant-part shall be distinct and shall be of a type
compatible with the tag-type (see 6.4.5). The set of values of all

the case-constants shall be equal to the set of values of the
tag-type.

Let each field-list immediately contained in a variant of a
variant-part be considered to be a record-type with values as
defined above. Then, if the variant-part contains a tag-field in its
variant-selector or if its variants immediately contain no
case-constant-lists with more than one case-constant, the
variant-part shall have only the values:

k,Xk

where k denotes a value in the tag-type and Xk denotes a value of

the variant associated with k. . The occurrence of a case-constant in
the case-constant-list of a variant shall associate the value of the

case-constant with that variant.

NOTE. If there
associated with
the cardinality
(T1+T2+...+Tn).

are n values in the tag-type, and the variant

the value i has Ti values, then it follows that
of the set of values of the variant-part is

If a variant-part contains no tag-field in its variant-selector and
it immediately contains case-constant-lists with more than one
case-constant, then its values shall be determined as follows. Let
f(i) denote an implicit function mapping values of the tag-type onto
a new ordinal-type that shall have as many values as there are
variants in the variant-part, and let the mapping be determined by
associating with each variant in turn one value of this new type
that is the result of applying f to each of the values of the
tag-type in the case-constant-list associated with that variant.
Then this case shall be equivalent to the one given before with the
substitution of this new type for the tag-type and appropriate
substitution of the case-constant-lists.

NOTE. A record-value exists only when none of its fields are
undefined. A value of a variant-part exists when one and only
one of its variants has a value.

The value of a tag-field shall determine which variant is active in

determining the value of a variant-part. It shall be an error if any

field-identifier defined within a variant is used in a
field-designator (see 6.5.3.3) unless the value of the tag-field is
associated with that variant. A variant-part that does not contain a
tag-field in its variant-selector shall be assumed to have a virtual
tag-field of the constructed ordinal-type described above and a

PASCAL NEWS #18 MAY, 1980 PAGE 15

reference to a field of a variant shall attribute to the virtual
tag-field the value of the constructed ordinal-type that is
associated with that variant. Whenever a new variant is selected,
the fields of that variant shall be totally-undefined unless they
have been attributed a value subsequent to the change of variant.

record-type: "record" [field-list ["in]] "end" .

field-list: fixed-part [";8 variant-part] : variant-part
fixed-part: record-section { "j" record-section}

"record-section = identirier-11st ":" type-deno~
variant-part : .case" variant-selector "of"

variant { 8;" variant} .

variant-selector = [tag-field ":"] tag-type
tag-field : identifier .

variant: case-constant-list ":" "(" [field-list ["in]] ")" .

tag-type : ordinal-type-identifier

case-constant-list = case-constant { "," case-constant}
case-constant : constant .

Examples:

record
year.: 0..2000i
month: 1..12i
day : 1.. 31

end

record
name, firstname : stringi
age : 0..99;
case married : Boolean of
true: (Spousesname : string)i
raIse: ()

end

record
x,y : reali

area: reali
case shape of

triangle :
(side : reali

inclination, anglel, angle2
rectangle

(sidel, side2 reali

skew : angle);
circle :

(diameter: real)i

angle) i

end

6.4.3.4 Set-tvDes. A set-type shall determine the set of values that

is structured as the powerset of its base-type. Thus each value or a
set-type shall be a set whose members shall be unique values of the

base-type. If the base-type is the integer-type or a subrange
thereof, the largest and smallest values of the base-type shall lie

within limits which are implementation-defined.

rH~~AL NEWS #18 MAY, 1980 PAGE 16

set-type = "set" "of" base-type

base-type = ordinal-type .
NOTE. Operators applicable to values of set-types are specified
in 6.7.2.4.

6.4.3.5 File-tyoes.

NOTE. A file-type describes sequences of values of the specified
component-type, together with a current position in each
sequence and a mode which indicates whether the sequence is
being inspected or generated.

file-type = "file" "of" component-type

A type-denoter shall not be permissible as the oomponent-type of a
file-type if it denotes either a file-type or a structured-type
having any component whose type-denoter is not permissible as the

component-type of a file-type.

A file-type shall define 1aplicitly a type designated a
sequence-type having exactly those values, which shall be designated
sequences, defined by the following five rules.

(a) S() shall be a value of the sequence-type S, and shall be called

the empty sequence. The empty sequence shall have no

components.

(b) Let c be a value of the specified oomponent-type, and let x be a

value of the sequence-type S. Then S(c) shall be a sequence of
S, consisting of the single component value 0, and S(o).x shall

also be a sequence, distinct from S(), of type S.

(c) Let 0, S, and x be as in (b); let y denote the sequence S(c).x;

and let z denote the sequence x.S(c); then the notation y.first
shall denote 0 (i.e., the first component value of y), y.rest
shall denote x (i.e., the sequence obtained from y by deleting
the first oomponent), and z.last shall denote 0 (i.e., the last
oomponent value of z).

(d) Let x and y eaoh be a non-e.pty sequenoe of type S; then x
=
y

shall be true if and only if both (x.first = y.first) and
(x.rest = y.rest) are true. If x is the empty sequenoe, then x

= y shall be true if and on11 if y is also the empty sequenoe.

(e) Let x, 1, and z be sequences of type S; then x.(y.z)
=

(x.y).z

shall be true.

NOTE. The notation x.y represents the oonoatenation of sequences
x and y. The explicit representation of sequences (e.g. S(o»,
of oonoatenation of sequenoes, of the first, last and rest
selectors, and of sequenoe equality 1s not part of the Pasoal
language. These notations are used to define tile values,
below, and the standard tile operations in 6.6.5.2 and 6.6.6.5.

A file-type also shall define implioitly a type designated a

PASCAL NEWS 118 HAY, 1980 PAGE 17

mode-type having exactly ~wo values which are' designated 'Inspection
and Generation.

NOTE. The explicit denotation of these values is not defined in
the Pascal language.

A file-type shall be structured as three components. Two of these
components, designated f.t and f.R, shall be of the implioit
sequenoe-type. The third component, designated r .M, shall be of the
implicit mode-type.

Let f.L and f.R each be a single value of the sequence-type; let f.M
be a single value of the .ode-type; then each value of the
file-type shall be a distinct three-tuple of the fora

(f.L, r.R, f.M)

where r.R shall be only the empty sequence if f.M is the value
Generation. The value, f, of the rile-type shall be designated
emDty if and only if r.L-f.R is the empty sequence.

NOTE. The two components, r.L and f.R, of a value of the
file-type may be considered to represent the single sequence
f.L-f.R together with a current position in that sequence. If
f.R 1s non-empty, then f.R.first may be considered the current
component as determined by the current position; otherwise, the
current position is called the end-of-file position.

A standard file-type shall be denoted by the predefined
structured-type-identirier ~. The component-tyPe implicitly
specified by type text shall be the standard type char. The
structure of type text shall define an additional sequence-type
whose values are designated l1nes. A line shall be a sequence
x-S(e), where x is a sequence of oomponents of type ohar, and e
represents a special component value, which shall be designated an
end-of-line, and which shall be indistinguishable trom the char
value SPaoe (denoted ' ') except by the standard funotion ~
(6.6.6.5) and by the standard procedures reset (6.6.5.2), vriteln
(6.9.5), and ~ (6.9.6). If x is a line then no coaponent of x
other than x.last shall be an end-of-line. This definition shall not
be oonstrued to determine the underlying representation, if any, of
an end-of-line component used by a processor.

A line-sequence, z, shall be either the empty sequence or the
sequence x-y where x is a line and y is a line-sequence.

Every value t of type text shall satisfy one of the following two
rules.

(a) If t.M = Inspection, then t.L-t.R shall be a line-sequence.

(b) If t.M = Generation, then t.L-t.R shall be x-y where x is a
line-sequenceand y is a sequence of components of type char.

NOTE. In rule (b), y may be considered, especially if it 1s
non-empty, to be a partial line which is being generated. Such a

PASCAL NEWS 1118 MAY, 1980 PAGE 18

partial line cannot occur during inspection of a file.

A variable declared to be of type text shall be called a
text file .

NOTE. All standard procedures and functions applicable to a
variable of type ~-2f char are applicable to textfiles.
Additional standard procedures and functions, applicable only to

textfiles, are defined in 6.6.6.5 and 6.9.

6.4.4 Pointer-tvoes. The values of a pointer-type shall consist of a
single nil-value, and a set of identifying-values each identifying a

distinct variable of the domain-type. The set of identifying-values

shall be dynamic, in that the variables and the values identifying

them, may be created and destroyed during the execution of the
program. Pointer values and the variables identified by them shall

be created only by the standard procedure new (see 6.6.5.3).

NOTE. Since the nil-value is not an identifying-value it does
not identify a variable.

The token n1l shall denote the nil-value in all pointer-types.

pointer-type = "T" domain-type I pointer-type-identifier .

domain-type = type-identifier .

NOTE. The token nil does not have a single type, but assumes a
suitable type to satisfy the assignment-compatibility rules, or
the compatibility rules for operators, if possible.

6.4.5 Comoatible tyoes. Types T1 and T2 shall be designated
compatible if any of the four statements that follow is true.
(a) T1 and T2 are the same type.

(b) T1 is a subrange of T2, or T2 is a subrange of T1, or both T1

and T2 are subranges of the same host type.
(c) T1 and T2 are set-types of compatible base-types, and either

both T1 and T2 are designated packed or neither T1 nor T2 is
designated packed.

(d) T1 and T2 are string-types with the same number of components.

6.4.6 Assi«nment-comoatibilitv. A value of type T2 shall be
designated assignment-compatible with a type T1 if any of the five

statements that follow is true.
(a) T1 and T2 are the same type, that is neither a file-type nor a

structured-type wi t.:.a file component (this rule is to be
interpreted recursively).

(b) T1 is the real-type and T2 is the integer-type.

(c) T1 and T2 are compatible ordinal-types and the value of type T2

is in the closed interval specified by the type T1.
(d) T1 and T2 are compatible set-types and all the members of the

value of type T2 are in the closed interval specified by the
base-type of T1.

(e) T1 and T2 ~re compatible string-types.

At any place where the rule of assignment-compatibility is used:

.PASCAL NEWS 118 HAY, 1980
,..

PAGE 19

(a) It shall be an err'or if '1'1 and T2 are cO!ll~tible ordinal-types
and the value of ty~e T2 is not in th~ clo5~d interval specified
by thl! t.ype T 1.

{b) It shall ~ an error if T1 and T2 are compatible set-types and
any llicmber of the value of type T2 is not in the cl.:,sed interval
5pecified by the ba3e -type of the type 1'1.

6.4.7 .E.A1i11Q..I&..Q.f.a type-definition-part

type
natural = O..maxint;
COunt = integer;
range :; integer;

coloL!!' = (I'ed, yell,)w, green, blue);
:3(~Y. = (male, female);

ye?-C' = 1900..1999;
Bhap~ = (triangle, rectangle, circle);

puncnericard = array(1..80] of char;
5tri~g : file of char;

polar' = record
r : T'ea1.;
theta : anglE:

end;
indextype = 1..]jmit;
ve~tor = array [indextype] or real;
person = fpersondetails;
per'sondetails =

record
name, firstname : string;
age : integer;
married : Boolean;

father. child. sibling ~r.3O!1;
case s : sex of

male :
(enlisted,bearded : Boolean);

female :
(mother, programmer Bo,)lean)

end;
tape = file of person;
FileOflnteger = file of integer;

NOTE. In the above example ~~, ~~ and i~~g~~ denote the
same type. The types denoted by YSlliJ: aud I'&.t..un.l at'\:} compatible
with, but not thE:s~me as, the type denoted by r£ng~, ~Ynl and
..i.m~.

t~OTE. Types occurring in examples in the remainder' of this
standar'd should be as~uil1ed to have been declat'ed as spE:oified in
6.4.7.

6.5 ~ratjons and d~n.Q...t.il.tiQns of Y~.rie.h.l.f.Jl
6.5.1 Variable~QQQlarati0ns. A variable is a~
((~urrent) value may be attributed
variable-declaration shall consist of R list of
tt1e disti.nct vcwiabies, followed by a denotati(){l

~1t.H.y to which a
see 6.8.2.2). A
dentit'l.ers d.:!noting
of tneir t.ype.

PASCAL NEWS #18 MAY. 1980 PAGE 20

variable-declaration = identifier-list ":" type-denoter .

The occurrence of an identifier as part of the identifier-list of a
variable-declaration shall be its defining-point as a
variable-identifier of the given type for the region that is the
block immediately containing the variable-declaration-part in which
the variable-declaration occurs. A variable declared in the
variable-declaration-part of a block shall exist from the time the
block is activated, until its statement-part is completed.

NOTE. This implies that each activation of a block introduces a
distinct set of variables.

The structure of a variable of a structured-type shall be the
structure of the structured-type.

ExamDle of a variable-declaration-Dart

var
x,y,z,max: real;
i,j: integer;
k: 0..9;
p,q,r: Boolean;
operator: (plus, minus, times);
a: array[0..63) of real;
c: oolour;
f: file of char;
hue',hue2: set of colour;
p1,p2: person;
_,m',m2 : array[1..10"..10) of real;
coord : polar;
pool tape : array[1..4] of FileOflnteger;
date: record month: 1..'2; year: integer end;

A variable-access, according to whether it is an entire-variable, a
component-variable a referenced-variable or a buffer-variable,
denotes either a declared variable, or a component of a variable; a
variable which is identified by a pointer value (see 6.4.4) or a
buffer-variable.

variable-access = entire-variable I component-variable
referenced-variable I buffer-variable .

NOTE. Variables occurring in examples in the remainder of this
standard should beassumed to have been declared as specified in
6.5.1.

6.5.2 Entire-variables. The identifier of an entire-variable denotes
the variable ot the corresponding variable-declaration,
val ue-parameter-speciticat ion or variable-parameter-specification
(see 6. 6 . 3. 1) .

~tire-variable = variable-identifier
variable-identifier = identifier .

PASCAL NEWS 118 HA Y. 1980 PAGE 21.~.:..
*'

~ -:. ...

6.5.3 Component-variables
6.5.3.1 General. A component of a variable of a structured-type
shall be a variable and shall be denoted by a coaponent-variable.
The type of a component-variable shall be the type of the specified
component. The value, if any, of the component ot a variable shall
be the same component of the value, if any, of the variable.

component-variable = indexed-variable I field-designator

6.5.3.2 Indexed-variables. A component of a variable
array-type shall be denoted by an indexed-variable.

of an

indexed-variable =
array-variable "en index-expression
{ "," index-expression} ")ft

array-variable = variable-access
index-expression = expression .

The action of selecting a particular component of an array-variable
shall be designated indexing. An array-variable shall be a variable
of an array-type. The value of each index expression shall be
assignment-compatible with the corresponding index-type specified in
the definition of the array-type. The component denoted by the
indexed-variable shall be the component that corresponds to the
value of the index-expression by the mapping of the type of the
array-variable (see 6.4.3.2).

Examples:
a[12]
a[i+j)

If the array-variable is itself an indexed-variable an abbreviation
may be used. In the abbreviated form, all the index expressions
shall be contained within the same enclosing square-bracketa, a
single comma replacing the sequence of right-SQuare-bracket
left-SqUare-bracket that occurred in the full tor.. The abbreviated
form shall be equivalent to the full form.

Examples:
m[k) [1]
m[k,1)

NOTE. The two examples denote the same component variable.

6.5.3.3 Field-desi~nators. A tield-designator shall denote the
component of the record-variable that is associated with the
field-identifier by the type of the record-variable (see 6.2.2.6 and
6.4.3.3). A record-variable shall be a variable of a record-type.

field-designator. = record-variable "." field-identifier.
record-variable = variable-access
field-identifier = identifier .

PASCAL NEWS #18 MAY. lSGC PAGE 22

Examples:

p2f.mother
coord. theta

6.5.4 Referenced-variables.

A referenced-variable shall denote the variable (if any) identified
by the value of the pointer-variable (see 6.4.4 and 6.6.5.3).

referenced-variable = pointer-variable

pointer-variable = variable-access

A variable allocated by the standard procedure new (see 6.6.5.3)
shall be accessible until it is deallocated by the standard
procedure dispose (see 6.6.5.3) or until program execution
terminates. A pointer-variable shall be a variable of a
pointer-type. The use of a pointer-variable in a referenced-variable

shall be designated de-referencing.

It shall be an error if the pointer-variable has a nil-value or is
undefined at the time it is de-referenced.

Examples:
p1f
p1t.fatherT
p1f.siblingT.fatherf

6.5.5 Buffer-variables. A file-variable shall denote a variable of a
file-type. With each file-variable shall be associated a variable
of the component-type specified by the file-type, denoted by a

buffer-variable containing the file-variable.

buffer-variable ~ file-variable

file-variable = variable .

"~"I .

Examples:

inputT
POOltape[2]T

It shall be an error if the value of a file-variable f is altered
while the buffer-variable is an actual variable parameter, or an
element of the record-variable-list of a with-statement, or both. It
shall be an error if the value of a file-variable f is altered by an
assignment-statement which contains the buffer-variable fT in its
left-hand side.

6.6 Procedure and function declarations
6.6.1 Procedure-declarations. A procedure-declaration shalL
associate an identifier with a procedure-block so that it can be
activated by a procedure-statement. Activation of the procedure
shall activate the procedure-block.

procedure-declaration =

procedure-heading ";" directive I

procedure-identification ";" procedure-block. I

procedure-heading ";" procedure-block.

PASCAL NEWS 118 MAY, 1980 PAGE 23

procedure-heading =

"procedure" identifier [formal-parameter-list]
procedure-identification =

"procedure" procedure-identifier
procedure-identifier = identifier

procedure-block = block .

The procedure-heading shall specify the identifier denoting the
procedure and the formal parameters (if any).

The occurrence of an identifier as part of the procedure-heading of
a procedure-declaration shall be its defining-point as a
procedure-identifier for the region that is the block immediately
containing the procedure-and-function-declaration-part in which the
procedure-declaration occurs.

The defining-point of a procedure-identifier shall be followed by a
declaration of its procedure-block. Where the procedure-heading and
the procedure-block occur in separate procedure-declarations, the
correspondence shall be established by the use of the
procedure-identifier that denoted the procedure.

In the case where the declaration of the procedure-block immediately

follows the declaration of the procedure-heading, an abbreviation
shall be allowed where the sequence

. directive ";" "procedure" procedure-identifier ";"
may be omitted between the procedure-heading and the
procedure-block. The abbreviation shall be equivalent to the full
notation.

Examples:

procedure read integer (var f: text; var x: integer);

var

i:natural;
begin

while fT = '

, do get(f);
{The file buffer contains the first non-space char}

i := 0;
while fT in ['0'..'9'] do begin

i := (10 · i) + (ord(fT) - ord('O'»;
get (f)

end;
{The file buffer contains a non-digit}

x := i
{Of course if there are no digits, x is zero}

end;

procedure AddVectors(var A,B,C: array[low..high: natural] of real);

var

i : natural;
begin

for i := low to

end { of AddVectors

high do A[i] := B[i] + C[i]
} ;

PASCAL NEWS f/18 MAY, 1980

procedure bisect(function f(x : real)
a,b: real;

var result: real);
{This procedure attempts to find a zero
the method of bisection. It is assumed
called with suitable values of a and b

(f(a)<O) and (f(b»O)

The estimate is returned in the last parameter.}
var

midpoint: real;
begin

{The invariant P is true by calling assumption}

while abs(a-b) > le-l0-abs(a) do begin
midpoint := (a+b)/2;

if f(midpoint) < 0 then a := midpoint
else b :=midpoint
{Which re-establishes the invariant:

P = (f(a)<O) and (f(b»O)
and reduces the interval (a,b) provided that the value
ot aidpoint is distinct trom both a and b.}

end;
{P together with the loop exit condition assures that a zero

is contained in a small sub-interval. Return the midpoint as

the zero.}
result := midpoint

end;

real;

of f(x) in (a,b) by
that the procedure 1s

such that

procedure ConditionForAppending(var f: FileOflnteger);

{This procedure takes a file in an arbitrary state and sets

it up in a condition for appending data to its end. Simpler
conditioning is only possible if assumptions are made about the
initial state of the file.}

,var .

LocalCopy : FileOflnteger;

procedure CopyFiles(var from,to FileOfInteger);
begin

reset(from); rewrite(to);
while not eof(from) do begin

tor := fromT;
put(to); get(from)

end;
end { of CopyFiles }i

begin tot body ot Cond1tionForAppending}
CopyFiles(f,LocalCopy);
CopyFiles(LocalCopy,f)

end { of ConditionForAppending };

6.6.2 Function-declarations. Function-declarations shall associate
an identifier with a function-block so that it can be activated by a

function-designator. Activation of tQe function shall activate the

function-block.

PAGE 24

PASCAL NEWS 118 MAT, 1980 PAGE 25,

function-declaration .
funotion-head1ng "i" directive I .

function-identification "i" function-block
function-heading Wi" function-block.

function-heading .
"function" identifier [[formal-parameter-list]
":" result-type]

function-identification .
.fUnction" function-identifier

function-identifier 8 identifier .
result-type . simple-type-identifier I

pointer-type-ldentifier
function-block = block .

The function-heading shall specify the identifier denoting the
function, the formal parameters (if any), and the type of the
function result. The function-block shall contain at least one
assignment-statement that attributes a value to the
function-identifier (see 6.8.2.2). The value of the function shall
be the last value attributed to the function-identifier. If no
assignment occurs during the activation of the function-block the
function shall be undefined.

The occurrence of an identifier as part of the function-heading of a
function-declaration shall be its defining-point as a
funotion-identifier of the type denoted by the result-type for the
region that is the block immediately containing the
procedure-and-function-declaration-part in which. the
function-declaration occurs.

The defining-point of a function-identifier shall be followed by a
declaration of. its function-block. Where the function-heading and
the function-block occur in separate function-declarations, the
oorrespondence ahall be established by the use of the
function-identifier that denoted the function.

In the case where the declaration of the function-block immediately
follows the declaration of the function-heading, an abbreviation
shall be allowed where the sequence

directive "i" "function" function-identifier "i"
may be omitted between the function-heading and the funotion-block.
The abbreviation shall be equivalent to the full notation.

PASCAL NEWS 1118 MAY, 1980 PAGE 26

Examples:

function Sqrt(x:real): real;
{This function computes the square root of x (x)O)
using Newton's methQd.}

var
old,n6w: real;

beg in
new := x;
repeat

old : = new;
new := (old + x/old).O.5;

until abs(new-old) < Eps*new;
{Eps being a global constant}
Sqrt : = new

end { of Sqrt };

function GCD(m,n: natural): natural;
forward;

function max(a: vector; n: index type):
{This function finds the largest value

a: array[indextype] of real
and where

indextype = 1..limit}

real;
in a, which is declared

Val"
largestsofar: real;
fence: index type;

begin
largestsofar := a[1];

.

{Establishes largestsofar = max(a[1])}
for fence := 2 to limit do begin

if largestsofar < a[f~nce] then largestsofar : = a[fence]
{Re-establishing largestsofar = max(a[1], ... ,a[fence])}

end;
{So now largestsofar = max(a[1], ... ,a[limit])}
max := largestsofar

end { of max };

function GCD;
{Parameters omitted as this completes a forward declaration}
begin

if n=O then GCD := m else GCD := GCD(n,m mod n);
end;

6.6.3 Para~eters
6.6.3.1 General. There shall be four kinds of parameters value
paOrameters, variable parameters, proced ural parameters and
functional para~eters. An identifier-list 1n a
value-parameter-specification shall be a list of value parameters.
An identifier-list in a variable-parameter-specification shall be a
list of variable parameters.

PASCAL NEWS 118 HAY, 1980 PAGE 27

formal-paraMeter-list =

"(" formal-paraMeter-section
{"in formal-parameter-section} ")"

formal-paraMeter-section =
value-paraMeter-specification :

variable-parameter-specification I

procedural-parameter-specification

tunctional~parameter-specification

value:-parameter-specification= ,

c.

identifier-list ":" type-identifier
variable-paraMeter-specification =

"var" identifier-list ":"
(type-identifier I conformant-array-schema)

conformant-array-schema =
"array" ,,[" index-type-specification
{

"i" index-type-specification }
"]" "of"

(type-identifier I conformant-array-schema) .

index-type-specification =

identifier ".." identifier

":" ordinal-type-identifier

bound-identifier = identifier .

procedural-paraMeter-specification=
procedure-heading .

functional-parameter-specification =
function-heading

j! :

An identifier that is defined to be a parameter-identifier in a
formal-parameter-list shall be designated a formal parameter of the
corresponding function-block or procedure-block, if any.

The occurrence of an identifier as part of an identifier-list of a
value-parameter-specification or a variable-paraMeter-specification
shall be its defining-point as a parameter-identifier for the region

that is the formal-parameter-list immediately containing it and its

defining-point as a variable-identifier for the region that is the
corresponding procedure-block or function-block, if any.

The occurrence of an identifier as part of an
index-type-specification shall be its defining-point as a
bound-identifierfor the region that is the formal-paraMeter-list
immediately containing it and for the region that is the
corresponding procedure-block or function-block, if any.

The occurrence of an identifier as part of a procedure-heading
procedural-paraMeter-specification shall be its def'ning-point

parameter-identifier for the region that is
formal-paraMeter-list immediately containing it and
defining-point as a procedure-identifier for the region that is
corresponging procedure-block or function-block, if any.

in a
as a
the
its
the

The occurrence of an identifier as part of a function-heading
functional-parameter-specification shall be its defining-point
parameter-identifier for the region that is
formal-paraMeter-list immediately containing it and
defining-point as a function-identifier for the region that

in a
as a

the
its

is the

PASCAL NEWS 118 MAY, 1980 PAGE 28

corresponding procedure-block or function-block, if any.

NOTE. If the formal-parameter-list
procedural-parameter-specification
functional-parameter-specification, there
procedure-block or function-block.

is within a
or a

is no corresponding

If the component of a conformant-array-schema is itself a
conformant-array-schema, then an abbreviated form of definition may

be used. In the abbreviated form, all the index-type-specifications
shall be contained within the same enclosing square brackets, a
single semi-colon replacing each sequence of right-square-bracket

.of" "array" left-square-bracket that occurred in the full form. The
abbreviated form shall be equivalent to the full form.

Examples:
array[u..v: T1] of array[j..k: T2] of T3
array[u..v: T1; j..k: T2] of T3

6.6.3.2 Value oarameters. The foraal parameter shall denote a
distinct variable of the specified type. The actual-parameter (see
6.7.3 and 6.8.2.3) shall be an expression whose value is
assignment-compatible with the type of the formal parameter. The
current value of the expression shall be attributed upon activation
of the block to the variable that is denoted by the formal
parameter.

6.6.3.3 Variable narameters. The actual-parameter shall be a
variable-access. The actual-parameters (see 6.7.3 and 6.8.2.3)
corresponding to formal parameters that occur in a
variable-parameter-specification shall all be of the same type. This
type shall be the same as the type denoted by the type-identifier in

the variable-parameter-specification if the formal parameter is so

specified, otherwise it shall be conformable to the
conformant-array-schema in the variable-paraMeter-specification.
Each formal parameter shall denote the corresponding
actual-parameter during the entire activation of the block.

If access to the actual-parameter involves the indexing of an array
and/or a reference to a field within a variant of a record and/or
the de-referencing of a pointer-variable and/or a reference to a
buffer-variable, these actions shall be executed before the
activation of the block.

Coaponents of variables of any type designated packed shall not be

used as actual variable parameters.

If 11 is an array-type, and T2 is the type denoted
ordinal-type-identifier of the index-type-specification
conforaant-array-schelia, then 1'1 is conformable with
conforaant-array-schema if all the following four statements
true.
(a) The index-type of T1 is co8patible with T2.
(b) The smallest and largest ~alue of the index-type of T1

within the closed interval defined by values of T2.

by the
of a
the
are

lie

PAS C 1'.!. t! E h' S H 1 8 HAY. 1980 PAGE 29

(c) The component-type of T1 is the same as the component type of
the conformant~array-sche.a. or is conformable to the component
conformant-array-schema.
T1 is not designated packed.(d)

It shall be an error if the sma]lest or largest value of the
index-type of T1 lies outside the closed interval defined by the
values of T2.

During the entire activation of "the' block. thefirat
bound-identifier shall denote the smallest value of the index-type
of the actual-parameters. and the second bound-identifier shall
denote the largest value of the index-type of the
actual-parameters.

6.6.3.4 Procedural parameters. The actual-parameter (see 6.1.3 and
6.8.2.3) shall be a procedure-identifier that has a defining-point
in the program-block. The actual procedure and the formal procedure
shall have congruous formal-parameter-lists (see 6.6.3.6). The
formal parameter shall denote the actual parameter during the entire
activation of the block. If the procedural parameter, upon
activation. accesses any entity whose region encloses the
procedure-block, the entity accessed shall be one that would have
been accessible to the procedure-declaration when its
procedure-identifier was passed as a procedural parameter.

6.6.3.5 Functional carameters. The actual-parameter (see 6.1.3 and
6.8.2.3) shall be a function-identifier that has a defining-point in
the program-block. The actual function and the formal function shall
have congruous formal-parameter-lists (see 6.6.3.6) and the same
result-type. The formal parameter shall denote the actual parameter
during the entire activation of the block. If the functional
parameter, upon activation. accesses any entity whose region
encloses the function-block. the entity accessed shall be one that
would have been accessible to the function-declaration when its
function-identifier was passed as a functional parameter.

6.6.3.6 Parameter list conaruitv. Two formal-parameter-lists shall
be congruous if they contain the same number of
formal-parameter-sections and if the formal-parameter-sections in
corresponding positions match. Two formal-parameter-sections shall
match if any of the four statements that follow is true.
(a) They are both value-paraMeter-specifications containing the

same number of parameters that are of the same type.
(b) They are both variable-parameter-specifications containing the

same number of parameters that are of'the same type, or have
equiva10nt conformant-array-schemas. Two
conformant-array-schemas are equivalent if they have the same
ordinal-type specified in their index-type-specifications and
their components are either of the same type or are equivalent
conformant-array-schemas.

(c) They are both procedural-parameter-specifications with
congruous parameter lists, if any.

Cd) They are both functional-parameter-specifications with
congruous parameter lists; if any, and the same result-type.

PASCAL NEWS 1118 MAY, 1980 P AGE 30

6.6.4 Standard Drocedures and functions
6.6.4.1 General. Standard procedures and. functions shall be
predeclared. The standard proceddres and functions shall be as
specified in 6.6.5 and 6.6.6 respectively.

6.6.5 Standard Drocedures

6.6.5.1 General. The standard procedures shall be file handling
procedures, dynamic allocation procedures and transfer procedures.

6.6.5.2 File handlin2 Drocedures. The effects of applying each of
the file handling procedures rewrite, ~, reset and ~ to a
file-variable f shall be defined by pre-assertions and post-
assertions about f, its components f.L, f.R, and f.M, and about the
associated buffer-variablefr. The use of the variable g within an
assertion shall be considered to represent the state or value, as
appropriate, of f prior to the operation, and similarly for gr and
fr, whilef (withinan assertion) shall denote the variable after
the operation.

It shall be an error if the stated pre-assertion does not hold
immediately prior to any use of the defined operation. It shall be
an error if any variable explicitly denoted in an assertion of
equality is undefined. The post-assertion shall hold prior to the
next subsequent reference to the file, its components,or the
buffer- variable.

rewrite(f)

put (f)

reset (f)

pre-assertion:
post-assertion:

true.
(f.L =
(f.M =
(fr is

f. R = S (» and

Generation) and
totally-undefined).

pre-assertion: (g.M = Generation) and
(g.L is not undefined) and
(g. R

= S (» and
(gr is not undefined).

post-assertion: (f.M = Generation) and
(f.L = (g.L-S(gr») and
(f. R = S (» and
(fr is totally undefined).

pre-assertion: The components g.L and g.R are not

undefined.
post-assertion: (f.L = S(» and

(f.k = (g.L-g.R-X» and

(f.M = Inspection) and
(if t.R = S() then (fr is

totally-undefined)

else (tr = f.R.first»,

where, it t is of type text and if
g.L-g.R is not empty and if
(g.L~g.R).last is not designated an
end-ot-line, then X shall be a sequence
having an end-of-line component as its
only component; otherwise X = S().

PASCAL NEWS 118 HAY, 1980 PAGE 31

get(f) pre-assertion: (g.M = Inspe"tion) and
(neither g.L nor g.R are undefined) and
(g.R <> SO)'

post-assertion: (f.M = Inspection) and
(f.L = (g.L-g.R.first» and
(f.R = g.R.rest) and
(if f.R = S() then (fT is

totally-undefined)
else (fT = f.R.first».

.,
l~

When the file-variable f is of a type other than text, the standard
procedures ~ and write shall be defined as follows.

read Read(f,v1,...,vn) where v1...vn denote variables shall
be equivalent to

begin read(f,v1); ... ; read(f,vn) end

Read(f,v} where v denotes a variable shall be equivalent
to

begin v := f1; get(f) end

write Write(f,e1,...,en}, where e1...en denote expressions
shall be equivalent to

begin write(f,e1}; write (f ,en) end

Write(f,e}, where e denotes an expression shall be
equi valent to

begin fT := e; put(f} end

NOTE. The standard procedures read, write, readln, writeln, and
page, as applied to textfiles, are described in 6.9.

6.6.5.3 Dynamic allocation Drocedures
The parameters p and q shall be variable-parameters of a
pointer-type.

new(p} shall allocate a new variable v that is
totally-undefined. The pointer-variable p shall
have attributed to it a value that identifies
the new variable v.
shall allocate a new variable v that is
totally-undefined. The pointer-variable p shall
have attributed to it a value that identifies
the new variable v. The allocated variable shall
have nested variants that correspond to the
case-constants c1,...,cn. The case-constants
shall be listed in order of increasing nesting
of the variant-parts. Any variant not specified
shall be at a deeper level of nesting than that
specified by cn. It shall be an error to change
any variant-part of the allocated variable from
a variant specified.

new(p,c1,...,cn)

PASCAL NEWS 1118 MAY, 1980 PAGE 32

dispose(q) shall indicate that the variable qT is no longer
accessible. All pointers that referenced this
variable shall become undefined. It shall be an
error if the variable qT had been allocated
using the form new(p,c1,...,cn).

dispose(q,k1,...,km)shall indicate that the variable qT, whose
variants correspond to the case-constants
k1,...,km, is .no longer accessible. The
case-constants shall be listed in order of
increasing nesting of the variant-parts. All
pointers that referenced this variable shall
become undefined. It shall be an error if the
variable had been allocated using the form
new(p,c1,...,cn) and m is less than n. It shall
be an error if the variants in the variable qT
are different from those specified by the
case-constants k1...km.

It shall be an error if the pointer parameter of dispose has a
nil-value or is undefined.

It shall be an error if a variable that is identified by the pointer
parameter of dispose (or a component thereof) is currently either an

actual variable parameter, or an element of the record-variable-list

of a with-statement, or both.

It shall be an error if a referenced-variable created using the
second form of new is used in its entirety as an operand in an
expression, or as the variable in an assignment-statement or as an
actual-parameter.

6.6.5.4 Transfer Drocedures

Let a be a variable of a type denoted by 'array [s1] of T', let z be
a variable of a.type denoted by 'packed array [s2] of T' , and u and

v be the smallest and largest values of the type s2, then the
statement pack(a,i,z) shall be equivalent to

begin
k := i;
for j := u to v do

begin
z[j] := a[k];
if j <> v then k := succ(k)
end

.and

PASCAL NEWS 1118 'MAY. 1980 PAGE 33

and the statement unpack(z,a,1) shall be equivalent to

begin
k := i;
for j := u to v do

begin
ark] := z[j];

if j <> v then k := succ(k)
end

end

where j
in the
s 1 , and

with s1.

and k denote auxiliary variables that do not occur elsewhere
program. The type of j shall be s2, the type of k shall be

i shall denote an expression of a type that 1s compatible

6.6.6 Standard functions
6.6.6.1 General. The standard functions
functions, transfer functions, ordinal
functions .

shall be
functions

arithmetic

and Boolean

6.6.6.2 Arithmetic functions. For the fOllowing arithmetic
functions, the expression x shall be either of real-type or
integer-type. For the functions abs and sqr, the type of the result
shall be the same as the type of the parameter, x. For the remaining
arithmetic functions, the result shall always be of real-type. It
shall be an error if the mathematically defined result as defined
below would fall outside the set of values of the indicated result
type.

abs(x)
sqr(x)
sin(x)
cos(x)
exp(x)

6.6.6.3 Transfer functions
trunc(x) From the expression x that shall be of real-type,

function shall return a result of integer-type. The
of trunc(x) shall be such that if x is positive or
then O<=x-trunc(x)<1; otherwise -1(x-trunc(x)<=0.
shall be an error if such a value does not exist.
Examples:
trunc(3.7) yields 3
trunc(-3.7) yields -3
From the expression x

function shall return
positive or zero,

In(x)

sqrt(x)

arctan(x)

round (x)

shall compute the absolute value of x.
shall compute the square of x.
shall compute the sine of x, where x

shall compute the cosine of x, where
shall compute the value of the
logarithms raised to the power x.

shall compute the natural logarithm of
greater than zero. It shall be an error

greater than zero.

shall compute the non-negative square

not negative. It shall be an error if

shall compute the principal value,
arctangent of x.

is in radians.

x 1s in radians.
base of natural

x, if x
if x is

is
not

root of x, if x is

x is negative.

in radians, of the

this
value
zero
It

that shall be of real-type, this
a result of integer-type. If x is
round (x) shall be equivalent to

PASCAL NEWS 1118

6.6.6.4
ord(x)

chr(x)

MAY, 1980 PAGE 34

trunc(x+0.5) , otherwise round(x) shall be equivalent to
trunc(x-O. 5).

It shall be an error if such a value does not exist.
Examples:
round(3.7) yields 4

round(-3.7) yields -4

Ordinal functions

The parameter x shall be an expression of an ordinal-type.

The result that is of integer-type shall be the ordinal
number (see 6.4.2.2 and 6.4.2.3) of the value of the
expression x. It shall be an error if such a value does not

exist.

The parameter x shall be an expression of integer-type. The
result shall be the value of char-type .hose ordinal number

is equal to the value of the expression x if such a
character value exists. It shall be an error if such a
character value does not exist.

NOTE. For any value, ch, of char-type, the following is
true:

chr(ord(ch» = ch

succ(x) The parameter x shall be an expression of an ordinal-type.

The result shall be of the same type as that of the
expression (see 6.7.1). The function shall yield a value
whose ordinal number is one greater than that of the
expression x, if such a value exists. It shall be an error
if such a value does not exist.

pred(x) The parameter x shall be an expression of an ordinal-type.
The result shall be of the same type as that of the
expression (see 6.7.1). The function shall yield a value
whose ordinal number is one less than that of the
expression x, if such a value exists. It shall be an error
if such a value does not exist.

6.6.6.5
odd (x)

eof(r)

eoln (f)

Boolean
The
The
mod

funct1on~
parameter x shall be an expression of integer-type.

function yields the value of the expression 'abs(x)

2 = 1'.

The parameter r shall be a rile-variable; if the
actual-parameter-list is omitted, the function shall be
applied to the standard textfile input (see 6.10). When
eof(f) is activated, it shall be an error if f is
underined; otherwise the function shall yield the value
true ir r.R is the empty sequence (see 6.4.3.5),
otherwise raIse.

The parameter f shall be a textfile; if the
actual-parameter-list is omitted, the function shall be
applied to the standard textrile input (see 6.10). When
eoln(f) is activated, it shali be an error 1f f 15
underined or ir eor(f) i5 true; otherwise the function
shall yield the value true ir t.R.rirst is an
end-ot-line component (see 6.4.3.5), otherwise raIse.

PASCAL NEWS #18 HA Y, 1 980
PAGE 35

6.7 EXDressions
6.7.1 General. An expression
or function-designator used
undefined at the time of
occur.
The use of a variable-access as a factor shall denote the value, if
any, attributed to the variable denoted by that variable-access.
Operator precedences shall be according to four classes of operators
as follows. The operator Jl2.t.shall have the highest precedence,
followed by the multiplying-operators, then the adding-operators
and signs, and finally, with the lowest precedence, the
relational-operators. Sequences of two or more operators of the same
precedence shall be left associative.

shall possess a value unless a variable
as a factor in that expression is
its Use, in which case an error shall

unsigned-constant= unsigned-number I character-string I

constant-identifier I "nil" .

factor = variable-access I unsigned-constant I bound-identifier
function-designator : set-constructor

"(" expression ")" I "not" factor
set-constructor = "["

[member-designator
{ "," member-designator}] "]" .

member-designator = expression [".." expression] .

term = factor { multiplying-operator factor } .

simple-expression =
[sign] term { adding-operator term }

.

expression =

simple-expression [relational-operator simple-expression]

Any factor whose type is S, where S is
treated as of type T. Similarly, any
shall be treated as of an anonymous
whose type is packed set of S shall
type packed set of T.

a subrange of T, shall be
factor whose type is set of S
type set of T, and any factor

be treated as of an anonymous

NOTE. Consequently an expression that consists or a single
factor of type S shall itself be of type T, and an expression
that consists of a single factor of type set of S shall itself
be of type set of T, and an expression that consists of a single
factor of type packed set of S shall itself be of type packed
set of T.

A set-constructor shall denote a value of a set-type. The
set-constructor[] shall denote that value in every set-type that
contains no members. A set-constructor containing one or more
member-designators shall denote a value of type set of T or packed
set of T, where T is the type of all expressions immediately
contained in all member-designators of the set-constructor. The type
T shall be an ordinal-type. The value denoted by the set shall
contain zero or more members each of which shall be denoted by at
least one member-designator of the set. It shall be an error if the
value of any member denoted by any member-designator of the
set-constructoris outside the implementation-defined limits (see
6.4.3.4).

The member-designator x, where x is an expression, shall denote the
member that shall have the value x. The member-designator x..y,

PASCAL NEWS 1118
MAY, 1980

PAGE 36

where x and yare expressions, shall denote zero or more members
that shall have the values of the base-type in the closed interval
from the value of x to the value of y.

NOTE. The member-designator x..y denotes no members if the value
of x is greater than the value of y.

A set-constructor shall assume a suitable type to satisfy the
assignment-compatibility rules, or the compatibility rules for
operators, if possible. It shall be an error if the possible types
of a set-constructor do not permit it to assume a suitable type.

Examples are as follows:

(a) Factors: x
15
(x+y+z)
sln(x+y)
[red,c,green]

[1,5,10..19,23]

not p

(b) Terms: x-y
i/(1-i)
(x <= y) and (y < z)

(c) SimDle eXDressions:

x+y
-x
hue 1 + hue2

i-j + 1

(d) EXDress-ions: x = 1.5
P <= q
p

=
q and r

(i < j) = (j < k)

c in hue1

6.7.2 ODerators
6.7.2.1 General

multiplying-operator = "-" I "I" I "diva "mod " "and" .

adding-operator = "+" I "-" I "or"

relational-operator :

"=" I "()" I "(" ")" I "<:" I ">=" I "in" .

A factor, or a term, or a simple-expression shall be designated an
operand. The order of evaluation of the operands ot a dyadic
operator shall be implementation-dependent.

NOTE. This means, for example, that the operands may be
evaluated in textual order, or in reverse order, or in parallel
or they may not both be evaluated.

-
-.~ -~-_._-

+ addition integer-type)lnteger-type

or real-type)if both

subtraction integer-type)operands are

or real-type)of integer-type
I multiplication integer-type)otherwise

or real-type)real-type

/ division integer-type real-type
or real-type

div division with integer-type integer-type
truncation

mod modulo integer-type integer-type

--

PASCAL NEWS 118 MAY. 1980 PAGE 37

6.7.2.2 6rlthmetlc ooerators. The types of operands and results for
dyadic and monadic operations shall be as shown in tables 2 and 3
respectively.

Table 2. Dvadic arithmetic ooeratlons

--
operator operation type of operands type of result

--

Table 3. Monadic arithmetic ooerations

--
operator operation type of operand type of result

--
+ identity integer-type

real-type
sign-inversion integer-type

real-type

integer-type

real-type

integer-type

real-type

--
NOTE.The symbols +, - and 8 are also used as set operators (see
6.7.2.4).

It shall be an error if j is zero, otherwise the value of i div j
shall be such that
abs(i) abs(j) < abs«i div j) 8 j) <= abs(i)
where the value shall be zero if abs(i)<abs(j), otherwise the sign
of the value shall be positive if i and j have the same sign and
negative if i and j have different signs.

It shall be an error if j is zero or negative, otherwise the value
of i mod j shall be that value of (i-(k1j» for integral k such that

o <= i mod j < j.

The predefined constant maxint shall be of integer-type and shall
denote an implementation-defined value. This value shall satisfy the
following conditions:

or logical or Boolean-type Boolean-type

and logical and Boolean-type Boolean-type

not logical negation Boolean-type Boolean-type

set union)
)

set difference)8Oy set-type T
)

set intersection)

PASCAL NEWS 1118 MA Y. 1 980 PAGE 38

(a) All integral values in the closed interval from -maxint to
+maxint shall be values in the integer-type.

(b) Any monadic operation performed on an integer value in this
interval shall be correctly performed according to the
mathematical rules for integer arithmetic.

(c) Any dyadic integer operation on two integer values in this same
interval shall be correctly performed according to the
mathematical rules for integer arithmetic, provided that the
result is also in this interval.

(d) Any relational operation on two integer values in this same
interval sbdll be correctly performed according to the
mathematical rules for integer arithmetic.

It shall be an error if the operation is not performed according to
the mathematical rules for integer arithmetic.

6.7.2.3 Boolean ooerators. The types of operands and reaults for
Boolean operations shall be as shown in table 4.

Table 4. Boolean ooerations

operator operation type of operand(s) type of result

Boolean-expression = expression .

A Boolean-expression shall be an expression that possesses a value
of Boolean-type.

6.7.2.4 Set operators. The types of operands and results for set
operations shall be as shown in table 5.

Table 5. Set ooerations

operator operation type of operands type of result

.

)
)
)T
)
)

+

PASCAL NEWS #18 MAY. 1980 PAGE 39

6.7.2.5 Relational ODerators. The types of operands and results for
relational operations shall be as shown in table 6.

Table 6. Relational oDerations

operator type of operands type of result

= <> any set, simple,

pointer or string-type

Boolean-type

< > any simple or string-type Boolean-type

<= >= any set, simple or string-type Boolean-type

in left operand:any ordinal type T Boolean-type
right operand~ set of T(see 6.7.1)

~---------------------------------------

The operands of =, <>, <, >, >=, and <= shall be either of
compatible type, or one operand shall be of real-type and the other
shall be of integer-type.

The operators =, <>, <, > shall stand for "equal to", "not equal
to", "less than" and "greater than" respectively.

Except when applied to sets, the operators <= and >= shall stand for
"less than or equal to" and "greater than or equal to"
respect! vely.

If u and v are operands of a set-type, u <= v shall denote the
inclusion of u in v and u >= v shall denote the inclusion of v in
u.

NOTE. Since the Boolean-type is an ordinal-type with false less
than true, then if p and q are operands of Boolean-type, p = q

denotes their equivalence and p <= q means p implies q.

When the relational operators = , <> , < , > , <= , >= are used to
compare operands of a string-type (see 6.4.3.2), they denote
lexicographic ordering according to the ordering of the character
set (see 6.4.2.2).
The operator jn shall yield the value true if the value of the
operand of ordinal-type is a member of the value of the set,
otherwise it shall yield the value false. In particular, if the
value of the operand of ordinal-type is outside the
implementation-defined limits on the base-type of the set (see
6.4.3.4), the operator ~ shall yield the value false.

6.7.3 Function desi~nators. A function-designator shall yield the
value of the function denoted by the function-identifier immediately
contained within it. If the function has any formal parameters the

function-designator shall contain a list of actual-parameters that

shall be bound to their corresponding formal parameters defined in

PAS':AL NEWS 1118 MAY, 1980 PAGE 40

the function-declaration. The correspondence shall be established by
the positions of the parameters in the lists of actual and formal
parameters respectively. The number of actual-parameters shall be
equal to the number of formal parameters. The types of the
actual-parameters shall correspond to the types of the formal
parameters as specified by 6.6.3. The order of evaluation and
binding of the actual-parameters shall be implementation-dependent.

function-designator = function-identifier
[actual-parameter-list]

actual-parameter-list =

"(" actual-parameter { "," actual-parameter} ")" .

actual-parameter = expression: variable-access I

procedure-identifier :

function-identifier

Examples: Sum(a,63)
GCD(147,k)
sin(x+y)
eof(f)
ord (fT>

6.8 Statements
6.8.1 General. Statements shall denote algorithmic actions, and
shall be executable. They may be prefixed by a label.

If a label prefixes a simple-statement or structured-statement S,
that label shall only be allowed in goto-statements (see 6.8.2.4) in
the statement S, or in the statement-sequence (if any) in which S is
immediatey contained and if this statement-sequence is the
statement-sequence of the compound-statement that forms the
statement-part of a block, the procedure-declarations and
function-declarations of that block.

statement =
[' label ":ft] (simple-statement \

structured-statement) .

NOTE. A goto-statement within a procedure may refer to a label
in an enclosing procedure, provided that the label prefixes a
simple-statement or structured-statement at the outermost level
of nesting of the block of the procedure.

6.8.2 SimDle-statements
6.8.2.1 General. A simple-statement shall be a statement of which no
part oonstitutes another statement. An empty-statement shall consist
of no symbols and shall denote no action.

simple-statement =
empty-statement : assignment-statement
procedure-statement I goto-statement .

empty-statement = .

6.8.2.2 . Assi,uu,ent-statements. The
attribute to the variable, denoted
function-identifier a value, specified
be assignment-compatible with the type

assignment-statement shall
by the variable-access, or
as an expression, that shall
of the variable or function.

PASCAL NEWS #18 HAY. 1980 PAGE 41

An assignment-statement that has a function-identifier as its
left-hand side shall occur only within the function-block (if any)
that corresponds to the function denoted by the
function-identifier.

assignment-statement =
(variable-access

I function-identifier) ":=" expression .

If access to the variable involves the indexing of an array and/or a

reference to a field within a variant of a record and/or the
de-referencing of a pointer-variable and/or a reference to a
buffer-variable, the decision whether these actioDs precede or
follow the evaluation of the expression shall be
implementation-dependent.

Examples: x := y+z
p := (1<=i) and (i<100)
i := sqr(k) - (i.j)

hue 1 := [blue,succ(c)]

p1f.mother := true

6.8.2.3 Procedure-statements. A procedure-statement shall specify
the activation of the procedure denoted by the procedure-identifier
immediately contained within it. If the procedure has any formal
parameters the procedure-statement shall contain a list of
actual-parameters that shall be bound to their corresponding formal
parameters defined in the procedure-declaration. The correspondence
shall be established by the positions of the parameters in the lists

of actual and formal parameters respectively. The number of
actual-parameters shall be equal to the number of formal parameters.
The types of the actual-parameters shall correspond to the types of
the formal parameters as specified by 6.6.3. The order of evaluation
and binding of the actual-parameters shall be
implementation-dependent.

procedure-statement = procedure-identifier
[actual-parameter-list] .

Examples: printheading
transpose(a,n,.)

bisect(fct,-1.0,+1.0,x)

6.8.2.4 Goto-statements. A
that further processing is
program text, namely at
6.8.1).

goto-statement shall serve
to continue at another
the place prefixed by

to indicate
part of the

the label (see

goto-statement = "goto" label

6.8.3 ~tured-statemeDt8
6.8.3.1 General. Structured-statements shall be constructs composed
of other statements that have to be executed either in sequence
(compound-statement), condit~onally (conditional-statements),
repeatedly (repetitive-statements), or within an expanded scope
(with-statements).

NOTE. An else-part thus becomes paired with the nearest
preceding unpaired ~.

Examples:

if x < 1.5 then z :.:x+y else z := 1.5
if p1 <> nil then p1 := pH. father

?t,:?CAL NEWS #18 MAY, 1980 PAGE 42

structured-statement =

compound-statement conditional-statement:
repetitive-statement I with-statement .

6.8.3.2 Comoound-statements. The compound-statement shall specify
that its component statements are to be executed in textual order,
except as modified by execution of a goto-statement.

compound-statement
statement-sequence

= "begin" statement-sequence "end"

= statement { ";" statement} .
Example: begin z:= x ; x := y; y := z end

6.8.3.3 Conditional-statem~.
conditional-statement = if-statement case-statement .

6.8.3.4 If-statements

if-statement = "if" Boolean-expression "then" statement
[else-part]

else-part = "else" statement .

If the Boolean-expression yields the value true, the statement
following the ~ shall be executed. If the Boolean-expression
yields the value false, the action shall depend on the existence of
an else-part; if the else-part is present the statement following
the~ shall be executed, otherwise an empty-statement shall be
executed.

To resolve the so-called 'dangling-else' ambiguity, an if-statement
without an else-part shall not be followed by the token ~.

6.8.3.5 Case-statements. The case-statement shall consist of a
case-index and a list of state.ents. Each statement shall be
preceded by one or more case-constants. All the case-constants shall

be distinct and shall be of the saae ordinal-type as the case-index.

The case-statement shall specify execution of the statement whose

case-constant is equal to the value of the case-index upon entry to
the case-statement.

It shall be an error if none of the case-constants is equal to the
value of the case-index upon entry to the case-statement.

NOTE. Case-constants are not the same as statement labels.

PASCAL NEWS 118 HAY. 1980 PAGE 43

case-statement =

"case" case-index "ot"
case-list-element {Wi" case-list-element } [Wi"] "end"

case-list-element = case-constant-list ":" statement.

case-index = expression .
.

Example:

case operator ot
plus: x:= X+Yi
minus: x:= x-y;
times: x: = x.y

end

6.8.3.6. Reoetitive-statements. Repetitive-statements shall specify
that certain statements are to be executed repeatedly.

repetitive-statement = repeat-statement I

while-statement I tor-statement .
6.8.3.7 Reoeat-statements

repeat-statement = "repeat" statement-sequence

"until" Boolean-expression .

The sequence ot statements between the tokens reoeat and until shall

be repeatedly executed (except as aoditied by the execution ot a
goto-statement) until the Boolean-expression yields the value true

on completion ot the statement-sequence. The statement-sequence
shall be executed at least once, because the Boolean-expression is
evaluated atter execution ot the statement-sequence.

Example:

repeat k := i mod ji
i := j;
j := k

until j = 0

6.8.3.8 While-statements

while-statement = "while" Boolean-expression "do" statement .

The while-statement

while b do body

shall be equivalent to

?ASCAL NEWS #18 MAY, 1980 PAGE 44

begin
if b then

repeat
body
until not (b)

end

Examples:

while a[i] < x do i := i+1

while DO do
begin if odd(i) then z := z.x;

i := i div 2;
x := sqr(x)

end

while not eof(f) do
begin process(rf); get(f)

end

6.8.3.9 For-statements. The for-statement shall specify that a
statement is to be repeatedly executed while a progression of values
is attributed to a variable that is designated the control-variable
of the for-statement.

for-statement = -for" control-variable ":=" initial-value
("to" I "downto") final-value "do" statement

control-variable = entire-variable

initial-value = expression
final-value = expression

The control-var1able shall be an entire-variable whose identifier is
declared in the variable-declaration-part of the block immediately
containing the for-statement. The control-variable shall be of an
ordinal-type, and the initial-value and final-value shall be of a
type compatible with this type.

An assigning-reference to a variable shall occur if any of the six
statements that follow is true.
(a) The variable is denoted by a variable-access as the left hand

side of an assignment-statement.
(b) The variable is denoted by an actual variable parameter in a

function-designator or procedure-statement.
(c) The variable is denoted by an actual parameter in a

procedure-statement that specifies the activation of the
standard procedure read or the standard procedure readln.

(d) The variable occurs as the control-variable of a
for-sta temen t .

(e) A procedUre-identifier in a procedure-statement or

function-designator denotes a procedure-declaration that
contains an assigning reference to the variable.

(f) A function-identifier in a procedure-stantmentor
function-designator denotes a function-declaration that
contains an assigning reference to the variable.

PASCAL NEWS #18 MAY t 1980 PAGE 45

Assigning references to the control-variable shall not occur within

the repeated statement. It shall be an error if the final-value is
not assignment-compatible with the control-variable when the
initial-value is assigned to the control-variable. After a
for-statement is executed (other than being left by a goto-statement
leading out of it) the control-variable shall be undefined. Apart
from the restrictions imposed by these requirements, the
for-statement

for v := e1 to e2 do body

shall be equivalent to

begin
temp 1 :=
temp2 :=

if temp1
begin

v := temp 1 ;

body;

while v <> temp2 do
begin

v := succ (v) ;

e1;
e2;

<= temp2 then

body
end

end
end

and the for-statement

for v := e 1 downto e2 do body

shall be equivalent to

begin

temp1 :=

temp2 :=

if temp1
begin
v := temp 1 ;

bod y;
while v <> temp2 do

begin

v :
=

pred (v) ;

e1 ;

e2;

>= temp2 then

body
end

end
end

where temp1
elsewhere in
that type is
variable v.

and temp2 denote auxiliary variables that do not occur
the program and are of the type of the variable v if

not a subrange-type; otherwise of the host type of the

PASCAL NEWS #18 MAY, 1980 PAGE 46

Examples:

for i := 2 to 63 do

if a(i] > max then max := a(i]

for i := 1 to 10 do
for j := 1 to 10 do

begin

x := 0;
for k := 1 to 10 do

x := x + m1(i,k].m2(k,j];
m(i,j] := x
end

for C .-.- red to blue do q(c)

6.8.3.10 With-statements

with-statement =

"with" record-variable-list "do"

statement .

record-variable-list =
record-variable { "," record-variable}

The occurrence of a record-variable as part of the
record-variable-list shall be a defining-point of the
field-identifiersof its record-type as variable-identifiers for
the region that is a part of the with-statement immediately
containing the record-variable-list. The region is that part of the
with-statement that follows the record-variable. If access to a
variable in the record-variable-list involves the indexing of an
array and/or a reference to a field within a variant of a record
and/or the de-referencing of a pointer-variable and/or a reference
to a buffer-variable, these actions shall be executed before the
component statement is executed.

The statement

with v1,v2, ...,vn do s

shall be equivalent to

with v1 do
with v2 do

with vn do s

Example:

witb date do

it month = 12 then
begin month := 1; year : = year + 1 .

end

else month := month+1

PASCAL NEWS #18 HAY, 1980 PAGE 47

shall be equivalent to

if date.month = 12 then
begin date.month := 1; date.year := date.year+1

end

else date.month := date.80nth+1

6.9 InDut and outDut

6.9.1 General. Textfiles (see 6.4.3.5)
program-parameters (see 6.10) to a Pascal

standard legible input and output.

that are identified
program shall provide

as
the

6.9.2 The Drocedure read. The syntax ot the parameter list of read
when applied to a texttile shall be:

read-parameter-list =

"("[file-variable .,"] variable-access

I"," variable-access}")" .

If the file-variable is omitted, the procedure shall be applied to
the standard textfile input.

The following requirements shall apply tor the procedure read (where
t denotes a texttile and v1...vn denote variables of char-type (or
a subrange of char-type), integer-type (or a subrange of
integer-type), or real-type):

(a) read(f,v1,...,vn) shall be equivalent to
,

begin read(f,v1); read (f, vn) end

(b) If v is a variable of char-type (or subrange thereot), read(f,v)

shall be equivalent to

begin v := t1; get(t) end

(c) If v is a variable ot integer-type (or subrange thereof),
read(f,v) shall cause the reading from f ot a sequence of
characters that form a signed-integer according to the syntax of
6.1.5. The value of the signed-integer thus read shall be
assignment-compatible with the type of v, and shall be
attributed to v. Preceding spaces and end-of-lines shall be
skipped. Reading shall cease as soon as the file's
buffer-variable f1 contains a character that does not torm part
of the signed-integer. It shall be an error it the sequence of
characters does not form a signed-integer as specified in
6.1.5.

~d) If v is a variable ot real-type, read(f,v) shall cause the
reading from f ot a sequence ot characters that form a
signed-number according to the syntax of 6.1.5. The value
denoted by the number thus read shall be attributed to the
variable v. Preceding spaces and end-ot-lines shall be skipped.
Reading shall cease as soon as the file's buffer-variable f1
contains a character that does not torm part of the
signed-number. It shall be an error it the sequence of

PASCAL NEWS #18 MAY, 1980 PAGE 48

characters does not form a signed-number as specified in 6.1.5.

(e) When read is applied to f, it shall be an error if f is
undefined or if f.M = Generation (see 6.4.3.5).

6.9.3 ~ Drocedure readln.
readln shall be:

The syntax of the parameter list of

readln-parameter-list =
[neW (file-variable I variable-access)
In," variable-access} ")"J .

Readln shall only be applied to textfiles. If the file-variable or
readln-parameter-list is omitted. the procedure shall be applied to
the, standard textfile input.

readln(f,v1,...,vn) shall be equivalent to

begin read(f,v1 ,vn); readln(f) end

readln(f) shall be equivalent to

begin while not eoln{f) do get(f); get(f) end

NOTE. The effect or read In is to place the current file
position just past the end of the current line in the
textfile. Unless this is the end-of-file position, the
current file position is therefore at the start of the next
l1ne .

6.9.4 The Drocedure write. The syntax of the parameter list of write
when applied to a textfile shall be:

write-parameter-list =
"("[file-variable ","] write-parameter
In," write-parameter}")" .

write-parameter =
expression [":" expression [":" expression]]

If the file-variable is omitted. the procedure shall be applied to
the standard textfile output. When write is applied to a textfile,
it shall be an error if f is undefined or f.M = Inspection (see
6.11.3.5).

6.9._.1 MultlDle 9arameters. Wrlte{f,p1,...,pn) shall be equivalent
to

begin write(f,p1); ... ; write(f,pn) end

where f denotes a textfile, and p1,...,pn denote write-parameters.

6.9.11.2 Write-parameters. The write-parameters p shall have the
following forms:

e:TotalWldth:FracDigits
--- "~ .. - .-.-

e:TotalWidth e

PASCAL NEWS #18 MAY, 1980 PAGE 4-9

where e is an expression whose value is to be written on the file f
and may be of integer-type, real-type, char-type, Boolean-type or a

string-type, and where TotalWidth and FracDigits are expressions of

integer-type whose values are the field-width parameters. The values
of TotalWidth and FracDigits shall be greater than or equal to one;
it shall be an error if either value is less than one. Exactly

TotalWidth characters shall be written (with an appropriate number
of spaces to the left of the representation of e), except when e

requires more than TotalWidth characters for its representation; in

such a case the number of characte~s written shall b~ as small as is

consistent with the representation of the value of e (see 6.9.4.4
and 6.9.4.5).

Write(f,e) shall be equivalent to the form write(f,e:TotalWidth),
using a default value for TotalWidth that depends on the type of e;
for integer-type, real-type and Boolean-type the default values
shall be implementation-defined.

Write(f,e:TotalWidth:FracDigits) shall be applicable only if e is of
real-type (see 6.9.4.5.2).

6.9.4.3 Char-tvDe. If e is of char-type, the default value of
TotalWidth shall be one. The representation written on the file f
shall be:

(TotalWidth 1) spaces,
the character value of e.

6.9.4.4 Inte~er-type. If e
representation of e shall be
function
function IntegerSize (x : integer) : integer ;

{ returns the number of digits, z, such that

10 to the power (z-1) <= abs(x) < 10 to the power z }

is of integer-type, the decimal
written on the file f. Assume a

and let IntDigits be the positive integer defined by:

if e = 0
then IntDigits := 1

else IntDigits := IntegerSize(e);

then the representation shall consist of:

(1) if TotalWidth >= IntDigits + 1 :
(TotalWidtb - IntDigits - 1) spaces,
the sign character: '-' it e < 0, otherwise a space,
IntDigits characters of the decimal representation of abs(e).

(2) If TotalWidth < IntDigits + 1:

if e < 0 the sign character '-',

IntDigits characters of the decimal representation ot abs(e).

6.9.4.5 Real-TvDe. If e is of real-type, a decimal representation of
the number e, rounded to the specified number of significant figures

or decimal places, shall be written on the tile t.

PASCAL NEWS f/18 MAY. 1980 PAGE SO

6.9.4.5.1 The floatin~-Doint reDreaentation.
Write{f,e:TotalWidth) shall cause a floating-point representation of
e to be written. Assume functions

function TenPower (lnt : integer) : real ;

{ Returns 10.0 raised to the power lnt }

function RealSize (y : real) : integer
{ Returns the value, z, such that
TenPower{z-1) <= abs{y) < TenPower{z) }

function Truncate (y : real ; DecPlaces integer)
: real ;

{ Returns the value of y after truncation
to DecPlaces decimal places }

let ExpDigits be an implementation-defined value representing the
number of digit-characters written in an expocentj

let ActWidth be the positive integer defined by:

if TotalWidth >= ExpDigits + 6
then ActWidth := TotalWidth
else ActWidth := ExpDigits + 6;

and let the non-negative number eWritten and the integer ExpValue be
defined by:

if e = 0.0
then begin eWritten := 0.0; ExpValue := 0 end
else
beg in
eWritten := aba{e);
ExpValue := RealSize (eWritten) - 1j
eWritten := eWritten / TenPower (ExpValue)
eWritten := eWritten +

0.58TenPower{ - (ActWidth-ExpDigits-5))j
if eWrltten >= 10.0

then
begin
eWritten := eWritten / 10.0;
ExpValue := ExpValue + 1
end;

eWritten := Truncate (eWritten, ActWidth
ExpDigits -5)

end;

then the floating-point representation of the value of e shall
consist of:

the sign character,
('-' if e < 0, otherwise a space)

the leading digit of the decimal representation of eWritten,
the oharacter ".' ,
the next (Act Width - ExpDigits - 5) digits

of the decimal representation of eWritten,

PASCAL NEWS 118 HAY, 1980 PAGE 51

an implementation-defined exponent character
(either 'e" or 'E'),

the sign of ExpValue
{ '-' if ExpValue < 0, otherwise

the ExpDigits digits of the decimal
(with leading zeros if the value

'+'),
representation of ExpValue
requires them).

6.9.4.5.2 ~he fixed-ooint reoresentation.
Write{f,e:TotaIWidth:FracDigits) shall cause a
representation of e to be written. Assume the function
described in clause 6.9.4.4, and the functions TenPower
described in clause 6.9.4.5.1;

fixed-point
IntegerSize

and Truncate

let eWritten be the non-negative number defined by:

if e = 0.0
then eWritten := 0.0
else
begin
eWritten := abs(e);
eWritten := eWritten + 0.5

· TenPower(- FracDigits);
eWritten := Truncate (eWritten, FracDigits)
end;

let IntDigits be the positive integer defined by:

if trunc (eWritten)
= 0

then IntDigits := 1
else IntDigits:= IntegerSize (trunc{eWritten));

and let HinNumChars be the positive integer defined by:

HinNumChars:= IntDigits + FracDigits + 1;
if e < 0.0

then HinNumChars := HinNumCbars + 1;{'-' required}

then the fixed-point representation of the value of e shall consist
of:

if TotalWidth >= HinNumChars,
(TotalWidth - HinNumChars) spaces,

the character '-' if e < 0,
the first IntDigits characters of the decimal representation

of the value of eWritten,
the character '.',
the next FracDigits characters of the decimal representation

of the value of eWritten.

NOTE. At least HinNumChars characters are written. If TotalWidth
is less than this value, no initial spaces are written.

6.9.4.6 Boolean-tvoe. If e is of Boolean-type, a representation of
the word true or the word false (as appropriate to the value of e)
shall be written on the file f. This ~hall be equivalent to writing
the appropriate character-strings 'True' or 'False' (see 6.9.4.7),

PASCAL NEWS 1118 MAY, 1980 PAGE 52

where the case of each letter is implementation-defined, with a
field-width parameter of TotalWidth.

6.9.4.7 Strln2-tvoes. If the type of e is a string-type with n
components, the default value of TotalWidth shall be n. The
representation shall consist of:

if TotalWidth > n,
(TotalWidth - n) spaces,

the characters e[1] through ern] in that order.

6.9.5 ~ orocedure writeln. The syntax of the parameter list of
writeln shall be:

writeln-parameter-list =
[ft(. (file-variable I write-parameter)

(ft,. write-parameter}ft)"] .

Writeln shall only be applied to textfiles. If the file-variable or

the writeln-parameter-list is omitted, the procedure shall be
applied to the standard textfile output.

writeln(f,p1,...,pn) shall be equivalent to

begin write(f,p1,...,pn); writeln(f) end

Writeln shall be defined by a pre-assertion and a post-assertion
using the notation of 6.6.5.2. .

pre-assertion:
post-assertion:

(g is not undefined) and (g.H = Generation).

(f.L = (g.L-S(e») and

(f.R = S(» and (f.H = Generation),

where See) is the sequence consisting solely of the

end-of-line component defined in 6.4.3.5.

NOTE. Writeln(f) terminates the partial line, if any, which is
being generated. By the conventions of 6.6.5.2 it is an error if

the pre-assertion is not true prior to the writeln(f).

6.9.6 The orocedure oa2e
It shall be an error if the pre-assertion required for writeln(f)
(see 6.9.5) does not hold prior to a the application of page(f). If

the actual-parameter-list is omitted the procedure shall be applied
to the standard textfile output. Page(f) shall cause an
implementation-defined effect on the textfile f, such that
subsequent output to f will be on a new page if the textfile is
printed on a suitable device, and shall perform an implicit
writeln(f) if f.L.last is not the end-of-line component (see
6.4.3.5). The effect of inspecting a textfile to which the page
procedure was applied during generation shall be
implementation-dependent.

6.10 ProgrA~q.. A Pascal program shall have the form of a procedure
deqlaration except for its beading and its termination by a period.

_

~
p~ograa = program-beading

; :.;,,~:"~.
..1".

.-c:_: _..__
".", program-block"."

PASCAL NEWS 118 MAY, 1980
-PAGE 53

program-heading =
"program" identifier ["(" program-parameters ")"]

program-parameters = identifier-list
program-block = block .

The identifier following the token program shall be the program name
which has no significance within the program. The program-parameters
shall be distinct identifiers. The program-parameters shall be
declared in the variable-declaration-part of the program-block. The
binding of the variables denoted by the program-parameters to
entities external to the program shall be implementation-dependent,
except if the variable is of a file-type in which case the binding
shall be implementation-defined.

NOTE. The external representation of such external entities is
not defined by this Standard, nor is any property of a Pascal
program dependent on such representation. The appearance of an.
identifier in the program-parameters is not a defining-point nor
a corresponding occurrence to a defining-point (see 6.2.2)
because it is not in the program-block.

The two standard textfiles input and output shall not be declared
explicitly, but shall be listed as parameters in the program-heading
if they are used in the program-block. The occurrence of the
identifiers input or output as program-parameters shall have the
effect of declaring them as textfiles in the program block. The
effects of the initialising statements reset(input) and
rewrite(output) shall be caused to occur by the processor
immediately following the be2in of the block of the program if the
respective identifier occurs in the program-parameters. The effect
of an explicit use of reset or rewrite on the standard textfiles
input or output shall be implementation-defined.

Examples:

p~ogram copy(f,g);
var f,g: file of real;
begin reset(f); rewrite(g);

while not eof(f) do
begin g1 := f1; get(f); put (g)
end

end.

PASCAL NEWS 1118 MAY, 1980 PAGE 54

program copytext(input,output);

{This program copies the characters aod ends-of-lines of the

textfile input to the textfile output.}
var ch: char;

begin

while not eof do
begin

while not eoln do
begin read(ch); write(ch)

end;

readln; writeln
end

end.

PASCAL NEWS 118 HAY, 1980 PAGE 55

program t6p6p3p3d2revis~d(output);

var globalone, global two : integer;

procedure dUJllllY;

begin

writeln('fail 6.6.3.3-2')

end { of dumy };

procedure p(procedure f(procedure ff; procedure gg);
proced ure g);

var local top : integer;
proced ure r;

begin

if globalone = 1 then
begin
if (global two <> 2) or (local top <> 1) then

writeln('fail1...6.6.3.3-2')

end
else if globalone = 2 then

begin
if (global two <> 2) or (local top <> 2) then

writeln('fai12...6.6.3.3-2')
else

writeln('pass...6.6.3.3-2')
end

else

writeln('fail3...6.6.3.3-2');
global one := global one + 1

end { of r };
begin { of p }
global two := global two + 1;

local top := global two;

if globaltwo = 1 then
p(f,r)

else
f(g,r)

end { of pI;
procedure q(procedure f; procedure g);

begin
f;
g

end;
begin
global one := 1;

globaltwo := 0;
p(q,dummy)

end.

6.11 Hardware reDresentation. The representation for tokens and
separators given in 6.1 constitutes a reference representation. In
addition to these symbols several alternative symbols shall be
defined. A processor shall accept all the reference symbols and all
the alternative symbols except for any symbol whose representation
contains a character not available in the character set of the
processor. The reference SYmbols and the alternative symbols are

PASCAL NEWS 1118 MAY, 1980 PAGE 56

given in table 7.

Table 7. Alternative symbols

--
Reference Symbol Alternative Symbol

--
1-
I
{
}

--

NOTE. The alternative comment delimiters are equivalent to the
reference comment delimiters, thus a comment may begin with "I"
and close with ".)", or begin with "(." and close with "In.

APPENDIX A. COLLECTED SYNTAX

letter = "a"l"b"l"c"l"d"l"e"l"f"l"g"l"h"l"i"l"j"l"k"l"l"l"m"1
"n"l"o"l"p"l"q"l"r"l"s"l"t"l"u"l"v"l"w"l"x"l"y"l"z"

special-symbol = "+"1"_"1"."1"/"1"="1"("(">"1"["1"]"1
"."1","1":"1";"1"1"1"("1")"1

"<>"1"<="1">="1":="1".."1 word-symbol

word-symbol = "and" I "array" 1 "begin" I"case" I"const" I"div"1
"do" I"downto" 1"else" 1"end" I"flle"l"for"1
"function" I"goto" I "if"1 "In''l "label" 1 "mod" 1

"nil"l"not"l"of"l"or"l"packed"l"procedure"1

"program" I"record" 1 "repeat" I "set"l "then" I

"to"l"type"l"until"l"var"l"while"l"with"

identifier = letter {(letter I digit)} .

directive = letter {(letter I digit)}

digit-sequence = digit {digit} .

unsigned-integer = digit-sequence
unsigned-real =

unsigned-integer "." digit-sequence ["en scale-factor]
unsigned-integer he" scale-factor .

unsigned-number = unsigned-integer 1 unsigned-real .

scale-factor = signed-integer .

sign = "+" I "-"
.

signed-integer = [sign] unsigned-integer .

signed-real = [sign] unsigned-real .

signed-number = signed-integer 1 signed-real

label = digit-sequence

character-string = "'" string-element
{string-element} .," .

PASC~.L :rEWS #18 HAY, 1980

string-element = apostrophe-image string-character.
apostrophe-image = """
string-character =

one-of-an-implementation-defined-set-of-characters

block = label-declaration-part
constant-definition-part

type-definition-part

variable-declaration-part

procedure-and-functlon-dec larat lon-part

statement-part .

label-declaration-part = ["label" label {"," label} "j"] .

constant-definition-part = ["const" constant-definition
{constant-definition "in}]

".",

type-definition-part = ["type" type-definition
{type-definition "in}]

".",

variable-declaration-part = ["var" variable-declaration "j"
{variable-declaration"j"}] .

procedure-and-function-declaration-part =
{(procedure-declaration I function-declaration) "j"} .

statement-part = compound-statement .

constant-definition = identifier
"="

constant = [sign] (unsigned-number I

I character-string.

constant-identifier = identifier

constant

constant-identifier)

type-definition = identifier "=" type-denoter
type-denoter = type-identifier I new-type .

new-type = simple-type I structured-type I pointer-type

simple-type-identifier = type-identifier
structured-type-identifier = type-identifier
pointer-type-identifier= type-identifier
type-identifier = identifier

simple-type = ordinal-type I real-type
ordinal-type = enumerated-type I subrange-type

integer-type I Boolean-type I

ord1nal-type-identifier .

I

char-type

enumerated-type

identifier-list
= "(" identifier-list ")" .

= identifier ("," identifier) .

subrange-type = constant ".." constant.

structured-type = ["packed"] unpacked-structured-type

structured-type-identifier .

PAGE 57

F P.S C p ~ ;~E WS. II 1 8 MA Y. 1980

unpacked-structured-type = array-type : record-type
file-type .

set-type

array-type = "array" "[" index-type
component-type

index-type = ordinal-type .

component-type = type-denoter

"," index-type} "]" "of"

record-type = "record"[field-list [";"]] "end" .

field-list = fixed-part [";" variant-part] I variant-part
fixed-part = record-section {

";" record-section} .
record-section = identifier-list ":" type-denoter

variant-part = "case" variant-selector "of"
variant { ";" variant} .

variant-selector = [tag-field ":"] tag-type
tag-field = identifier .
variant = case-constant-list ":" "("

[field-list [";"]] ")" .
tag-type = ordinal-type-identifier

case-constant-list = case-constant { "," case-constant}
case-constant = constant .

set-type = "set" "of" base-type
base-type = ordinal-type .
file-type = "file" "of" component-type

pointer-type = "1" domain-type I pointer-type-identifier

domain-type = type-identifier .
variable-declaration = identifier-list ":" type-denoter .
variable-access = entire-variable I component-variable

referenced-variable I buffer-variable

entire-variable = variable-identifier
variable-identifier = identifier .
component-variable = indexed-variable field-designator .
indexed-variable =

array-variable "[" index-expression
{

"," index-expression} "]"
array-variable = variable-access .
field-designator = record-yariable "." field-identifier.
record-variable = variable-access
field-identifier = identifier .
buffer-variable = file-variable "1"
file-yariable = variable-access

referenced-variable = pointer-variable "1"
pointer-variable = variabl~-8ccess

PAGE 58

FASCAI.. NEWS 118 HAY, 1980 PAGE 59

procedure-declaration =
procedure-heading "i" directive I

procedure-identification "i" procedure-block
procedure-heading "i" procedure-block.

procedure-heading =

"procedure" identifier r formal-parameter-list]
procedure-identification =

"procedure" procedure-identifier
procedure-identifier = identit1er

procedure-block = block

function-declaration =

function-heading "i" directive I

function-identification "i" function-block
function-heading "i" function-block.

function-heading =

"function" identifier [[formal-parameter-list]

":" result-type]

function-identification =

"function" function-identifier
function-identifier = identifier .

result-type = simple-type-identifier I

pointer-type-identifier
function-block = block .

formal-parameter-list =

"(" formal-parameter-section
{";" formal-parameter-section} H)"

formal-parameter-section =
value-parameter-specification I

variable-parameter-specification I

procedural-parameter-specification

functional-parameter-specification
value-parameter-specification =

identifier-list ":" type-identifier
variable-parameter-specificatton =

"yarn identifier-list ":"

(type-identifier I contormant-array-schema)

conformant-array-schema =
"array" "[" index-type-specification
{

"i" index-type-specification } "]" "of"
(type-identifier

I conformant-array-schema) .
index-type-specification =

identifier ".." identitier

":" ordinal-type-identifier
bound-identifier = identifier .

procedural-parameter-specification =
procedure-heading .

functional-parameter-specification =
function-heading .

unsigned-constant = unsigned-number I character-string
constant-identifier : "nil" .

PASCAL NEWS #18 MAY. 1980 PAGE 60

factor : variable-access I unsigned-constant I bound-identifier
function-designator I set-constructor :

We" expression ")" : "not" factor
set-constructor: "[" [member-designator

{ "," member-designator}] "]" .

member-designator = expression [".." expression] .
term : tactor { multiplying-operator factor } .
simple-expression : [sign] term { adding-operator term } .

expression :

simple-expression [relational-operator simple-expression] .

multiplying-operator : "*" I "I" : "div" "mod" "and" .

adding-operator : "+" "-" I "or"

relational-operator :
.:" I "<>" I "<" : ">" I

,,<:"
I "):" "in" .

function-designator : function-identifier
[actual-paraMeter-list]

actual-paraMeter-list :
.(" actual-parameter { "," actual-parameter} ")" .

actual-parameter: expression I variable-access :

procedure-identifier :

function-identifier .
statement: [label ":"] (simple-statement I

structured-statement)
.

simple-statement :
empty-statement I assignment-statement
procedure-statement

I goto-statement .
empty-statement : .
assignment-statement :

(variable-access function-identifier) "::" expression .

procedure-statement : procedure-identifier
[actual-parameter-list] .

goto-statement : "goto" label .

structured-statement :

compound-statement I conditional-statement:

repetitive-statement I with-statement .

compound-statement :
statement-sequence :

"begin" statement-sequence "end"
statement { ";" statement} .

conditional-statement : if-statement case-statement.

PASCAL NEWS /118 HAY, 1980

if-statement = "if" Boolean-expression "then" statement
[else-part]

else-part = "else" statement .

case-statement =
"case" case-index "of.
case-list-element {";. case-list-element } [";"] "end" .

case-list-element = case-constant-list ":" statement.
case-index = expression .

repetitive-statement = repeat-statement I

while-statement I for-statement

repeat-statement = "repeat" statement-sequence

"until" Boolean-expression .

while-statement = "while" Boolean-expression "do" statement

for-statement = "for" control-variable ":=" initial-value
("to" I "downto") final-value "do" statement

control-variable = entire-variable
initial-value = expression

final-value = expression

with-statement =
"with" record-variable-list "do"

sta tement .

record-variable-list =
record-variable { "," record-variable} .

read-parameter-list =
"("[file-variable ","] variable-access

("," variable-access}")"

readln-parameter-Ilst =
["(" (file-variable I variable-access)

("," variable-access} ")"] .

write-parameter-list =
"("[file-variable ","] write-parameter

("," write-parameter}")" .

write-parameter =
expression en:" expression [":" expression]] .

writeln-parameter-list =
["(" (file-variable I write-parameter)

{"," write-parameter}")"]

program = program-heading ";" program-block "."
program-heading =

"program" identifier ["(" program-parameters ")"]
.

program-parameters = identifier-list
program-block= block .

PAGE 61

APPENDIX B. INDEX

actual 6.6.3.3 6.6.3.~ 6.6.3.5
6.6.5.2 6.6.5.3 6.7.3
6.8.2.3 6.8.3.9

actual-parameter 6.6.3.2 6.6.3.3 6.6.3.4
6.6.3.5 6.6.5.3 6.7.3

actual-parameter-list 6.6.6.5 6.7.3 6.8.2.3
6.9.6

array-type 6.4.3.1 6.~.3.2 6.5.3.2
6.6.3.3

array-variable 6.5.3.2
assigning-reference 6.8.3.9
assignment-compatible 6.4.6 6.5.3.2 6.6.3.2

6.8.2.2 6.8.3.9 6.9.2
assignment-statement 6.6.2 6.6.5.3 6.8.2.1

6.8.2.2 6.8.3.9
base-type 6.4.3.4 6.4.6 6.7.1

6.7.2.5
base-types 6.4.5
body 6.6.1 6.8.3.8 6.8.3.9
boolean-expression 6.7.2.3 6.8.3.4 6.8.3.7

6.8.3.8
boolean-type 6.4.2.1 6.4.2.2 6.7.2.3

6.7.2.5 6.9.4.2 6.9.4.6
buffer-variable 6.5.3.1 6.5.5 6.6.3.3

6.6.5.2 6.8.2.2 6.8.3.10
6.9.2

case-constants 6.4.3.3 6.6.5.3 6.8.3.5
char-type 6.1.7 6.4.2.1 6.4.2.2

6.4.3.2 6.4.3.5 6.6.6.4
6.9.2 6.9.4.2 6.9.4.3

character 6.4.2.2 6.4.3.5 6.6.6.4
6.6.6.5 6.7.2.5 6.9.2
6.9.4.3 6.9.4.4 6.9.4.5.1
6.9.4.5.2 6.11

character-string 6.1.1 6.1.7 6.1.8
6.3 6.7.1

closed 6.1.5 6.1.6 6.4.6
6.6.3.3 6.7.1 6.7.2.2

compatible 6.4.3.3 6.4.5 6.4.6
6.4.7 6.6.3.3 6.6.5.2
6.6.5._ 6.7.2.5 6.8.3.9

oomponent 6.4.3.1 6.4.3.2 6.4.3.5
6.11.6 6.5.1 6.5.3.1
6.5.3.2 6.5.3.3 6.6.3.1
6.6.3.3 6.6.5.2 6.6.5.3
6.8.3.2 6.8.3.10

component-type 6.4.3.1 6.4.3.2 6.6.3.3
oomponent-variable 6.5.1 6.5.3.1
oomponent-variables 6.5.3
oomponents 6.1.7 6.4.3.1 6.4.3.3

6.4.3.5 6.4.5 6.5.5
6.6.3.3 6.6.3.6 6.6.5.2
6.9.4.7

MAY, 1980 PAGE 62

compound-statement 6.2.1 6.8.1 6.8.3.1
6.8.3.2

conformant-array-schema 6.6.3.1 6.6.3.3
congruous 6.6.3.4 6.6.3.5 6.6.3.6
constant 6.3 6.4.2.4 6.4.3.3

6.6.2 6.7.2.2
corresponding 6.2.1 6.2.2 6.3

6.4.1 6.5.3.2 6.5.3.3
6.6.3.1 6.6.3.3 6.6.3.6
6.7.3 6.8.2.3 6.10

de-referencing 6.5.4 6.6.3.3 6.8.2.2
6.8.3.10

defining-point 6.2.1 6.2.2 6.3
6.4.1 6.4.2.3 6.4.3.3
6.5.1 6.6.1 6.6.2
6.6.3.1 6.6.3.4 6.6.3.5
6.8.3.10 6.10

definition 3. 4. 5.1
6.4.2.4 6.4.3.3 6.4.3.5
6.5.3.2

directive 6.1.4 6.6.1 6.6.2
empty-statement 6.8.2.1 6.8.3.4
entire-variable 6.5.1 6.5.2 6.8.3.9
enumerated-type 6.4.2.1 6.4.2.3
error 3. 5.1 6.4.3.3

6.4.6 6.5.4 6.6.3.3
6.6.5.2 6.6.5.3 6.6.6.2
6.6.6.3 6.6.6.4 6.6.6.5
6.7.1 6.7.2.2 6.8.3.5
6.8.3.9 6.9.2 6.9.4.2

expression 6.4.6 6.5.3.2 6.6.2
6.6.3.2 6.6.5.2 6.6.5.3
6.6.5.4 6.6.6.2 6.6.6.3
6.6.6.4 6.6.6.5 6.7.1
6.7.2.3 6.7.3 6.8.2.2
6.8.3.5 6.8.3.9 6.9.4
6.9.4.2

factor 6.1.5 6.7.1 6.7.2.1
field 6.4.3.3 6.6.3.3 6.8.2.2

6.8.3.10
field-designator 6.2.2 6.4.3.3 6.5.3.1

6.5.3.3
field-identifier 6.2.2 6.4.3.3 6.5.3.3
file-type 6.4.3.1 6.4.3.5 6.4.6

6.5.5 6.10
file-variable 6.5.5 6.6.5.2 6.6.6.5

6.9.2 6.9.3 6.9.4
6.9.5

for-statement 6.8.3.6. 6.8.3.9
formal 6.6.1 6.6.2 6.6.3.1

6.6.3.2 6.6.3.3 6.6.3.4
6.6.3.5 6.7.3 6.8.2.3

formal-parameter-list 6.6.1 6.6.2 6.6.3.1
6.6.3.3

t'A:;>GAL NEWS #18 HAY, 1980 PAGE 63

function 3. 6.1.2 6.4.3.3
6.4.3.5 6.6 6.6.1
6.6.2 6.6.3.5 6.6.6.3
6.6.6.4 6.6.6.5 6.7.3
6.8.2.2 6.9.4.4 6.9.4.5.1
6.9.4.5.2

funotion-blook 6.1.4 6.6.2 6.6.3.1
6.8.2.2

funotion-deolaration 6.2.1 6.6.2 6.6.3.5
6.7.3 6.8.3.9

funotion-designator 6.6.2 6.7.1 6.7.3
6.8.3.9

funotion-identifier 6.6.2 6.6.3.1 6.6.3.5
6.7.3 6.8.2.2 6.8.3.9

funotional 6.6.3.1 6.6.3.5 6.6.3.6
goto-statement 6.8.1 6.8.2.1 6.8.2.4

6.8.3.2 6.8.3.7 6.8.3.9
identifier 3. 4. 6.1.3

6.2.2 6.3 6.4.1
6.".2.3 6.4.3.3 6.5.1
6.5.2 6.5.3.3 6.6.1
6.6.2 6.6.3.1 6.8.3.9
6.10

identifier-list 6.4.2.3 6.4.3.3 6.5.1
6.6.3.1 6.6.3.3 6.10

it-statement 6.8.3.3 6.8.3.4
implementation-defined 3. 5.1 6.1.7

6.".2.2 6.4.3.4 6.7.1
6.7.2.2 6.7.2.5 6.9.4.2
6.9.4.5.1 6.9.4.6 6.9.6
6.10

implementation-dependent 3. 5.1 5.2
6.1.4 6.7.2.1 6.7.3
6.8.2.2 6.8.2.3 6.9.6
6.10

index-type 6.4.3.2 6.5.3.2 6.6.3.3
indexed-variable 6.5.3.1 6.5.3.2
indexing 6.5.3.2 6.6.3.3 6.8.2.2

6.8.3.10
integer-type 6.1.5 6.3 6.4.2.1

6.".2.2 6.4.3.2 6.4.3.4
6.4.6 6.6.6.2 6.6.6.3
6.6.6.4 6.6.6.5 6.7.2.2
6.7.2.5 6.9.2 6.9.4.2
6.9.11.4

label 3. 6.1.2 6.1.6
6.2.1 6.2.2 6.8.1
6.8.2..

maxint 6.1.5 6.4.7 6.7.2.2
member 6.7.1 6.7.2.5
aeaber-designator 6.7.1

PASCAL NEWS #18 MAY, 1980 PAGE 64

note 6.1 6.4.2.2 6.4.3.1
6.4.3.2 6.4.3.3 6.Jt.3.4
6.4.4 6.4.7 6.5.1
6.5.3.2 6.6.3.1 6.6.5.2
6.6.6.4 6.7.1 6.7.2.1
6.7.2.2 6.7.2.5 6.8.1
6.8.3.4 6.8.3.5 6.9.3
6.9.4.5.2 6.9.5 6.10
6.11

number 6.1.7 6.4.2.2 6.11.2.3
6.4.3.3 6.4.3.5 6.11.5
6.6.3.6 6.6.6.4 6.7.3
6.8.2.3 6.9.2 6.9.4.2
6.9.4.4 6.9.4.5 6.9.4.5.1
6.9.4.5.2

operand 6.6.5.3 6.7.2.1 6.7.2.2
6.7.2.3 6.7.2.5

operator 6.5.1 6.7.1 6.7.2.1
6.7.2.2 6.7.2.3 6.7.2.4
6.7.2.5 6.8.3.5

ordinal 6.4.2.1 6.4.2.2 6.4.2.3
6.6.6.1 6.6.6.4 6.7.2.5

ordinal-type 6.4.2.1 6.4.2.4 6.4.3.2
6.4.3.3 6.4.3.4 6.6.3.6
6.6.6.4 6.7.1 6.7.2.5
6.8.3.5 6.8.3.9

parameter 6.6.1 6.6.3.1 6.6.3.2
6.6.3.3 6.6.3.4 6.6.3.5
6.6.3.6 6.6.5.2 6.6.5.3
6.6.6.2 6.6.6.4 6.6.6.5
6.8.3.9 6.9.2 6.9.3
6.9.4 6.9.4.6 6.9.5

pointer 6.4.4 6.5.1 6.5.4
6.6.3.3 6.6.5.3 6.7.2.5
6.8.2.2 6.8.3.10

point~r-type 6.2.2 6.4.1 6.11.4
6.5.4 6.6.2 6.6.5.3

predeolared 4. 6.6.4.1
predefined 4. 6.4.2.2 6.11.3.5

6.7.2.2
prooedural 6.6.3.1 6.6.3.4 6.6.3.6
prooedure 6.1.2 6.4.3.5 6.11.4

6.5.4 6.6 6.6.1
6.6.3.4 6.6.5.2 6.8.1
6.8.2.3 6.8.3.9 6.9.2
6.9.3 6.9.4 6.9.5
6.9.6 6.10

prooedure-blook 6.1.4 6.6.1 6.6.3.1
prooedure-deolaration 6.2.1 6.6.1 6.6.3.4

6.8.2.3 6.8.3.9
prooedure-identifier 6.6.1 6.6.3.1 6.6.3.4

6.7.3 6.8.2.3 6.8.3.9
prooedure-statement 6.6.1 6.8.2.1 6~8.2.3

6.8.3.9

PASCAL NEWS 1118 MAY, 1980 PAGE 65

program 1. 3. 14.
5. 1 5.2 6.1.1
6.1.2 6.1.8 6.2.1
6.2.2 6.14.3.5 6.14.14
6.5.14 6.6.1 6.6.2
6.6.5.14 6.8.2.14 6.8.3.9
6.9.1 6.10

program-parameters 6.2.1 6.9.1 6.10
real-type 6.1.5 6.3 6.4.2.1

6.4.2.2 6.14.6 6.6.6.2
6.6.6.3 6.7.2.2 6.7.2.5
6.9.2 6.9.14.2 6.9.14.5

record-type 6.14.3.1 6.14.3.3 6.5.3.3
6.8.3.10

record-variable 6.2.2 6.5.3.3 6.8.3.10
referenced-variable 6.5.1 6.5.14 6.6.5.3
region 6.2.1 6.2.2 6.3

6.4.1 6.4.2.3 6.4.3.3
6.5.1 6.6.1 6.6.2
6.6.3.1 6.8.3.10

result 6.4.3.3 6.6.1 6.6.2
6.6.6.2 6.6.6.3 6.6.6.4
6.7.2.2 6.7.2.3 6.7.2.4
6.7.2.5

same 6.1 6.1.3 6.1.4
6.1.7 6.2.2 6.4.1
6.4.2.2 6.4.2.4 6.4.3.2
6.4.5 6.4.6 6.4.7
6.5.3.2 6.6.3.1 6.6.3.3
6.6.3.5 6.6.3.6 6.6.5.2
6.6.6.2 6.6.6.4 6.7.1
6.7.2.2 6.8.3.5

scope 1. 3. 6.2
6.2.2 6.5.3.3 6.8.3.1

set-type 6.4.3.1 6.4.3.4 6.7.2.4
6.7.2.5

statement 5.1 6.2.1 6.6.5.4
6.8.1 6.8.2.1 6.8.3.2
6.8.3.4 6.8.3.5 6.8.3.8
6.8.3.9 6.8.3.10

string-type 6.4.3.2 6.7.1 6.7.2.5
6.9.4.2 6.9.4.7

string-types 6.1.7 6.4.5 6.4.6
6.9.4.7

structured-type 6.".1 6.4.3.1 6.4.3.2
6.".3.3 6.4.3.5 6..4.6

subrange 6..4.2.4 6.4.3.4 6..4.5
6.7.1 6.9.2

symbols 4. 6.7.2.2 6.8.2.1
6.11

tag-field 6.4.3.3
text 3. 4. 6.1.8

6.2.2 6.4.3.5 6.6.1
6.8.2.4

?:.:., . NEWS 1118 MAY, 1980 PAGE 66

textfUe 6.4.3.5 6.6.5.2 6.6.6.5
6.9.2 6'.9.4 6.9.4.1
6.9.6 6.10

tokens 4. 6.1 6.1.1
6.1.2 6.1.8 6.8.3.2
6.8.3.7 6. 11

totally-undefined 3. 6.2.1 6.4.3.3
6.6.5.2 6.6.5.3

type-identifier 6.2.2 6.4.1 6.4.2.1
6.4.3.5 6.4.4 6.6.3.1
6.6.3.3

undefined 3. 6.5.4 6.6.2
6.6.5.3 6.7.1 6.8.3.9

variable 3. 6.4.3.5 6.4.4
6.5.1 6.5.2 6.5.3.1
6.5.3.2 6.5.3.3 6.5.5
6.5.4 6.6.3.1 6.6.3.2
6.6.3.3 6.6.5.2 6.6.5.3
6.6.5.4 6.7.1 6.8.2.2
6.8.3.9 6.8.3.10 6.9.2
6.10

variable-access 6.5.1 6.5.2 6.5.3.2
6.5.3.3 6.5.5 6.5.4
6.7.1 6.7.3 6.8.2.2
6.9.2 6.9.3

variant 6.4.3.3 6.6.3.3 6.6.5.3
6.8.2.2 6.8.3.10

with-statement 6.6.5.2 6.6.5.3 6.8.3.1
6.8.3.10

word-symbol 6.1.2 6.1.3 6.1.4

PASCAL NEWS 118 MAY, 198t: PAGE 67"

PASCAL NEWS 1118
MAY, 1980 PAGE 68

Pascal Standardisation
A M Addyman
Department of Computer Science
University of Manchester
Oxford Road
MANCHESTER H13 9PL
United Kingdon

HISTORY

In 1977 a working group was formed within the British Standards
Institution (BSI) to produce a standard for the programming language Pascal.
This working group is responsible to the technical committee on programming
languages (DPS/13) and is designated DPS/13/4.

The Attention List

The working group first produced a li.t of all the known problem.
with the current definition of Pascal. This was called the Attention List.
The final version of the Attention List, which was produced in January 1978,
ran to 17 pages. It contained contributions from members of the group,
from correspondents and from published criticisms of Pascal.

In April 1978 it was decided that further work on the Attention List
should be .uspended in favour of the production of a draft. To date there
have been five working drafts.

The First Working Draft

The first working draft was produced by dividing up the .ubject
matter into some 16 sections. Many of the .ection topics corresponded
to those of the Revised Report. Each .ection was the respon.ibility of
two group members; one to write the section and one to comment upon it.
The first draft was completed by mid-July 1978.

The Second Working Draft

Immediately following receipt of all the sections which formed the
first working draft, the convenor (A.M.Addyman) was a participant at a
workshop which was organised to discuss Pascal. The first working draft
was the subject of informal discussions at the workshop. On returning
from the workshop, the document was redrafted to:

(a) remove obvious inconsistencies in style P.tc.
(b) produce a document whose form was closer to that of a

British Standard.
(c) incorporate comments from the informal discussions.

Both the first and second working drafts were distributed to the
members of the working group during August 1978.

The Third Working Draft

A meeting of the group was held in September 1978 to discuss the
drafts. This TPsulted in 3 list of corrections and amendments to the
second working draft. These w~rc incorporated in a new draft together with
some furtht'r editl'rii11 Chiltlr,t'Swhid1 wpr(> nc.>c£'ssary to form a British
Stand.ud.. This draft .\.-:IS I'lIhl i~ht'd in I'ascotl Nl'WS /t14 ami Sl\ftW.1re rr;tctice

and EXpt'ri"I\C£', \'OIUlIIl' 9 Nlllllhl'r 5 (N,IY llI7~).

PASCAL NEWS '18 MAY. 1980 l"I\GE 69

The Draft for Public Comment

The draft for public comment was an edited version of the third

working draft. The changes introduced bring the document into line with

851/150 editorial practice. The draft for public comment became BSI
document 79/60528DC and ISO/rC97/SC5 N462. It also appeared in IEEE
Computer Volume 12 Number 4 (April 1979)

The Fourth Working Draft

The fourth working draft was produced in repsonse to the comments

received by August 1979. The group (DP5/l3/4) met in September 1979 to
discuss these comments and create the draft. This document was circulated

as IS0/rC97/SC6 N510. It was further discussed at a November meeting.

The Fifth Working Draft

This draft was the result of an ISO Pascal Experts Group meetina in

Turin, Italy in November1979. It was circulated to members of the sroup

in December 1979 for editorial and typographical comments. It became
ANSI X3J9/80-OO3.

The First ISO DTaft Proposal

This is the fifth working draft with editorial corrections etc.
It is being circulated to those ISO members bodies which are members for
ISO/TC97/SCS (programming Languages) for comment and three month letter
ballot. To ensure the widest possible exposure of the draft it is
being printed in SIGPLAN Notices.

Commenting on the Draft Proposal

Ideally you should send your comments to the standards organisation

which participates in ISO activities on your country's behalf. All these
organisations will have received a copy of the draft and should be actively

considering it. In several countries e.g. France, Germany, the Netherlands,

the U.K. and the U.S.A. a group was formed which met and considered a previous
public draft. In some other countries e.g. Canada, there is the

possibility that such a group will soon be formed. If your national

standards organisation needs comments from individuals to assist it with its

national response you should send your conments to them. In the U.S.A.
please send your comments to the secretary of the Joint ANSI X3J9 - IEEE

Pascal Standards Committee, who is:

Carol Sledge

On-Line Systems, Inc.

115 Evergreen Height Drive
Pittsburgh PA 15229

Note
The last meeting of the Joint Pascal Committee during the comment/

ballot period will be April 23-25th in Washington D.C.

PA~~AL NEWS 1118
MAY, 1980 PAGE 70

If you are in the U K, or are outside the USA and are unwilling
or unable to communicate with your own standards working body you should
send your comments to:

Tony Addyman
(Convener ISO/TC97/SC5/WG4)
Department of Computer Science
University of Manchester
Oxford Road
MANCHESTERMl3 9PL
United Kingdom.

Organising your Comments

The previous comment period produced a very large volume of
comments in a wide variety of formats. It will assist in the processing
of the comments if the following guidelines are adhered to.

1. References to the text should be by section number ~
by page number.

2. A clear statement of the nature of the problem should be given.

3. Suggestions entailing revision to the text should indicate
the preferred wording.

For Example (from the US comments on N462)

Section 6.8.2.2 Assignment-statements

Problem

If the selection of a variable involves the
variant record, for consistency the time of
implementation-dependent.

Solution

Change line 8 to

"If the selection of the variable involves the indexing of an array, the
selection of a field of a variant record,"

selection of a field of a
selection should also be

Thank You.

Note

The ISO/TC97/SC5 members countries are:

P-Members
Canada, China, Finald, France, Germany, Hungary, Italy, Japan,
Netherlands, Romania, Spain, Sweden, Switzerland, UK, USA.

o-Members
Australia, Austria, Belgium, Bulgaria, Czechoslovakia, Denmark,
India, Israel, Norway, Poland, Portugal, Republic of South Africa,
USSR, Yugoslavia.

. ;.::
>.

; ~.
:.. '-. t ."".

,
."

; i~, 1 ! - : 1C \.~ i .
"

.

5th rebiuiry 1980

