PASCAL USER'S GROUP

- Pascal News

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

December, 1978 INUMBER 131 (oh, how unlucky...)

Order of the Claw: Even reasonable people can disagree...
POLICY: Pascal News
ALL-PURPOSE COUPON
EDITOR'S CONTRIBUTION

HERE_AND THERE WITH Pascal L
Tidbits RIPE
Pascal in the News f :
Pascal in Teaching 5,4!33?
DOD-1 (ADA) .
Books and Articles
Conferences
Review of Pascal News 9/10, 11, and 12
Roster Increment

APPLICATIONS
Algorithms
Software Tools

ARTICLES

"Moving a Large Pascal Program from an LSI-11 to a Cray-1"
- Richard Sites

"On the Article 'What to do After a While'"
- Roy Wilsker

“A Resolution of the Boolean-Evaluation Question -or-

if not Partial Evaluation then Conditional Expressions"
- Morris Roberts and Robert Macdonald

"What to do After a While...Longer"
- T. Irish

"Know the State You Are In"
- Laurence Atkinson

OPEN FORUM FOR MEMBERS
Open Letter to all PUG members
Proposed Constitution
Pascal Standards

IMPLEMENTATION NOTES
General Information
Implementors Group Report
Checklist
Portable Pascals
Pascal Variants
Feature Implementation Notes
Machine-Dependent Implementations
Index to Implementation Notes (PUGN 9-13)

POLICY: Pascal User's Group
University of Minnesota Equal-Opportunity Statement

David T. Craig

EX LIBRIS:

736 Edgewater

Wicniza, hansas 67230 (USA!

3

#

r
L

Policy

POLICY: PascaL News (78/10/01)

Pascal

News is the official but informal publication of the User's Group.

Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of (1) having to insist that people
who need to know "about Pascal" join PUG and read Pascal News - that is
why we spend time to produce it! and (2) refusing to return phone calls
or answer letters full of questions - we will pass the questions on to
the readership of Pascal News. Please understand what the collective
effect of individual inquiries has at the "concentrators" (our phones and
mai]boxes): We are trying honestly to say: '"we cannot promise more than
we can do."

* An attempt is made to produce Pascal News 3 or 4 times during an academic year

from July 1 to June 30; usually September, November, February, and May.

* ALL THE NEWS THAT FITS, WE PRINT. Please send material (brevity is a virtue) for

Pascal News single-spaced and camera-ready (use dark ribbon and 18.5 cm lines!

* Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO

THE CONTRARY.

News is divided into flexible sections:

* Pascal

POLICY - tries to explain the way we do things (ALL PURPOSE COUPON, etc.).

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the __
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal for
varjous algorithms, and software tools for a Pascal environment; news of
significant applications programs. Also critiques regarding program/algorithm
certification, performance, standards conformance, style, output convenience,
and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
ph1losoph¥, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.)

OPEN FORUM.FOR.MEMBEBS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
1mp]ementqtions as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are

publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent Implementations.

* Volunteer editors are (addresses in the respective sections of Pascal News):

Andy Mickel - editor

Jim Miner, Tim Bonham, and Scott Jameson - Implementation Notes editors

Sara Graffunder and Tim Hoffmann - Here and There editors

Rich Stevens - Books and Articles editor

Rich Cichelli - Applications editor

Tony Addyman and Rick Shaw - Standards editors

Scott Bertilson, John Easton, Steve Reisman, and Kay Holleman - Tasks editors

PASCAL USER'S GROUP
USER'S ALL-PURPOSE COUPON

//

//

/7

/7

/7
//

!/

36 35 36 36 36 3 3 36 36 35 3630 36 3 3

(78/19/01)

GROUP

Pascal User's Group, c/o Andy Mickel < CLip, photocopy, or
University Computer Center: 227 EX <«

208 SE Union Street <« nreproduce, efe. and
University of Minnesota <«

Minneapolis, MN 55455 USA <« mail to this address.

Please enter me as a new member of the PASCAL USER'S GROUP for __ Academic
year(s) ending June 30, (not past 1982). I shall receive all the

issues of Pascal News for each year. Enclosed please find . (* Please
see the POLICY section on the reverse side for prices and if you are joining
from overseas, check for a PUG "regional representative." *)

Please renew my membership in PASCAL USER'S GROUP for Academic year(s)
ending June 30, (not past 1982). Enclosed please find

Please send a copy of Pascal News Number(s) . (* See the Pascal News
POLICY section on the reverse side for prices and issues available. ¥)

address
My new phone

old mailing label if I can find one.

You messed up my agggﬁzs. See below.

is printed below. Please use it from now on. 1I'll enclose an

(* The U.S. Postal Service does not
forward Pascal News. *)

Enclosed please find a contribution (such as what we are doing with Pascal at
our computer installation), idea, article, or opinion which I wish to submit

for publication in the next issue of Pascal News. (* Please send bug reports
to the maintainer of the appropriate impTementation listed in the Pascal News
IMPLEMENTATION NOTES section. *) -

None of the above.

Other comments: From: name

mailing address

phone

computer system(s)

date

(* Your phone number aids communication with other PUG members. *)

POLICY

JOINING PASCAL USER'S GROUP?

- membership is open to anyone: particularly the Pascal user, teacher, maintainer,
implementor, distributor, or just plain fan.

please enclose the proper prepayment (checks payable to "Pascal User's Group");
we will not bill you.

please do not send us purchase orders; we cannot endure the paper work! (If you are
trying to get your organization to pay for your membership, think of the cost of
paperwork involved for such a small sum as a PUG membership!)

when you join PUG anytime within an academic year: July 1 to June 30, you will
receive all issues of Pascal News for that year unless you request otherwise.

please remember that PUG Ts run by volunteers who don't consider themselves in the
"publishing business." We produce Pascal News as a means toward the end of
promoting Pascal and communicating news of events surrounding Pascal to persons
interested in Pascal. We are simply interested in the news ourselves and prefer to
share it through Pascal News, rather than having to answer individually every letter
and phone call. We desire to minimize paperwork, because we have other work to do.

American Region (North and South America): Join through PUG(USA). Send $6.00 per year
to the address on the reverse side. International telephone: 1-612-376-7290.

European Region (Europe, North Africa, Western and Central Asia): Join through PUG(UK).
Send £4.00 per year to: Pascal Users' Group/ c/o Computer Studies Group/ Mathematics
Department/ The University/ Southampton S09 5NH/ United Kingdom. International
telephone: 44-703-559122 x700.

Australasian Region (Australia, East Asia =incl. Japan): Join through PUG(AUS).
Send $A8.00 per year to: Pascal Users Group/ c¢/o Arthur Sale/ Dept. of Information
Science/ University of Tasmania/ Box 252C GPO/ Hobart, Tasmania 7001/ Australia.
International Telephone: 61-02-23 0561.

PUG(USA) produces Pascal News and keeps all mailing addresses on a common 1ist.
Regional representatives collect memberships from their regions as a service, and
they reprint and distribute Pascal News using a proof copy and mailing labels sent
from PUG(USA). Persons in the Australasian and European Regions must join through
their regional representatives. People in other places can join through PUG(USA?

RENEWING? (Costs the same as joining.)

- please renew early (before August) and please write us a 1ine or two to tell us what
you are doing with Pascal, and tell us what you think of PUG and Pascal News to help
keep us honest. Renewing for more than one year saves us time.

ORDERING BACKISSUES OR EXTRA ISSUES?

— our unusual policy of automatically sending all issues of Pascal News to anyone who
joins within an academic year (July 1 to June 30) means that we eliminate many
requests for backissues ahead of time, and we don't have to reprint important
information in every issue--especially about Pascal implementations!

Issues 1, 2, 3, and 4 (January, 1974 - August, 1976) are out of print.

Issues 5, 6, 7, and 8 (September, 1976 - May, 1977) are out of print,

(A few copies of issue 8 remain at PUG(UK) available TorR2 each.)

Issues 9, 10, 11, and 12 (September, 1977 - June, 1978) are available from PUG(USA)

all for $10 and from PUG(AUS) all for $A10.

extra single copies of new issues (current academic year) are:
$3 each - PUG(USA); £2 each - PUG(UK); and $A3 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

~check the addresses for specific editors in Pascal News. Your experiences with Pascal
(teaching and otherwise), ideas, letters, opinions, notices, news, articles,
conference announcements, reports, implementation information, applications, etc.
are welcome. "All The News That Fits, We Print." Please send material single-spacer
and in camera-ready (use a dark ribbon and 1ines 18.5 cm wide) form.

- remember: A1l letters to us will be printed unless they contain a request to the
contrary.

MISCELLANEQUS INQUIRIES?
~ PTease remember That we will use Pascal News as the medium to answer all inquiries, and

we regret to be unable to answer individual requests.

UNIVERSITY OF MINNESOTA University Computer Center
TWIN CITIES 227 i ineeril
Minneapolis, Minnesota 55455

(612) 376-7290

(* This is going to be a long column. I apologize, but many important things need to be
said. The future of PUG is one of them! *)

I would like to thank everyone who has helped with Pascal User's Group and Pascal News.
Three far-sighted individuals to whom we owe special thanks are close by (at the University
Minnesota). Pete Patton is our Computer Center director and Larry Liddiard is our
associate director for systems. Phil Voxland is the director of the Social Science Research
Facilities Center. Their encouragement and moral support gave us the chance to see Pascal
through to its widespread acceptance through the medium of Pascal News.

0. _FORTRAN

Being a member (just joking) of ACS and SHAFT (American COBOL Society--dedicated to the
elimination of COBOL in our lifetime--and the Society to Help Abolish FORTRAN Teaching,

see PUGN #5) I've always wanted to write a short essay like David Barron wrote below. 1I'd
like to add that if the new FORTRAN compilers are written in assembler 1ike most of the old
ones, then we should see instability as well. Pascal may make its move on the large machines
especially at Universities!

FORTRAN — The End at Last?

D.W. Barron

The apparent indestructibility of FORTRAN as the preferred
programming language of users in the physical sciences has long been
a discouragement to those of us who try to spread the use of Pascal.
We have thought long and hard about ways to convert the FORTRAN
faithful, and concluded regretfully that it can't be done. Readers
of Pascal News probably don't follow the activities of the FORTRAN
Standards Committee, and so will be unaware of recent developments
which indicate that the Standards Committee is doing the job for us.

The specification of FORTRAN 77 has recently been published -
a hotpotch of "features" heaped indiscriminately on the existing
FORTRAN language in a way that is not downwards compatible. The
Committee has already started work on FORTRAN 82 and has published a
draft list of features of the "central module". Since such sacred
things as C in column 1 for comments, continuation in column 6 and
statements starting in column 7 are apparently to go, the result will
not even bear a superficial resemblance to the FORTRAN that present
day users know and love.

If you ask a scientist why he uses FORTRAN, his answer will
include some or all of the following reasons

i) it is efficient
ii) it is simple
iii) it is universal.

Editor’s Contribution

The first reason is a red-herring - Pascal is probably more efficient
than FORTRAN on many computers, but the typical FORTRAN user has been
brainwashed into believing that nothing can be more efficient than
FORTRAN. The simplicity of FORTRAN is superficial - true simplicity
comes from logical cohesion. Certainly, FORTRAN 77 can't be described
as simple: "feature-oriented" designs rarely are. The really strong
card in the PORTRAN pack is its umiversality. Every computer centre
has a FORTRAN compiler, they are reasonably compatible, and the
scientist can move his FORTRAN programs from place to place with
relative ease. The reason for this is that FORTRAN has been around
for a long time, and has been stable for a long time. It is this
stability that the new Standards are destroying. Now, FORTRAN may
be ANSI or "77. '82 lurks in the wings. These new versions are
appreciably different from the old, so FORTRAN loses its identity.
What gives a language an identity? Partly its structure, mainly its
stability. The FORTRAN philosophy seems to be that FORTRAN is
anything to which a particular committee chooses to give that name:
at a stroke they have destroyed FORTRAN's most valuable assett.

Whilst rejoicing over this development, we should not
lose sight of the moral for Pascal. When it comes to determining
the usage of a language, having a good language helps, but most
important is to have a stable, widely available language. That
way we can reach the situation where everyone knows Pascal and
everyone can use Pascal. I1f we want Pascal to become a universal
language, then we must deny ourselves the indulgence of changing it.

I. Recent Events (at least since PUGN #12)

A Tot of people responded positively to the new Applications section started in #12. 1
bope this issue's Applications section is just as worthy. There were also a few comments
in favor of regularly featuring “Pascal in Teaching."

It's been quite a while since #12 appeared and even though we have been flooded with renewals
and the enthusiastic remarks of “keep-up-the-good-work!", here 1 am putting #13 out very
late. I'm sorry. "13" is turning out to be unlucky indeed. Please see part II.

Part of the reason we're late is that it is hard to keep up with the swirl of events
surrounding Pascal. So...

case ImportantEvent of

Employment:
Please see the letter from Chuck Beauregard in the Open Forum section. People have been
calling me constantly on the phone for 6 months now trying to find Pascal people to fill
Jjobs they offer. So get the word out: IF YOU KNOW Pascal YOU CAN EASILY FIND A JOB.
Down goes another myth. (But, wow, it has been a struggle!)

ConcurrentPascal:
Per Brinch Hansen is trying to survey Concurrent Pascal users.
tetter -in the Implementation Notes section before February 28.

Please respond to his

NASA:
The United States National Aeronautics and Space Administration (NASA) is making a strong
committment to Pascal. NASA Langley, NASA Ames, and NASA in Houston are all concerned
with reliable software in deep-space probes (such as the upcoming Galileo project). PUG
member John Knight {who is the CDC-Star Pascal implementor and convenor of the joint
SIGPLAN/PUG session at ACM--see below) has been keeping us informed. Thanks, John!

ConventionalizedExtensions:
In #12 we described the formation of an International Working Group on Pascal Extensions
which is supposed to decide on a handful of conventionalized extensions. Please see the
section in Open Forum on Standards.

ST# SK3IN T¥ISYd

R IEREN

861

15Vd

Editor’s Contribution

Standards:
The British Standards Institute Working Group (DPS/13/4) work on a Pascal standard (see
PUGN #14 for a working draft) should help lay to rest much of the standards controversy.
A revised version of the document will be accepted by ISO (and therefore ANSI in the
United States) in mid-1979. Politics with standards unfortunately keeps growing as
knowledge and use of Pascal grows. And unfortunately ANSI has decided to refer Pascal
standards business to a subcommittee called X3J9. See Standards in Open Forum.

PascalMachines:
One of our fondest wishes has been that hardware manufacturers help bridge the gap to
Pascal by building machines with friendlier architectures.
Judy Mullins Bishop wrote her PhD thesisunder Prof. David Barron investigating just such
a Pascal architecture, which among other things, would require minimal storage
requirements for object code. Some people keep saying that BASIC (BASICK) exists on
small personal computers and that Pascal implementations are too big. The fact is that
the popular small personal computers are now based on microprocessors such as the 8080,
7-80, 6800, and 6502 with dinosaur architectures (and with memories too small to do much
useful anyway'!). Thus a Pascal implementation is at a disadvantage having to emulate
actions that should be performed in the hardware to begin with, and therefore consuming
more code space. The significant aspect of the widely-known UCSD (University of Calif.
at San Diego) Pascal project was to dispel the myth that Pascal couldn't run on a micro.
However, in order to be small, this implementation had to be kept interpretive (there
exist several cross-compilers of "hard code" for these micros from other sources). Also

because UCSD Pascal is_a Pascal-P derivative, the P-code had to be modified and packed
{frequency-encoded), The result is slower execution.

But, recently, Western Digital built an inexpensive chip~-set expressly for running the
modified UCSD P-code, and a speedup of 5 or 10 is being realized.
will probably do the job even better in a few months by building something closer to
standard P-code that will execute much faster. They have had something similar under
wraps for over two years! After being disappointed by Zilog and the Z-8000 a year ago,
it is good to see Western Digital take the courageous first step, made possible by the
people at UCSD. (Unfortunately we have been receiving altogether too many reports from
users that UCSD Pascal is not as stable as it should be, and that its non-standard
extensions are particularly lacking in robustness. For an example, see the
Implementation Notes section.)

PascalUsage:
The Western Digital product brochure for its Pascal "Microengine" apparently misquoted
Ken Bowles of UCSD concerning: “there are more users of UCSD's Pascal today than users
of all other versions combined." This patently false statement has caused Ken some
embarrassment, and although it's hard to get an exact figure, I'd estimate that nearly
8% (1 in 12) of all Pascal usage is on UCSD Pascal. Most usage is on PDP-11's (non-
UCSD) followed by IBM 370's followed by CDC machines and DEC 10's and 20's. To give a
specific example, the venerable CDC-6000 implementation is running at over 300 (very
large) sites, and at just one of them (our University of Minnesota computer center)
the compiler was accessed over 272,000 times from 77/07/01 to 78/06/30 which
represented a 68% increase over the previous 12 months. We have been trying to collect
usage data through the checklists in the Implementation Notes section and will try to
summarize them in one place in a future issue.

ExplosionInIndustryliterature:
Byte, Electronics, Creative Computing (ROM), and others have run full-length articles
on Pascal. In fact the August, 1978 Byte was almost entirely devoted to Pascal! This
phenomenon is most encouraging because eventually the mainstream computer Titerature
will have to help carry news about Pascal if it is to supplant BASIC and other crummy
languages. Other computer journals (Computer World, for example) have kept Pascal in
the news this last six months and we appreciate it. The only bad side effect is that
the publicity has literally swamped us here at PUG central with mail and phone calls.

end (* case *} This leads to....

In fact, long-time PUG member

National Semiconductor

II. Pascal User's Group / Pascal News status

Running Out of Time

Just at the time when the mail was starting to build up last May, (it now runs between

10 and 30 pieces a day), our usually smooth-running operation became short-handed. Jim
Miner started going to school full-time. Sara Graffunder delivered a 2.81 kg baby boy
named David. ?As an aside, Rich Stevens got married two days after Thanksgiving in
November!) Not just that, but standards politics, conventionalized-extensions politics,
and UCSD workshop politics all began to consume our time with very little in return (just
working very hard to stay still). The cover of this issue depicts the situation.

As if that weren't all, I do have my own full-time job to do here at the University of
Minnesota computer center. This summer we changed operating systems and character sets.
Because I am also involved with the project to produce a new release of CDC-6000 Pascal,
I was unable to work on PUG much at all this summer. OQur mail went unanswered, and I
apologize.

New Members

This is the first academic year (July, 1978 to June, 1979) for almost 1000 new members, and
I wanted to assure them good service and information which would tell them what our style
is 1ike. But after catching up with the mail in October (and returning all $4 renewals
arriving after August 1 thus allowing a 1-month grace period) and falling behind again, I
think I have disappointed quite a few people and I'm sorry. We have stated that we are
all-volunteer, and that we have little or no secretarial help, but you new members have
yet to read this sentence because you have received nothing from us unti7 now! I urge
?ﬁw members to get backissues from last year--see the section on backissues in Here and
ere.

Deadlines

We have received some sharp criticism from overseas PUG members (who, by the way

contribute most of the material for publication!) about the publications deadlines for
Pascal News. The fact is that we had no deadlines during 76-77 (issues 5-8) and everything
went well. When we began setting deadlines in the first 1line of the Editor's Contribution
(issues 8-12) we never actually met a single one. Because we were always late in producing
an issue, overseas members often received issues after the deadline for the next issue.
Solution:

let's go back to no deadlines. If you have material, simply send it in.

Confusion

Our mailing list has never been sold or given out. Any PUG members with issues of Pascal
News from #9/10 onward has the mailing 1ist, because we print the roster. We have however
sent out a notice last month for the jointly-sponsored ACM SIGPLAN (Association for
Computing Machinery Special Interest Group on Programming Languages)-PUG session at the
national ACM '78 conference this December, and it is already causing confusion. We didn't
bring all the renewals up to date, and for many people, this is the first thing to be
received from us. If I were on the receiving end I would be confused too! We knew we

were going to be late with this issue, and that is why we sent the notice out.

Summary

I hate to paraphrase someone like Winston Churchill, but he said that sometimes doing your
best is not enough--sometimes you have to do what is required. Please read on in my open

letter in the Open Forum section.
oy

78/12/01.

¢T# SMIN TYISVd

R ERERER

8L6T

h 39Vd

TibpBITS

Ole Anderson, Corvallis, OR 97330: "I have a LISP interpreter that runs under the UCSD
Pascal system- Would anyone be interested?" (*78/05/19%)

David A. Beers, Santa Ana, CA 92701: "I very much enjoy reading Pascal News. It is a

refreshing exposure to rationality when compared to my job as a business systems
programmer. ... I have talked to Joseph Mezzaroba of Villanova Universiy concerning
his DOS/VS version of the AAEC Pascal 8000, and will be attempting to convert it to DOS
unless I hear of someone else’s successful endeavors in this area." (*78/10/25%)

C. Y. Begandy, Aluminum Company of America, Alcoa Center, PA 15069: "I recently obtained
the Pascal compiler from the DECUS library. Because of daytime core usage restrictions
at our installation, it is necessary to decrease the size of the executable program.
Any 1information you might have on other users’ experiences in implementing either a
smaller version of this compiler, or a segmented version would be greatly appreciated."
(*78/05/26*)

Gerd Blanke, Eschborn, Germany: "... MODULA will be running on a Zilog MCS with 64K
under Rio near the end of this year!™ (*78/10/27%)

John H. Bolstad, Department of Mathematics, Florida State Univ, Tallahassee, FL 32306:
"We use Pascal here for almost all computer science courses. The system programmers
also use it." (*78/07/11%)

R. T. Boute, Francis Wellesplein 1, B-2000 Antwerpen Belgie: "We are interested in a
special hardware support for standard and concurrent Pascal, for example microprogrammed
implementations of the P machine." (*78/10/17%)

Robert Boylan, Metromation, Princeton, NJ 08540: "I know a PDP-11 version of Pascal is in
existence, but has anyone done one for a Modcomp mini?" (*78/07/26%)

David C. Cline, Westboro, Mass 01581: '"Pascal is attracting a lot of attention here at
Data General as a takeoff point for a SIL." (*78/05/11%)

Dennis R. Ellis, Cray Research, Boulder, CO 80303: "I have a COPYSF (copy shifted file)
implemented on a CRAY-1 written in Pascal using 11 lines of code." (*78/08/07%)

Larry Ellison, Computer Assisted Bible Study, Willingboro, NJ 08046: "I am serving as
coordinator for a group of Bible students who are going to use Pascal on various
wmicro-computers to assist in the study of the Bible." (*78/08/09%)

John Fitzsimmons, Edina, MN 55436: "It seems that every issue of PUGN has a few pleas for
insertions, deletions, or things they don’t like about Pascal. Did it ever occur to
those of you who complain that the rest of us like the language as it is?'" (*78/06/30%)

Lee Frdnk, BTI Computer Systems, Cherry Hill, NJ 08002: "... our Pascal is the systems
programming language for our new BTI-8000 and all our compilers are written in it."
(*78/06/16%)

Glen Fullmer, Tektronix Inc., Beaverton, OR 97099: "Dear Lord, won’t you buy me a new
programming language/ My friends all write Pascal/ I must make ammends./ P. S. We could
call it “LACSAP’."™ (*78/10/31%)

Steven J. Greenfield, Unicorn Systems Company, Los Angeles, CA 90010: "I have been using
Pascal for the last six months to write an Assembler designed to generate code for any
object computer. Pascal has provided a powerful method of writing a transportable piece
of software.'" (*X78/04/25%)

Dale H. Grit, Department of Computer Science, Colorado State University., Ft. Collins,

CO 80523: "At CSU, we’re using Pascal in all upper level courses... next year, the 2nd
course will be Pascal." (*78/08/10%)

Here and There With Pascal

Marc Hanson, Hermosa Beach, CA 90254: "... 1 would appreciate learning about anyone’s
experiences with running Pascal on either Xerox or Honeywell equipment.' (*78/05/04%)

Sam Hills, New Orleans, LA 70125: "I am implementing AUGMENT (from the last PN) on the
DEC-10." (*78/08/14*)

G. Steve Hirst, Iowa City, Iowa 52240: "CONDUIT (a consortium distributing computer-based
curriculum materials) is currently imvestigating including Pascal as a distribution
language for new materials." (*78/08/07%)

Claes Hojenberg, University of Uppsala, Sweden: '"UDAC is the computer center for the
Univ. of Upsala, Sweden’s biggest university, and we hope to be able to use {UCSD}
Pascal for implementing a data-base management system on microcomputers." (*78/10/06%)

K. B. Howard, College of the Sequoias, Visalia, CA 93277: "We’re interested in looking
into the possibility of using Pascal (in instucting beginning programming course) for
students aiming toward engineering and computer science filelds, and are particulary
interested in learning of sources for compilers for the language, for PDP-11, HP-3000,
and/or Altair 8800 micro if possible.” (*78/09/29%)

L. C. Hutchinson, Mentor, OH 44060: "... I would appreciate knowing if there are any
Modcomp Pascal users..." (*78/05/15%)

Jose I. Icaza, Universidad Autonoma Metroplitana - Azcapotzaleo, Mexico D.F., Mexico: "At

this University, we are just starting to wuse Pascal and giving some optional
mini~courses about it. People seem to love the language. Hopefully, soon it will
replace FORTRAN as the first language students learn." (*78/10/24%)

Dennis Ralthofer, Philadelphia, PA 19103: "I am starting a workshop in computer science

stressing the social aspects of the field. ... I plan to use Pascal as the basis for
these systems and any further systems we develop, to organize our programming technique
and understanding, and for teaching people about computers and programming in general,
as it illustrates many important computer concepts." (*78/07/11%)

Richard H. Karpinski, San Francisco, CA 94114: '"Request that software tools’ or
“applications’ solicit Pascal program modification tools, such as macro generators and
programs to make names unique among the first N characters, etec. Praise for UCSD
system." (*78/04/18%)

Tom Kelly, Downingtown, PA 19335: "With regard to ‘improvements’, “extensions’, etc, L
wish people would engage brain before putting mouth in gear’. My (substantial) work
with several Pascal compilers over past year has shown me what a fantastic job Wirth
did!"™ (*78/07/07%)

Neb Lafert, Hewlett-Packard (Schweiz) AG, Geneva, Switzerland: "... we think that a good
relationship should be established between our two organizations, enabling us to help
every new request for Pascal in our country." (*78/09/25%)

Jerry LeVan, Dept Math Sc, Eastern Ky Univ, Richmond, KY 40475: "All of our CS majors
will be started on Pascal. We are using OMSI’s Pascal. I am reasonably happy with the
implementation (it will compile and run Pascal-S)." (*78/07/11%)

Stephen A. Locke, Beloit Corporation/Paper Machinery Division, Beloit, WI 53511: "I am
interested in Pascal for real-time control of an industrial process... Is there anyone
you know working in such a direction?" (*78/06/05%)

Richard C. Lound, San Francisco, CA 94114: "I am an independent software consultant,
primarily in communications systems. My interest in Pascal is in its applicability to
use for generation of specialized message switching and front-end software."(*78/08/02%)

Wilf Overgaard, Worldwide Evangelization Crusade, Fort Washington, PA 19034: "Where could
I locate a general ledger-bookkeeping program, in Pascal, for non-profit organization?
... Where can one find a good word processing program in Pascal?" (*78/08/31%*)

Bill Marshall, Sanders Assoclates Inc., Nashua, NH 03060: "I had hoped to be the first
one on my world to implement Pascal on the VAX-11/780, but discovered a group at Univ.

¢T# SKAN 1YISVd

I ERTERER

861

S 39vd

Here and There With Pascal

of Washington already well along toward that goal." (*78/08/28%)

Jim Mctord, Goleta, CA 93017: "I am acting as the distributor for UCSD Pascal for hobby
users of the LSI-11. Cost is $50, of which $35 goes to UCSD for continued work. Other
$15 pays for documentation and postage, if user sends me four floppies. (Else I will
provide for $3 each). This includes all source code for everything, including the
interpreter. Anybody interested should get in touch with me (we already have 7 users)."
(*78/07/17%)

Michael Robert Meissner, University of Minnesota, Minneapolis, MN 55455: "Everybody talks

about portability of programs. This summer I ran into the portability of programmers.
I found that we can all get locked into thinking and depending on special features of
Pascal compilers, and have to ‘relearn” Pascal whenever we switch computer systems or
compilers.” (*78/10/20%)

Anne Montgomery, Lowry AFB, CO 80230: "McDonmell Douglas has developed a CMI/CAI system
here on Lowry Air Force Base called the Advanced Instuctional System (AIS). The AIS, as
its name implies, is used primarily for technical training. ... The system currently
manages approximately 1500 students in four courses over a l2-hour production shift."
(*78/10/16%)

Roderick Montgomery, Somerville, NJ 08876: "I am coordinating distribution of UCSD Pascal
to amateurs in the Amateur Computer Group of New Jersey, largest surviving hobbiest club
in U. S. September meeting of ACG-NJ will be devoted to Pascal.' (*78/07/20%)

William Moskowitz, The California State University and Colleges, Los Angeles, CA 90036:
"I might add that Pascal at CSUC has been tremendously successful. During the past
twelve months we have had 68,603 accesses and usage continues to grow." (*78/07/17%)

David Mundie, 104-B Oakhurst Circle, Charlottesville VA 22903: "I would 1like to
correspond with anyone having first-hand experience with the 5-100 bus TI 9900 Pascal
system being offered by Marinchip Systems." (*78/10/06%)

John E. Newton, Randolph AFB, TX 78l48: "I am specifically interested in identifying
members that have implemented Pascal on Burroughs 6700 hardware.™ (*78/07/20%)

Dave Peercy, BDM Corp., Albuquerque, NM 87106: "We at BDM are becoming a very interested
group of Pascal users.” (*78/08/28%)

Sergi Pokrovsky, USSR Acad. Sci., Novosibirsk, USSR: "I hope that S. Pitin of the
Moscow Computing Center will shortly report to you on his (not so recent) implementation
of Pascal for the BESM~6 computer.” (*78/10/31%)

Darrell Preble, Georgia State University, Atlanta GA 30303: "GA State Univ. has
converted a Pascal compiler from SUNY at Stony Brook. Originally written in XPL, it
uses either of two monitors to support interactive or batch use.” (*78/09/05%)

David Rosenboom, York University, Downsview, Toronto, Canada M3J 1P3: "My particular
interest in Pascal is in obtaining or developing a compiler for use on the 16-bit
Interdata machine... Do you know of anyone who has developed a Pascal system for
Interdata 16-bit machines?" (*78/09/01%)

Axel Schreiner, University of Ulm, W-Germany: "Using (in Ulm) Torstendahl’s RSX-11 Pascal
(love it) and Petersen’s TR440 Pascal (not quite as stable) in begimner’s courses.™
(*78/06/19%)

Joeseph C. Sharp, Varian, Palo Alto, CA 94303: "I will introduce Pascal to the North Star
Users Group this month. A 30 minute talk is scheduled.” (*78/10/30%)

Robert J. Siegel, Brooklyn, NY 11215: "Would like to see an article on the relationship
of Pascal to ALGOL." (*78/06/23%)

Seymour Singer, Hughes Aircraft Co., Fullerton, CA 92634: "We have installed the
SLAC-Stanford Pascal compiler on our twin Amdahl 470 computers." (*78/07/09%)

Jim Smith, Computer Science Dept., School of the Ozarks, Pt. Lookout, MO 65726: "We have
recently implemented a Computer Science Department here as the School of the Ozarks, and
there is a need to increase the software library in the computer center. We feel that
Pascal would be an important language to present in the curriculum.’ (*78/09/08%)

Craig A. Snow, TRW Communications Systems and Services, San Diego, CA 92121: "We are very
interested in using Pascal to implement our future software products.” (*#78/05/09%)

James A. Stark, Oakland, CA 94609: "Interactive Pascal via UNIX is way ahead of a batch
compiler on UCSF’s 370/148 but I have no comparison on routine production jobs on
either." (*78/07/17%)

Ed Thorland/Walt Will, Computer Center, Luther College , Decorah, IA, 52101: "We are
still looking for information on an HP3000 implementation of P-code Pascal. Also need
documentation of P-code instruction-format and functions." (*78/07/11%)

P. J. Vanderhoff, Berkel En Rodenrijs, The Netherlands, "What happened to Stony Brook
Pascal release 27" (*78/10/27%)

Eiiti Wada, Division of Engineering, University of Tokyo Graduate School: "In my class,
all the examples were switched to Pascal since the fall semester of 1972, and the first
Pascal compiler became available in the summer of 1974. Since then at the University of

Tokyo, three versions of Pascal compilers have been installed, and all the compilers are
intensively used." (*78/09/08%)

Anna Watson, Panama City, FL 32407: "Very fascinating reading in News - must obtain
magnifying glass before I go blind though.™ (*78/05/15%)

Anna Watson, Panama City, FL 32407: "Is there a Pascal for a SEL 32/75?" (*78/10/07%)
John West, Digital Systems Design Group, Atlanta, GA 30327: "Would like any information
about latest Pascal-P implementations on Interdata 7/16, 7/32, NCR 8100, 8200."
(*78/05/01%)

James A. Woods, Berkeley, CA 94703: "What’s wrong with C?" (*78/08/24%)

PascaAaL IN THE NeEwWs

Byte, May, 1978: "Comments on Pascal, Learning How to Program, and Small Systems"; A short

article by Gary A. Ford, Arizona State University, which talks about Pascal’s advantages
and drawbacks with regards to personal computing. "I have used Pascal for at least 95%
of my own programming and I cannot recommend it too strongly."

Byte, August, 1978: "Pascal: A Structurally Strong Language™; A 6-page article describing
Pascal. Procedures for Infix to Polish conversion, and subsequent code generation for a
hypothetical micro are listed and explained.

Byte, August, 1978: "In Praise of Pascal™; A quick survey of Pascal, with descriptions of
user-defined scalar types, sets, and pointer type variables. A comparison of a Pascal
program and a BASIC program to its corresponding Warnier-Orr logic diagram is given.

Byte, August, 1978: "Pascal Versus COBOL"; Ken Bowles shows how Pascal can be applied to
the traditionally COBOL-infested business environment.

Byte, August, 1978: "Pascal Versus BASIC"; A comparison of a program “MASTERMIND
Codebreaker’ written in both BASIC and Pascal. Mastermind is similar to the number
guessing game “BAGELS’, using colored pegs instead of digits.

Byte, September, 1978: ™A “tiny’ Pascal Compiler, Part l: The P-code Interpreter”; The
first in a series of articles describing a Pascal compiler written for an 8080. The
first talks about parsing, and grammers, etc. Parts of the P-code interpreter are
listed.

Byte, October, 1978: "A “tiny’ Pascal Compiler, Part 2: The P-compiler”; The second part
of the previous, this describes the compiler portion.

¢T# SMAN TVISVd

REELVEREL

86T

9 39Yd

Byte, November, 1978: The third part of the ‘tiny” Pascal series is to be on generating
executable 8080 machine code.

Computer Week, May 12, 1978: "Pascal- Everybodys Language?"; A short description of What,
Where, and Why of Pascal. "Pascal is named after the 17th century French philosopher,
Blaise Pascal. It is not an acronym and is written in lower case."

Computer Weekly, August 24, 1978: “GEC’s Pascal; "A Pascal compiler is being developed by
General Electric Computers (GBr) for its 4000 series machines. ... will be available in
1979."

Computer Weekly, September 9, 1978: "“Motorola to offer Pascal on MACS"; "Giving futher
credence to the view that Pascal could become the dominant high level language of
microcomputing, Motorola Semiconductor has revealed that this sof tware will be the prime
language supported on its new microprocessor MACS, due to be unveiled early next year."

Computerworld, April 17, 1978: "TI adds Pascal to Mini’s Repertoire"; "A Pascal software
package sald to be suitable for systems applications because its compiler and several
software modules are themselves written in Pascal has been introduced by Texas
Instruments Inc. for the firms DS990 packaged disk-based minicomputer systems." 1 year
sof tware subscription costs $1,500 to $2,000.

Computerworld, April 24, 1978: "Growth in Use of Pascal called Revolutionary"; A short
report, by Richard Cichelli, mentioning that Pascal is available "for the Zilog, Inc.
Z80 micro to the Cray Research, Inc. Cray-1 supercomputer and for nearly everything in
between." Also, it gives the addresses of the PUG and DECUS/Pascal groups.

Computerworld, May 8, 1978: "Pascal Attractive Anyway"; A Letter to the Editor from Saul
Rosen, Purdue University, "Pascal is a very attractive language. Here and at many other
colleges and universities, it 1s used extensively in computer science and computer
engineering courses.”

Computerworld, May 15, 1978: "Standard Pascal Compiler Runs on PDP-11°s8"; A description of

Oregon Minicomputer Software, Inc. Pascal compiler, known as OMSI Pascal-l, which
generates assembly code that can be assembled and linked with DEC system utilities.
RT-11 can support this compiler.

Computerworld, May 22, 1978: "Pascal ready for DG users™; An announcement of Rhintek,
Inc.’s Pascal compiler for Data General Corp. minicomputers running RDOS. Cost is
approximately $1,000.

Computerworld, May 22, 1978: "Northwest Melds 8085A, Pascal"; 'Northwest Microcomputer
Systems, Inc. has announced a ‘programmers workbench’ that reportedly combines the
throughput of the 3 MHz Intel Corp. 8085A and the power of Pascal." "The 85/P provides
the “full Pascal environment,’ according to the spokesman, including random and
sequential files, a screen-oriented editor, interactive source-linked debugger and full
documentation plus a 90-day warranty."” Cost is about $7500.

Computerworld, September 4, 1978: "University Working To Adapt Pascal For MDC-100 Use™;
"Programmers here at the University of California are presently under contract to adapt
Pascal for use on the American Microsystems, Inc (AMI) MDC-100 microprocessor development
center, according to an AMI spokesman."

Comwputerworld, September 29, 1978: "The Waves of Change", "“Implementation languages and
the case for Pascal"; one section of the multi-part excerpt of Charles P. Lecht’s book,
The Waves of Change is devoted to a background of why Pascal is a successful language,
and where it is being used. "Pascal is more interesting than other influential, new
development languages such as Algol 68, because it is apparent that it was designed for
software engineering purpogses. (italics in original).

Computerworld, September 25, 1978: "Isam Loglc, Disk Space Control Included in Micro-Based

Pascal/Q"; An announcement of Pascal/Q, which is an enhanced version of Pascal which
"includes support for Qsam, Queue’s enhanced Isam file access method, and for automatic
disk file storage allocation”. Available for $300 plus $19/month for updates from Queue
Computer Corp.

Computerworld, October 2, 1978: “"DOD Expects Standard Compiler by 1981"; The U. S.
Department of Defense’s new compiler is planned to be based upon Pascal. There is a
plethora of articles on this language (see July Sigplan Notices).

Computerworld, November 20, 1978: “Work on Pascal Progressing”; "A technical comamittee

from the American National Standards Institute (ANSI)] ON Pascal has been approved to
work under the X3 committee on computers and information processing. Identified as X319,
the new groups’ initial task is to prepare a proposal for standardization of Pascal and
to obtain approval of the proposal ..." Justin Walker of the NBS will convene the first
meeting at the CBEMA offices on Tuesday, December 19. "Interested pecple and organ—
izational representatives are invited to contact Cathy A. Kachurik at Cbema/Standards,
1828 L St. N. W., Washington, DC 20036.

Computerworld, November 20, 1978: "DOD language named"; "“ADA” has been chosen as the name

for the forthcoming Department of Defense (DOD) computer programming language- The
language was named after the first programmer im history, according to Lt. Col. William
A. Whitaker of the DARPA. Ada Augusta, Countess of Lovelace, was one of the few
contemporaries of computing pioneer Charles Babbage who understood his work on calcula-—
ting machines. ... the first funded compiler, produced for the Army is expected in May
1981."

Computing Europe, September 1978: "Steelman ready next April ..."; More on the DoD’s new
language. Some background on what has been happening, plus some comments by Edsger
Dijkstra, who is a critic of the DoD’s plans.

Electronic Design 19, September 13, 1978: "Pascal isn’t just one more computer language.
It promises to be simple, flexible and fast.™; "Fhis introduction to the Pascal
programming language is the first part of a series, based on ESI’s Pascal Instruction
Mamual. Future parts will deal in detail with Pascal statements, structured data, 1/0
procedures, advanced programming techniques and real-world applicatiomns." This is a
good primer to the language. About 5 pages in length.

Electronic Products, July 1978: "As IC it"; bylined by Jerry Metzger. He mentions that
several IC houses and minicomputer companies have announced intentions towards using
Pascal. "But standards need to be established. The time is right to do this with
Pascal."

Electronic Engineering Times, October 16, 1978: "Pascal Implemented in Code of WD“s First

Computer Offering™; "Pascal has been implemented in the microcode of a new computer from
Western Digital Corp., the first in a line of system products to be announced soon,
according to the company.” "This new system includes a complete Pascal operating system—
Pascal compiler, BASIC compiler, file manager, screen-oriented editor, debug program and
graphics package- all written in {UCSD} Pascal.” Price is about $2,500.

Electronics, October 12, 1978: "Pascal becomes software superstar"; “From the mountain
fastness of Switzerland there came 10 years ago a programming language called Pascal.
For the first few years of its life it created little stir, but them it began to gain
popularity in academia and eventually industry. Today, Pascal is finding its way into
machines of all shapes and sizes around the world."” This is a good article which gives a
brief history, and the current usages of Pascal, from micro’s to maxi’s and small
applications programs to operating systems.

Scientific-Technical Book & Copy Center, Letter to Andy Mickel; "Pascal is our best seller
+es We would very much like to see a copy of Pascal News".

Silicon Gulch Cazette, Volume 3, Number 3: "UCSD Pascal On An S-100 System"; "Dr. Jim
Gagne of Los Angeles, CA, will ... explain the joys and sorrows of implementing UCSD
Pascal on his small computer and the difficulties involved in the project.” This is a
report on scheduled lectures during The Third West Coast Computer Faire, which took place
November 3rd and 4th.

From the preceeding: "A Portable Compiler for a Pascal-like Language”; "... will be
described by Mark Green. He will treat the problem of program portability. Three
solutions to the problem will be presented. As well, a particular piece of portable
software developed for the Micro Pascal Compiler will be examined.”

ST# SHIN TYISVd

“4384W323da

8461

L 39Yd

Communications of the ACM, October 1978, back cover: An advertisement for jobs with the
Software Technology Company; "develop a compiler for a sophisticated, Pascal-based
communications language with real-time multiprocessing features, extensive exception-
handling facilites, global data modules, and other state-of-the-art characteristics."
"{Softechs} compiler was produced on the UNIX system and later moved to RSX-11."

TimeShare, open letter to PUG members: "TSC has adopted Pascal as the primary implemen-
tation language for its LSIl1 based products. «es It is, however, difficult to find
programmers experienced with Pascal and RTl11l (or RSX) and RSTS.”" TSC is looking for
applicants with these qualifications (plus 2-4 years experience).

ADVANCED/TECHNOLOGY

P.0.BOX 456, MINNEAPOLIS, MN 55440

RESEARCH/ASSOCIATES

(612) 374-1293 or
PUG member Eric Hand, 2633 Dupont Ave S., Minneapolis, MN 55408 (612) 377-7387, informed
us that if you are tired of cumbersome COBOL, obsolete FORTRAN, or Brontosaurian PL/1,
you can show your support for the best general-purpose language now available by
acquiring a Pascal-POWER T-shirt for $5.95 postpaid from ATRA. Sizes are S, M, L, and
XL for a lite-blue shirt with an artistic portrait of a smirking Blaise Pascal.

PascaL IN TEACHING

This new section will report on experiences with Pascal used for teaching in computer
science. The first report is a nice survey done in Australian Universities by Jan

Hext from the University of Sydney. Following that is a report from Japan, and one

on a CAI system developed at ETH Zurich. Juddy Bishop at the University of Witwatersrand
in Johannesburg, South Africa, promised to send a description of a Pascal programming
contest held for undergraduates. Substantial prizes were given.

The University of Tasmania

Postal Address: Box 252C, G.P.O., Hobart, Tasmania, Australia 700t
Telephone: 230561, Cables ‘Tasuni’ Telex: 58150 UNTAS

N\ AT

11th October, 1978
Dear Andy,

I enclose some information which should be of interest to Pascallers.
A friend of mine, Jan Hext from the University of Sydney, has been polling
Australian Universities to measure the extent of Pascal's penetration into the
teaching area. The sampling is very selective (ie. by membership of PUG!),
but many of the institutions not polled would either not teach computer science,
or would contribute insignificantly. There are exceptions, of course, notably
Monash University - I am reliably informed they are switching over in 1979.

Yours sincerely,

M

Department of Information Science.

TEACHING PASCAL IN 1979

In order to survey the market for Pascal textbooks in 1979, a
questionnaire was sent to the universities and colleges listed in the
Pascal Users Group mailing 1ist. Three questions were asked:

1. How many students would be learning Pascal in 1979?

2. MWould they have learned any other language previously? If so,
which one?

3. What textbook would be recommended?

The answers are summarized in the table below. Allowing for a few self-
taught students, etc., the main conclusion is that at least 2500 people

in Australia will be Tearning Pascal in 1979, of whom 1900 will be learning
it as their first language.

Also listed below are thirteen textbooks on Pascal which are either
available or else in press.

The enthusiasm for Pascal may be reflected in the fact that all of

the questionnaires were returned without any extra prompting. I would like
to express my appreciation to the people who so helpfully answered them.

J.B. Hext

cT# SHIN 1VISVd

R ELLERER

861

8 19Vd

Replies to questionnaires

University or Introductory As a Second Language:
Institute Students students, first language
Adelaide 350 40, Fortran
ANU. 250 -
Melbourne 200 (?) 100, Fortran
Newcastle - 35, Fortran
N.S.W. 320 -
Queensland 400 100, Fortran
R.M.I.T. 150 -
S.ALT - 100, Cobol
Sydney - 200, Fortran
Tasmania 120 -
W.A. 100 -
Wollongong - 60, Basic
Total 1890 595
Textbooks

The following textbooks are either introductions to Pascal or more
advanced books that make use of Pascal. Reviews of them are cited from
the Pascal Newsletter (PN) and the ACM Computing Reviews (CR).

Addyman and Wilson: "A Practical Introduction to Pascal", MacMillan,
1978, 140 pp.

Alagic and Arbib" "The Design of Well-Structured and Correct Programs",
Springer, 1978, 292 pp. (PN#11).

Bowles: "Microcomputer Problem Solving Using Pascal", Springer, 1977,
563 pp. (PN#11).

Conway, Gries and Zimmerman: "A Primer on Pascal", Winthrop, 1976, 448 pp.

(PN#12).

Findlay and Watt: “An Introduction to Programming in Pascal", Pitman, 1978.

Grogono: "Programming in Pascal", Addison-Wesley, 1978, 350 pp. {PN#12).

Jensen and Wirth: "Pascal Users Manual and Report", Springer, 1978, 167 pp.

Kieburtz: “Structured Programming and Problem Solving with Pascal",
Prentice-Hall, 1977, 320 pp. (PN#10)

Rohl and Barrett: "A First Course in Programming in Pascal”, Cambridge
University Press, in press.

Schneider, Weingart and Periman: “An Introduction to Programming and
Problem Solving with Pascal”, Wiley, 1978, (PN#12).

Webster: "Introduction to Pascal", Heyden, 1976, 129 pp. (PN#8).

Wirth: "Systematic Programming: An Introduction", Prentice-Hall, 1973.

Wirth: "Algorithms and Data Structures = Programs”, Prentice-Hall, 1976.

NIHON UNIVERSITY

COLLEGE OF INDUSTRIAL TECHNOLOGY

i1zumicho Narashino Shi
Chiba 275 Japon

A Report from College of Industrial Technology 78/08/03
Nihon University, Japan

Prof.H.Shima feel strongly the fruitfull effect of utilizing the Pascal language

in computer science education, and so he utilize that language in his class.

The year Prof.H.Shima started to introduce the language to the computer science course
of the department of mathematical engineering was 1976' academic year and 30 students
attended’ to it's seminar. The first semester of 1977, he utilized Pascal for 110
students of junior enroll to the department in computer sclence class, and all these
times they used "Systematic Programming: An Introduction'(Prentice Hall'7l:-Translated
to Japanese Edition) as a text.

Now, in 1978' academic year, on both former term and later term he use mainly
Pascal in his class for computer science education, referring "Algorithm + Data Struct-
ures = Programs'(Prentice Hall'76) and using a text note which Prof.H.Shima himself
edited for his junior level students and they belong to the department of mathematical
engineering.

Students are served to use concurrent Pascal compiler for their practice and it is
implemented by Assistant Prof.J.Ohshima on his laboratory minicomputer(Facom U-mate).

X5-0

In the Apr/May/Jun 1978 issue of the AEDS Monitor, an article appeared entitled XS5-0
XS-0: A Self-Explanatory School Computer'" by J. Nievergelt. The paper was presented
at the NAUCAL 1977 Fall Computer Conference in Dearborn, MI. Nievergelt is with the
Institut fuer Informatik, ETH Zurich and also with the Department of Computer Science
at the University of Illinois. Other people involved in the project are H. P. Frei,

H. Burkhart, Chris Jacobi, B. Pattner, H. Sugaya, B. Weibel, and J. Weydert also of
ETH. The project, begun in Fall, 1975, was intended to develop an interactive system
that should serve as a self-explanatory school computer so that a user should be able
to learn programming without further help. An extended version of Pascal-S was used
both as an author language and as the programming language for teaching purposes. The
hardware consisted of a PDP 11/03 with 28K words and dual floppys, 2 graphics terminals
with TV monitors and 8080 micros with 8K bytes of RAM. The system software was written
in MODULA. The 8080 was programmed in assembler.

Latest News About DOD-1 (ADA or DODQ) - Andy Mickel

As we've told you in previous issues of Pascal News, the U. S. Department of Defense
(DOD) has endeavored to procure a common programming language based on Pascal for all
"'embedded'' computer applications--computer systems attached to weaponry. Reliable
software should kill people reliably! A series of proposals were drawn up under the
names Strawman, Woodenman, Tinman, lronman, and now Steelman (June, 1978) which are
alternatively titled '"Department of Defense Requirements for High Order Computer
Programming Languages.'' The DOD awarded 4 contracts to 4 software houses from those
who had responded to the Ironman specifications in July, 1977. They formulated actual
language designs in_documents which are known by colors: BLUE-SofTech; GREEN-Honeywell
Bull; RED-Intermetrics; and YELLOW-SRI International.

¢T# SMIN TYISVd

R AN

8/61

6 19vd

Basically, the designs consist of Pascal extended for concurrent prgcessed and time-
dependent ("real-time") programming. Because a projected $3.0 x 107 will be spent each
year by the DOD on software written in this language, the stakes are high. This fact
atone has stimulated much manufacturer interest in Pascal over the last two years. We
were always worried that this new language (formerly referred to as ''DOD-1" and which

has now been dubbed "!ADA''--see Pascal In the News--or DODO) would swamp Pascal if it
were too similar in form. Manufacturers then simply would not support Pascal but instead
supply the new, extended language.

In February, 1978 the DOD narrowed the field to 2 by selecting GREEN and RED for actual
implementation efforts. More than 50 groups of academic, military, and industrial
people were hired to review and comment on the proposals. Niklaus Wirth and Tony Hoare
consulted for YELLOW (the Teast ambitious of the proposals) and Henry Ledgard for GREEN.
It is reassuring that none other than Edsgar Dijkstra wrote caustic comments which
appeared in SIGPLAN Notices: EWD663 in July and EWD659-662 in October. ADA is safely
going off the rails, and the threat to the integrity of Pascal is over, | believe. To
quote Dijkstra:

BLUE - '"unacceptably complex''; GREEN - ''the mixture between sense and nonsense
remains baffling''; RED - '"both advanced and backward in such an incongruous
manner that | am baffled'; YELLOW - '"an unsalvagable mess.''

He stated in EWD663:
. ..It makes also quite clear why the new programming language cannot be
expected to be an improvement over Pascal, on which the new language should
be 'based'. (I am pretty sure that the new language--if it ever gets designed
at all--will be much, much worse than Pascal if they proceed in this fashion.)
You cannot improve a design like Pascal significantly by only shifting the
'centre of gravity' of the compromises embodied in it: such shifts never
result in a significant improvement,in the particular case of Pascal it will
be extra hard to achieve any improvement at all, as most of its compromises
have been chosen very wisely..."

Please see Ed Reid's letter in the Open Forum section.

B00ks AND ARTICLES

Please submit all notices of Pascal books, articles, abstracts, etc. to Rich Stevens
at the address below:

KITT PEAK NATIONAL OBSERVATORY
Operated by The

ASSOCIATION OF UNIVERSITIES FOR RESEARCH IN ASTRONOMY, INC.
Under Contract With The

Nationar Science Founparion

Memeer INSTITUTIONS:

UNIVERSITY OF ARIZONA

CALIFORNIA INSTITUTE OF TECHNOLOGY 950 North Cherry Avenue
UNIVERSITY OF CALIFORNIA

UNIVERSITY OF CHICAGO P. 0. Box 26732

HARVARD L' NIVERSITY 8 Tucson, Arizona 85726
INDIANA UNIVERSITY Tuesday evening, Nov. 21, 197

UNIVERSITY OF MICHIGAN Y 9s ’ AC 602 3275511
OHIO STATE UNIVERSITY Cable Am:

PRINCETON UNIVERSITY
UNIVERSITY OF TEXAS AT AUSTIN AURACORP, Tucson

UNIVERSITY OF WISCONSIN
YALE UNIVERSITY
UNIVERSITY OF HAWANI

Andy,

Here is the Books and Articles section for #13. Thank the world for self
correcting typewriters. | promise to have thingqﬁetter organized so that
my secretary can do the typing for #14,

After going through the previous Newsletters | decided to break the Books and
Articles section into:

- Articles

- Books

- Book Reviews.
I did not include any abstracts with each article reference and only included
a comment when ! felt one was needed for clarification as to the papers
relevance to PUG. This should cut down on the size of the section a little.
| expanded the book section and gave as much information on the book as
possible (table of contents when available) as this is the kind of stuff that
| look at when initially inspecting a book.

! just received your UCC Computer User's Manual today and am initially very
impressed (especially with the introduction to computing).. 1'll send more

detailed comments shortly.
=

ARTICLES

Amman, Urs, "Error Recovery in Recursive Descent Parsers', ETH Zurich, Berichte
des Instituts fur Informatik, No. 25, May 1978.

Berry, R. E., '"Experience with the Pascal P~Compiler', Software - Practice and
Experience, Vol. 8, 617-627 (1978).

Burger, Wilhelm F., "Parser Generation for Micro-Computers', Dept. of Computer
Sciences, U. of Texas at Austin, TR-77, March 1978.
(* A parser for the language Pascal can be accomodated in less than %K of
8-bit bytes *

Erkio, Hannu and Sajanienu, Jorma and Salava, Autti, "An Implementation of
Pascal on the Burroughs B6700", Dept. of Computer Science, U. of Helsinki,
Finland, Report A-1977-1.

Krouse, Tim, Electronic Design, Vols. 19 thru 23, 1978.
(* A continuing series of tutorials on Pascal %)

Lawrence, A. R. and Schofield, D., ""SFS - A File System Supporting Pascal Files,
Design and Implementation', National Physics Laboratory, NPL Report NAC 83,
Feb. 1978.

LeBlanc, Richard J., “Extensions to Pascal for Separate Compilation", SIGPLAN
Notices, Vol. 13, No. 9, Sept. 1978.

Lecarme, Olivier and Peyrolle-Thomas, Marie-Claude, ''Self-compiling Compilers:
An Appraisal of their Implementation and Portability”, Software - Practice
and Experience, Vol. 8, 149-170 (1978).

(* The study is centered around a specific case, the programming language

Pascal and its many compilers %)

Marlin, Chris D., "A Model for Data Control in the Programming Language Pascal'
Proceedings of the Australian Colleges of Advanced Education Computing
Conference, Aug. 1977, A. K. Duncan (Ed.), pp. 293-306. Available from author
at Dept. of Computing Science, U. of Adelaide, Adelaide, South Australia 5001.

Marlin, Chris D., "A Heap-based Implementation of the Programming Language
Pascal,''Software - Practice and Experience, to . Also available from the
author, see above.

gT# SMIN YISV

86T “¥34K3J30

0T 39Yd

Mohilner, Patricia J., "Prettyprinting Pascal Programs'", SIGPLAN Notices, Vol. 13,

No. 7, July 1978.

Neal, David and Wallentine, Virgil, "Experiences with the Portability of
Concurrent Pascal't, Software - Practice and Experience, Vol. §, 341-353 (1978).

Posa, John G.,''Pascal Becomes Software Superstar', Electronics, Oct. 12, 1978.

Posa, John G., "Microcomputer Made for Pascal', Electronics, Oct. 12, 1978.

Pratt, Terrence W., ""Control Computations and the Design of Loop Control
Structures', IEEE Transactions on Software Engineering, Vol. SE-4, No. 2,
Mar. 1978.

(* Examples drawn from a Pascal Compiler ¥)

sale. A. H. J., "Strings and the Sequence Abstraction in Pascal’, Dept. of
information Science, U. of Tasmania.

Sale, A. H. J., “Stylistics in Languages with Compound Statements', Australian
Computer Journal, Vol. 10, No. 2, May 1978.

Shrivastava, S. K., "'Sequential Pascal with Recovery Blocks", Software -
Practice and Experience, Vol. 8, 177-185 (1978).

Tennent, R. D., "Another Look at Type Compatability in Pascal', Software -
Practice and Experience, Vol. 8, 429-437 (1978).

BOOKS

PASCAL: An Introduction to Methodical Programming by Bill Findlay and David Watt
(U. of Glascow, Computing Science Dept.). Computer Science Press, 306 pp.;
UK Edition by Pitman International Text, 1978 ({ih.SS).

The book does not assume previous knowledge of computing, nor of advanced
mathematics. Emphasis is placed on programming principles, good style and
a methodical approach to program development. The technique of stepwise
refinement is taught by consistent example throughout. In addition, two
major chapters are exclusively devoted to programming methodology. The
first is placed early enough to encourage good practice from the start.
I't includes sections on choosing refinements, testing and correcting and
documentation. The second, at the end of the book, draws all the material
together in two realistic case studies. Since the whole language is
covered, the book may be of value to those who wish to learn something of
the modern concepts of program structure and data structure, even if they
must use a language other than Pascal. Contents:
Part 1: First Steps in Programming
Computers and programming; data and data types; the INTEGER type;
the BOOLEAN type; Boolean algebra; input/output; control structures,
WHILE and IF; methodical programming, Case Study I.
Part 2: More Data Types
CHAR, enumerated types, subranges; REAL; arrays.
Part 3: More Control Structures
CASE, FOR, REPEAT, GOTO.
Part 4: Subprograms
Functions; procedures, parameter passing, procedures and program
structure; advanced uses of procedures.
Part 5: More data structures
Records; strings; files; sets; pointers.
Part 6: Programming Methodology
Case studies 2 and 3, general principles.
Appendices
Collected syntax diagrams; reserved words and special symbols;
predeclared entities; legible input and output; character sets.
Answers to selected exercises.
(* Author's information *)

Programming via Pascal by J. S. Rohl and Barrett (U. of Western Australia),
Cambridge University Press, in press.
(* Anybody have any more information on this text ? #*)

A Practical Introduction to Pascal by I. R. Wilson and A. M. Addyman, Springer-
Verlag New York, 1978, 145 pp. ($7.90); MacMillan, London, 1978, (£3.50).

Suitable for beginners and experienced programmers who wish to learn the
complete Pascal language, this concise introduction includes

- Syntax diagrams and complete examples illustrating each feature of the
language;

Simple problems introducing control constructs, expressions and the use
of procedures;

A discussion of the concept of data type, followed by a complete
description of the data structure facilities of Pascal;

-~ An analysis of more advanced procedures and dynamic data structures;

- Over sixty programs.

Contents:

Introduction. The form of a program and basic calculations. Basic control
constructs. Variables, constants and expressions. An introduction to
input and output. An introduction to procedures and functions. Data types.
An advanced data type - the sequential file. Elementary structured types
1, 2, 3 and 4: Set, array, record and variant. Advanced uses of procedures
and functions. Dynamic data structures.

(* From publishers information *)

(* See below for review *)

The Design of Well-Structured and Correct Programs by $. Alagic and M. A. Arbib,
Springer-Verlag New York, 1978, 292pp. ($12.80).
(* We are awaiting a review of this book from Duke Haiduk for next issue. *)

BOOK REVIEW

Programming in PASCAL by Peter Grogono
Addison-Wesley, Reading, Mass., 1978, 357 pp., $9.95.

Finally, an easy to read, lucid description of Pascal.
This book is described in its preface as being suitable for
an introductory programming course and in addition it should
be an excellent self-study text for the experienced programmer
who wants to learn Pascal.

The author made a point to cover the entire language and
this is one of the book's strongest points. (One of the other
texts on Pascal, A Primer on Pascal by Conway, Gries and
Zimmerman does not cover the entire language, omitting sets,
functions, pointers, records and files). Grogono also includes
a good description of a specific implementation (the Ziirich CDC
system) and this will help one appreciate the implementation of
the abstract language on a specific computer.

Another strong point of the book is that it is not just
a text on writing programs in Pascal, rather it is a text on
the Pascal language, intermediate data structures and structured
programming. The inclusion of a chapter on program design and
an appendix on program standards are a welcome addition to any
language description, especially if the book is to be used for
an introductory text. The data structures covered include
linked lists and trees.

The examples used in the text are excellent and well
thought out. Wirth's technique of stepwise refinement is
used extensively. An interesting table processing program is
provided to show that "Pascal, with a relatively small number

¢T# SHIN VISV

“439K1323d

861

TT 39Vvd

of basic constructs, can nevertheless be used effectively to
solve problems outside the domain of academic programming."

There are very few complaints that I have with this book.
Each chapter is followed by a group of exercises (solutions
are not provided) and some indication as to the relative
difficulty of each exercise would be helpful. There are
relatively few typographical errors.

All in all the book is excellent and a long awaited
addition to the Pascal literature.

W. Richard Stevens

BOOK REVIEW

A Practical Introduction to Pascal by I. R. Wilson and A, M. Addyman
Springer-Verlag, New York, 1978, 145 pp., $7.90. [ISBN 0-387-91136-7.

This book admirably fulfills the promise of its title - it gives a concise,
well-organized tutorial on how to write programs in Pascal. The complete
language is presented in fourteen short chapters. Particularly notable is the
attention paid to the data structuring facilities of Pascal: fully six of the
chapters deal directly with data structures.

After an introduction in Chapter 1, the basic structure of a complete Pascal
program is shown in Chapter 2, Chapter 3 describes the control structures
available in the language and gives advice on their use (including obligatory
warnings about GOTO's). Chapters & and 5 discuss variables, constants,
expressions, and input/output. Chapter 6, "An Introduction to Procedures and
Functions', is especially good: the appearance at this point in the course of
the presentation of these concepts is well-motivated and natural. Also, Pascal's
parameter mechanism is explained nicely. Chapters 7 thru 12 discuss data types
including files and record variants. Procedures and functions are revisited in
Chapter 13 to show recursion and in Chapter th4 pointers are introduced in the
context of ''dynamic data structures!. Each chapter is followed by suitable
sets of exercises(easy) and problems (hard). There are four appendices: the
completesyntax, delimiter words, answers to exercises and suggestions for
solutions to the problems, and a note about the Pascal User's Group.

The pace of the presentation is even and well-motivated. New syntactic
forms are introduced with simplified syntax charts andexamples and their semantics
are conveyed by incisive programs or program fragments. Particularly useful for
the new Pascal user is the printing of programs as they might actually be
listed alongwith those ugly digraphs " (%" and ""*)". Keywords are, however,
printed in boldface. Example programs are developed in good style - stepwise
refinement and top-down design are advocated and used.

The book is not above some minor criticism: some references are too broad
... readers are referred to Coleman {1978), Dahl et al. (1972) and Aho et al.
(1974) ."" appears on page 69; refinement of program steps proceeds from comments
expressed in Pascal comments later in the book (page 60, ff) but by lowercase
fragments earlier {page 19, ff); there are a few misprints. Also, some of the
exercises and example programs would be easier to understand if samples of their
input and output were presented.

In summary, the book is a welcome addition to the Pascal literature. It
is physically attractive and provides an excellent introduction to the language
for beginning and experienced programmers alike.

R. Warren Johnson

Department of Mathematics and
Computer Science

St. Cloud State University

St. Cloud, Minnesota

CONFERENCES

We received recently, the latest Bulletin de Liaison du Sous-Groupe Pascal no.4

from Olivier Lecarme in France. He of course heads the French AFCET Pascal Group.

This issue of the Bulletin was 125 pages long and is beginning to look like an issue

of Pascal News! It contained an editorial, bibliography, list of Pascal implementations,
and seven articles. Most interesting was the detailed commentary about the International
Working Group on Pascal Extensions supplied by Olivier, and if we only had the time, it
would be the quickest thing to do to translate and print in the Open Forum section.

The contributions in the articles section are:

- Pointers: False Problems and Real Insufficiencies by M. Gauthier.

- A Graphic Extension for Pascal by N. & D. Thalmann.

- The "Mentor" System: A Pascal Programming Environment by P. Maurice.

~ An Aspect of TSIMONE: A Version for Pascal Program Profiles by D. Renault.

- Where is the Standardization of Pascal? by O. Lecarme.

- A Comparison and Contrast between Concurrent Pascal and Modula by R. Rousseau.
- An Efficient Method of Controlling Type Unions by Nguyen Van Lu.

An ACM/SIGPLAN - Pascal User's Group sessions is being held at ACM '78 in Washington DC.
See below.

The Australian Computer Science Conference will hold a workshop on Pascal. The conference
is scheduled for February 1 and 2 in Hobart, Tasmania. Arthur Sale, of course is the

host and is currently serving as vice-president of the Australian Computer Society. This
is the second year for this conference. It was successfully launched under the name
Australian Universities Computer Science Conference which was enthusiastically received
last year.

Finally the University of California at San Diego (UCSD) Summer Workshop on Extensions

was held this last July and has been reported on by Richard Cichelli below. I was
promised, but did not receive, reports by Jeff Tobias, Arthur Sale and Ken Bowles.

The major results of the Workshop were to get together a variety of computer manufacturers
with some dyed-in-the-wool Pascalers. The Workshop rebuffed nearly all proposed
extensions except those referred to the International Working Group on Pascal Extensions
(such as otherwise for a case statement--see Open Forum under Standards). The members

of the Workshop including the more than 15 manufacturers unanimously endorsed a motion

to support the speedy adoption of the BSI/ISO Pascal Standard under development by

Tony Addyman and his team...see Open Forum.

SPECIAL INTEREST GROUP ON
PROGRAMMING LANGUAGES

SIGPLAN

Association for Computing Machinery REPLY TO: Mail Stop 125A
NASA Langley Research Center
Hampton, VA 23665

1133 Avenue of the Americas
New York, NY 10036

{212) 265-6300

July 24, 1978

Dear Andy,

An informal evening session devoted to PASCAL will be held at the 1978 ACM
conference which will take place December L-6, 1978, in Washington, D.C.
The purpose of this session is to allow all conference attendees who are
interested in PASCAL to get together and interact.

ST# SMIN 1YISYd

REETENEL

8/61

¢T 39vd

This is not a technical session in the usual sense. However, in order to
convey the most information, it will consist, at least in part, of a series
of short presentations (i.e., approximately 10 minutes) on PASCAL related
topics. A presentation can address just about anything related to the
language and its software; e.g., experience with PASCAL, tools for PASCAL
programing, implementations, etc. Anybody who is planning to attend ACM '78
and who is interested in making a presentation should send a short descrip-
tion of what they will discuss by October 1 to:

Joln C. Knight

Mail Stop 1254

NASA Langley Research Center
Hempton, Virginia 23665

Presenters will be informed of their selection by November 1.
The purpose of requesting descriptions is not to perform any refereeing or
technical judgment, but merely to allow a balanced program to be prepared
for the limited time available.
Sincerely,

A / T

¢ Ll M [~ */

“John C. Xnight
SIGPLAN Representative
1978 ACM Conference Program Committee

THE UCSD PASCAL WORKSHOP

by

Richard J. Cichelli
ANPA/RI
Lehigh University

This is a personal report of my experiences with the UCSD Pascal
Workshop held by Dr. Kenneth Bowles at the University of California at
San Diego during July of 1978. I will discuss my own role at the
workshop, and in no way should this report be considered a report from
the workshop participants as a whole.

In May of this year, I received a letter from Ken Bowles inviting

me to attend his planned workshop, the purpose of which was to "standardize

extensions to Pascal”. Ken and I had spoken about his efforts in putting
Pascal on small machines previously at the ACM 1977 Conference. After
seeing the UCSD Pascal system in action, I was convinced that it was
excellent technclogy and held great promise for both educational and
commerclal applications. I reviewed Ken's book, Microcomputer Problem~
Solving in Pascal, for PN #11 and sent a pre-publications copy of that
review to Byte Magazine. Upon receiving this review, Carl Helmers

began his own interaction with Ken concerning the UCSD system.

At ACM'77 Ken talked to me about the language changes that he felt
small systems required. He spoke of the lack of viable Standards
activities within the Pascal Users Group and his willingness to organize
a Standards workshop. I suggested to Ken at that time that Standards
were something that the Users Group would soon be more involved with and
that his help on a PUG Standards Committee would be welcome. I was truly
surprised and chagrined to hear of Ken's organizing his own Pascal

Workshop. I have never felt that the precision of expression and depth
of understanding necessary for Standard-related activity was the type of
thing done well by implementation-oriented individuals. Even more
important was the fact that effective international Standards activities
had already been initiated in PUG under the direction of Tony Addyman
and an Extensions Working Group has been formed chaired by Steengaard-
Madsen. Dr. Wirth was helping this group with thelr activities.

On June 1, I sent a letter to Ken expressing my concern about the
UCSD projJect. The text of the letter is as follows:

"I have given careful thought to your invitation to participate

in the UCSD workshop. ANPA was a member of 27 assocliations that
participated in the acceptance of the 1966 ANSI-FORTRAN Standard.
We conslder our endorsement of programming language standards of
great importance to our 1200 newspaper members and are sure that
Pascal will have a major impact on future newspaper computer systems.
Unfortunately, no matter how well meaning your efforts towards
standardized extensions are, we believe the appropriate review and
evaluation activities should lie wholly within the Pascal Users
Group. We would welcome your initiative 1n being part of a PUG
Standards Committee but neither ANPA nor I will support or endorse
any self-proclaimed UCSD Pascal modification adventure."

Copies of the letter were forwarded to the Standards Committee, the
Working Group, and Andy Mickel. My primary concern with the UCSD effort
was that any extensions agreed to by the UCSD Group would become a
defacto Standard and "enhanced Pascal" would go into competition with
Standard Pascal. I very much felt that most of the UCSD deviations from
the Standard were simply inappropriate. I was sure that most, 1f not
all, of the UCSD language modifications would be rejected both by the
Working Group and the Standards Committee. I firmly believe that the
UCSD interactive systems feature good engineering. However, llke most
new implementations derived from the Zurich produced P4 system, the
UCSD Pascal falls to implement important parts of the Standard and has
extra goodles implemented in ways inconsistent with either the Standard,
or worse, the recommended extension technique.

Upon returning from & business trip, I found that Ken had placed an
urgent call to me. I returned his call and spent 2 hours talking with
him. Ken was very concerned about Andy Mickel's reaction to the UCSD
project. Andy and I shared similar reservatlons. During the
conversation, Ken invited me to attend the workshop as a PUG representative
instead of as a member of a contributing organization. I said that I
would give consideration to this idea.

During the month of June I had many conversations with Andy and
other potential workshop attendees. Upon recelving a document titled
"Checklist of topics for the UCSD Workshop on Pascal Extenslons" that
consisted of more than 75 items, I was even more concerned. In my
opinion, adoption of changes proposed in this checklist would effectively
rape the Pascal Standard. My primary hope at that point was that no one
would want to go to the UCSD workshop. Bob Dietrich of Tektronix made
a number of telephone calls to me indicating first, that Tektronix was
interested in participating in such a workshop and second, that he felt
as I did about most of the checklist items. He assured me that many
other potential workshop participants felt as I did about the 3tandard
and about these UCSD extensions. He felt that if the issues were
properly dealt with, it was likely that the consensus of the workshop
would be to reject almost all of the proposed extensions. In later
conversations with Ken, he himself also assured me that rejection of
ill-conceived extensions would be an important activity of the workshop.
By this time it was clear that there would be a number of participants
in the workshop and that it was important that those workshop participants
who were responsible for corporate Lmplementations of Fuscal hear

v 1¥YJSVd

¢cT# SMhIL

R R R RN

8LET

¢T 35vd

arguments in favor of adhering to the Standard. Andy iniformed me that
because of prior committments he could not attend the workshop to
represent the Users Group. He asked me to do so in his stead. Also
charged with a similar mission were Jim Miner, Arthur Sale, and Bob
Johnson. Since Andy, Bob, and I founded the Pascal Users Group, we hoped
to be able to effectively represent membership as a whole at UCSD.

At this point I accepted Ken's invitatlon to attend the workshop.
I also agreed to attend a pre-workshop meetling of like-minded individuals
that was the brainchild of Bob Dietrich. Of particular help in formulating
a "pro-standard" position was the extensive work done on the checklist
by Mike Ball.

The week at the conference was one of the most interesting and
challenging of my computer science career. By the Sunday meeting we
had all found out where the UCSD group stood as far as the extensions
were concerned. It seems they had already decided to endorse most of
these ill-concelved ideas by actually implementing them within the UCSD
software system. 3hortly after Ken's initial address to the more than
50 participants of the workshop, a number of participants suggested
that the overall goals for the workshop be clearly laid out before
specific consideration of the checklist items began. A pumber of views
in addition to Ken's were presented on this topic and I was asked to
speak on this "as a representative of the Pascal Users Group”™. Most of
the worksnop participants were chosen by Ken because they were members
of Pascal implementation teams at various large companies. These people
are used to identifying problems and developing solutions. I am sure
they did not welcome hearing from me that I believed they should act
only in an advisory capacity and defer final evaluation to a Standards
Committee within PUG. I am sorry that I don't have a complete transcript
of the extemporaneous talk 1 gave addressing this issue, but the most
important point that I tried to make was that ad-hoc solutlons to
perceived problems with Pascal were to be preferred to hastily
conceived and implemented changes to the language Standard. I assured
the group that if they chose to take a united stand faveribg an array
of extensions, the changed language would be a competitor to Standard
Pascal, much to the detriment of the user community.

One of the problems in giving this talk was that Ken asked me to
present the issues not in the general framework that I Just outlined
but instead as an item by item review of "how do you do ‘'x'?" (where 'x'
might be direct access files, overlays, complex numbers, strings, etc.).
My general statements included a suggestion that the only types of
extensions that should be considered at all are those which 1) are
consistent with the design goals of Pascal, and 2) add a facility not
implementable in Standard Pascal. For example, in talking about segments
and overlays I suggested that such concepts had nothing to do with the
problem solved by an algoritha but only with how a compiler translated
the algorithm expressed as a program into executable code for a particular
operating system. I suggested that if it was necessary for the compiler
to know about overlays, then this information should be incorporated in
compiler directive comments. (Pascal~6000 needs no such compiler
directives for overlayed programs.) I suggested, addressing the issue
of complex numbers, that they are easily created within the standard
mechanisms of the language. 1 also noted that direct access files are
being considered by the European Working Group. I also mentioned that
at Lehigh University we have used direct access files extensively and
do so by calling external library routines. Since, at Lehigh, more
than four different systems of direct access file support are utilized
by Pascal programmers, I suggested that reasonable men would differ as
to what constituted a good set of primitive functions for accessing
such datasets. I suggested that where adequate ad-hoc solutlons exist
and no consensus about them exists, no Standard should be imposed. By
not creating a Standard for such an item, experimentation is encouraged.
From this experimentation better solutions can be derived.

During the next three days we broke into subcommittees to consider
checklist items one by one. It was Ken's ldea that subcommittee sessions
would be recorded and "where consensus was reached on an item a consensus
position would be prepared". Each subcommittee had one or more UCSD
students or faculty members on it to help in recording and transcribing
the group's deliberation. A few of these individuals acted as monitors
on their subcommittees.

1 worked with what was called the Expressions Group. Our approach
was more formallzed than some of the other groups. In addition to myself,
the members of the subdommittee were Terry Miller (moderator), Steven
Dum of Tektronix (recording secretary), Buth Richart of Burroughs, Skip
Stritter of MOTOROLA, and Don Baccus of OMSI. We began by
considering each of our 15 toplcs one by one. For each topic we first
stated exactly what our recommendations were and then we presented our
reasoning that went into the recommendation. For e le: Item 3.2 on
our 1ist was —-- "provide for short circuit AND and OR. The text of
our recommendation is

3.2 We recommend that AND and OR should be left as defined. I.e.
the implementor may choose short circuit or complete evaluation,
user beware!

Short circuit AND and OR (CAND and COR) can be programmed
around in existing Pascal. They are a minor extension. The
majority of the group felt that the cost of implementation
(size, introducing features, etc.) does not justify the benefit.

We firmmly reject the concept of introducing complete evaluation
operators such as LAND or LOR.

On item 3.4 -- "provide for exponentiation™ -- we made the followlng
recoammendatlions:

3.4 Ve recommend rejection of exponentiation as an infix operator
or standard function.

It is possible to provide a predefined function POWER or to
write it as a Pascal function with the parameters defined as

FUNCTION POWER (A,B:REAL):REAL;

We felt that it was not necessary to add a function to ralse
an integer to an integer power as most usage of exponentiation
seems to be satisfied with the real form.

I have the highest regard for the people that Ken recrulted to
participate in his workshop. Ruth Richart, for example, 1s a principal
implementor of a new systems language that Burroughs 1s using. This
lang is modeled after Pascal. On item 3.2 (the short circuit AND
and ORi, she pointed out that on Burroughs machines the short circult
evaluation is significantly less efficient than full evaluation 1n most
cases. Burroughs machines are exceedingly efficlent on stack operations
(and thus super expression evaluators) and not nearly so efficient on
conditional branches. We concluded that it was lmportant that the
implementor of a Pascal compiler be glven the freedom to choose the
optimal evaluation technique.

As we worked on each item, we followed Wirth's suggested procedure
for considering extensions. First, we introduced the extension in a
tutorial fashion to the subgroup. Then we showed how the extension
would be used 1n practical programming. Then we discussed its relationship
to the language standard and its ilmplementation consequences. It was
interesting to note that in the AND/OR controversy the UCSD supplied
example program was clearly not of the best design. After exploring the

¢T# SMIN VISV

"4384UW3I3d

BL61

BT 39Vd

issue for some time, it became clear that short circuit evaluation was
most often used in an attempt to sneak past undefined condlitions. This
led actually to a suboptimal or less clear presentation of the algorithm.

It was this kind of discussion that gave us confidence in our recommendations.

At the conclusion of the day's meeting, Steve Dum took our carefully
worded notes and typed them into one of the UCSD Terak systems. A little
quick editing and we had line printer copy of the day's discussion. The
next day we made multiple coples of our preliminary statements on the 15
items. All members of our subgroup were chagrined that the other groups
did not have written statements of thelr recommendations. At the
conclusion of the general meeting on Tuesday, all subgroups were
directed to go back and produce concise, well-worded descriptions of
their recommendations and deliberations. And the Expression Group was
asked to consider seven more items. Meanwhile Bob, Arthur, Jim and I
were meeting before the worishop sessions began and after the workshops
ended each evening. We were attempting to formulate an appropriate
pollcy statement for PUG which would guarantee that what constituted
Pascal was defined by the PUG membership. In this effort we sorely
missed having Andy with us to help formulate policy.

By Thuraday the work of the subgroups neared completion. Also a
mumber of individuals in the workshop indlcated interest 1n working thru
PUG on implementations and standards. The following position paper was
developed by the PUG representatives and Andy was consulted and asked
to have his name included on the paper:

PUG Workdng Position

(1) In October PUG will publish a proposed constitution. Upon acceptance
of the constitution by the PUG membership, election of officers will
take place. It is hoped that by January 1, 1979, a formal governing
structure for PUG will be established.

(2) A draft of the ISO Pascal Standard will be published by the end of
1978 for member reaction.

(3) An implementation subgroup will be formed to coordimate the
enhancement and distribution of portable compilers and to facilitate
correspondence among lmplementors. A new section of Pascal News
will inform the membership of these activitles.

(2) A standards subgroup will be formed. It will diatribute (for a
reasonable fee) a Validation Suite. An incomplete version of the
Suite constructed under the direction of Brian Wichmann (developer
of the Algol 60 Validation Sulte) and distributed by R. Cichelll
will be available during September, 1978.

(5) Actual proposals from the Internmational Working Group will appear
in Pascal News. The first will be in October, 1978.

PUG aid to the UCSD Workshop

(1) Pascal News will publish (subject to length constraints) a report

of thr: UCSD Workshop and will help to distribute the full Workshop
report.

(2) Pascal News will publish a new section on Solutions of and
commentary about significant programming problems which may be
outside the scope of the Pascal Standard.

Andy Mickel James F. Miner
Richard J. Cichelli Arthur H. J. Sale
Robert Warren Johnson July 13, 1978

Jim Miner presented the PUG working position paper to the workshop and
it was greeted with applause.

It is my opinion that the result of the first week of the UCSD
workshop was to strengthen the Pascal Standard and to reaffirm the
pre-emminence of FPUG with regards to Pascal. One of the most important
factors of that week was the acceptance by all workshop participants of
the followming “agreement in principle®”:

At the time the workshop convened, two major activities with
respect to the definition of the language Pascal were already
underway. The International Standards Organization had begun working
on a complete definition of the Pascal language in light of the
shortcomings of the Jensen and Wirth document. A Working Group
focused around Steensgaard-Madsen had begun working on extensions
to the Pascal Language aimed at correcting a few well-known
deficiencies in the language. In light of these activities the
workshop assumed as its primary goal to address well-defined,
consistent, application-oriented extension sets and agreed to pass
to the other two bodies such recommendations and information
deemed appropriate to thelr work.

The workshop recognized the existence of possible modifications to
the Pascal Language which, due to the impact throughout the

language, would de-facto create a new language and decided not to
act on these modifications at this time.

In order to achieve the purposes stated above the workshop has
resolved to:

I. Publish and distribute the Proceedings of the workshop. In
particular the Proceedings will be forwarded to ISO, the Pascal
Users Group, and the Steensgaard-Madsen Working Group.

II. Organize a structure which will permit the orderly continuation
of the work begun at the meeting in San Dlego.

IITI. Provide a mechanism to reinforce the importance of Standard
Pascal by agreeing that all compllers purporting to support the
programming language Pascal should include a variant of the
following statement in the source code and all documentation:

“The language --{1)-- supported by this compiler contains the
Pascal, as defined in --{2)-~, as a subset with the
followlng exceptions:

(a) features not implemented

--(3)-- -- refer to page —-

-———— —

(1) insert the name of the dialect

(2) insert "the Jensen and Wirth User Manual and Repo:t" or
"the ISO draft standard” or "ANSI Pascal standard” as

appropriate

(3) A brief statement plus reference to more detailed
information will suffice. The list should be as complete
as possible.

ST# SHIN TVISY

‘¥34W3I3C

461

ST 39Vd

Review oF PascaL News 9/10, 11, anp 12

Backissues of Pascal News 9/10, 11, and 12 are still available, and will be for the
forseeable future. Therefore I would like to urge all new members to consider obtaining
them so that you will be better oriented to events in our recent past. Issues 1-8 are
unfortunately out of print. 1-4 are described in detail in issue 6; 5-8 are described
in detail in issue 11; 1-8 are briefly described in issue 9/10.

If you want to know generally what is important, then issue 9/10 contains the base

roster for PUG, and a complete survey of Implementations. It also contains the last
bibliography and list of textbooks to date. Issue 11 contains the worst collection of
wild proposals to extend Pascal, and the terrific article on type compatibility by

Pierre Desjardins. An errata to old printings of Pascal User Manual and Report is in #11.
Issue 12 contains our first applications sections with two important software tools:
COMPARE and a pair of programs for Performance Measurement.

All three issues contain important information about Pascal standards.

Pascal News #9/10 (combined issue), September, 1977, Pascal User's Group, University of
Minnesota Computer Center, 220 pages (114 numbered pages), edited by Andy Mickel.

Editor's Contribution: Pascal jobs, a list of computer companies using Pascal, Pascal on
personal computers, current information on the status of PUG and Pascal News:
printing error in #8, Australasian distribution center, change in the name of
Pascal Newsletter to Pascal News, new policies, back issues, growth in membership,
and PUG finances.

Here and There: Tidbits (9 pages), reports from German and French Pascal conferences,
Books and Articles classified by applications, languages, textbooks, and implemen-
tations; Bibliography of 68 entries; past issues of Pascal Newsletter (1-8);

PUG finances for 1976-1977; Roster 77/09/09.

Articles:
"Pascal at Sydney University"
-Tony Gerber and Carroll Morgan
{A description of implemented (proven) extensions and changes to the CDC-6000
Pascal compiler in use at Uni of Sydney. These include operating system interface,
ability to read strings, read and write user-defined scalar types, case statement
extensions, and two machine-dependent extensions. The conclusion states that these
changes to the compiler have not detracted from the overall efficiency of the
compiler, and that 2~year's use has vindicated the inclusion of these extensions.]

"Disposing of Dispose"

~Stephen Wagstaff

[An argument for an automatic garbage collection system for dynamic variables in
Pascal is made, thus obviating the need for, and the risks associated with, user-
controlled de-allocation (e.g. DISPOSE). Complete protection from "dangling"
pointers may be obtained.]

"What is a Textfile?"

Bill Price

[The definition of the pre-defined type Text in Pascal as File of char is in error
and because of this lapse, complex special-case notions are introduced as
primitive concepts. A new, more useful understanding and definition of the
textfile notion is proposed.]

"Generic Routines and Variable Types in Pascal"

-B. Austermuehl and H.-J. Hoffmann

[Generic routines and variable types, as introduced in EL1 are a means to postpone
the binding time of routines and data. An examination is given of what degree
such features may be carried over to Pascal without severe violation of the static
type checking requirement. The conclusion is made that generic routinmes fit into
Pascal, while variible types have to subject to strong restrictions. Variable
types may only be used in comnection with a special syntactic form.]

Open Forum:

77/05/10 Arthur Sale to Andy Mickel: [Australasian distribution Centre, CDC-bias:
program heading, Burroughs 6700 implementation on 7700, 6800, etc.]

77/05/24 Tony Gerber to Andy Mickel: [PUGN distribution to Australia, why haven't you
printed our paper, Pascal not Utopia 84, extensions to Pascal 6000.]

77/06/01 Richard Cichelli to Andy Mickel: [Each issue of PUGN better, software tools,
an applications section in PUGN.]

77/06/16 Mike Ball to Andy Mickel: ([Interdata 8/32 Pascal, Univac 1100 Pascal, proposed
extensions to standard Pascal, proposed standard for editing format and distribution
of Pascal software tools and programs.]

77/06/16 Peter Grogono to Andy Mickel: [standardizing Pascal--preserve its simplicity,
change to Read procedure for error recovery, especially for interactive programs.]

77/06/24 Wally Wedel to Andy Mickel: [CDC-6000 and DEC-10 Pascal at the Univ. of Texas,
standards via X3 and experience from X3J committee.]

77/07/22 George Richmond to Andy Mickel: [Keep up the good work, support for preserving
standard Pascal. Distribution at Colorado is now running smoothly.}

77/07/28 Neil Barta to Andy Mickel: [Pascal jobs available at ADP Network services,
using Nagel's DEC-10 Pascal compiler.]

77/07/29 Stephen Soule to Andy Mickel: [Pascal competing with FORTRAN: variable-init-
ialization, own variables, flexible array parameters, textfiles and variant-
records in formatting.]

files,

Special Topic: Micro/Personal Computers and Pascal

77/07/08 David Mundie to Andy Mickel: [Zilog rumor about Pascal machine, letters to
personal computer journals, game programs in Pascal, like variant records.]

77/06/27 Larry Press to Andy Mickel: [Would like to publish work from PUG members in
SCCS Interface to counter BASIC proliferation.]

77/09/01 Maria Lindsay to Andy Mickel: [Microcomputer library and resource center in
Madison Wisconsin very interested in Pascal materials.]

77/08/24 Jim Merritt to Andy Mickel: [disagree about pressing supposed advantage on micro
computers. UCSD Pascal project may hold future hope, UNIX Pascal information.]

77/09/06 Carl Helmers to Andy Mickel: [Will write editorial in the December BYTE for
Pascal. Pascal an excellent choice to succeed BASIC]

Special Topic: Standards
Introduction

77/08/09 D. G. Burnett-Hall to Andy Mickel: Another Attention List.

Implementation Notes: Checklist, General Information, Software Tools, Portable Pascals:
Pascal-P, Pascal Trunk, Pascal J; Pascal Variants: Pascal S, Concurrent Pascal,
Modula; Feature Implementation Notes: Set of Char, the For statement, Else in
case, var parameters, Interactive I/0; Machine-Dependent Implementations:

Amdahl 470, B1700, B3700/4700, B5700, B6700-7700, CDC Cyber 1& &

2550, CDC3200, CDC3300, CDC3600, CDC 6000/Cyber 70,170, CDC7600/Cyber 76, CDC Omega
480, CDC Star-100, CIT Iris 50, CII 10070, Iris 80, Computer Automation LSI-2,
Cray-1, Data General Eclipse/Nova, DEC PDP-8, PDP-11, DEC-10/20, Dietz Mincal 621,
Foxboro Fox 1, Pujitsu Facom 230, Harris/4, Heathkit H-11, Hewlett-Packard 21MX,
2100, 3000, Hitachi Hitac 8000, Honeywell H316, Level 66, IBM Series 1, 360/370,
1130, ICL 1900, ICL 2900, Intel 8080, 8080a, Interdata 7/16, Interdata 7/32,8/32,
ITEL AS/4, AS/5, Kardios Duo 70, Mitsubishi Melcom 7700, MITS Altair 680b,

MOS Technology 6502, Motorola 6800, Nanodata QM-1, NCR Century 200,
Norsk Data Nord 10, Prime P-400, SEMS T1600, Solar 16/05/40/65, Siemens 330,
Siemens 4004, 7000, Telefunken TR-440, Terak 8510, TI-ASC, TI 9900, Univac 90,
Univac 1100, Univac V-70, Xerox Sigma 6, 9, Xerox Sigma 7, Zilog Z-80.

Pascal News #11, February, 1978, Pascal User's Group, University of Minnesota €omputer

Center, 202 pages (106 numbered pages), edited by Andy Mickel.
Editor's Contribution: Addenda on list of companies using Pascal. Itemization of costs
from PUG(UK) distribution center.

Here and There: Pascal jobs, Help wanted for numerical library project, Tidbits (7 pages),
Evolution of PUG dog, Pascal in the News, DOD-1 report, reports from German ACM
Pascal meeting and ACM '77 Pascal session in Seattle, Books and Articles including
Applications, Implementations,Languages, and Textbooks; Concurrent Pascal

“¥3IENITTG

8/.61

9T 39Vvd

gT# SHIN TVISV

.

literature, documents obtainable from the University of Colorado Pascal distribution
center. Errata to Pascal User Manual and Report Second edition. Detailed review
of Pascal Newsletters 5, 6, 7, and 8. Roster Increment (77/12/31).

Articles:
"Type Compatibility Checking in Pascal Compilers"
Pierre Desjardins
[It is imperative we clearly set down the semantics of type compatibility for
structured variables in the programming language Pascal. The matter is urgent
since the lack of an explicit set of rules in that sense has already given rise
to some incompatibilities resulting from the use of different Pascal compilers.
On the basis of how a compiler implements type compatibility checking, we can
currently distinguish two major classes of Pascal compilers, representatives of
which will react differently to particular cases involving operations on
structured variables. It is of course clear that such a conflict must not be
allowed to continue, and in that semse I will try to explain how the two classes
of compilers came into being and also present the reader with a few examples to
display the consequances.]

"A Novel Approach to Compiler Design"

James Q. Arnold

[A sarcastic appraisal of the Honeywell Level 66 compiler implemented by the
University of Waterloo. 1Its poor realization is examined with respect to program
portability, program correctness, and user interface.]

"Status of UCSD Pascal Project"

Kenneth L. Bowles

[A description is given of the project which developed the LSI-11 Pascal
implementation at UCSD. The project was motivated by teaching interests at the
university and has evolved into research and development interests centering on
microprocessors. Descriptions follow of the Pascal-based software system, minimum
configuration, 8080 and Z-80 versions, Pascal extensions and alterations, Introductory
Pascal course and textbook, a "Tele-mail" user support facility, and forthcoming
improvements.]

"Suggestions for Pascal Implementations"

Willett Kempton

[A user's point of view is presented on features encountered in 3 Pascal implemen-
tations. Conditional debugging code, a better cross-reference, flagging non-
standard constructs, implementation of UNPACK, PACK, and LINELIMIT, conversation
compilation, error-recovery and formatting of input, interactive 1/0, padding
strings with blanks, and more predefined constants like MAXINT are examined.]

"Suggested Extensions to Pascal"

Robert A. Fraley

[A number of extensions and modifications to Pascal are suggested. It is the
author's belief that Pascal as it stands, cannot compete successfully with more
complete languages in production environments and over wide ranges of applications.
Some of these suggestions would hopefully preserve its clarity and simplicity.

Some of them are optionally available in the UBC/IBM 370 Pascal compiler.]

"Adapting Pascal for the PDP 11/45"

D. D. Miller

[A description and adaptation is given of the University of Illinois Pascal student
compiler for a PDP 11/20, to a production compiler on an 11/45. We will discuss,

a) the extensions to the language which were necessary to communicate between

Pascal programs, data and MACRO-11 code, b) support routines such as a routine debug
and source update and reformatting, and c) how we introduced Pascal into an existing
software system and to MACRO programmers.]
"Pascal: Standards and Extensions"
Chris Bishop

[Comments are given on the current standards/extensions argument, and to suggest
some specific modifications to the standard and some useful extensions. These
include: array parameters, standard type char, otherwise in case, no formatted

read, repeat and case statement changes, inverse to ord, different treatment of
file variables, and I1/0 and textfiles, addition of exponentiation operator.]

Open Forum:

77/11/09 Helmut Weber to Andy Mickel: [CDC-6000 Pascal inquiries]

77/10/28 Barbara Kidman to Andy Mickel: [Pascal teaching at the University of Adelaide.]

77/11/03 Tom Kelly to Andy Mickel: [Burroughs Pascal from UCSD now running at Burroughs.}

77/10/12 Tony Schaeffer to Andy Mickel: [Interactive I/0, language standards in the light
of the natural evolution of Latin and ANS Fortran.]

77/08/25 Robert A. Fraley to Andy Mickel: [Comments on changing the definition of Pascal
and his submitted paper also appearing in the issue.]

77/11/07 Robert A. Fraley to Arthur Sale: [Comments on the Feature Implementation Note
concerning else in case, sets of char; support for ASCII as a Pascal standard!]

77/12/26 Barry Smith to Andy Mickel: [Oregan Minicomputer Software history with ESI and
OMSI, and their PDP-11 Pascal implementation; Pascal T-shirts.]

77/12/12 Dave Thomas to Andy Mickel: [Pascal at Imperial College, London. A multi-user
reentrant STARTREK program exists in Pascal for the IBM 370 implementation at IC.]

77/11/07 Mitchell R. Joelson to Andy Mickel: [Law Enforcement Assistance Administration
regulations vis-a-vis programming alnguages for use in criminal justice information
systems.]

77/12/30 Ken Robinson to Andy Mickel: [Australasian distribution; Pascal use in
Australian Universities, sundry comments on Pascall

Special Topic: Pascal Standards:

Introduction by Andy Mickel and Jim Miner: [ISO Standard Pascal, Conventionalized

Extensions, Laundry Lists of Additional Features, Pascal Cempatibility Report.}
77/12/09 Bengt Nordstrom to Andy Mickel: [The Swedish Technical Committee on Pascal;

Yet Another Attention List, will be in touch with the British Standards group.]
77/12/30 Ken Bowles to Andy Mickel: [Standardized Pascal Bxtensions, proposal for

Pascal Workshop with representation from industrial firms, governmental agencies,

and "academic experts'". Consideration of DOD-1, a proposed Pascal-X extended version]

Implementation Notes: General Information; Applications; Portable Pascals, Pascal-P4
Bug Reports and how Pascal-P4 relates to the standard. Pascal Variants: Pascal-S,
Concurrent Pascal, Modula. Feature Implementation Notes: Unimplementable Features -
Warning; Compiling Boolean Expressions -- The Case for a "Boolean Operator”
Interpretation; Long Identifiers; Interim Report -- Implementation of For Statement 2,
More on For Statement. Machine-Dependent Implementations: Alpha Micro AM-100,
Andromeda Systems 11/B, Burroughs B5700, B6700/7700, CDC Cyber 18 and 2550, CDC3200,
CDC 6000/Cyber 70,170, CDC 7600, Data General Nova/Eclipse, DEC PDP-8, DEC PDP-11,
DECUS Pascal SIG; DEC LSI-11, DEC 10, HP-21MX, Honeywell 6000, level 66, H316,
IBM 360/370, ICL Clearing House, ICL 1900, ICL 2900, Intel 8080, MITS Altair 8800,
Motorola 6800, Prime P-300, Univac 1100, Zilog Z-80.

Pascal News #12, June, 1978, Pascal User's Group, University of Minnesota Computer Center
135 pages (70 numbered pages), edited by Andy Mickel.

Editor's Contribution: Personal Observations regarding Pascal-P, the first good critical
article about Pascal, the need for a "business-oriented" Pascal procedure library,
and more news needed about teaching experiences about Pascal. Status of Pascal
User's Group: must raise rates for US and UK; rates lowered for Australasia.

Here and There With Pascal: Pascal Jobs, Tidbits (7 pages), French/English, English/French
Pascal Identifiers, Pascal in the News, Conferences, Books and Articles:
Applications, Implementations, Languages, Textbooks, Reviews, Articles wanted.
Roster Increment (78/04/22). .

Applications (new section): News: Empirical study of Pascal programs (Pascal program
style analyzer),numerical library project. Algorithms: A-i Random Number Generator
A-2: Timelog; Software Tools: S-1 Compare (compare two textfiles for equality),
S-2-1 Augment, S-2-2 Analyze (Pascal performance measurement programs);
Programs: P-1 Printme (reproduce self).

¢T# SMIN TVISYV

R RN

§261

LT 39Y¥d

Articles:
"Extensions to Pascal for Separate Compilation'
Richard J. LeBlanc
{The lack of features in Pascal to allow procedures and functions to be compiled
separately can be of considerable inconvenience in the development of large programs.
This weakness is particularly evident when modifications are being made only to
limited parts of a program. Modificaitons of this sort are common, for example,
in the maintenance or extension of a Pascal compiler. By creating a global
environment, separate compilation of routines using that environment, and additionms
to the environment without requiring recompilation of existing routines and
declarations=-all via extensions--a useful mechanism can be attained.]

"What Are Pascal's Design Goals?”

Robert Vavra

[As a long-time reader of Pascal News, the author has enjoyed the many articles in

which people have discussed various features which could be added to Pascal, but they
have been unable to take seriously. In arguing for or against some particular

feature, writers have rarely involked Pascal's design goals in support of their

arguments. Such failure to build a proper foundation for one's arguments might

be acceptable in casual conversation, but not in a serious discussion.]

"Pascal Environment Interface"

Terje Noodt

[Work is presented for a Pascal implementation for the Norsk Data Nord 10, running
interactively. The Pascal Report does not say too much about how to interface a
compiler to a computer system and its users. To further complicate matters, what
it does say about this relates to a batch system, and is worthless or unusuable in
an interactive system. A language is often judged on the way a particular
implementation interfaces to its environment such as what tools are available for
the construction, compilation, and execution of a program, and what interfaces are
like between the implementation and other systems on the computer (particularly the
operating system. The conclusion is to think ecologically, and do not let the
environment pollute Pascalt]

"Subranges and Conditional Loops"

Judy M. Bishop

[The subrange facility in Pascal is an aid to run-time security for fixed-boundary
constructs such as counting (for) loops and array subscripts. The relevant types
can be precisely and naturally defined, and the compiler can minimise the amount of
run-time checking required. However, an index which increases under program control,
as in a conditional (while) loop, presents a problem. This note discusses the
problem and presents a solution in terms of a naming convention.]

"A Few Proposed Deletions"

John Nagle

[Since quite a number of extensions to Pascal have been proposed, I thought that it
would be desirable to propose a few deletions to keep the size of the language down.
With the goal in mind of keeping Pascal a simple, elegant, and useful language
requiring a minimum of run-time machinery, I propose a few simple changes in the
direction of simplicity.]

Open Forum:

78/01/18 Arthur Sale to Andy Mickel: [Pascal News distribution in Australasia; explanation
of large size of PUG(AUS) fee. Pascal as a first language in Australian uni's.]
77/11/11 Giuseppe Selva to Andy Mickel: [Comments on the increasing use of Pascal; need
for reading and writing scalars, varying length strings, formatted input, etc.)
78/02/02 Jerry Pournelle to Andy Mickel: [Acquiring Pascal for a 48K Z-80.]
78/02/24 Joe Celko to Andy Mickel: [Comments to proposed extensions by Robert Fraley
in last issue: doesn't miss common or modules; compiling included files nice.]
78/02/23 Hellmut Weber to Andy Mickel: [Wish list from a user's point of view for Pascal-
6000 Release 3 from Minnesota.]

78/02/24 Arthur Sale to PUG membership: [Commentary on Pascal News No. 11; David Barron's
proposal for algorithms excellent, Pascal is not up for grabs, PUGN maturing.]

78/02/27 Greg Wetzel to Andy Mickel: [Shame on you for including Fraley's article—-it
scared us--congratulations, you were terrifyingly successful! Stand by your guns.]

78/03/06 Eric Small to Andy Mickel: [Looking for Pascal programmer for consultants in
broadcasting technology.]

78/03/08 Bob Jardine to Andy Mickel: [Reply to criticism of B6700 by Arthur Sale's
Feature Implementation Note on Unimplementable Features.]

78/03/10 K. S. Bhaskar to Andy Mickel: [Pascal needs standardization and perhaps an
extension mechanism like ALGOL 68.]

78/03/15 Terje Noodt to Andy Mickel: [A new implementation forthe Nord 10; the system
interface is an important consideration.]

78/03/16 Don Terwilliger to Andy Mickel: [Even though Tektronix is actively using Pascal
it does not currently have products incorporating Pascal programming capabilities.]

78/03/16 Edward Reid to Andy Mickel: [Interested in Arthur Sale's comments about Pascal
on the B6700; comments on other items in past Pascal News issues.]

78/01/02 Werner Remmele to Andy Mickel: [Pascal implementation on the Intel 8080 using the
ISIS II operating system. Notes about the project.]

78/03/15 Mark Horton to Andy Mickel: [Pascal at the Univ. of Wisconsin; comments about
proposed extensions to Pascal, some more proposed extensions to Pascall

78/04/11 Jon Squire to Andy Mickel: [Pascal and DOD-1; need for a standard set of
acceptance test programs for Pascal.]

78/04/07 Judy Bishop to John Strait: [A further comment on predefined types and subranges
used in conditional loops.]

Pascal Standards:
Introduction by Andy Mickel and Jim Miner: International Working Group by Jdérgen
Steensgaard-Madsen investigating conventionalized extensions at last; News from
Tony Addyman on the BSI/ISO Pascal Standard; criticism of the upcoming UCSD Workshop
on Pascal Extensions.

78/04/07 Niklaus Wirth to Andy Mickel: [Definition of Pascal syntax using Extended Backus
Naur Form on only 2 pages.]

78/02/06 Tony Addyman to Andy Mickel: [New phone number, urge that all PUG members comment
on the BSI/ISO draft standard document.]

78/02/01 Tony Addyman to DPS/13/4, Swedish Technical Committee and all correspondents:
[Update on progress by the BSI working group DPS/13/4 for a Pascal standards document]

78/03/23 Charles Fischer to Andy Mickel: [Criticism of structure and format of Ken Bowles's
proposed summer Workshop at UCSD.]

78/04/10 Richard LeBlanc to Andy Mickel: [Reservations expressed about the structure and
format of Ken Bowles's summer Workshop on Pascal extensions.]

78/03/30 Bob Vavra to Andy Mickel: [Comment on Pascal's Design Goals; optimistic about the
future of Pascal in spite of all the moves to extend Pascal.]

Implementation Notes: Checklist (new item); Portable Pascals (more Pascal-P4 bug reports).
Feature Implementation Notes: Representation of Sets; Machine-Dependent Implemen-
tations: B6700/7700, B4700, B1700, CII 10070, IRIS 80, Commodore 6502, Computer
Automation LSI-2,4, Data General Eclipse, DEC PDP-11, VAX 11/780, HP-2100,21MX,
HP-3000, IBM 360/370, Intel 8080, Interdata 7/16, 8/32, Northwest 85/P, Prime P-400,
Index to Implementations for issues 9-12

RosTeER INCREMENT (78/10/31)

Following is a list of PUG members who either joined or changed address since the last
roster increment was printed on 78/04/22. The list actually includes some persons who
renewed, but whose address didn't change. Sorry.

¢T# SMIN TVISVY

“¥3dW3Ioaa

861

§T 39Vvd

PASCAL NEWS #13 DECEMBER, 1978 PAGE 19

J1002 WILLIAM D. TORCASO/ HAMPSHIRE COLLEGE/ BOX 548/ AMHERST MA 010 02/ (413) 549-4600

91003 TERRY E. WEYMOUTH/ DEPT OF COMP & INFO SCI/ UNIV. OF MASSACHUS ETTS/ AMHERST MA 01003

71060 BERT MENDELSON/ COMPUTER CENTER/ MCCONNELL HALL/ SMITH COLLEGL / NORTHAMPTON MA 01060

91247 S. J. BATTORY JR./ 15 MURRAY AVE./ NORTH ADAMS MA 01247

41420 KENNETH R. WADLAND/ COMPUTER SCIENCE DEPT./ FITCHBURG STATE CO LLEGE/ MAIL BOX NUMBER 6372/ FITCHBURG MA 01420/ (617) 345-2151 X181
01451 PETER CONKLIN/ BOLTON ROAD/ HARVARD MA 01451/ (617) 851-5071 X 2119

01505 JESSE HEINES/ DIGITAL EQUIPMENT CORPORATION/ 215 MAIN ST.RTE.7 O/ BOYLSTON MA 01505

01581 DAVID C. CLINE/ 1106 WINDSOR RIDGE/ WESTBORO MA 01581/ (617) 3 $6-9509

01581 RICH COON/ SOFTWARE DEVELOPMENT/ DATA GENERAL CORP./ ROUTE 9/ WESTBORO MA 01581

01581 KENNETH L. WILLIAMS/ 135 E. MAIN ST. R12/ WESTBORO MA 01581/ (617) 366-9236

01581 NICHOLAS WYBOLT/ MS 71141/ DATA GENERAL CORP./ 15 TURNPIKE RD. / WESTBORO MA 01581/ (617) 366-8911

01701 DENIS KOMINSKY/ 1640 WORCESTER RD./ FRAMINGHAM MA 01701/ (617) 879-3654

01701 BERNIE ROSMAN/ MATH/CS DEPT./ FRAMINGHAM STATE COLLEGE/ FRAMIN GHAM WA 01701/ (617) 620-1220

21720 THEODORE R. CROWLEY/ 16 ALGONQUIN RD./ ACTON MA 01720/ (617) 3 66-8911 X 5725

71730 STEPHEN HATCH/ RAYTHEON COMPANY - MSD/ HARTWELL RD./ BEDFORD M A 01730/ (617) 274-7100

21730 EMANUEL WACHSLER/ 20 PAUL REVERE RD./ BEDFORD MA 01730/ (617) 275-0593/ (617) 890-3330

01741 DEAN BANDES/ PARKE MATHEMATICAL LABS INC./ ONE RIVER ROAD/ CAR LISLE MA 01741/ (617) 369-3818

01742 ATTN: INFORMATION CENTER/ ENVIRONMENTAL RESEARCH & TECH. INC./ 696 VIRGINIA RD./ CONCORD MA 01742

21742 EDWARD E. L. MITCHELL/ MITCHELL & GAUTHIER ASSOCIATES/ P.0. BO X 685/ CONCORD MA 01742/ (617) 369-5115
31752 DONALD D. BURN/ 29-7 BRIARWOOD LN/ MARLBORO MA 01752/ (617) 48 5-6774

21752 MIKE GILBERT/ 39-1 BRIARWOOD LANE/ MARLBORO MA 01752/ (617) 48 1-4275

01752 ARON K. INSINGA/ 2733 W. MAIN ST./ MARLBORO MA 01752/ (617) 48 5-4620

01752 MIKE KNUDSON/ 79A PHELPS ST./ MARLBORO MA 01752/ (617) 485-817

01754 BRUCE MACKENZIE/ 74 POWDER MILL RD./ MAYNARD MA 01754/ (617) 8 97-5429

21778 WILLIAM WOLFSON/ 188 PELHAM ISLAND RD./ WAYLAND MA 01778

01810 BRUCE ALLEN/ MODICON DIV./ GOULD INC./ P.O. BOX 83/ ANDOVER MA 01810/ (617) 475-4700

01810 ROBERT I. DEMROW/ 11 LINDA DRIVE/ ANDOVER MA 01810/ (617) 475- 1563

01821 ATTN: TECHNICAL LIBRARY/ MS 813/ HONEYWELL INFO. SYSTEMS INC./ 300 CONCORD ROAD/ BILLERICA MA 01821

01824 JOHN DE ROSA JR./ 7 GLENN AVE APT 11/ CHELMSFORD MA 01824

01824 THOMAS J. STOODLEY 111/ DISTRIBUTED SYSTEMS CO./ L7 WILSON ST, / CHELMSFORD MA 01824/ (617) 256-8742

91852 FRITZ EBERLE/ 578 ANDOVER ST./ LOWELL MA 01852/ (617) 454-8909

01867 GAYE MARR/ ADVERTISING/ ADDISON-WESLEY/ JACOB WAY/ READING MA 01867/ (617) 944-3700 X391

01880 STEVEN L. COOL/ ANALOGIC CORP./ AUDUBON RD./ WAKEFIELD MA 0188 0/ (617) 246-0300

01886 RICHARD KRASIN/ K SYSTEMS/ BOX 508/ WESTFORD MA 01886

01887 ALAIN J. HANOVER/ DYMOGRAPHIC SYSTEMS INC./ 355 MIDDLESEX AVE. / WILMINGTON MA 01887/ (617) 933-7000

01890 PETER STEIN/ 28 FRANKLIN RD./ WINCHESTER MA 01890

01945 ATTENTION: WILLTAM MAIN/ NEW ENGLAND MICRO TECHNOLOGY INC./ P. O. BOX 767/ MARBLEREAD MA 01945/ (617) 631-6005
01945 JON F. HUERAS/ 34 OLD SALEM ROAD/ MARBLEREAD MA 01945

02115 TIM KIEFFER/ 290 NEWBURY ST./ BOSTON MA 02115

02125 R. A. MORRIS/ MATH DEPT/ U OF MASSACHUSETTS - BOSTON/ BOSTON M A 02125

02134 DAN FYLSTRA/ 22 WEITZ ST. #3/ BOSTON MA 02134/ (617) 782-5932

02138 J. SCOTT DIXON/ DEPT OF CHEMISTRY/ HARVARD UNIV./ 12 OXFORD ST ./ CAMBRIDGE MA 02138

02138 CHARLES ROBERT MORGAN/ BOLT BERANEK AND NEWMAN/ 50 MOULTON STR EET/ CAMBRIDGE MA 02138/ (617) 491-1850 X502
02139 CHARLES L. BROOKS/ 16 ANTRIM STREET/ CAMBRIDGE MA 02139/ (617) 661-3671

02139 ROBERT FRANKSTON -COPY A/ P.0. BOX 70 - MIT BRANGH/ CAMBRIDGE MA 02139

02139 DANTEL R. KILLORAN/ MAIL STOP 16/ CHARLES STARK DRAPER LAB./ 5 55 TECH SQUARE/ CAMBRIDGE MA 02139/ (617) 258-1438
02139 FRANCIS F. LEE/ 575 RESEARCH LAB. OF ELECTRONICS/ 36/ M.I.T./ CAMBRIDGE MA 02139

02139 JOHN M. STRAYHORN/ BOX 157 MIT BRANCH P.O./ CAMBRIDGE MA 02139 / (617) 923-1133

02142 ATTN: KINDLER ASSOCIATES INC./ ONE BROADWAY/ CAMBRIDGE MA 0214 2/ (617) 491-4963/ (617) 491-4415

02142 JAMES STEINBERG/ 863/ DOT/TSC/ KENDALL SQUARE/ CAMBRIDGE MA 02 142/ (617) 494-2015

02146 BEARDSLEY RUML 11/ 59 HOLLAND RD/ BROOKLINE MA 02146/ (617) 27 7-9494

02149 WALTER L. PRAGNELL/ GRACE CHURCH RECTORY/ 9 WARREN STREET/ EVE REIT MA 02149

02154 RONALD V. BOSSLET/ GTE LABS INC./ 460 TOTTEN POND ROAD/ WALTHA M MA 02154/ (617) 890-4100

02154 ALAN B. FINGER/ GTE LABS/ 40 SYLVAN RD./ WALTHAM MA 02154/ (61 7) 890-4100

02154 ROBERT FRANKSTON -COPY B/ INTERACTIVE DATA CORP./ 486 TOTTENPO ND ROAD/ WALTHAM MA 02154

02154 JODY PAUL PEROKI/ TEXAS INSTRUMENTS INC./ 504 TOTTEN POND RD./ WALTHAM MA 02154

02173 GEORGE S. GORDON JR./ 7 COACH RD./ LEXINGTON MA 02173

02173 DAVID GRABEL/ 125 REED ST./ LEXINGTON MA 02173/ (617) 861-9371

02173 MARGERY HARRIS/ HONEYWELL ELECTRO OPTICS CENTRAL/ 2 FORBES ROA D/ LEXINGTON MA 02173

02173 FRANK SCHWARTZ/ SOFTWARE ASSISTANCE INC./ 18 HARBELL ST./ LEXI NGTON MA 02173

02174 FRED COTTON/ 51 THORNDIKE ST./ ARLINGTON MA 02174

02174 DONALD WARREN/ 290 MASSACHUSETTS AVE./ ARLINGTON MA 02174

02176 CARLOS CHRISTENSEN/ 63 E. EMERSON ST./ MELROSE MA 02176/ (617) 665-5736

02178 ROBERT OSBORN/ DIALOG SYSTEMS/ 32 LOCUST ST./ BELMONT MA 02178 / (617) 489-2830

02181 GREGORY J, O’BRIEN/ INCOTERM CORP./ 65 WALNUT ST./ WELLESLEY H IL* MA 02181/ (617) 237-2100

02181 JAMES L. PYLES/ SOFTWARE PRODUCT PLANNING/ PRIME COMPUTER/ 40 WALNUT ST./ WELLESLEY HIL* MA 02181/ (617) 237-6990
02194 A. FREDERICK ROSENE/ GTE SYLVANIA/ 77 A STREET/ NEEDHAM HTS MA 02194/ (617) 449-2000 X2332

02195 JAMES F. HART/ CODEX CORP./ 15 RIVERSIDE AVENUE/ NEWTON MA 021 95/ (617) 969-0600

02215 TIMOTHY GRIESER/ COMP. CENTER/ BOSTON UNIV./ 111 CUMMINGTON ST ./ BOSTON MA 02215

02747 JOHN W. GRAY/ DEPT. OF ELECT. ENG./ SOUTHEASTERN MASSACHUSETTS UNIV./ N. DARTMOUTH MA 02747

02871 DAVID J. DE FANTI/ SUBMARINE SIGNAL DIVISION/ RAYTHEON COMPANY / P.0. BOX 360/ PORTSMOUTH RI 02871/ (401) 847-8000
03055 L. DAVID BALDWIN/ RFD 2/ MILFORD NH 03055/ (603) 465-7857

03060 BILL MARSHALL/ SANDERS ASSOCIATES INC./ 95 CANAL ST./ NASHUA N H 03060/ (603) 885-2551

03102 RICHARD M. SMITH/ 77 GARDEN DR. NO. 3/ MANCHESTER NH 03102

03103 ATTN: DB/DC SOFTWARE ASSOC./ P.O. BOX 4695/ MANCHESTER NY 0310 3

03755 JAMES P. MAGNELL/ LOGIC ASSOCIATES/ BOX 568/ HANOVER NH 03755

03768 STEVEN CAMPBELL/ SOFTWARE SYSTEMS/ PINNACLE RD./ LYME Na 03768 / (603) 795-2244

04473 MAL CAREY/ CREATIVE COMPUTING/ P.O. BOX 147/ STILLWATER ME 044 73

05402 LILLIAN WILHELMSON/ 1320/ GENERAL ELECTRIC CO./ LAKESIDE AVE./ BURLINGTON VT 05402

06032 HOUSTON P. LOWRY/ 49 HICH STREET/ FARMINGTON CT 06032

06035 TIMOTHY DENNIS/ 62 MANITOOK LAKE/ GRANBY CT 06035/ (203) 653-4 492

06430 REID SMITH-VANIZ/ PRODUCT DEVELOPMENT SERVIGES/ 2000 BLACK ROA D TURNPIKE/ FAIRFIELD CT 06430

06455 €. A. ZANONI/ ZYGO CORP./ LAUREL BROOK RD./ MIDDLEFIELD CT 064 S5/ (203) 347-8506

06457 FRANK W. TYRON JR./ 31 EVERGREFN AVE./ MIDDLETOWN CT 06457

06460 ARTHUR LACROIX LA CROIX/ APT. A-3/ 1060 NEW HAVEN AVE./ MILFOR D CT 06460

06468 RICHARD ROTH/ 39 WILLIAMS DR./ MONROE CT 06468

06497 BRUCE HIBBARD/ 165 COLONY _TRET/ STRATFORD CT 06497

06830 R. ETZI/ M.5. 186/ AMERICAN CAN CO./ AMERICAN LANE/ GREENWICH CT 06830

06851 PATRICIA J. GARSON/ TURNKEY SYSTEMS INC./ 111 EAST AVE./ NORWA LK CT 06851/ (203) 853-2884

06856 ABRAHAM SAVITZKY/ M/S 284/ PERKIN-ELMER CORP./ MAIN AVENUE/ NO RWALK CT 06856/ (203) 762-1000 °
07009 WILLIAM MEIER/ M W ASSOCIATES/ 735 POMPTON AVE./ CEDAR GROVE N J 07009

07054 JAMES B. THOMPSON JR./ R. SHRIVER ASSOCIATES/ 120 LITTLETON RO AD/ PARSIPPANY NJ 07054/ (201) 335-7800
07060 GEORGE E. HOLZ/ VARITRONICS SYSTEMS/ 97 GRANDVIEW AVE/ N. PLAT NFIELD NJ 07060/ (201) 754-9429

07067 LARRY STEIN/ 151 KLINE BLVD./ COLONIA NJ 07067/ (201) $74-3373

07083 GENE KEENOY/ INFORMATION MANAGEMENT SERV./ KEAN COLLEGE OF NEW JERSEY/ MORRES AVE./ UNION NJ 07083

07207 RUSSELL J. PEPE/ CONSUMER PRODUCTS GROUP/ DEPT. 384-20/ SINGER CORP. .

07462 STEVEN R. RAKLTIN/ STAR ROUTE / BOX 32/ VERNON NJ 07462 Pe/ 321 IST ST./ ELIZABETH NI 07207/ (201) 527-6000
07632 JAMES W. 0”CONNOR/ EHRHART-BABLC ASSOCIATES INC./ 120 ROUTE 9W / ENGLEWOOD CL. NJ 07632/ (201) 461-6700
07724 CHRISTOPHER J. HENRICH/ SOFIWARE DEVELOPMENT/ INTERDATA INC./ 106 APELE STREET/ TINTON FALLS NJ 07724/ (201) 747-7300 X549
07724 DAVID BEAL/ PERKIN-EIMER DATA SYSTEMS/ 106 APPLE STREET/ TINTO N FALLS NJ 07724/ (201) 747-7300/ (913) 532-6350 (WORK
07762 WILLIAM D. BRISCOE/ 703 FIFTH AVENUE/ SPRING LAKE NJ 07762/ (2 01) 449-768]

07764 G. B. SWARTZ/ MATH / COMP. SCI. DEPT./ MONMOUTH COLLEGE/ CEDAR AVE./ W. LONG Bl -
07932 KARL P. ADEY/ ENERGY GROUP/ VYDEC INC./ 9 VREELAND RD./ FLORHA M PARé NJ 07932/R?gg?)ug2211?36 (201) 222-6600 X381
07960 WARREN SCHODER/ MORRIS COUNTY SAVINGS BANK/ 21 SOUTH STREET/ M ORRISTOWN NJ 07960/ (201) 539-0500

08002 LEE FRANK/ BTI COMP. SYSTEMS/ 3 EXECUTIVE CAMPUS/ CHERRY HILL NJ 08002/ (609) 662-1122

08033 ANN S. ADAMS/ 718 GRAISBURY AVENUE/ HADDONFIELD NJ 08033

08046 LARRY E. ELLISON/ 19 HUNTINGTON LANE/ WILLINGBORO NJ 08046/ (6 n9) 877-8847

08052 GEORGE P+ CAMPBELL/ 3C EMFRSON ROAD/ MAPLE SHADE NJ 08052/ (609) 779-8688

08101 R. K. PAETZOLD/ TACS-204-2 RCA CORP./ CAMDEN NJ 08101/ (609) 338-4106

08540 ROBERT BOYLAN/ METROMATIO!, 1101 STATE ROAD/ PRINCETON NJ 0854 0

08540 HERMAN EUREMA/ P.O. BOX 2204/ PRINCETON NJ 08540

08540 IRVING S. SCHECHTMAN/ NATIONAL COMPUTER ANALYSTS INC./ HIGHWAY 1 & FARBER RD./ PRINCETON NJ 08540/ (609) 452-2800
08540 HENRY WOOD/ 259 MT. LUCAS ROAD/ PRINCETON NJ 08540

08753 ROBERT C. PERLE/ 1108 RUBY DRIVE/ TOMS RIVER NJ 08753/ (201) 5 32-2831

08316 CHARLES ANDERSON/ 26 TAYLOR AVE./ EAST BRUNSWICK NJ 08816

08822 GEOFFREY F. WALKER/ RD 1 - BOX 56/ FLEMINGTON NJ 08822

08826 GEORGE B. DIAMOND/ DIAMOND AEROSOL CORP./ RD #1/ GLEN GARDNER NJ 08826/ (201) 832-7128

08854 JOSEPH A. MEZZAROBA/ 15 BIRCHVIEW DRIVE/ PISCATAWAY NJ 08854/ (201) 469-5176/ (215) 679-9900 (HOME)

08854 JAMES R. SCHRAGE/ 255 OLD NEW BRUNSWICK RD./ PISCATAWAY NJ 088 54/ (201) 981-0190

09175 ATTN: SAM CALVIN/ COMPUTER EDUCATION/ DARMSTADT CAREER CENTER/ APO NEW YORK NY 09175/ 06151-69~2371~7203 (GERMANY
09403 EUGENE K. GOODELL/ ODCSI SYS DIV/ HQ USAREVR & 7A/ BOX 353/ AP O NY 09403

10001 ED LEARY/ SYSTEMS SOFTWARE/ CBS DATA CENTER/ 2 PENN PLAZA/ NEW YORK NY 10001/ (212) 975-4321

10003 BRIAN GLASSER/ B.G. SOUND/ 60 E. 9TH ST. APT 615/ NEW YORK NY 10003

10005 JAMES L. MORAN/ 700/ C/0O FARNESTOCK & CC./ 110 WALL ST./ NEW Y ORK NY 10005

10014 BARBARA BERGER/ 704 WASHINGTON ST./ NEW YORK NY 10014/ (212) 9 26-5172

10016 GLENN ENTIS/ 203 E. 27TH ST. APT.52/ NEW YORK NY 10016/ (212) 689-4926

10020 JOHN G. POSA/ ELECTRONIC MAGAZINE/ 1221 AVE. OF THE AMERICAS/ NEW YORK NY 10020

10021 MICHAEL H. LESKIN/ 218 E. 74TH ST. APT 1-R/ NEW YORK NY 10021/ (212) 679-0804

10021 ANTHONY TOOGOOD/ COMPUTER ASSOCIATES INC./ 655 MADISON AVE./ N EW YORK NY 10021/ (212) 355-3333

10022 CHARLES H. BROWNING/ PHELPS DODGE CORP./ 300 PARK AVE./ NEW YO RK NY 10022/ (212) 751-3200 X289

PASCAL NEWS #13 DECEMBER, 13738 PAGE 29

10022 C. H. BROWNING/ PHELPS-DODGE CORP./ 300 PARK AVE/ NEW YURK NY 10022

10023 PETER RENNICK/ 201 W 70TH ST APT 33A/ NEW YORK NY 10023

10024 IRA A. CLARK/ COMPUTER SYSTEMS DEVELOPMENT/ 275 CENTRAL PARK W EST/ NEW YORK NY 10024/ (212) 787-0767

10024 PAUL SPRECHER/ 241 WEST 77TH STREET/ NEW YORK NY 10024/ (212) 787-0176 (HOME)/ (212) 873-0677 (WORK)

10038 ANDREW VARANELLI/ COMP. AND INFO. SCI./ 721A/ PACE UNIVERSITY/ PACE PLAZA/ NEW YORK NY 10038

10530 ATTN: LJS COMPUTER SERVICES/ 6 CATERSON TERRACE/ HARTSDALE NY 10530/ (914) 946-1632

10533 FRANK PAVLIK/ 163 S. BROADWAY/ IRVINGTON NY 10533/ (914) 591-6 215

10570 JUSTINA JOHNSON/ P.O. BOX 33/ PLEASANTVILLE NY 10570

10580 LAWRENCE M. GARCIA/ SYNTAX SYSTEMS INC./ 65 REYMONT AVE./ RYE NY 10580/ (914) 967-8421

10598 VICTOR S. MILLER/ THOS J. WATSON RESEARCH CENTER/ IBM/ P.O. BO X 218/ YORKTOWN HGTS NY 10598

11215 BOB SIEGEL/ 401 FOURTH ST./ BROOKLYN NY 11215

11374 ESTHER ROSENSTOCK/ 97-40 62ND DRIVE/ REGO PARK NY 11374

11432 DANTEL LEY/ 85-50 169TH ST./ JAMAICA NY 11432

11530 ANTHONY R. HEALY/ 41 GREENRIDGE AVE/ GARDEN CITY NY 11530/ (51 6) 437-3823 (HOME)/ (212) 363-7380 (WORK)

11552 PETER J. HARRINGTON/ 149 WILLETS AVE./ WEST HEMPSTEAD NY 11552 / (516) 293-8400

11566 MORRIS MOLIVER/ 1928 LOWELL LANE/ MERRICK NY L1566/ (S16) 623~ 4122

11713 LOUTSE GOLDSTEIN/ 71 S. COUNTRY RD./ BELLPORT NY 11713/ (516) 286-8241

11714 N. KERMAN/ MS A31-005/ GRUMMAN AEROSPACE/ BETHPAGE NY 11714/ (516) 575-7403

11756 ROBERT SCHUTZ/ 93 MERIDIAN ROAD/ LEVITTOWN NY 11756/ (516) 735 ~7244

11790 DAVID VANCE/ LIBRARY E-2340/ MUSEUM COMMUNITY NETWORK INC./ SU NY - STONY BROOK/ STONY BROOK NY 11790/ (516) 246-6077

11968 ROBERT TUPPER/ GRUMMAN AFROSPACE/ INDIAN ROAD/ SOUTHAMPTON NY 11968

11973 FRANK LEPERA/ APPLIED MATHEMATICS DEPT./ BROOKHAVEN NATIONAL L ABORATORY/ UPTON NY 11973/ (S16) 345-4112

12202 G. O°SCHENECTADY/ 20 ELM STREET/ ALBANY NY 12202/ (518) 465-28 87

12222 PETER BLONIARZ/ COMPUTER SCIENCE DEPT./ ES 316/ SUNY AT ALBANY / ALBANY NY 12222/ (510) 457-4605

12345 MATTHEW KAZLAVSKAS/ BLDG 28-310/ GENERAL ELECTRIC CO./ 1| RIVER ROAD/ SCHENECTADY NY 12345

12401 G. M. KREMBS/ DEPT 66A BLDG 003/ IBM CORP./ NEIGHBORHOOD RD./ KINGSTON NY 12401

12561 JEANNE FERRANTE/ 201 N. OHIOVILLE RD./ NEW PALTZ NY 12561

13203 MAURY GOLDBERG/ MINI MICRO MART/ 1618 JAMES STREET/ SYRACUSE N Y 13203/ (315) 422-4467

13210 STEVE QUALLINE/ MACHINERY HALL/ SYRACUSE UNIVERSITY/ SYRACUSE XY 13210/ (315) 423-3812

13323 ROBERT J. ELLISON/ MATH DEPT./ HAMILTON COLLEGE/ CLINTON NY 13 323/ (315) 859-4138

13760 BARBARA K. NORTH/ 304 RILLSIDE TERRACE/ ENDWELL NY 13760

13902 MARY DIEGERT/ MATHRMATICS DEPT./ BROOME COMMUNITY COLLEGE/ BIN GHAMTON NY 13902/ (607) 722-5022

14420 NORMAN V. PLYTER/ ACADEMIC COMPUTER CENTER/ HARTWELL RALL/ SUN Y - BROCKPORT/ BROCKPORT NY 14420

14450 E. GOTTWALD/ 2 TILEGATE GLEN/ FAIRPORT NY 14450/ (716) 423-779 7/ (716) 223-5383

14502 JOHN L. DEBES/ BOX 167/ MACEDON NY 14502/ (202) 447-0547

14580 RICHARD ALRUTZ/ 241 W128/ XEROX CORP./ 800 PHILLIPS RD./ WEBST ER NY 14580

14627 JAMES R. LOW/ DEPT. OF COMP. SCI./ MATHEMATICAL SCIENCES BLDG. / UNIV. OF ROCHESTER/ ROCHESTER NY 14627

14850 CHARLES N. ARROWSMITH/ NCR CORP./ 950 DANBY RD./ ITHACA NY 148 50/ (607) 273-5310

14853 MARIANN CARPENTER/ G-24 URIS HALL/ OFFICE OF COMP. SERV./ CORN ELL UNIVERSITY/ LTHACA NY 14853/ (607) 256-7341

14853 HAL PERKINS/ DEPT. OF COMPUTER SCIENCE/ CORNELL UNIVERSITY/ IT HACA NY 14853/ (607) 256-4934

15069 C. Y. BEGANDY/ ALCOA TECHNICAL CENTER/ ALUMINUM CO. OF AMERICA / ALCOA CENTER PA 15069/ (412) 339-6651

15213 CHUCK AUGUSTINE/ COMPUTATION CENTER/ CARNEGIE MELLON UNIV./ SC HENLEY PARK/ CARNEGIE MELLO*/ PITTSBURGR PA 15213/ (412) 578-2649

15213 DAVID B. CROUSE/ GRAPHIC ARTS TECHNICAL FOUNDATION/ 4615 FORBE S AVE/ PITTSBURGH PA 15213

15213 JIM TSEVDOS/ CARNEGIE-MELLON UNIV./ P.O. BOX 132/ PITTSBURGH P A 15213/ (412) 665-1036

15217 ARON SHTULL TRAURING/ 5637 HOBART APT.33/ PITTSBURGH PA 15217/ (412) 421-4066

15221 ROBERT J. KING/ 2337 MARBURY ROAD/ PITTSBURGH PA 15221/ (412) 372-1212

15222 STEPHEN G. HUSSAR/ PPG INDUSTRIES INC./ ONE GATEWAY CENTER/ PI TTSBURGH PA 15222

15230 FREDERICK E. SHIPLEY JR./ GULF RES. & DEV. CO./ PO BOX 2038/ P ITTSBURGH PA 15230/ {(412) 362-1600

15236 ELMER T. BEACHLEY/ P.0. BOX 18046/ PITTSBURGH PA 15236

15238 ROBERTA WACHTER/ INDUSTRY SYSTEMS DIVISION/ 200 BETA DRIVE/ PI TTSBURGH PA 15238/ (412) 782-1730 X544

15260 ALAN M. LESGOLD/ LRDC COMPUTER FACILITY/ UNIV. OF PITTSBURGH/ 3939 O"HARA ST./ PITTSBURGH PA 15260/ (412) 624-4901

16057 PETER RICHETTA/ 287 NORMAL AVENUE/ SLIPPERY ROCK PA 16057/ (41 2) 794-3531

16701 FRANK BREWSTER/ 1 N. VISTA AVE./ BRADFORD PA 16701/ (814) 368- 6319

17331 MICHAEL D. BROWN/ R. H. SHEPPARD CO. INC./ 101 PHILADELPHIA ST REET/ HANOVER PA 17331/ (717) 637-3751

18016 CHARLES T. LEWIS/ BETHLEHEM STEEL/ 1581 MARTIN TOWER/ BETHLEHE M PA 18016/ (215) 694-6359

18017 ROBERT COLE/ 782 BARRYMORE LANE/ BETHLEHEM PA 18017/ (215) 865 -6509

18103 RICHARD J. CICHELLI/ 901 WHITTIER DRIVE/ ALLENTOWN PA 18103/ (215) 797-3153 (HOME)/ (215) 253-6155 (WORK)

18914 PHILIP W. ROSS/ 8 HICKORY LANE/ CHALFONT PA 18914

19004 JIM SHALLOW/ 115 BIRCH AVE./ BALA CYNWYD PA 19004

19020 ROBERT H. TODD JR/ BRIARWOOD #1167/ CORNWALLIS HGT PA 19020/ (215) 752-4604

19020 BOB LIDRAL/ 3806 BENSALEM BLVD. #214/ CORNWELLS HTS. PA 19020

19044 JAMES A. MCGLINCHEY/ 296 BLAIR MILL RD. APT B-7/ HORSHAM PA 19 044

13047 RODNEY MEBANE/ 600 OLD STREET ROAD #AT13/ TREVOSE PA 19047

19083 T. L.(FRANK) PAPPAS/ 338 FRANCIS DRIVE/ HAVERTOWN PA 19083/ (2 15) 789-3206

19102 RICHARD L. DAY/ TIME SHARE SUPPORT GROUP/ BELL TELEFHONE OF PE NNSYLVANIA/ ONE PARKWAY/ PHILADELPHIA PA 19102

19111 ALAN M. KANISS/ 1327 MCKINLEY ST./ PHILADELPHIA PA 19111/ (215) 441-2051 (WORK)

19117 DAN MORTON/ 359 NORTHWOOD AVE./ PHILADELPHIA PA 19117

19122 BILL CHESWICK/ COMPUTER ACTIVITY - SYSTEMS GROUP/ TEMPLE UNIV. / BROAD & MONTGOMERY STREETS/ PHILADELPHIA PA 19122/ (215) 787-8527 (WORK)
(215) 862-2153 (HOME)

19128 JOHN F. RATTI/ 300 HERMITAGE ST./ PHILADELPHIA PA 19128

19145 PAUL J. PANTANO/ 2323 S. 17 ST./ PHILADELPHIA PA 19145

19172 NICK CVETKOVIC/ VIM 6E/ PENN MUTUAL LIFE/ 510 WALNUT ST./ PHIL ADELPHIA PA 19172

19317 BOB KELLER/ CONCORD WAY/ CHADDS FORD PA 19317

19342 JAMES 1. WILLIAMS/ RD 4 BOX 18/ GLEN MILLS PA 19342/ (215) 648 -3554

19380 THOMAS J. AHLBORN/ DEPT. MATH/ WEST CHESTER STATE COLLEGE/ WES T CHESTER PA 19380/ (215) 436-2181

19380 GARY L. WEIGEL/ 202 WESTBROOK DRIVE/ WEST CHESTER PA 19380/ (2 15) 328-9100 (WORK)/ (215) 696-8739

19401 BILL BRENNAN/ 39 JODY DRIVE/ NORRISTOWN PA 19401/ (215) 277-24 66

19422 PETER A. NAYLOR/ MS B/220M/ SPERRY UNIVAC/ P.O. BOX 500/ BLUE BELL PA 19422/ (215) 542-3732

19422 J. P. M. STOFBERG/ MS B/220M/ SPERRY UNIVAC/ P.O. BOX 500/ BLU E BELL PA 19422/ (215) 542-4011

19446 MICHAEL ROSIAK/ 122 ARDWICK TERRACE/ LANSDALE PA 19446

19446 RICHARD WHIFFEN/ ENERTEC/ 19 JENKINS AVE/ LANSDALE PA 19446/ (215) 362-0966

19518 RICHARD A. JOKIEL/ P.O. BOX 136/ DOUGLASVILLE PA 19518

19711 WILLIAM Q. GRAHAM/ COMPUTING CENTER/ U. OF DELAWARE/ 192 S. CH APEL ST./ NEWARK DE 19711/ (302) 453-6032

19711 FRED A. MASTERSON/ DEPT. OF PSYCHOLOGY/ 220 WOLF HALL/ UNIV. O F DELAWARE/ NEWARK DE 19711

19898 SAMUEL C. KAHN/ INFO SYSTEMS DEPT/ N-1450 PLANNING DIV./ DU PO NT & CO./ WILMINGTON DE 19898

20005 JOHN B. HOLMBLAD/ TELENET COMMUNICATIONS CORP./ 1012 L4TH ST. NW/ WASHINGTON DC 20005/ (202) 637-7900

20016 RICHARD B. FITZ/ 4215 38TH STREET NW/ WASHINGTOR DC 20016

20022 R. CARLYLE NEELY JR./ 10114 KATHLEEN DRIVE/ FRIENDLY MD 20022/ (301) 248-6244

20037 VINCENT STANFORD/ DEPT. OF MEDICINE COMPUTER RESEARCH C*/ 517 ROSS HALL/ GEORGE WASHINGTON UNIV./ 2300 EYE ST. NW/ WASRINGTON DC 20037/

20052 MICHAEL B. FELDMAN/ DEPT. OF EE & CS/ GEORGE WASHINGTON UNIV./ WASHINGTON DC 20052/ (202) 676-7593 (202) 676-3673

20052 E. MICHAEL HAMILTON/ C.A.A.C./ GEORGE WASHINGTON UNIV./ 2013 G STREET NW/ WASHINGTON DC 20052/ (202) 676-6140

20250 T. Q. STEVENSON/ O & F DATA SERVICES/ RM 4646-S/ USDA/ WASHING TON DC 20250/ (202) 447-6275

20375 NIELS K. WINSOR/ CODE 6752/ NAVAL RESEARCH LABORATORY/ WASHING TON DC 20375/ (202) 767-3134

20755 JOHN NOLAN/ NATIONAL SECURITY AGENCY/ RS51/ DEPARTMENT OF DEFEN SE/ 9800 SAVAGE ROAD/ FT. MEADE MD 20755/ (301) 796-6461

20770 CAROL B. HOWELL/ P.O. BOX 326/ GREENBELT MD 20770/ (301) 982-2 281 (GODDARD)

20810 RANDY BARTH/ 9206 CANTERBURY RIDING/ LAUREL MD 20810

20822 TOM ENTERLINE/ 13311 CHAUNCEY PL. #203/ MI. RAINIER MD 20822

20850 TOM LOVE/ SOPTWARE METHODOLOGY/ GENERAL ELECTRIC/ 401 N. WASHI NGTON ST./ ROCKVILLE MD 20850/ (301) 340-4000

20852 ATTN: INFORMATICS INC. BOOKSTORE/ 6011 EXECUTIVE BLVD./ ROCKVIL LE MD 20852

20852 PATRICIA SHELLY/ INFORMATIGS INC. BOOK STORE/ 6011 EXECUTIVE B LVD./ ROCKVILLE MD 20852

20853 THOMAS A. MARCINIAK/ 13311 ARCTIC AVENUE/ ROCKVILLE MD 20853/ (301) 942-0538

20855 BOB ROGERS/ 18625 AZALEA DRIVE/ DERWOOD MD 20855/ (301) 869-20 89

20903 H. A. COOK/ 1223 CRESTHAVEN DR./ SILVER SPRING MD 20903

20904 JOHN G. GUTHRIE/ COMPUTER ENTRY SYSTEMS INC./ 2141 INDUSTRIAL PARKWAY/ SILVER SPRINGS MD 20904/ (301) 622-3500

21030 SPEC BOWERS/ 9H BREEZY HILL CT./ COCKEYSVILLE MD 21030

21043 WALLACE KENDALL/ 9002 DUNLOGGIN ROAD/ ELLICOTT CITY MD 21043/ (301) 465-4253

21045 BARTON F. NORTON/ CHROMA/ P.0. BOX 126/ COLUMBIA MD 21045/ (30 1) 992-7404

21203 ROB BIDDLECOMB/ MS 451/ WESTINGHOUSE ELECTRIC CORP./ SDD EAST BOX 746/ BALTIMORE MD 21203/ (301) 765-6322

21204 EDWARD W. KNUDSEN/ AAI CORP./ P.O. BOX 6767/ BALTIMORE MD 2120 4/ (301) 666~1400

21235 LESTER SACHS/ MS 3-0-25 OPER. BLDG/ SOCIAL SECURITY ADMINISTRA TION/ 6401 SECURITY BOULEVARD/ BALTIMORE MD 21235/ (301) 594-5482

21401 DAVID V. SOMMER/ RT. 5 BOX 220/ ANNAPOLIS MD 21401

21701 J. BOGAR/ FREDERICK ELECTRONICS CORP./ P.0. BOX 502/ FREDERICK MD 21701

22030 ATTN: J. M. P. ASSOCIATES/ 3219 PRINCE WILLIAM DR./ FAIRFAX VA 22030/ (703) 591-8525

22101 DAVID AULT/ COMPUTER SCIENCE/ WP 615/ THE MITRE CORP./ 1820 Do LLY MADISON BLVD./ MCLEAN VA 22101/ (703) 437-7898 (HOME)

22101 H. F. HESSION/ ADVANCED RECORD SYSTEMS ENGINEERING/ WESTERN UN ION/ 7916 WEST PARK DRIVE/ MCLEAN VA 22101/ (703) 790-2241

22110 ROBERT A. GIBSON/ B902 NIGOL LANE #207/ MANASSAS VA 22110/ (70 3) 367-4792 (WORK)/ (703) 369-5640 (HOME)

22151 HAROLD D. JENKINS JR./ SPRINGFIELD SUPPORT CENTER/ FAIRFAX COU NTY PUBLIC SCHOOLS/ 6707 ELECTRONIC DR./ SPRINGFIELD VA 22151

22151 PAUL T. DYKE/ RESOURCE SYSTEM & PROGRAM ANALYSIS/ 428 GHI BLDG ./ U.S.D.A./ SO0 12TH ST S.W./ WASHINGTON DC 22151

22180 ROBERT G. FITZGERALD/ 133 EAST STREET N.E./ VIENNA VA 22180/ (301) 868-5229

22205 WALTER A. WHITE/ 6048 N 9TH ST./ ARLINGTON VA 22205

22209 LARRY DUBY/ 1500 ARLINGTON BLVD. #910/ ARLINGTON VA 22209

22309 GERALD P. SHABE/ 3206 NORWICH TERRACE/ ALEXANDRIA VA 22309/ (7 03) 360-5587

22310 RONALD OTTO/ 5800 LANE DRIVE/ ALEXANDRIA VA 22310

22312 ART BARRETT/ THE MITRE CORP./ 4112 CENTURY CT./ ALEXANDRIA VA 22312

22401 RONALD HARTUNG/ 1114 THOMAS JEFFERSON PL./ PREDRICKSBURG VA 22 401/ (703) 373-6573

22801 MICHAFL STAUPFER/ EASTERN MENNONITE COLLEGE/ HARRISONBURG VA 2 2801

22901 AVERY CATLIN/ THIMBLE FARM/ ROUTE 5 ~ BOX 363/ CHARLOTTESVIL* VA 22901

22923 LINWOOD FERGUSON/ RT 1 BOX 3C - LAKE SAPONI/ BARBOURSVILLE VA 22923/ (804) 973-5166

PASCAL NEWS #13 DECEMBER, 1973 PAGE 21

23185

23284

23502

23505

23505

23669
- 27702
) 28214
28704
29206
29210
30021
30033
30067
30303
30305
30305
30305
30305
30327
30342
30354
32204
32304
32407
32670
33065
33068
33142
33181
33528
33549
33601
33803
35801
35803
37076
37660
40206
40583
43147
43229
43230
43762
43778
44092
44106
44106
44106
44107
44512
45201
45215
45241
45244
45342
45409
45614
45426
45424
456432
46201
46202
46205
46312
46322
46526
46805
46808
47272
47401
47907
47907
47907
47907
47907
48010
48033
48043
48093
48098
48103
48103
48103
48103
48105
48105
48106
48109
48130
48169
48184
48228
48640
48824
49001
49003
49006
49008
49008
49085
49464
49503
49684
49931
49931
50011
50158
50307
51106
52240
52302
52302
52302
52402
53012
53092
53201
53201
53202
53202
53207
53217
53218
53511
53705
S3715
53927
54601
54901

DOUGLAS DUNLOP/ 1502 CONWAY DRIVE - APT. 103/ WILLIAMSBURG VA 23185/ (B04) 826-172%

AGNES H. ELMORE/ COMPUTING ACTIVITIES/ VIRGINIA COMMONWEALTH U NIV./ 1015 FLOYD AVE./ RICHMOND VA 23284

DAVID E. HAMILTON/ SUITE 106/ #18 KOGER EXECUTIVE CENTER/ NORF oIk VA 23502/ (804) 461-0268

R. E. CRITTSINGER JR./ 136 BLAKE ROAD/ NORFOLK VA 23505

LLOYD D. FINK/ AIR CARGO INC./ P.O. BOX 9793/ NORFOLK VA 23505 / (804) 480-2660

JOHN C. CLARSON/ 303 TENDERFOOT COURT/ HAMPTON VA 23669

WILLIAM H. DIUGIUD/ PLANNING DIV./ CITY OF DURHAM/ 101 CITY HA LL PLAZA/ DURHAM NC 27702

WARREN C. FORDHAM/ MCCLURE LUMBER CO./ 6000 MT. HOLLY RD/ CHAR LOTTE NC 28214

CARROLL B. ROBBINS JR./ APT 32/ ARDEN ARMS APTS./ ARDEN NC 287 04/ (919) 684-0168

HOWARD EISENSTEIN/ 6616 DARE CIRCLE/ COLUMBIA SC 29206/ (803) 782-5041

BILL RAEUBER/ 149 LEEWARD RD./ COLUMBIA SC 29210/ (803) 777-60 01

CRAIG M. INGLIS/ 1420-C POST OAK DR./ CLARKSTON GA 30021

JOHN P. CUCHES/ THE HYDE COMPANY/ 2169 CLAIRMONT RD NE/ DECATU R GA 30033

HENRY D. KERR ITI/ 4820 HAMPTON LAKE DRIVE/ MARIETTA GA 30067/ (404) 971-2197

DARRELL PREBLE/ COMPUTER CENTER USER SERVICES/ GEORGIA STATE U NIVERSITY/ ATLANTA GA 30303/ (404) 658-2683

JEFFREY K. BIGGERS/ SUITE 411/ DTW INC./ 3100 MAPLE DRIVE NE/ ATLANTA GA 30305

WILLIAM G. CHRISTIAN/ SUITE 450/ CLS INC./ 3100 MAPLE DRIVE NE / ATLANTA GA 30305

FRANK S. SPARKMAN/ SUITE 411/ DTW INC./ 3100 MAPLE DRIVE NE/ A TLANTA GA 30305

DAVID T. WILSON/ SUITE 411/ DTW INC./ 3100 MAPLE DRIVE NE/ ATL ANTA GA 30305

JOHN WEST/ DIGITAL SYSTEMS DESIGN GROUP/ 4559 DUDLEY LANE NW/ ATLANTA GA 30327/ (404) 894-2264

K. M. ALBRIGHT/ SYSTEMS ANALYSIS/ SUITE 600/ SPERRY UNIVAC/ 57 75C PEACHTREE DUNWOODY RD./ ATLANTA GA 30342/ (404) 256-5690
RICHARD P. DE ROBERTS/ FEDERAL AVIATION ADMINISTRATION/ P.O. B 0X 82822/ ATLANTA GA 30354/ (404) 763-7478 (OFF.)/ (404) 876-5370 (RES.)
ATTENTION: ROY W. FILEGER/ SUITE 110 EAST/ COMPUTER POWER/ 661 RIVERSIDE AVE/ JACKSONVILLE FL 32204

PEGGY ROBLYEN/ EDUCATIONAL COMPUTING PROJECT/ FLORIDA STATE DE PT. OF EDUCATION/ TALLAHASSEE FL 32304

ANNA WATSON/ 3705 DELWOOD DRIVE/ PANAMA CITY FL 32407/ (904) 2 34-4423

RICHARD J. NAST/ 1721 SW S5TH LANE/ OCALA FL 32670

HOWARD S. MARSHALL JR./ 2648 NW 86TH AVE./ CORAL SPRINGS FL 33 065

DEAN JAMES/ 7440 S.W. 10TH ST. — #102/ N. LAUDERDALE FL 33068

MONTE ELLIS/ RYDACOM INC./ 3401 NW 36TH ST./ MIAMI FL 33142

JAMES GROSSMAN/ 2365 MAGNOLIA DR./ N. MIAMI FL 33181/ (305) 89 1-3440

CLARA L. JOHNSON/ MEDIA RESEARCH DIV. - ENGINEERING/ A. C. NIE LSON CO./ 375 PATRICIA AVE/ DUNEDIN FL 33528/ (813) 734-5473
HERBERT M. BRYANT JR./ 14410 QELLENIC DR. F19/ LUTZ FL 33549

R. D. EMRICK/ FIRST FLORIDA TOWER/ GTE DATA SERVICES/ P.O. BOX 1548/ TAMPA FL 33601/ (813) 224-3131

ALLEN F. DOWNARD/ 3008 REDWOOD AVE./ LAKELAND FL 33803

MARVIN E. KURTTI/ 1327 MONTE SANO BLVD. S.E./ HUNTSVILLE AL 35 801/ (205) 837-7610

DAVID MCQUEEN/ 2410 ARROWWOOD DR./ HUNTSVILLE AL 35803/ (205) 881-3628

LARRY D. BOLES/ 649 DENVER DRIVE/ HERMITAGE TN 37076

J. W. DISSELKAMP/ 202 BUILDING 54/ TENNESSEE EASTMAN COMPANY/ KINGSPORT TN 37660/ (615) 246-2111

TOM EUBANK/ PRAGMATECH/ 2310 MELLWOOD AVE./ LOUISVILLE KY 4020 g/ (502) 895-1230

BEVERLY SWISSHELM/ KENTUCKY CNTR FOR ENERGY RES. LABORAT*/ UNI vy, OF KENTUCKY/ IRON WORKS PIKE BOX 13015/ LEXINGTON KY 40583/ (606) 252 5535
RICHARD L. MAHN/ 245 W. COLUMBUS ST./ PICKERINGTON OH 43147

RICHARD E. ADAMS/ 967 ATLANTIC AVE #634/ COLUMBUS OM 43229/ (6 17) 436-3206

RICHARD GREENLAW/ 251 COLONY COURT/ GAHANNA OH 43230/ (614) 47 5-0172

RALPH G. HOLLINGSWORTH JR./ 186 MONTGOMERY BLVD./ NEW GONCORD g 43762

TOM LEGRAZIE/ RURAL ROUTE 1/ SALESVILLE OH 43778

LYNN C. HUTCHINSON/ BAILEY CONTROL COMPANY/ 29801 EUCLID AVE/ WICKLIFFE OH 44092/ (216) 943-5500

JACK D. ALANEN/ JENNINGS COMPUTING CENTER/ CASE WESTERN RESERV E UNIV./ CLEVELAND OH 44106/ (216) 368-2800

M. MARVINNEY/ DEPT. OF BIOMETRY/ 150 WEARN BLDG./ CASE WESTERN RESERVE UNIV/ CLEVELAND OH 44106

PAUL MEILAND/ DENTAL SCHOOL CLINICS/ CASE WESTERN RESERVE UNIV ./ 2123 ABINGTON ROAD/ CLEVELAND OH 44106

BILL SHANNON/ 2038 ARTHUR/ LAKEWOOD OH 44107

ATTN:WESTERN RESERVE COMMUNICATIONS/ 424 INDIANOLA ROAD/ YOUNG STOWN OH 44512

WILLIAM R. METZ/ MSD - DEVELOPMENT/ THE PROCTER & GAMBLE COMPA NY/ P.O. BOX 599/ CINCINNATI OH 45201/ (513) 562-2747
G. D. MONTILLON/ 351 FLEMMNGRD./ CINCINNATI OH 45215

FRANCIS H. BEARDEN/ DATA SYSTEMS/ CINCINNATI ELECTRONICS CORP. / 2630 GLENDALE-MILFORD ROAD/ CINCINNATI OH 45241/ (513) 563-6000 X140
CLINTON HERLEY/ MEDIATOR INC./ 2812 SADDLEBACK DRIVE/ CINCINNA TI OH 45244

D. R. HILL/ MONSANTO RESEARCH CENTER/ P.O. BOX 32/ MIAMISBURG OH 45342

DAN C. WATSON/ WRIGHT BROS./ BOX 541/ DAYTOR OH 45409/ (513) 2 23-2348

LAWRENCE A. SHIVELY/ 6014 FREDERICK ROAD/ DAYTOR OH 45414

M. B. CLAUSING/ 5603 FISHER DRIVE/ DAYTON OH 45424/ (614) 236- 3475

W. A. SHULL/ 4063 BUTTERWOOD COURT/ DAYTON OH 45424/ (614) 233 -6487

JOE CLMA/ SUITE 200/ SIMULATION TECHNOLOGY INC./ 4124 LINDEN AVE./ DAYTON OH 45432/ (513) 252-5623

C. W. SAWYER/ MS 1-210/ RCA - CE/ 501 N. LASALLE ST./ INDIANAP OLIS IN 46201/ (317) 267-6802

ATTN: REGENSTRIEF INSTITUTE/ REGENSTRIEF HEALTH CENTER/ 1001 W . TENTH - 5TH FLOOR/ INDIANAPOLIS IN 46202/ (317) 630-6221
RICHARD A. BYERS/ 3690 GLENCAIRN LANE/ INDIANAPOLIS IN 46205

VINCENT ELIAS/ SECURITY FEDERAL S & L ASSN./ 4518 INDIANAPOLIS BLVD./ EAST CHICAGO IN 46312

PHILIP T. HODGE/ 3102 99TH ST. EAST/ HIGHLAND IN 4632/ (Z1¥) 924-5581

TAN SCHMIDT/ 1301 S. MAIN STREET/ GOSHEN IN 46526/ (219) 534-1 794

R. GARY LEE/ DEPT. OF COMPUTER TECHNOLOGY/ PURDUE UNIV./ 2101 COLISEUM BLVD./ FORT WAYNE IN 46805

DALE GAUMER/ GOVT. & INDUSTRIAL DIV./ MAGNAVOX/ 1313 PRODUCTIO N ROAD/ FORT WAYNE IN 46808/ (219) 482-4411

DONALD L. CLAPP/ R. #1/ ST. PAUL IN 47272

ANNA BUCKLEY/ WRUBEL COMPUTING CENTER/ 75K HPER/ INDIANA UNIV. / BLOOMINGION IN 47401/ (812) 337-1911

KENNETH LEROY ADAMS/ COMPUTING CENTER/ G-148 MATH SCIENCES/ PU RDUE UNIV./ W. LAFAYETTE IN 47907/ (317) 493-9407 OR 494-8232 (WORK)
JOSEPH H. FASEL 11/ COMPUTER SCIENCES/ 442 MATH SCIENCES BUIL DING/ PURDUE UNIVERSITY/ W. LAFAYETTE IN 47907/ (317) 493-3832
EDWARD F. GEHRINGER/ DEPT. OF COMPUTER SCIENCE/ MATH SCIENCES ByILDING/ PURDUE UNIVERSITY/ W. LAFAYETTE IN 47907/ (317) 743-3429
SAUL ROSEN/ COMPUTING CENTER/ G175 MATH SCIENCES BLDG/ PURDUE UNIV./ W. LAFAYETTE IN 47907/ (317) 494-8235

MICHAEL DEISEMROTH/ SCHOOL OF IND ENGR./ PURDUE UNIV./ W.LAFAY ETTE IN 47907/ (317) 493-3157

SHAUN DEVLIN/ 6854 CEDARBROOK/ BIRMINGHAM MI 48010/ (313) 322- 6856

H. DICK BREIDENBACH/ 4955 PATRICK/ W. BLOOMFIELD MI 48033

ROBERT J. MATHIAS JR/ APT. 2/ 235 CASS AVE./ MT. CLEMENS MI 48 043/ (313) 465-0068

CHRISTOPHER A. PHILLIPS/ 29205 LUND / SOUTH BLDG. APT 14/ WARR EN MI 48093

WESLEY E. MANGUS/ 5786 NORTHFIELD PKWY./ TROY MI 48098

ALAN A. KORTESOJA/ 701 W. DAVIS/ ANN ARBOR MI 48103/ (313) 995 -7063

WILLIAM G. LEDERER/ W. G. LEDERER & ASSOCIATES INC./ 701 S 7TH / ANN ARBOR MI 48103

WILLIAM LUITJE/ 2509 WEST LIBERTY ROAD/ ANN ARBOR MI 48103/ (3 13) 769-7820

LES WARNER/ 1804 LINWOOD/ ANN ARBOR MI 48103

JOHN D. EISENBERG/ 1510 PLYMOUTH RD. #59/ ANN ARBOR MI 48105/ (313) 665-6410 (HOME)/ (313) 453-1400 X 3752 (WORK)
KURT METZGER/ 478 CLOVERDALE/ ANN ARBOR MI 48105/ (313) 662-47 57

DAVID J. WILSON/ ADP NETWORK SERVICES/ 175 JACKSON PLAZA/ ANN _ARBOR MI 48106/ (313) 769-6800

PAUL PICKELMANN/ COMPUTING CENTRE/ UNIV. OF MICHIGAN/ 1075 BEA L AVE/ ANN ARBOR MI 48109/ (313) 764-2121

GREG WINTERHALTER/ WINTERHALTER & ASSOC. INC./ 3825 N. ZEEB RO AD/ DEXTER MI 48130/ (313) 426-3029

JOHN 5. GOURLAY/ 8645 TOMA ROAD/ PINCKNEY MI 48169/ (313) 994- 6645

DAVID R. POSR/ DEPT 3741/ BURROUGHS CORP./ 3737 5. VENOY RD./ WAYNE MI 48184/ (313) 722-8460 X267

R. NEIL FAIMAN JR./ 8235 APPOLINE/ DETROIT MI 48228/ (313) 834 -3065

BOB METZGER/ COMPUTER TECHNOLOGY DEV./ DOW CHEMICAL CO./ 2040 DOW CENTER/ MIDLAND MI 48640

J. F. P. MARCHAND/ CYCLOTRON LABORATORY/ MICHIGAN STATE UNIV./ EAST LANSING MI 48824

PHILLIP 1. GOOD/ 7293 32-2/ THE UPJOHN CO./ KALAMAZOO MI 49001

JAMES H. WALTERS/ AMERICAN NATIONAL HOLDING CO./ P.O. BOX 2769 / KALAMAZOO MI 49003/ (616) 383-6700

LOREN L. HEUK/ THE UPJOHN CO./ 301 HENRIETTA ST./ KALAMAZOO MI 49006/ (616) 385-7886

ATTN: SERIAL RECORDS/ DWIGHT WALDO LIBRARY/ WESTERN MICHIGAN U NIV./ KALAMAZOO MI 49008

MARK C. KERSTETTER/ DEPT. OF MATHEMATICS/ WESTERN MICHIGAN UNI VERSITY/ KALAMAZOO MI 49008/ (616) 383-0959

ANTHONY J. SCHAEFFER/ 1023 VINELAND RD./ ST. JOSEPH MI 49085/ (616) 429-8517

MIKE HAMMAN/ HERMAN MILLER INC./ ZEEMAN MI 49464/ (616) 772-33 00

JOHN DE LONGPRE/ 16 UNION ST. APT. 3/ GRAND RAPIDS MI 49503

TOM LEE/ NORTHWESTERERN MICH. COLLEGE/ 1701 E.FRONT ST/ TRAVER SE CITY MI 49684

JAMES H. HOWARD/ 1113 RUBY/ HOUGHTON MI 49931/ (906) 487-2110

KENNETH M. MCMILLIN/ SIMULATION LAB/ MICHIGAN TECH UNIV./ HOUG HTON MI 49931/ (906) 487-2111

ATTN: ADP CENTER/ 117 PEARSON HALL/ TOWA STATE UNIV./ AMES IA 50011

DAVID HICKOK/ R.A. ENGEL TECH. CENTER/ FISHER CONTROLS CO./ P. ©. BOX L1/ MARSHALLTOWN IA 50158/ (515) 754-3011
ATTN: D. M. MOFFETT/ ANNEX/ BANKERS LIFE/ 575 SEVENTH ST./ DES MOINES IA 50307

ALBERT SHPUNTOFF/ DEPT. OF MATH AND COMPUTER SCLENCE/ MORNINGS IDE COLLEGE/ SIOUX CITY IA S1106/ (712) 274~1184 (HGME)/ (712) 277-5197 (WORK)
LAURA L DICKINSON/ 2107 F ST./ IOWA CITY IA 52240/ (319) 338-9 976

DON STOVER/ 2270 26TH STREET/ MARION IA 52302/ (319) 377-852¢

DENNIS SUTHERLAND/ 2835 25TH AVE./ MARION IA 52302/ (319) 377- 4200

T. R. THURMAN/ 1410 7TH ST./ MARION TA 52302/ (319) 395-2280

JAMES C. COZZIE/ 19578 AVE NE/ CEDAR RAPIDS 1A 52402

JACK P. SHAW/ W73 N726 LOCUST AVE./ CEDARBURG WI 53012/ (414) 377-4128

S. R. BUCHANAN/ 12613 JONQUIL CT./ MEQUAN WI 53092

THOMAS W. HUEBNER/ 507 E. MICHIGAN ST./ MILWAUKEE WI 53201/ (4 14) 276-9200 X653

GEORGE T. JACOBI/ JOHNSON CONTROLS/ P.O. BOX 423/ MILWAUKEE WI 53201

ATIN: TECHNICAL LIBRARY 47-687/ JOHNSON CONTROLS INC./ 507 E M ICHIGAN ST./ MILWAUKEE WI 53202/ (414) 276-9200 X687
WAYNE CATLETT/ SUITE 335N/ APPLIED COMPUTER DESIGNS INC./ 811 EAST WISCONSIN AVE./ MILWAUKEE WI 53202/ (414) 277-0400
GREGORY JENNINGS/ 3174 S. LOGAN AVE./ MILWAUKEE WI 53207/ (414) 483-4972

G. THOMAS SLUSSER/ 5417 N. KENT AVE./ WHITEFISH BAY WI 53217

A OLDENBURG/ AJAX CORP./ P.O. BOX 18442/ MILWAUKEE WI 53218/ .(414) 463-3600

STEPHEN LOCKE/ RESEARCH/ BELOIT CORP./ 1 ST. LAWRENCE AVE./ BE LOIT WL 53511/ (608) 365-3311

EDWARD K. REAM/ 508 FARLEY AVE. - APT. 5/ MADISON WL 53705/ (6 08) 231-2952

0. ARTHUR STIENNON/ PARK-REGENT MEDICAL BLDG./ 1| SOUTH PARK ST ./ MADISON WI 53715/ (608) 255-6262

JAMES E. TARVID/ BOX 20/ DELLWOOD WI 53927/ (608) 339-7259

THOMAS C. HICKS/ 1108 5 5TH. ST./ LA CROSSE WI 54601/ (608) 78 4-4345

ANDPEW L. PERRIE/ 1208 BAY SHORE DR./ OSHKOSH WI 54901/ (414) 233-4661 (HOME)/ (414) 424-2068 (WORK)

PASCAL NEWS #13 DE

53042
55066
55102
55110
55113
55113
55116
55165
55337
55343
55364
55402
55403
55404
55404
55411
55414
55414
55414
55414
55414
55417
55419
55435
55435
55441
55443
55454
55454
55455
55455
55455
55455
55455
55455
55455
55455
55455
55812
55901
55987
56301
56301
56320
56381
57401
59801
60005
60010
60025
60053
60077
60106
60115
60120
60174
60202
60204
60419
60510
60514
60544
60559
60603
60604
60606
60613
60614
60618
60626
60626
60626
60630
60657
60658
60660
60684
61101
61701
61701
61801
61820
62702
62901
63042
63105
63110
63132
63132
63166
63188
63367
64108
64110
64110
64118
64134
65201
65201
66030
66102
67460
68106
68131
68154
68182
68588
69341
72205
72554
72701
73070
73106
713501
74102
74145
74145
75006
75042
75042
75043
75080
75081
75088
75116
75205
75221
75229
75231
75234

CHRIS BOYLAN/ 10711 SOTH ST NORTH/ LAKE ELMO MN 55042/ (612) 4
TERRY MYNRER/ 1324 EAST AVENUE/ RED WING MM 55066/ (612) 388-4
WALT PERKO/ 341 RAMSEY #11/ ST. PAUL MN 55102/ (612) 291-1268
BRIAN HANSON/ 1904 LAKEAIRES BLVD/ WHITE BEAR LA* MN 55110/ (6
STEVEN SIEGFRIED/ M.S. 4752/ SPERRY-UNIVAC/ 2276 HIGHCREST DRI
CHARLES J. PURCELL/ 1260 W. SHRYER AVE./ ST. PAUL MN 55113/ (6
MIKE TILLER/ 1239 JUNO AVE/ ST. PAUL MN 55116/ (612) 835-2330
RAYMOND YOUNG/ M.S. U2T18/ SPERRY UNIVAC/ P.O. BOX 3525/ ST. P
BOB ARNOLD/ 3315 BROOKVIEW DR/ BURNSVILLE MN 55337/ (612) 378-
WILLIAM T. WOOD/ 938 WESTBROOK WAY #7/ HOPKINS MN 55343/ (612
CLARENCE LEHMAN/ 6755 WOODLEDGE RD./ MOUND MN 55364/ (612) 472
WILLIAM REILAND/ INQUIRY/ 305 FOSHAY TOWER/ MINNEAPOLIS YN 554
JOEL M. HALPERN/ 1935 GIRARD AVE S./ MINNEAPOLIS MN 55403/ (61
EDWARD DEPPE/ DPS INC./ 2550 PTLLSBURY AVE. S./ MINNEAPOLIS MN
GLENN FISHBINE/ SUITE 300/ MCPC/ 2344 NICOLLET AVE. S./ MINNEA
CHARLES WONG/ 2005 HILLSIDE AVE./ MINNEAPOLIS MN 55411/ (612
KIM ADELMAN/ LEE CON INC./ 828 KASOTA AVE./ MINNEAPOLIS MN 554
THOM HOARD/ P.0. BOX 14113/ MINNEAPOLIS MN 55414/ (612) 376-62
JOHN E. LIND/ 515 SE HURON ST./ MINNEAPOLIS MN 55414/ (612) 37
JOHN NAUMAN/ 1015 12TH AVE SE #202/ MINNEAPOLLS MN 55414

JON L. SPEAR/ 1007 13TH AVE S.E./ MINNEAPOLIS MN 55414/ (612)
GEORGE D. JELATIS/ 3015 E. MINNERAHA PKWY./ MINNEAPOLIS MN 554
JOHN SCOBEY/ 204 VALLEY VIEW PLACE/ MINNEAPOLIS MN 55419

RON THOMAS/ 7625 BUSH LAKE ROAD/ EDINA MN 55435/ (612) 835-736
HAROLD L. BOERLIN II/ SUITE 196/ INFO-DYNE/ 4600 W 77TH ST./ M
DAVID L. SEARLE/ CONTROL DATA CORP./ 2200 BERKSHIRE LANE/ MINN
WARD SLY/ 8200 TOLEDO AVE. N./ BROOKLYN PARK MN 55443/ (612) §
TIM BONHAM/ D60S/1630 S. 6TH ST./ MINNEAPOLIS MN 55454/ (612
PAUL BRAINERD/ D1605/1630 S. 6TH ST./ MINNEAPOLIS MN 55454/ (6
RON ANDERSON/ DEPT. OF SOCIOLOGY/ 1010 SOC SCI TOWER/ UNIV. OF
SCOTT S. BERTILSON/ GEOSCIENCE DEPT./ 422 SPACE SCIENCE/ UNIV.
DAVE BIANCHI/ UNIVERSITY COMPUTER CENTER/ 227 EXP.ENGR./ U. OF
BRAD BLASING/ UNIVERSITY COMPUTER CENTER/ 227 EXP. ENGR./ U OF
JEFFREY J. DRUMMOND/ UNIVERSITY COMPUTER CENTER/ LAUDERDALE/ U
DANTEL E. GERMANN/ UNIVERSITY COMPUTER CENTER/ 227 EXP ENGR/ U
RICK L. MARCUS/ UNIVERSITY COMPUTER CENTER/ 227 EXP ENGR/ UNIV
JAMES F. MINER/ SSRFC/ 25 BLEGEN HALL/ U OF MINNESOTA/ WEST BA
STEVEN A. REISMAN/ UNIVERSITY COMPUTER CENTER/ 227 EXP. ENCGR./
DAN M. LALIBERTE/ 2015 E 2ND STREET/ DULUTH MN 55812/ (218) 72
J. W. MCINTOSH/ IBM/ HIGHWAY 52 & NW 37TH ST./ ROCHESTER MN 55
GERALD W. CICHANOWSKI/ DEPT. COMPUTER SCIENCE/ ST. MARY’S COLL
PAUL HELVIG/ 314 4TH AVE. S./ ST. CLOUD MN 56301/ (612) 253-53
DAVID L. PETERSON/ 4610 SWEETAIRE STREET/ ST. CLOUD MN 56301/
MIKE STEIN/ 704 4TH STREET NORTH/ COLD SPRING MN 56320/ (612)
MIKE CHALENBURG/ BOX 733/ STARBUCK MN 56381

THOMAS L. GERBER/ 419 E. RAILROAD AVE./ ABERDEEN SD 57401/ (60
JEFFREY C. JENNINGS/ ROUTE 4/ MISSOULA MT 59801/ (406) 258-537
DAVE NUTTING/ 511 W. GOLF RD./ ARLINGTON HTS IL 60005/ (312) 7
WILLIAM A. BRIGGS/ 25399 N. BARSUMIAN DR./ TOWER LAKES IL 6001
HUGO HSIUNG/ 1718 ROBIN LANE/ GLENVIEW IL 60025

LOU WARSHAWSKY/ 9220 LINDER/ MORTON GROVE IL 60053/ (312) 965-
JOSEPH LACHMAN/ LACHMAN ASSOCIATES/ 8931 BRONX AVENUE/ SKOKIE
TIM STEVENS/ 120 E GEORGE ST. NO. 622/ BENSENVILLE IL 60106
LYLE B. SMITH/ COMPUTING SERVICES/ 205A ALTGELD/ NORTHERN ILLI
MARTIN RUNYAN/ ENGINEERING SECTION/ LAKESIDE PRESS/ 920 DAVIS
KEITH GORLAND/ ARTHUR ANDERSEN & CO./ 1405 N. FIFTH AV/ ST. CH
DAVID B. CHRISTIE/ 820 FOREST AVE./ EVANSTON IL 60202/ (312) 3
GARY R. GUTH/ MANAGEMENT INFORMATION SYSTEMS/ RUST-OLEUM CORP.
STEPHEN PIKE/ 14512 SANDERSON/ DOLTON IL 60419/ (312) 841-6690
ROBERT GOODWIN/ MS 7/ FERMI LAB/ P.O. BOX 500/ BATAVIA IL 6051
HARRIS M. KOEHN/ 6515 S CLARENDON HILLS RD./ CLARENDON HLLS IL
A. L. WOLBERT/ MARINE RESEARCH & DEVELOPMENT/ CHICAGO BRIDGE &
STEPHEN HOLLATZ/ 770 OAKWOOD DRIVE/ WESTMONT IL 60559

JAMES E. BECKLEY/ ROAN & GROSSMAN LAW OFFICES/ 120 S. LA SALLE
RICHARD A. STACK/ SUITE 1339/ THOMAS L. JACOBS & ASSOCTATES/ 5
WLLLIAM J. NYBACK/ 29 N. WACKER DRIVE/ CHICAGO IL 60b6Ub
HENRIETTE KLAWANS/ 3900 N LAKE SHORE DR. NO. 23X/ CHICAGO IL 6
JACK LIEBSCHUTZ/ 626 W BELDEN #2/ CHICAGO IL 60614/ (312) 281-
THOMAS P. HOVEKE/ 3223 W. BERTEAU AVE./ CHICAGO IL 60618

FRANK ALVIANI/ 1327 W. LUNT/ CHICAGO IL 60626

FRANK NUSSBAUM/ DEPT. OF MATH. SCIENCES/ LOYOLA UNIV./ 6525 N.
DAVID J. 200K/ 1100 W. PRATT/ CHICAGO IL 60626/ (312) 262-7744
RICHARD E. PRICE/ 5812 W. GIDDINGS/ CHICAGO IL 60630/ (312) 73
JAMES KLAJA/ 902 BELMONT/ CHICAGO IL 60657

DAVID C. MADSEN/ 12716 LACROSSE/ ALSIP 1L 60658/ (312) 388-679
ALAN J. ILIFF/ 1082 W. THORNDALE ST/ CHICAGO IL 60660/ (312) 5
THOMAS CORRIGAN/ DEPT. 704-5/ BSC 47-9/ SEARS ROEBUCK AND CO./
J. MICHAEL SULLIVAN/ J. L. CLARK MFG CO./ 2300 6TH ST./ ROCKFO
KENNETH L. CHRISTENSEN/ STATE FARM INSURANCE/ | STATE FARM PLA
SID SMART/ STATE FARM INSURANCE CO./ 1 STATE FARM PLAZA/ BLOOM
RICHARD BALOCCA/ 207 ADVANCED COMPUTATION BLDG/ U OF ILLINOIS/
AVRUM ITZKOWITZ/ 205 E. HEALEY #36/ CHAMPAIGN IL 61820/ (217)
MIKE HARRIS/ 407 W. CALHOUN #20/ SPRINGFIELD IL 62702/ (217) 7
F. G. PAGAN/ DEPT. OF COMP. SCI./ SOUTHERN ILLINOIS UNIV./ CAR
JOHN R. GRINDON/ 853 COACHLIGHT LANE/ ST. LOULS MO 63042

BOBBY OTIS NASH/ P.O. BOX 16205/ ST. LOUIS MO 63105

GERALD C. JOHNS/ COMPUTER SYSTEMS LAB/ WASHINGTON UNIVERSITY/
M. W. VANNIER/ 917 FLORADALE/ OLIVETTE MO 63132

MICHAEL A. WHITE III/ LUMBERMATE CO./ 10443 BAUR BLVD./ ST.LOU
PETER R. ATHERTON/ DEPT. 1124/ 132 BLDG 2 - LEVEL 1/ MCDONNELL
JOHN K. MCCANDLISS/ ALMSA/ ATTN: DRXAL~TL/ P.0. BOX 1578/ ST.
JOHN W. MCCAIN/ NATIONAL SOFTWARE EXCHANGE/ 1000 LAKE ST. LOUL
LARRY D. LANDIS/ UNITED COMPUTING SYSTEMS/ 2525 WASHINGTON/ KA
JOHN P. CHAPMAN/ 4115 KENWOOD/ KANSAS CITY MO 64110

JOSEPH M. JOYCE/ 5925 ROCKHILL RD./ KANSAS CITY MO 64110/ (816
JEFF PALMER/ 2001 NE 52ND TERR./ KANSAS CITY MO 64118/ (816) 4
RON TIPTON/ P.O. BOX 9674/ KANSAS CITY MO 64134

FRED DITTRICH/ 705 LYONS/ COLUMBIA MO 65201/ (314) 443-0082
STUART J. KRETCH/ 8 KEENE ST. APT.D-30/ COLUMBIA MO 65201/ (31
A. D. MOORE/ P.0. BOX 364/ GARDNER KS 66030/ (913) 884-8125
DAVID M. ALLAN/ 1317 CENTRAL AVE./ KANSAS CITY K§ 66102/ (913)
LYNN MACEY/ ACCK/ 105 E. KANSAS AVE./ MCPHERSON KS 67460
RICHARD WALCH/ SAHLER BUSINESS FORMS CO./ P.O. BOX 6308/ OMAHA
LINDA LEA RAY/ RESEARCH DIVISION/ BOYS TOWN INSTITUTE/ 555 NOR
DARYL E. MALENA/ SUITE 8/ 10838 OLD MILL ROAD/ OMAHA NE 68154/
LYNNE J. BALDWIN/ DEPT. OF MATH/COMP. SCI./ U OF NEBRASKA/ 60T
ATTN: INFORMATION/RESOURCE CENTER/ 225 NEBR. HALL/ UNIVERSITY
GARY J. BOOS/ 2350 CHATEAU WAY/ GERING NE 69341

JOHN L. CHANEY/ 615 N COOLIDGE ST./ LITTLE ROCK AR 72205

DAN REED/ BOX 22/ MAMMOTH SPRING AR 72554/ (501) 625-3653
JOSEPH N. HILTON/ RT. 5 BOX 385/ FAYETTEVILLE AR 72701/ (501)
MIKE O°DELL/ COMP. SCI. DEPT./ UNIV. OF OKLAHOMA/ P.0. BOX 289
DAVID HUSNIAN/ 1731 N.W. 29TH/ OKLAHOMA CITY OK 73106/ (405) 5
GARY HUCKABAY/ DEPT. OF MATHFMATICS/ CAMERON UNIV./ LAWTON OK
KENNETH K. DRIESSEL/ AMOCO RESEARCH/ P.O. BOX 5Yl/ TULSA UK 74
BOB DUPREE/ 4849 S. 69TH EAST AVE./ TULSA OK 74145/ (918) 663-
CONRAD SUECHTING/ DATA GENERAL CORP./ 9726 E. 42ND ST. SUITE 2
JOHN JENKINSON/ BOX 169 MS 32/ MOSTEK/ 1215 W. CROSBY/ CARROLL
ERIC PEABODY/ 2126 HOMESTEAD PLACE/ GARLAND TX 75042/ (214) 49
JOE C. ROBERTS/ 1529 MEADOWCREST/ GARLAND TX 75042/ (214) 238-
LARRY WEISS/ 524 GRANADA DR./ GARLAND TX 75043

E. J. SAMMONS/ M/S 410-260/ ROCKWELL INTERNATIONAL/ 1200 N. AL
JOHN P. HARVELL/ ADVANCED TECHNOLOGY 420-150/ ROCKWELL INTERNA
CLEMENT MORITZ/ NORTHEAST SCIENTIFIC CORP./ 7518 MERRITT RD/ R
STANLEY E. BAMMEL/ BAMMEL SOFTWARE ENGINEERING/ 1307 W RIDGE/
CARL J. TOSETTO/ P.0. BOX 8445/ DALLAS TX 75205/ (214) 824-237
WENDEL WHEELER/ TAYLOR PUBLISHING CO./ P.O. BOX 597/ DALLAS TX
CHARLIE SCOGIN/ UNISYSTEMS SERVICES/ 2840 WALNUT HILL LANE/ DA
KIM L. SHIVELEY/ 7777 MANDERVILLE LANE APT. 221/ DALLAS TX 752
DAVID F. BREEDING/ HARRIS DATA COMM DIV/ P.O. BOX 400010/ DALL

CEMBER,
39-0707
974

139738

12) 429-3400
VE/ ROSEVILLE MN 55113/ (612) 6336170 X3667
12) 482-2250

AUL MN 55165/ (612) 456-5517
5043 (WORK)/ (612) 894~4307 (HOME)
887-4447
-1405
02/ (612) 335-2546
2) 822-5936
55404
POLIS MN 55404/ (612) 870-0728
378-2441
14/ (612) 378-2500 (BUS)/ (612) 475-3513 (HOME)
90
9-9276

331-1965
17/ (612) 722-7258

1

INNEAPOLIS MN 55435/ (612) 831-5906
EAPOLIS MN 55441/ (612) 545-2851
66-3928

339-4405/ (612) 348-5142 (WORK)

12) 341-3789

PAGE 22

MINNESOTA/ WEST BANK/ MINNEAPOLIS MN 55455/ (612) 373-0177 (WORK)/ (612) 835-1170 (HOME)
OF MINNESOTA/ MINNEAPOLIS MN 55455/ (612) 373-1994 (WORK)/ (612) 331-2464 (HOME)

MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 373-4181
MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 376-5262
OF MINNESOTA/ MINNEAPOLIS MN 55455/ (612) 376-5603

NIV OF MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 941-1082/ (612) 376-5262 (WORK:
OF MINNESOTA/ FAST BANK/ MINNEAPOLIS MN 55455/ (612) 339-1638/ (612) 373-4181

NK/ MINNEAPOLIS MN 55455/ (612) 373~5599

UNIV OF MINNESOTA/ EAST BANK/ MINNEAPOLIS MR 55455/ (612) 376-1755

8-6177

901/ (507) 286-10t1

EGE/ P.O. BOX 17/ WINONA MN 55987/ (507) 452-4430 X265
52

(612) 253-7548

685-3710

5) 226-0200

o

56-0710
0/ (312) 948-5500

1547
IL 60077/ (312) 674~5685 (WORK)

NOIS UNIV./ DEKALB IL 60115/ (815) 753-1059

ROAD/ ELGIN IL 60120/ (312) 697-8310

ARLES IL 60174

28-6579 (WORK)

/ 2301 OAKTON ST./ EVANSTON IL 60204/ (312) 869-1100

0/ (312) 840-4416
60514
IRON/ ROUTE 59/ PLAINFIELD IL 60544/ (815) 436-2912

ST./ CHICAGO IL 60603/ (312) 263-3600
3 W. JACKSON BLVD./ CHICAGO IL 60604/ (312) 786-0233

0613
5827

SHERIDAK/ CHICAGO IL 60626
6-8618

6

61-4492

SEARS TOWER/ CHICAGO IL 60684
RD IL 61101

ZA A-4/ BLOOMINGTON IL 61701/ (309) 662-2926
INGTON IL 61701

URBANA IL 61801/ (217) 333-2362

359-9644 (HOME)/ (217) 352-6511 (WORK)
89-7669 (HOME)/ (217) 782-0014 (WORK)
BONDALE IL 62901

724 S. EUCLID AVENUE/ ST. LOUIS MO 63110/ (314) 454-3395

IS MO 63132/ (314) 991-2004

AIRCRAFT CO./ P.O. BOX 516/ ST. LOUIS MO 63166/ (314) 232-0232
LOUIS MO 63188/ (314) 268-2786

S BLVD. #27/ LAKE ST. LOUIS MO 63367

NSAS CITY MO 64108/ (816) 221-9700

) 523-7656
52-8335

4) 449-1952 (HOME)/ (314) 882-2284 (WORK)
371-6136 (WORK)/ (913) 381-5588 (HOME)

NE 68106
TH 30TH STREET/ OMAHA NE 68131/ (402) 449-6500
(402) 330-4100
H AND DODGE/ OMAHA NE 68182/ (402) 554-2836
OF NEBRASKA/ LINCOLN NE 68588/ (402) 472~3701

443-2045

1/ NORMAN OK 73070/ (405) 325-4721
25-7042

73501/ (405) 248-2200 X49

102/ (418) 644-3551

4646

00/ TULSA OK 74145/ (918) 664-8530
TON TX 75006/ (214) 242-0444 X2401
5-6416/ (214) 238~5936

3711 (WORK)/ (214) 276-8157 (HOME)

MA/ RICHARDSON TX 75080/ (214) 996-3593

TIONAL/ 1200 N. ALMA ROAD/ RICHARDSON TX 75081/ (214) 996-2280
OWLETT TX 75088/ (214) 475-1164

DUNCANVILLE TX 75116/ (214) 298-6870

8

75221

LLAS TX 75229/ (214) 350-6658

31/ (214) 363-5249

AS TX 75234/ (214) 386-2296

PASCAL NEWS #1353 DECEMBER, 19738 PAGE 23

AV . ¢ TICS 0 W. CAMP WISDOM RD./ DALLAS TX 75236/ (214) 298-3331
e ATTBNTION: TR SN S NSHLIVTE 08 LUOUISTICS 130 45 O SO0 D) Koot m 7390 (119 369-3109/ (719 34509
76019 JOHN M. HEMPHILL/ COMP. SCI. & ENGR./ UNIV OF TEXAS AT ARLINGT ON/ BOX 19015/ ARLINGTON TX 76018/ (817) 273-3785
76059 STEVE CAVENDER/ COMPUTER SERVICES/ SOUTHWESTERN ADVENTIST COLL -/ KEENE TX 76059/ (817) 645-3921
76101 ROBERT L. TURPIN/ TEXAS FLECTRIC SERVICE CO./ P.0. BOX 970/ FO RT WORTH TX 76101
76107 DAVID P. MCDONNELL/ 4912 GEDDES/ FT. WORTH TX 76107/ (817) 738 -1884
76133 CHARLES F. SHELON/ 3629 FENTON AVE./ FORT WORTH TX 76133
77001 ATTENTION: COLIN G. CAMPBELL/ MS / 781/ TEXAS INSTRUMENTS/ P.0 . BOX 1444/ ROUSTON TX 77001/ (713) 491-5115 X3338
77001 S. BALASUBRAMANIAN/ SHELL DEVELOPMENT COMPANY/ PO BOX 481/ HOU STON TX 77001/ (713) 633-2335
77001 DAVID DYCHE/ MS 781/ TEXAS INSTRUMENTS/ P.O. BOX 1444/ BOUSTON TX 77001/ (713) 491-5115 %3335
77001 GINGER KELLY/ INSTITUTE FOR COMP. SERV. AND APP./ RICE UNIVERS ITY/ P.0. BOX 1892/ HOUSTON TX 77001/ (713) 527-4965
77023 HOWARD LEVERENZ/ 4723 B MCKINNEY/ HOUSTON TX 77023/ (713) 926- 5922
77024 RICHARD A. KOEBBING/ B. J. KAHN & ASSOCIATES/ P-0. BOX 19437/ HOUSTON TX 77024
77024 JOHN B. WARDLAW/ 13935 BARRYKNOLL LANE/ HOUSTON TX 77024/ (713) 497-48l1
77043 JOHN EARL CRIDER/ 2918 KEVIN LANE/ HOUSTON TX 77043/ (713) 462 0299
77055 FELIX $. H. LI/ PENSION MATREMATICS/ 14237 MISTY MEADOW LANE/ HOUSTON TX 77055/ (713) 466-7521
77074 WAYNE FLOURNOY/ 8500 NAIRN NO. 318/ HOUSTON TX 77074/ (713) 77 6-1937
77079 DAVID HOLLAND/ SUITE 200/ INTERCOMP/ 1201 DAIRY ASHFORD/ HOUST ON TX 7707%
77081 JAMES S. HUGGINS/ 5920 BISSONET #45/ HOUSTON TX 77081
77302 THOMAS K. BURGESS/ 8825 SOUTH I-45/ CONROE TX 77302/ (713) 756 -5160
78148 JOHN E. NEWTON/ AFMPC/MPCDDPS/ RANDOLPH AFB TX 78148
78231 GENE HUGHES/ 2907 SKY CLIFF/ SAN ANTONIO TX 78231/ (512) 492-9 661
78363 ATIN: COMPUTATION CENTER/ TEXAS A & I UNIVERSITY/ CAMPUS BOX 1 35/ KINGSVILLE TX 78363

KATIE NOONING/ 1105 DEEPWOOD/ ROUND ROCK TX 78664/ (512) 255-6 052
;ﬁ?f; WILRELM BURGER/ DEPT. OF COMPUTER SCIENCES/ 328 PAINTER HALL/ UNIV. OF TEXAS ~ AUSTIN/ AUSTIN TX 78712/ (512) 471-4353
78712 ALAN ZARING/ COMPUTER SCI. DEPT./ UNIV. OF TEXAS — AUSTIN/ Aus TIN TX 78712/ (512) 471-7316
78721 DONALD G. WEISS/ H2565/ 3501 ED BLUESTEIN BLVD./ AUSTIN TX 787 21/ (512) 928-6034
78753 ROGER W. FRECH/ 10033 CHILDRESS DR./ AUSTIN TX 78753/ (512) 83 7-6078
78758 WALT FEESER/ 8900 SHOAL CREEK SUITE 109/ AUSTIN TX 78758
78758 FREDERICK JOHN TYDEMAN/ 8405 BOWLING GREEN/ AUSTIN TX 78758/ (512) 454-9292
78769 DAVID N. GRAY/ MS 2201/ TEXAS INSTRUMENTS/ P.0. BOX 2909/ AUST IN TX 78769/ (512) 451-8441 X269
78873 JEFFREY W. GRAKAM/ GRAMAM COMPUTER ENTERPRISES INC./ P.O. BOX 634/ LEAKEY TX 78873
79109 HARRY P. HAIDUK/ 6202 MCCOY/ AMARTLLO TX 79109/ (806) 376-5111 X356 (WORK)/ (806) 352-1811 (HOME)
79601 D. A. CAUGHFIELD/ 609 E. N. 21ST/ ABILENE TX 79601/ (915) 677- 1911
80027 THOMAS L. LIGHT/ STORAGE TECHNOLOGY CORP./ 2270 S 88TH ST./ LO UISVILLE CO 80027/ (303) 666-6581
80027 GEORGE H. RICHMOND/ MAIL DROP FF/ STORAGE TECHNOLOGY CORP./ LO UISVILLE CO 80027/ (303) 497-5151 X7416
80201 JOHN CARNAL/ MS 0424/ MARTIN MARIETTA/ P.C. BOX 179/ DENVER CO 80201
80201 BILL EHLERT/ P.0. BOX 3154/ DENVER CO 80201
80202 TERRY R. ROBERTS/ SECURITY LIFE OF DENVER/ 1616 GLENARM PLACE/ DENVER CO 80202/ (303) 534-1861

DAVID HORNBAKER/ 1351 WASHINGTOR/ DENVER CO 80203
sgigg FRED KATZMAN/ INFORMATION SYSTEMS/ MATHEMATICA POLICY RESEARCH INC./ 1410 GRANT STREET/ DENVER CO 80203/ (303) 837-1500
80210 R. L. ESHELMAN/ 2525 BUCHTEL BLVD./ DENVER CO 80210/ (303) 322 -0494
80231 JEAN TROUDT/ 900 S. QUINCE ST. #921/ DENVER CO 80231/ (303) 32 0~1959
80234 RON OLSEN/ ROOM 1J28/ BELL LABORATORIES/ 11900 N. PECOS ST./ D ENVER CO 80234/ (303) 451-4224
80301 DAVID ANDRUS/ KRYPTONICS INC/ 5660 CENTRAL AVI'NUE/ BOULDER CO 80301/ (303) 442-9173
80301 CHARLES R. PRICE/ KNUTSON ASS: CIATES INC./ 1700 N. SSTH ST./ B OULDER CO 80301/ (303) 449-0574
80302 DAVID PICKENS/ S0R / 023/ IBM CORP./ P.O. BOX 1900/ BOULDER CO 80302/ (303) 447-5844
80302 JAY SCHUMACHER/ MONOLITHIC SYSTEMS/ 1466 13TH ST./ BOULDER CO 80302
80302 JOE WATKINS/ 2895 18TH STREET/ BOULDER CO 803C2/ (303) 443-859 8/ (303) 234-3115 (WORK)
80303 DENNIS R. ELLIS/ C/O CRAY RESEARCH/ 75 MANHATTAN DR. - SUITE # 3/ BOULDER CO 80303/ (303) 494-5151 X585
80306 RICHARD L. ANDERSON/ COMPUTER SERVICES CENTER/ BOULDER VALLEY PUBLIC SCHOOLS/ P.O. BOX 9011/ BOULDER CO 80306/ (303) 447-8153
80401 THERON D. CARLSON/ 472 GLADTOLA/ GOLDEN CO 80401/ (303) 278-24 40
80537 JEFF EASTMAN/ DESKTOP COMPUTER DIV./ HEWLETT PACKARD/ P.0. BOX 301/ LOVELAND CO 80537/ (303) 667-5000
80639 ATTENTION: D. L. MYERS/ UNC COMP. CENTER/ UNIV. OF NORTHERN CO LORADO/ GREELEY CO 80639
80917 THOMAS W. LAWHORN/ SULTE 202/ CIBAR INC./ 2850 SERENDIPITY CIR ./ COLORADO SPRGS CO 80917/ (303) 574-4050
83702 JOHN E. VAN DEUSEN IIT/ 61 HORIZON DR./ BOISE ID 83702/ (208) 342-1464
83720 DAN HOMER/ INDUSTRIAL COMMISSION/ STATE OF IDAHO/ 317 MAIN ST. / BOISE ID 83720
84010 GORDON W. ROMNEY/ 1141 OAKRIDGE LANE/ BOUNTIFUL UT 84010/ (801) 292-9813
84014 MYRON R. SYPHUS/ 79 W 625 N/ CENTERVILLE UT 84014/ (801) 292-2 043
84105 JOE B. BRAME JR./ 1403 REDONDO AV/ SALT LAKE CITY UT 84105/ (8 01) 539-5603
84108 J. D. CALLAHAN/ KELON CORP./ P.O. BOX 8275/ SALT LAKE CITY UT 84108/ (801) 582-6313
84109 T. M. MALIN/ 3445 S. MILLCREEK RD./ SALT LAKE CITY UT 84109
84116 RICHARD G. LYMAN/ SPERRY UNIVAC/ 322 NORTH 2200 WEST/ SALT LAK E CITY UT 84116/ (801) 328-8066
84121 W. F. HAYGOOD/ COMPUTER SERVICES CO./ 7822 OAKLEDGE ROAD/ SALT LAKE CITY UT 84121/ (801) 942-2300
84602 PARLEY P. ROBINSON/ COMPUTER SERVICES/ 403 CB/ BRIGHAM YOUNG U NIV./ PROVO UT 84602/ (801) 374-1211 X3681
84737 L. PAINTER/ ELGENCO INC./ BOX 460/ HURRICANE UT 84737
85002 DAVID CALCATELLI/ MAIL STATION D4/ SPERRY FLIGHT SYSTEMS/ P.0. BOX 21111/ PHOENIX AZ 85002/ (602) 942-2311 X1222
85008 GENE A. SUMNER/ 4739 E. LEWIS AVE/ PHOENIX AZ 85008
85028 AUTHOR R. JETER/ 3946 EAST ALTADENA/ PHOENIX AZ 85028
85061 FRANK ANDERSON/ COMPUTER SERVICES/ GRAND CANYON COLLEGE/ 3300 WEST CAMELBACK RD./ PHOENIX AZ 85061/ (602) 249-3300
85260 DENNIS KODIMER/ TERAK CORPORATION/ 14405 N. SCOTTSDALE RD./ SC OTTSDALE AZ 85260/ (602) 991-1580
85352 ARDEN WOOTTON/ P.O. BOX 329/ TACNA AZ 85352/ (602) 785-4128
85613 E. W. ERRICKSON/ U.S. ARMY INTELLIGENCE CENTER/ P.O. BOX 596/ FT HUACHUCA AZ 85613/ (602) 246-6910
85721 DAVID R. HANSON/ DEPT. OF COMP. SCLENCE/ UNIV. OF ARIZONA/ TUC SON AZ 85721/ (602) 626-3617
85721 GREGG TOWNSEND/ COMP. CENTER/ UNIV. OF ARIZONA/ TUCSON AZ 8572 1/ (602) 626-2441
87107 ROBERT W. BERRY/ 601 SANDIA RD NW/ ALBUQUERQUE NM 87107/ (505) 344-7219
87107 JOHN J CORCORAN 3RD. III/ S57 MISSION NE/ ALBUQUERQUE NM 87107 / (505) 345-1309
87108 STEPHEN C. WOOD/ MICROSOFT/ 300 SAN MATEO NE SUITE 819/ ALBUQU ERQUE NM 87108/ (505) 262-1486
87112 SERGIO BERNSTEIN/ DATA DIV./ BERNE ELECTRONICS INC./ 1300 MURI EL NE/ ALBUQUERQUE NM 87112/ (505) 293-3611
87117 ATTN: AIR FORCE WEAPONS LABORATORY/ DYV (HARRY M. MURPHY JR.)/ KIRTLAND AFB NM 87117/ (505) 264-9317
87131 KARL LIEBERHERR/ 147 COMP. AND INFO. SCL. LIBRARY/ UNIVERSITY OF NEW MEXICO/ ALBUQUERQUE NM 8713l
87546 T. J. COOK/ P.0. BOX 248/ LOS ALAMOS NM 87544
87544 ORVAL F. HART JR/ 406 GRAND CANYON DR./ LOS ALAMOS NM 87544/ (S505) 667-7847 (WORK)/ (505) 672-1353 (HOME
87545 SUE JOHNSON/ MS 532 L-10/ LOS ALAMOS SCIENTIFIC LAB/ LOS ALAMO S NM 87545/ (505) 667-5065
87545 JOHN MONTAGUE/ GROUP C11/ MAIL STOP 296/ LOS ALAMOS SCIENTIFIC LABORATORY/ LOS ALAMOS NM 87545/ (505) 667-7158
87545 BOB SCARLETT/ GROUP L 10 - MS 532/ LOS ALAMOS SCIENTIFIC LABOR ATORY/ P.O. BOX 1663/ LOS ALAMOS NM 87545/ (505) 667-5827
88130 JOSEPR R. FALKNER/ DEPT. OF COMP. SCL. & STAT./ EASTERN NEW ME XICO UNIV./ PORTALES NM 88130/ (505) 356-4685
89119 RONALD L. YOUNG/ 7456 5. SPENCER ST./ LAS VEGAS NV 89119/ (702) 361-6631
89502 LOUTS N. BELEOS/ 920 CORDONE AVE./ RENO NV 89502
89503 DARRYL KUHNS/ 1590 HILLSIDE DR./ RENO NV 89503/ (702) 786-1759
89511 WILLIAM R. BONHAM/ SIERRA DIGITAL SYSTEMS/ 13905 RANCHEROS DRI VE/ RENO BV 89511/ (702) 329-$548
90010 STEVEN J. GREENFIELD/ UNICORN SYSTEMS €O./ 3807 WILSHIRE BLVD. / LOS ANGELES CA 90010/ (213) 380-6974
90019 RAYMOND QUIRING/ B. H. INDUSTRIES/ 5784 VENICE BLVD./ LOS ANGE LES CA 90019/ (213) 937-4763
90024 ERIC PUGH/ 412 LANDFAIR AVE. #2/ LOS ANGELES CA 90024/ (213) 4 79-1352
30045 ATTENTION: LARRY LEWIS/ FUTUREDATA COMPUTER CORP./ 11205 S0. L A CIENEGA BLVD./ LOS ANGELES CA 90045/ (213) 641-7700
90045 R. L. MERCER/ SCAN-TRON CORP./ 8820 S.SEPULVEDA BLVD/P.O. BOX 45706/ LOS ANGELES CA 90045
90045 PHILIP H. SAYRE/ DELPRI COMMUNICATIONS CORP./ 11220 HINDRY AVE ./ LOS ANGELES CA 90045/ (213) 670-2040
90045 PHILIP A. WASSON/ 9513 HINDRY PLACE/ LOS ANGELES CA 90045/ (21 3) 649-1428
90046 DAVID YOST/ 8464 1/2 KIRKWOOD DR./ HOLLYWOOD CA 90046/ (213) 6 56-9620
90049 LEE A. BENBROOKS/ P.0. BOX 49208/ LOS ANGELES CA 90049/ (213) 472-1165
90064 DAVID G. CLEMANS/ 2830 SEPALVEDA #20/ LOS ANGELES CA 90064/ (2 13) 473-796
90065 LYNN BLICKENSTAFF/ SELF-REALIZATION FELLOWSHIP/ 3880 SAN RAFAE L AVE./ LOS ANGELES CA 90065
90066 GILL LYTTON/ 4315 KENYON AVE/ LOS ANGELES CA 90066
90069 TERRENCE M. CASELLA/ 9009 ELEVADO AVE./ LOS ANGELES CA 90069/ (213) 272-1387
90230 JOHN MCMANUS JR./ SYSTEMS DEPT./ METRO-GOLDWYN-MAYER INC./ 102 02 W. WASHINGTON BLVD./ CULVER CITY CA 90230
90240 JOHN TROTTER/ ARTISAN SOFTWARE/ 6429 DOS RIOS RD./ DOWNEY CA 9 0240/ (213) 928-3742
90249 JUDITH MINAMIJI/ 15419 CIMARRON STREET/ GARDENA CA 90249/ (213) 324-4634
90254 MARC HANSON/ 621 25TH ST/ HERMOSA BEACH CA 90254
90260 ROBERT ALKIRE/ 4450 W. 165TH ST./ LAWNDALE CA 90260/ (213) 370 -9392
90266 RERBERT E. MORRISON/ 1257 2ND STREET/ MANHATTAN BCH CA 90266/ (213) 887-2571 (DAYS)
90266 STUART C. NIMS/ 3605 PINE AVENUE/ MANHATTAN BCH CA 90266
90274 W. A. KELLEY/ 46 ROLLINGWOOD/ R. HILLS EST. CA 90274
90277 PHYLLIS A. REILIY/ P.0. BOX 3613/ REDONDO BEACH CA 90277/ (213) 535~2450 (WORK)/ (213) 637-7989 (HOME)
90278 JAMES L. AGIN/ 2178 BLD. 90/ TRW-DSSG/ ONE SPACE PARK/ REDONDO BEACH CA 90278/ (213) 535-0312
90278 JERRY F. BRUMBLE/ MI1409/ TRW DSSG/ ONE SPACE PARK/ REDONDO BE ACH CA 90278/ (213) 536-3546
90278 JAY SAX/ 90-2178/ TRW - SYSTEMS GROUP/ ONE SPACE PARK/ REDONDO BEACH CA 90278/ (213) 392-6372 (HOME}/ (213) 535-0312 (WORK)
90291 STEVE DALSIMER/ 13044 MINDANAC WAY NO. 6/ MARINA DEL REY CA 90 291
90291 PATRICK D. GARVEY/ M-1077/ 7740 REDLANDS ST./ PLAYA DEL RAY CA 90291
90401 DICK HEISEN/ THE COMPUTER STORE/ 820 BROADWAY/ SANTA MONICA CA 90401/ (213) 451-0713
90403 GUS BACOYANIS/ 1007 20TH ST. - APT 5/ SANTA MONICA CA 90403/ (213) 395-1742
90403 P. U. GEORGE/ 817 1/2 16TR ST./ SANTA MONICA CA 90403
90404 ATTN: LARRY MARKWORTH - LIBRARIAN/ PACIFIC SIERRA RESEARCH COR P./ 1456 CLOVERFIELD BLVD./ SANTA MONICA CA 90404/ (213) 828-7461
90405 CHARLES SISKA JR./ 2021 1OTH ST./ SANTA MONICA CA 90405/ (213) 396-2111
90406 RICHARD J. KWAN/ MAIL DROP 41~25/ SYSTEM DEVELOPMENT CORP./ 25 00 COLORADO AVE./ SANTA MONICA CA 90406/ (213) 829-7511 X3223
90406 D. LLOYD RICE/ COMPUTALKER CONSULTANTS/ P.O. BOX 1951/ SANTA M ONICA CA 90406/ (213) 392-5230
90630 JOBN L. PRUN/ 4475 CASA GRANDE CIRCLE NO. 145/ CYPRESS CA 9063 0/ (714) 821-3744
90631 R. C. THORNTON/ CHEVRON OIL FIELD RESEARCH CO./ P.O. BOX 446/ LA HABRA CA 90631
90712 CHARLES R. BEAUREGARD/ 4728 MAYBANK AVE./ LAKEWOOD CA 90712
90732 MYRON C. LONG/ 2145 AVENIDA APRENDA/ SAN PEDRO CA 90732/ (213) 548-3746

90801 ATTN: AMERICAN COMPUTER SERVICES/ P.0. BOX 2651/ LONG BEACH CA 90801

PASCAL NEWS #13

90802
90815
91011
91020
91030
91030
91101
91103
91103
91103
91103
91105
91105
91125
91126
91301
91311
91320
91326
91335
91342
91343
91359
91360
91364
91364
91367
91409
91711
92008
92024
92027
92041
92067
92093
92093
92103
92110
92110
92111
92121
92121
92123
92123
92127
92138
92138
92138
92138
92152
92182
92408
92521
92627
92627
92630
92630
92631
92634
92635
92646
92651
92660
92675
92691
92704
92704
92713
92714
92714
92714
92714
92714
92714
92717
92717
92802
92803
92805
92805
93003
93010
93017
93106
43106
93111
93120
93407
93501
94022
94022
94025
94025
94025
94040
94040
94042
94043
94043
94061
94066
94086
94086
94086
94086
94086
94086
94086
94086
94086
94087
94087
94088
94088
94105
94105
94105
94109
94114
94127
94133
94137
94304
94305
94305
94305
94305
94402
94402
94501

DONALD H. MCCLELLAND/ UNIV. INVESTMENT MANAGEMENT CO./ 666 E. OCEAN BLVD. #3101/ LONG BEACH CA 90802/ (213) 435-6344
KENNETH K. IWASHIKA/ 6934 MANTOVA ST./ LONG BEACH CA 90815/ (2 13) 596-7336

JOHN J. WEDEL/ P.O. BOX 146/ LA CANADA CA 91011/ (213) 354-405 9

WERNER G. MATTSON/ P.0. BOX 621/ MONTROSE CA 91020

H. LASHLEE/ P.O. BOX 987/ S. PASADENA CA 91030

R. S. SCHLAIFER/ 1500 ROLLIN/ S. PASADENA CA 91030/ (213) 354- 5115

GURUPREM SINGH KHALSA/ KHALSA COMPUTER SYSTEMS INC./ 500 SOUTH LAKE AVENUE/ PASADENA CA 91101/ (213) 684-3311

NICK COPPING/ JET PROPULSION LABS/ MS 169/332/ CALIF. INST. OF TECHNOLOGY/ 4800 0AK GROVE DR./ PASADENA CA 91103/ (213) 354-4321
LARRY HAWLEY/ MS 238-218/ JET PROPULSION LABORATORY/ 4800 OAK GROVE DR./ PASADENA CA 91103/ (213) 354-2551

W. O. PAINE/ MS 83-205/ JET PROPULSION LAB./ 4800 OAK GROVE DR ./ PASADENA CA 91103/ (213) 354-4284

STEPHEN SKEDZELESKI/ 198136/ JET PROPULSION LAB/ 4800 OAK GRO VE DR./ PASADENA CA 91103

JAMES T. HERINGER/ 440 GLENULLEN DR./ PASADENA CA 91105/ (213) 257-3853

HOWARD RUMSEY JR./ 151 LINDA VISTA AVE./ PASADENA CA 91105/ (2 13) 795-1260

KARL FRYXELL/ DIVISION OF BIOLOGY/ 216-76/ CALIFORNIA INST. OF TECH./ PASADENA CA 91125/ (213) 795-6811 X2827

SHAL FARLEY/ PAGE HOUSE/ CALTECH/ PASADENA CA 91126/ (213) 796 -5974

HARRY 5. ADAMS/ P.O. BOX 70/ AGOURA CA 91301/ (213) 889-1094

EDDIE CARRIE/ PERTEGC COMPUTER CORP./ 20630 NORDHOFF ST./ CHATS WORTH CA 91311/ (213) 988-1800

CARROLL HENNICK/ 127 DEVIA DR./ NEWBURY PARK CA 91320

CHARLES RIDER/ 19100 KILLOCH WAY/ NORTHRIDGE CA 91326/ (213) 3 60-3254

CATHERINE C. TOBEY/ 8020-3 CANBY AVE./ RESEDA CA 91335

EUGENE P. MONTGOMERY/ 15721 EL CAJON ST./ SYLMAR CA 91342/ (21 3) 367-8101

BRUCE S. SEELY/ 8545-K BURNET AVE./ SEPULVEDA CA 91343/ (213) 894-0029

P. & C.F.BLOMKE CHANG/ ELECTRONIC SYSTEMS DIV./ BUNKER-RAMO/ P .0. BOX 5009/ WESTLAKE VILL* CA 91359

ELIZABETH IBARRA/ 605 RIO GRANDE/ THOUSAND OAKS CA 91360/ (805) 488-4425

JIM FOLEY/ MARKETRON/ 21031 VENTURA BLVD. SUITE 1020/ WOODLAND HILLS CA 91364/ (213) 347-6400

CAM WATSON/ ZETA SYSTEMS/ 6430 VARIEL AVE./ WOODLAND HILLS CA 91364

GEORGE MASSAR SR/ 6225-102 SHOUP AVE./ WOODLAND HILLS CA 91367 / (213) 346-1883/ (213) 377-4811 (WORK)

HERMAN FISCHER/ LITTON DATA SYSTEMS/ 8000 WOODLEY AVE./ VAN NU YS CA 91409/ (213) 781-8211 X 4213

LEE D. AURICH/ 473 BLAISDELL DR./ CLAREMONT CA 91711

JOEL MCCORMACK/ 1731 CATALPA RD./ CARLSBAD CA 92008

CHARLES O. GIMBER/ 817 CREST DR./ ENCINITAS CA 92024/ (714) 94 2~0754

JAMES A. DARLING/ 1920 E. GRAND AVE #39/ ESCONDIDO CA 92027/ (714) 741-4921

RAJ MALHOTRA/ RJ SOFTWARE SYSTEMS/ 7471 UNIV. AVE./ LA MESA CA 92041/ (800) 854-2751/ (800) 552-8820

KEN BOWLES/ P.O. BOX 1123/ RANCHO SANTAFE CA 92067/ (714) 755- 7288/ 452-4526

BOB HOFKIN/ APIS DEPT. C-014/ UNIV. OF CALIFORNIA-SAN DIEGO/ L A JOLLA CA 92093/ (714) 452-4526

JIM MADDEN/ C-010 COMPUTER CENTER/ UNIV. OF CALIFORNIA - SAN D IEGO/ LA JOLLA CA 92093/ (714) 452-4050

DAN RICHMOND/ 1670 LINWOOD ST./ SAN DIEGO CA 92103/ (714) 295- 5949

MARY K. LANDAVER/ 2677 COWLEY WAY/ SAN DIEGO CA 92110/ (714) 2 75-3029

JOHN LOWRY/ DEFENSE COMMUNICATIONS DIVISION/ ITT/ 4250 PACIFIC HWY #224/ SAN DIBGO CA 92110/ (714) 226-8735

WEBB SIMMONS/ HORIZOR TECHNOLOGY/ 7830 CLAIREMONT MESA BLVD./ SAN DIEGO CA 92111/ (724) 292-8331

F. ANTONIO/ UNIVERSITY INDUSTRIAL PARK/ LINKABIT CORP./ 10453 ROSELLE ST./ SAN DIEGO CA 92121/ (714) 453-7007

D. L. KNITTEL/ DIGITAL SCIENTIFIC CO./ 11425 SORRENTO VALLEY R D./ SAN DIEGO CA 92121/ (714) 453-6050

DAVID M. BULMAN/ PRAGMATICS INC./ 3032 MASTERS PL./ SAN DIEGO CA 92123/ (714) 565-0565

ROGER H. EVANS/ INTEROCEAN SYSTEMS INC/ 3540 AERO CT./ SAN DIE GO CA 92123/ (714) 565-8400

JOSEPH W. SMITH/ MS 8401/ NCR/ 16550 WEST BERNARDO DR./ SAN DI EGO CA 92127/ (714) 485-2864

W. E. CLARK/ DEPT. 244/ P.O. BOX B0158/ SAN DIEGO CA 92138/ (7 14) 455-1330 X302

ROBERT J. REYNOLDS/ MAIL ZONE 32-6040/ GENERAL DYNAMICS/CONVAL g DIy./ P.0. BOX 80847/ SAN DIEGO CA 92138/ (714) 277-8900 X243
CRAIG A. SNOW/ TW COMMUNICATION SYSTEMS/ BOX 80157/ SAN DIEGO CA 92138/ (714) 453-5303

CLARK F. WAITE/ DATA SYSTEMS SERVICES/ MZ 43-5310/ GENERAL DYN AMICS/ P.0. BOX 8084/ SAN DIEGO CA 92138/ (714) 277-8900
MICHAEL S. BALL/ CODE 632/ NAVAL OCEAN SYSTEMS CENTER/ SAN DIE GO CA 92152/ (714) 225-2366

V. VINGE/ DEPT. OF MATHEMATICAL SCI./ SAN DIECE STATE UNIV./ S AN DIEGO CA 92182/ (714) 286-6697/ (714) 286-6191

TED C. PARK/ SYSTEMS DEVELOPMENT/ SUITE 105/ MEDICAL DATA CONS ULTANTS/ 114 AIRPORT DRIVE/ SAN BERNARDINO CA 92408/ (714) 825-2683
ALICE HUNT/ COMPUTING CENTER/ UNIV. OF CALIFORNIA - RIVERSIDE/ RIVERSIDE CA 92521

DENNIS F. KIBLER/ 160 21ST ST. APT. A/ COSTA MESA CA 92627/ (7 14) 548-4098

TIM LOWERY/ 2653 SANTA ANA AVE./ COSTA MESA CA 92627/ (714) 63 1-0771

THOMAS J. PAULSON/ 23251 LOS ALISOS #70/ EL TORO CA 92630/ (71 4) 586-2802

JAMES P. URONE/ 22705 MALAGA WAY/ EL TORO CA 92630/ (714) 768~ 4743

GARY B. SHELLY/ ANAREIM PUBLISRING CO./ 120 E ASH/ FULLERTON C A 92631

THOMAS M. NEAL/ BECKMAN INSTRUMENTS/ 2500 HARBOR BLVD./ FULLER TON CA 92634/ (714) 871-4848 X 3259

FRANK F. CRANDELL/ 3008 MAPLE AVE./ FULLERTON CA 92635

BARCLAY R. KNERR/ 9061 CHRISTINE DRIVE/ HUNTINGTOR BCH CA 9264 6/ (714) 633-4013

GENE FISHER/ 346 CANYON ACRES DR./ LAGUNA BEACH CA 92651/ (714) 497-1241

JIM SQUIRES/ 457 BAYWOOD DR./ NEWPORT BEACH CA 92660

R. L. WALLACE/ 26501 CAMPESINO/ MISSION VIEJO CA 92675/ (714) 831-3127

ROBERT L. JARDINE/ BURROUGHS CORP./ 25725 JERONIMO ROAD/ MISSI ON VIEJO CA 92681/ (714) 768-2370

WILLIAM E. CROSBY, .70l S. FAIRVIEW ST. #R1/ SANTA ANA CA Y2/V 4/ (714) 549-7640

JOHN URBANSKI/ CONTROL DATA CORP./ 3519 WEST WARNER/ SANTA ANA A 92704/ (714) 754-4060/ (612) 373-3608 (WORK)

DONALD D. PECKRAM/ PERTEC COMPUTER CORP./ P.O. BOX 19602/ IRVI wg ca 92713/ (714) 540-8340 X306

ALEX BRADLEY/ STANDARD SOFTWARE SYSTEMS/ 17931 *J° SKY PARK/ L RVINE CA 92714/ (714) 540-8445

RUDY L. FOLDEN/ QPERATING SYSTEMS DEVELOPMENT/ P.0. BOX C-1950 4/ SPERRY UNIVAC/ 16901 ARMSTRONG AVE./ IRVINE CA 92714/ (714) 833-2400
GREGORY L. HOPWOOD/ MINICOMPUTER OPERATIONS/ SPERRY UNIVAC/ 16 90} ARMSTRONG AVE./ IRVINE CA 92714/ (714) 833-2400

FRIC OLSEN/ MINICOMPUTER OPERATIONS/ SPERRY UNIVAC/ 16901 ARMS TRONG AVE./ IRVINE CA 92714/ (714) 833-2400

KENNETH A. PRESCOTT JR./ MCO / PUB/ SPERRY UNIVAC/ 16901 ARMST RONG AVE./ IRVINE CA 92714/ (714) 833-2400 X503

RICHARD P. SPRAGUE/ MINICOMPUTER OPERATIONS/ SPERRY UNIVAC/ 16 90) ARMSTRONG AVE./ IRVINE CA 92714/ (714) 833-2400 X119
RICHARD A. EVERMAN/ REGISTRAR’S OFF./ 215 ADMINISTRATION BLDG. / UNIV. OF CALIF. - IRVINE/ IRVINE CA 92717

STEPHEN D. FRANKLIN/ COMPUTING FACILITY/ UNIV. OF CALIFORNIA - IRVINE/ IRVINE CA 92717/ (714) 833-5154

RICHARD BEELER/ 1640 W. BALL RD. - APT. 105/ ANAHEIM CA 92802

C. L. HORNEY/ MICROELECTRONIC DEVICE DIV./ D/832-RC27/ ROCKWEL |, INTERNATIONAL/ P.0. BOX 3669/ ANAHEIM CA 92803/ (714) 632-3860
ARVIND AGRAWAL/ 1142 W. FAY LANE #8/ ANAHEIM CA 92805/ (714) 7 78-4800 X495

BRUCE A. BROWN/ DEPT. PG-678/ 1316 ROSEWOOD PLACE/ ANAKEIM CA 92805/ (714) 778-4800 (WORK)/ (714) 991-0929 (HOME)
WIBERTA STONE/ 228 BRENTWOOD AVE./ VENTURA CA 93003/ (805) 642 _g466

MARK JUNGWIRTH/ 5408 E. HOLLY RIDGE DR./ CAMARILLO CA 93010/ (805) 484-9574

JIM MCCORD/ 330 VEREDA LEYENDA/ GOLETA CA 93017/ (805) 968-668 |

LAURIAN M. CRIRICA/ DEPT. OF EECS/ UNLV. OF CALLFURNIA - SANTA RARBARA/ SANTA BARBARA CA 93106/ (805) 967-5135

HUGH M. KAWABATA/ COMPUTER CENTER/ UNIV. OF CALIF. - SANTA BAR BARA/ SANTA BARBARA CA 93106/ (714) 968-7837

ATTENTION: NANCY BROOKS/ SCIENCE AND TECHNOLOGY DIVISION/ GENE Rai, RESEARCH CORPORATION/ P.0O. BOX 6770/ SANTA BARBARA CA 93111/ (805) 964-7724
FRED BELLOMY/ THE INFO-MART/ P.O. BOX 2400/ SANTA BARBARA CA 9 3120/ (8B0S5) 965-5555/ 965-0265

JAMES L. BEUG/ DEPT. OF COMP. SCI./ CALIFORNIA POLYTECHNIC STA TE U/ S.LUIS OBISPO CA 93407/ (805) 546-2861

JOHN T. GARDNER/ 16425 KOCH ST./ MOJAVE CA 93501/ (805) 824-25 78

DENNIS PAULL/ PAULL ASSOCIATES/ 814 ECHO DR./ LOS ALTOS CA 940 22/ (415) 948-9275

JOHN H. WENSLEY/ 22451 HOLT AVE./ LOS ALTOS CA 94022/ (415) 96 4-9456

JOHN BORGELT/ 1016 MIDDLE AVE./ MENLO PARK CA 94025

HOWARD M. ZEIDLER/ STANFORD RESEARCH INSTITUTE/ MENLO PARK CA 94025/ (415) 326-6200

DEAN MILLER/ 146 SANTA MARIA AVE./ PORTOLA VALLEY CA 94025/ (4 13) 851-2781/ (415) 961-4380 (OFFICE)

GREGORY L. NELSON/ APARTMENT 31/ 2280 CALIFORNIA ST./ MOUNTAIN VIEW CA 94040

ASHOK SURI/ 106 EUNICE AVE./ MOUNTAIN VIEW CA 94040

DAVID MILLER/ P.O. BOX 205/ MOUNTAIN VIEW CA 94042/ (415) 966- 2266

R. A. STILLMAN/ ODELL INDUSTRIES CORP./ 1940 COLONY ST./ MOUNT AIN VIEW CA 94043/ (415) 961-1090

PETER ECCLESINE/ FORD AEROSPACE/ 2361 LAURA LANE/ MT. VIEW CA 94043/ (415) 968-8044

DAN ZURAS/ 1928 MADDUX DR./ REDWOOD CITY CA 94061/ (415) 368-5 005

BRUCE A. BARRETT/ 777 3RD AVE/ SAN BRUNO CA 94066/ (415) 873-3 199

RICH ALTMAIER/ 655 S. FATROAKS AVE. APT. G101/ SUNNYVALE CA 94 086/ (408) 732-7485

DENNIS S. ANDREWS/ $/ AMDAHL CORP./ 1250 E. ARQUES AVE/ SUNNYV ALE CA 94086/ (408) 746-6301

ALENN T. EDENS/ BLDG 7B MS-235/ NATTONAL SEMICONDUGTOR/ 165 SA N GABRIEL/ SUNNYVALE CA 94086/ (408) 737-6046

DAVE GRAHAM/ 581 KIRK AVE./ SUNNYVALE CA wause/ (408) 237-7000

THOMAS E. GRANVOLD/ 1119C REED AVE./ SUNNYVALE CA 94086/ (408) 247-7568

DAVID TERRY JONES/ CONTROL DATA CORP./ P.O. BOX 7090/ SUNNYVAL E CA 84086/ (408) 734~7466

KEN RENWORTH/ MEGATEST CORP./ 486 MERCURY DR./ SUNNYVALE CA g4 086/ (408) 736-1700

JERRY W. SUBLETT/ 1249 BIRCHWOOD DR./ SUNNYVALE CA 94Usbs (415) 744-0190

ARTHUR C. WILLIS/ AMDAHL CORP./ 1250 EAST ARQUES AVE./ SUNNYvA LE CA 94086/ (408) 746-6000

KEITH G. TAFT/ T. E. E. CO./ 823 MANGO AVE./ SUNNYVALE CA 9408 1/ (408) 735-8423

P. TORGRIMSON/ 528 CASTLEROCK/ SUNNYVALE CA 94087/ (408) 245-4 °18
RICHARD CORE/ PO BOX 61628/ SUNNYVALE CA 94088/ (408) 735-8400 X285

GARY W. WINIGER/ P.O. BOX 60835/ SUNNYVALE CA 94088/ (415) 964 aﬁgilgkigga) 742-5647 (WORK)

J. GILMER/ 16TH FLOOR/ IBM CORP./ 425 MARKET ST./ SAN FRANCISC

CHRISTOPHER OHLAND/ 56115 20t/ D(TA 100/ ONE ECKER BLDG./ SaN FRANCISCO CA 94105/ (415) 546-6000
T. R. SIMONSON/ SIMONSON CONSULTING ENGINEERS/ 612 HOWARD ST./ SAN FRANCISCO CA 94105/ (415) 392-5388
PAUL MILLER/ PAUL MILLER § ASSOCIATES/ 1221 JONES ST./ SAN FRA NCISCO CA 84109/ (415) 397-4116
RICHARD C. LUND/ 703 NOE ST./ SAN FRANCISCO CA 94114/ (415) 82 4=3074

VICTOR LEDIN/ 445 MONTICELLO STREET/ SAN FRANCISCO CA 94127

WILLIAM F. ANDERSON/ MICRO INFORMATION SYSTEMS/ 158 VALPARAISO / SAN FRANCISCO CA 94133/ (415) 44144597
ANN PORCH/ INTERACTIVE CORP. SERVICES - #3433/ BANK OF AMERICA / P+0- BOX 37000/ SAN FRANCISCO CA 94137/ (415) 522-5222
JOHN P. MCGINITIE/ SYSTEMS DEVELOPMENT DEPT./ ITEL CORP./ 3145 FORTER DRIVE/ PALO ALTO CA 94304/ (415) 494-9191
ATTN: SERIAL RECORDS DIV./ STANFORD UNIV. LIBRARIES/ STANFORD ©CA 94303

JON F. CLAERBOUT/ DEPT. OF GEOPHYSICS/ STANFORD UNIVERSITY/ sT ANFORD CA 94305

DAVID JON FYLSTRA/ P.O. BOX 10051/ STANFORD CA 94305

SCOTT WAKEFIELD/ DIGITAL SYSTEMS LABORATORY/ STANFORD UNIV./ § TANFORD CA 94305/ (415) 497-0377
ROSS ALLARDYCE/ 725 MELISSA CT./ SAN MATEO CA 94402

I. D. SOUTHWELL/ 250 GRAMERCY DR./ SAN MATEG CA 94402

GARY E. LAWRENCE/ 1417 CENTRAL AVE./ ALAMEDA CA 94501

DECEMBER, 1978 PAGE 24

PASCA
~94545
94546
94596
94606
94611
94618
94619
94702
94702
94703
94708
94709
94941
94941
95014
95014
95014
95014
95014
95014
95014
95014
95014
95014
95014
95030
95035
95050
95050
95051
95051
95051
95051
95051
95051
95051
95051
95051
95051
95051
95053
95125
95126
95127
95128
95129
95129
95132
95132
95132
95376
95401
95610
95610
95650
95660
95926
95927
95955
96224
96786
96822
97005
97068
97077
97077
97077
97077
97077
97017
97077
97077
97123
97201
97201
97202
97207
97210
97223
97225
97301
97330
97330
97330
97330
97330
97331
97401
97401
97402
97459
97850
98006
98006
98008
98020
98040
98043
98043
98055
98105
98112
98115
98115
98115
98124
98161
98178
98188
98195
98407
98507
98907
99163
99352
99352
99507
RA-8000
2600
3046
3072
3130
3168
4067
5001
5001

B-1170

AlC M3

L NEWS #13

ARGENT INA
AUSTRALIA
AUSTRALIA
AUSTRALIA
AUSTRALIA
AUSTRALIA
AUSTRALTA
AUSTRALIA
AUSTRALIA
BELGIUM
BELGIUM
BRAZIL
CANADA

PING K. LIAO/ 2499 CONSTELLATION DR./ HAYWARD CA Y4343/ t4us)
ELIZABETH CROCKER/ 4322 SEVEN HILLS/ CASTRO VALLEY CA 94546
JOHN GULBENK/ P.O. BOX 4509/ WALNUT CREEK CA 94596/ {415) 932-
AL FRANCIS/ GREAT AMERICAN WIDGIT CO./ 1010 22ND AVENUE/ OAKLA
ROBERT C. NICKERSON/ 6966 COLTON BLVD/ OAKLAND CA $4611/ (415)
CHARLES F. MURPHY/ 5201 MASONIC AVENUE/ OAKLAND CA 94618
WILSON T. PRICE/ MERRITT COLLEGE/ 12500 CAMPUS DRIVE/ OAKLAND
RANDY NIELSEN/ 1780 FRANKLIN ST./ BERKELEY CA 94702
RICHARD W. HAMILTON/ 1074 WEST 3RD/ EUGENE OR 94702
JAMES A. WOODS/ Z014A WOOLSEY ST./ BERKELEY CA 94703/ (415) 84
PAUL TEICHOLZ/ 1322 BAY VIEW PL./ BERKELEY CA 94708/ (415) 843
MAX HINCHMAN/ 780 CRESTON RD./ BERKELEY CA 94709
AYERS LOCKSMITHING/ 227 SHORELINE HWY./ MILL VALLEY CA 94941/
ROBERT M. BAER/ 379 COUNTRYVIEW DRIVE/ MILL VALLEY CA 94941/ (
JOHN AHLSTROM/ OLIVETTI CORP. OF AMERICA/ 20370 TOWN CENTER LA
ATIN: RUTH SUGARMAN/ TYMSHARE TECHNICAL LIBRARY/ 20705 VALLEY
DONALD E. GRIMES/ TYMSHARE INC./ 20705 VALLEY GREEN DRIVE/ CUP
JAMES W. HUFFMAN/ 8052 PARK VILLA CIRCLE/ CUPERTINO CA 95014
SCOTT JAMESON/ HEWLETT PACKARD/ 11000 WOLFE ROAD/ CUPERTINO CA
JOE KEEFE/ 10730 WUNDERLICH/ CUPERTING CA 95014/ (408) 257-214
DON MOXON/ 10410 STOKES AVE./ CUPERTINO CA 95014
DAVID F. OHL/ P.0. BOX 257/ GUPERTINO CA 95014/ (408) 926-9803
RICHARD PALCHIK/ TYMNET/ 20665 VALLEY GREEN RD./ CUPERTINO CA
BOB SHEPARDSON/ BLDG C4-H/ SHEPARDSON MICROSYSTEMS/ 20823 STEV
LES VOGEL/ 7960 MCCLELLAN #3/ CUPERTINO CA 95014
VINCENT BUSAM/ AZ-TECH ASSOCIATES INC/ 25754 ADAMS ROAD/ LOS G
RICHARD M. LADDEN/ 1404 ACADIA AVE./ MILPITAS CA 95035
ARTIE GREEN/ HEWLETT PACKARD/ 3003 SCOTT BLVD./ SANTA CLARA CA
E. HAROLD WILLIAMS/ SYSCOM/ 2996 SCOTT BLVD./ SANTA CLARA CA 9
JOHN W. BURNETT/ M/S 690/ NATIONAL SEMICONDUCTOR CORP./ 2900 §
BRUCE J. EDMUNDSON/ M/S 690/ NATIONAL SEMICONDUCTOR/ 2900 SEMI
JULIANA M. KNOX/ 3655 PRUNERIDGE NO. 186/ SANTA CLARA CA 95051
RAYMOND M. LEONG/ 3301 HOMESTEAD ROAD APT 301/ SANTA CLARA CA
HENRY MCGILTON/ 3480 GRANADA AVE #234/ SANTA CLARA CA 95051/ (
DAVID W. SALLUME/ 3480 GRANADA AVE. APT. 161/ SANTA CLARA CA 9
ED SCHOELL/ DEPT. NSAV/ NATIONAL SEMICONDUCTOR/ 2900 SEMICONDU
A. I. STOCKS/ 3500 GRANADA #421/ SANTA CLARA CA 95051/ (408) 2
MIKE TRAVIS/ 3255 ~ 3A SCOTT BLVD./ SANTA CLARA CA 95051/ (408
RICHARD M. WOODWARD/ AMERICAN MICROSYSTEMS INC./ 3800 HOMESTEA
PETER YOUTZ/ C/O DMC/ 2300 OWEN ST./ SANTA CLARA CA 95051/ (40
MIKES SISIOS/ INPORMATION PROC. CENTER/ SANTA CLARA UNIV./ SAN
ALLEN L. AMBLER/ AMDAHL CORP./ 1250 EAST ARQUES AVE./ SUNNYVAL
JOHN H. KILFOIL/ 1777 TOPEKA AVE./ SAN JOSE CA 95126/ (408) 28
JEAN-CLAUDE ROY/ 11300 ENCHANTO VISTA/ SAN JOSE CA 95127/ (415
ATTN: TIMESHARING BUSINESS SYSTEMS/ 3031 TISCH WAY/ SAN JOSE €
ARNIE EGEL/ 7200 BOLLINGER NO. 307/ SAN JOSE CA 95129
JOHN MURRAY/ 11760 SHARON DRIVE/ SAN JOSE CA 95129
DANIEL F. CONWAY/ 2551 PANTALIS DR./ SAN JOSE CA 95132/ (408)
ROBERT R. VAN TUYL/ 2572 OHLONE DRIVE/ SAN JOSE CA 95132/ (408
ANDREW HARRIS ZIMMERMAN/ 3422 DUTCHESS COURT/ SAN JOSE CA 9513
TOM HORSLEY/ 1750 MELLO COURT/ TRACY CA 95376/ (209) 836-0764
DEAN BILLING/ SOLVE CONSULTING/ 1815 PETERSCN LANE/ SANTA ROSA
RICHARD HERBERT/ 5818 PRIMROSE DR./ CITRUS HEIGHTS CA 95610
ROBERT H. MIX JR./ 6941 LE HAVRE WAY/ CITRUS HEIGHTS CA 95610
CLINTON PACE/ 7130 MORNINGSIDE DRIVE/ LOOMIS CA 95650/ (916) 7
JOHN BLACKWOOD/ 3829 A STREET/ N. HIGHLANDS CA 95660
DAN +ROBIN BARNES/ 279 RIO LINDO AVE. NO. 7/ CHICO CA 95926/ (
GEORGE N. ARNOVICK/ CALIFORNIA MICROCOMPUTER COMPANY/ P.0. BOX
ALAN H. SWANN/ MTS COMP. SERVICE/ P.O. BOX 487/ MAXWELL CA 959
MARCUS C. CORNELL/ 572-40-5425 2D/ HHC DISCOM (DDC)/ APO/ SAN
RICHARD FOULK/ 95-269 WAIKALAMI DR. - C604/ WAHIAWA HI 96786
WESLEY PETERSON/ DEPT OF ICS/ U OF HAWAIT/ 2565 THE MALL/ H
FELER H, MACKIE/ PHM Any ASSULIATES/ P.O. BOX 427/ BEAVERTON O
WILLIAM C. PRICE/ 28282 SW MOUNTAIN ROAD/ WEST LINN OR 97068/
HOWARD CUNNINGHAM/ MS 50-362/ TEKTRONIX INC./ P.O. BOX 500/ BE
B0B DIETRICH/ MS 61-272/ TEKTRONIX INC./ P.0. BOX 50u/ sEAVEKL
SID FERMI/ MS 50-435/ TEKTRONIX INC./ P.0. BOX 500/ BEAVERTON
TERRY HAMM/ M.S. 60-456/ MS 61-272/ TEKTRONIX INC./ P.0. BOX 5
JON MARSHALL/ M.S. 60-456/ TEKTRONIX INC./ P.0. BOX 500/ BEAVE
PAUL L. MCCULLOUGH/ MS 50/362/ TEKTRONIX INC./ P.0. BOX 500/ B
LYNN SAUNDERS/ MS 50-454/ TEKTRONIX ING./ P.0. BOX 500/ BEAVER
ROD STEEL/ MS 61-272/ TEKTRONIX INC./ P.O. BOX 500/ BEAVERTON
GLEN FULLMER/ GENERAL DATA SERVICES/ 2400 SE BROOKWOOD AVE. #1
ATTN: ORBEGON MINI-COMPUTER SOFTWARE, I*/ 2340 S.W. CANYON ROAD/
JOHN WONG/ 3502 SW GALE/ PORTLAND OR 97201/ (503) 645-6464
DORSEY DRANE/ COMPUTER CENTER/ REED COLLEGE/ PORTLAND OR 97202
RICHARD T. BROWN/ WOOD MARKETS INC./ P.O. BOX 669/ PORTLAND OR
DAVE BAASCH/ 2683 NW RALEIGH/ PORTLAND OR 97210/ (503) 223-657
HANS JONGE VOS/ 14130 S.W. FERN ST./ TIGARD OR 97223/ (503) 64
LORIN RICKER/ 9450 S.W. BARNES RD./ PORTLAND OR 97225/ (503) 2
SHELLEY GILES/ ATKINSON GRAD SCHOOL/ WILLAMETTE UNIV./ 900 STA
OLE ANDERSON/ 4210 NW CRESCENT VALLEY/ CORVALLIS OR 97330/ (50
LARRY BILODEAG/ DIGITAL ELECTRONIC SYSTEMS/ 205 NW 31ST/ CORVA
DAVID F. CAUTLEY/ DEPT. OF COMPUTER SCIENCE/ GENERAL INFORMATL
KURT KOHLER/ 2854 N W JOHNSON/ CORVALLIS OR 97330/ (503) 753-1
RUSSELL RUBY/ 627 SW 16TH/ CORVALLIS OR 97330/ (503) 753-2091
KAMRAN MALIK/ DEPT. OF COMPUTER SCIENCE/ OREGON STATE UNIV./ C
KENT LOOBEY/ 2110 CARMEL AVE/ EUGENE OR 97401/ (503) 686-8110
DAVID MEYER/ DUNHILL PERSOLEL INC./ 1551 OAK ST./ EUGENE OR 97
TERRY LITTTSCHWAGER/ MCKENZIE FLYING SERVICE INC/ 90600 GREENH
R. BUSH/ P.0. BOX F/ NORTH BEND OR 97459
JOHN BUCZEX/ CYBERMEDIC/ P.O. BOX 893/ LA GRANDE OR 97850
STEPHEN J. WEINBERGER/ 14032 SE NEWPORT WAY/ BELLEVUE WA 98006
JORN D. WOOLLEY/ 6722 128TH AVE. SE/ BELLEVUE WA 98006/ (206)
KEITH MITCRELL/ 16213 SE 28 PL/ BELLEVUE WA 98008/ (206) 237-2
KASI SESHADRI BHASKAR/ 22828 76TH AVE. W. APT. #33/ EDMONDS WA
ROBERT EMERSON/ HONEYWELL INFORMATION SYSTEMS/ 9555 SE 36TH ST
GARY S. ANDERSON/ JOHN FLUKE MFG. CO. INC./ P.O. BOX 43210 - M
NORM SEETHOFF/ MAIL STOP 25/ JOHN FLUKE MFG. CO. INC./ P.O. BO
R. A. LOVESTEDT/ 20427 SE 192/ RENTON WA 98055/ (206) 432-0769
JAMES G. BARON/ 5012 L1TH NE NO. F/ SEATTLE WA 98105
ROBERT W. RIEMANN/ NW & ALASKA FISHERIES/ FISHERIES DATA & MAN
PETER A. ARMSTRONG/ 444 NE RAVENNA BLVD #309/ SEATILE WA 98115
R. M. XUHLMANN/ 2281 NJE. 60TR/ SEATTLE WA 98115/ (206) 525-39
ROBERT C. SLATE/ THERMOTEK ASSOCIATES/ 8225 17TH AVE. NE/ SEAT
DAVID F. WEIL/ MS 73-03/ BOEING COMPUTER SERVICES INC./ P.O. B
FRED BALLANTINE/ C/0 ARTHUR YOUNG & CO./ 2100 FINANCIAL CENTER
MICRAEL R. MCGUIRE/ 12022 71ST S. #308/ SEATTLE WA 98178
RICRARD R. DYMANT/ GENERAL MANAGER/ DIGITAL BUSINESS SYSTEMS I
ATTN: UNIV. OF WASHINGTON/ TECHNICAL SUPPORT SERVICES/ LOWER L
EDRICE REYNOLDS/ EDRICE ENTERPRISES/ P.O. BOX 166/ TACOMA WA 9
PHIL HUGHES/ P.0. BOX 2847/ OLYMPIA WA 98507/ (206) 352-9637
JAY WOoODS/ P.0. BOX 1016/ YAKIMA WA 98907/ (509) 452-9133
JOHN MILLER/ P.O. BOX 2118 C.S./ PULLMAN WA 99163/ (509) 355-6
R. C. LUCKEY/ 1110 GILMORE/ RICHLAND WA 99352/ (509) 943-3107
TOM MATHIEU/ BATTELLE PACIFIC N.W. LABS/ BATTELLE BOULEVARD/ R
TOM SWANSON/ 7505 BERN STREET/ ANCHORAGE AK 99507
MARCELO SANSEAU/ OHIGGINS 295/ BAHIA BLANCA RA~8000/ ARGENTINA
NICK HAMMOND/ DFM (UNDERWATER WEAPONS)/ NAVY OFFICE/ CANBERRA
V. DAVIS/ 4 GRANDVIEW ST./ GLENROY VICTORIA 3046/ AUSTRALIA
M. RAHILLY/ 2 RITA STREET/ EAST PRESTON VICTORIA 3072/ AUSTRAL
P. S. EDWARDS/ 101 MAIN ST/ BLACKBURN VICTORIA 3130/ AUSTRALIA
ATTN: DEPT. OF COMP. SCI./ MONASH UNIV./ CLAYTON VICTORIA 3168
DAN B. JOHNSTON/ DEPT. OF COMPUTER SCIENCE/ UNLV. OF QUEENSLAN
ATTN: PROGRAM LIBRARIAN/ COMPUTING CENTRE/ UNIVERSITY OF ADELA
CHRIS D. MARLIN/ DEPT OF COMPUTING SCIENCE/ UNIVERSITY OF ADEL
ATIN: BIBLIOTHEQUE CENTRALE/ FACULTES UNIVERSITAIRES/ N-D. DE
MARTINE DE GERLACHE/ 177 BTE 1/ SPERRY UNIVAC/ CHAUSEE DE LA T
ROBERIO DIAS/ P.O. BOX 30028/ SAO PAULO/ BRAZIL/ &444-3701
H. J. AU/ P.0. BOX 1025/ ST. JOHN’S NEWFNDLAND ALC 5M3/ CANADA

DECEMBER,

1973

988-7777 X261

4250
ND CA 94606/ (415) 968-2752/ (415) 532-5686
339-0436

CA 94619/ (415) 531-4911

9~4346
~4232

(415) 383-1415

415) 383-1655

NE/ CUPERTINO CA 95014

GREEN DR./ CUPERTINO CA 95014
ERTINO CA 95014/ (408) 446-6586

95014/ (408) 257-7000 X2530
[}

95014/ (408) 446-6652
ENS CREEK BLVD./ CUPERTINO CA 95014/ (408) 257-9900

ATOS CA 95030/ (408) 353-3277

95050/ (408) 249~-7000

5050/ (408) 246-2437

EMICONDUCTOR DR./ SANTA CLARA CA 95051/ (408) 737-5228
CONDUCTOR DR./ SANTA CLARA CA 95051/ (408) 737-5244
/ (408) 241-5028

95051/ (408) 733-2600

408) 984-2493

5051/ (805) 937-4541

CTOR DRIVE/ SANTA CLARA CA 95051

43-6985

)} 249-5540

D RD./ SANTA CLARA CA 95051/ (408) 246-0330

8) 249-1111

TA CLARA CA 95053/ (408) 984-4582

E CA 95125/ {(408) 746-6567

6-3166 (HOME)/ (408) 299-4251 (WORK)

) 257-7000 X3581

A 95128

739-7700 X3492
) 258-8961
2

CA 95401/ (707) 545-7778

91-1504

916) 891-1232
3199/ CHICO CA 95927/ (916) 891-1420

FRANCISCO CA 96224

ONOLULU HI 96877/ (808) 948-7420
& 97005/ (503) ou;z;nn-
4-0161 X5
izga;o;‘oa 97077/ (503) 644-0161
ON UR 97077/ (503) 682-3411 X2398
OR 97077
00/ BEAVERTON OR 97077/ (503) 682-3411
RTON OR 97077/ (503) 682-3411 X2586
EAVERTON OR 97077/ (503) 644-0161 X6157
TON OR 97077/ (503) 644-0161 X 5616
OR 97077/ (503) 638-3411 X2516
B/ HILLSBORO OR 97123/ (503) 640-4040/ (503) 644~0161 X5976
PORTLAND OR 97201/ (503) 226-7760

97207/ (503) 645-5687

o

4-1283

97-5671

TE STREET/ SALEM OR 97301

3) 753-6995

LLIS OR 97330/ (503) 754-1694

ON SYSTEMS INC./ 155 S.W. MADISON/ CORVALLIS OR 97330/ (503) 754-1711
770

ORVALLIS OR 97331/ (503) 754-3273

401/ (503) 484-9242
ILL ROAD/ EUGENE OR 97402/ (503) 688~0971

237-2753

~
o
&

98020/ (206) 778-6731 (HOME)/ (206) 774-2381 (WORK)
REET/ MERCER ISLAND WA 98040/ (206) 233-2077

-5. 29/ MDUNTLAKE TERR WA 98043/ (206) 774-2296

X 43210/ MOUNTLAKE TER* WA 98043/ (206) 774-2381

AGEMENT SYSTEMS/ NOAA/ 2725 MONTLAKE BLVD. EAST/ SEATTLE WA 98112

91

TLE WA 98115/ (206) 523-1559

OX 24346/ SEATTLE WA 98124/ (206) 237-5632
/ SEATTLE WA 98161/ (206) 623-9000

NC./ 774 INDUSTRY DR./ TUKWILA WA 98188/ (206) 575-3740
EVEL JE-15/ 4545 15TH N.E./ SEATTLE WA 98195
8407

636 (C.S. DEPT.)/ (509) 335-6147 (OFFICE)

ICHLAND WA 99352/ (509) 946-371t

A.C.T. 2600/ AUSTRALIA/ (062) 482858

1A/ 478 6451

/ 341-6842

/ AUSTRALIA

D/ ST. LUCIA QUEENSLAND 4067/ AUSTRALIA/ (07) 377 6930

IDE/ BOX 498 G.P.0./ ADELAIDE S.A. 5001/ AUSTRALIA/ 61 223 4333 X2720
AIDE/ G.P.0. BOX 498/ ADELAIDE S.A. 5001/ AUSTRALIA/ (08) 223 4333 X2762
LA PALX/ RUE DE BRUXELLES 61/ NAMUR/ BELGIUK

HULFE/ BRUXELLES B-1170/ BELGIUM

PAGE 25

PASCAL NEWS #13 DECEMBER, 1978 PAGE 26

AlC
BOP
B3L
ClA
HC3
H3C
H3N
H3s
H4T
HIP
Jos
X0J
K1S
K2H
K2K
L1s
L5C
LSN
LM
M2J
M3C
M3C
M3J
M4R
M4R
MSN
M9A
xN2C
N2J
NZL
N6A
N6A
N6A
NGA
POJ
T7B
R3H
S7H
T6G
V3N
V5A
VoK
V6T
VX

587
1X0
4L5
4P3
337
349
276
L7
INL
3
2c0
1pP0
586
583
1X4
3B4
1c8
w2
1K4
M6
187
123
1P3
1v2
1z2
226
3
3E0
4G5
361
4K1
5B7
5B7
589
1X0
5EL
OR9
1B5
2C2
4N8
186
2C1
W5
L4

DK=2100
DK-2730
DK-2770

SF-00510
3F-02730
5F-33540
D-1000
D-3000
D-5000
D~6000
D-6750
D~6900
D-7750
D-7910
D-8000
D-8000

N-
N-
N-

s=11
S-14
S-14!
5-72
5-75
5-90
5-90.

100
113
244

1750
3000
5000

0001
2001
2191
6140
7405
7700
7700

543
571
5 71
183
12
1 87
2 36

CH-2000
CH-8021

1018 WB

250

1 BD

9321 GN

PL4

AL3
BN3
Co4
Co4
cy21
DD2
EH]
EX4
Ell
6L52
HA9

IP5
KT10
RT22

LEL
L1157

Mi3
M32
M60
M60

8AA

4RZ
1RA
35Q
35Q
2QE
183
16z
4QL
1qL
541
OEE
LI
TRE
9EZ
INF
9BH
T
9PL
9PL
9BH
1qp
1qp

CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
CANADA
DENMARK
DENMARK
DENMARK
DOMINIC,
FINLAND
FINLAND
FINLAND
GERMANY
GERMANY
GERMANY
GERMANY
GERMANY
GERMANY
GERMANY
GERMANY
GERMANY
GERMANY
INDONES
ISRAEL
JAPAN
JAPAN
JAPAN
MEXICO
MEXICO
NORWAY
NORWAY
NORWAY
NORWAY
NORWAY
PANAMA

AN REP.

1A

SINGAPORE

SOUTH AFRICA
SOUTH AFRICA
SOUTH AFRICA

SOUTH A
SOUTH A’
SOUTH A

FRICA
FRICA
FRICA

SOUTH AFRICA
SQUTH AFRICA
SOUTH AFRICA

SPAIN

SPAIN

SWEDEN
SWEDEN
SWEDEN
SWEDEN
SWEDEN
SWEDEN
SWEDEN

SWITZERLAND
SWITZERLAND

THE NET!
THE NET!
THE NET]
THE NETI
THE NET:

HERLANDS
HERLANDS
HERLANDS
'HERLANDS
HERLANDS

THE NETHERLANDS

THE NET!
THE NETI
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED
UNITED

'HERLANDS
HERLANDS
KINDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGDOM
KINGPOM

RANDY DODGE/ COMPUTING SERVICES/ MEMORIAL UNIVERSITY/ ST. JOHN “S NEWFNDLAND A1C 557/ CANADA/ (709) 753-1200 X2746
BILL WILDER/ SCHOOL OF COMPUTER SCIENCE/ ACADIA UNIV./ WOLFVIL LE N. SCOTIA BOP 1X0/ CANADA

DENNTS MISENER/ DYMAXION RESEARCR LTD./ BOX 1053 ARMDALE STN./ HALIFAX N.SCOTIA B3L 4L5/ CANADA/ (902) 429-3175

J. W. HANCOCK/ COMPUTER CENTER/ UNIV. OF PRINCE EDWARD ISLAND/ CHARLOTTETOWN P.E.I. ClA 4P3/ CANADA

LUC LAVOLE/ DEPT. I. R. 0./ UNIVERSITE DE MONTREAL/ C.P. 6128 SUCCURSALE A/ MONTREAL QUEBEC HC3 3J7/ CANADA/ (514) 737-3700
LES SATENSTEIN/ PERF. OPTIMIZATION / PROCESSING OPERA*/ ROYAL BANK OF CANADA/ BOX 6001/ MONTREAL QUEBEC H3C 3A9/ CANADA
IAN MACMILLAN/ 7939 BIRNAM/ MONTREAL QUEBEC H3N 2T6/ CANADA

MARTIN MILLER/ 6650 WILDERTON AVENUE/ MONTREAL QUEBEC H3S 2L7/ CANADA/ (514) 384-1030

MARY SUTTON/ A.E.S. DATA LTD./ 570 RUE MCCAFFREY/ MONTREAL QUE BEC R4T 1N1/ CANADA/ (514) 341-5430 X307

BARRIE D. MACLEOD/ POINTE~CLAIRE FIRST FLOOR/ PECHES ET ENVIRO NNEMENT CANADA/ 2121 TRANS-CANADA HIGHWAY/ DORVAL QUEBEC H9P 1J3/ CANADA/ (514) 683-8152
JOHN SEITZ/ C.P. 525/ NORTH HATLEY QUEBEC JOB 2C0/ CANADA/ (81 9) 842-2375

P. D. MCMORRAN/ P.O. BOX 904/ DEEP RIVER ONTARIO KOJ 1PO/ CANA DA/ (613) 584=3311

RICHARD F. DILLON/ DEPT. OF PSYCHOLOGY/ CARLETON UNIV./ OTTAWA ONTARIO KIS 586/ CANADA/ (613) 231-3636

ROGER F. BURROWS/ 33 HOBART CRESCENT/ OTTAWA ONTARIO K2H 5583/ CANADA

W. MLTCHELL/ OTTAWA COMPUTER GROUP/ P.0. BOX 13218/ KANATA ONT ARIO K2K 1X4/ CANADA

GORDON C. BOWRON/ 120 GREGORY RD./ AJAX ONTARIO L1S 3B4/ CANAD A/ (416) 683-8655

JIM FINN/ SONOTEK/ 2410-5 DUNWIN DR./ MISSISSAUGA ONTARIO L5C 1C8/ CANADA

S. B. MATTHEWS/ R & D CENTRE/ AES DATA LTD./ 2332 MILLRACE COU RT/ MISSISSAUCA ONTARIO LSN 1W2/ CANADA

G. CHALIFOUR/ DIAMOND CANAPOWER LTD./ 1122 PIONERR RD./ BURLIN GTON ONTARIO L7M K4/ CANADA/ (416) 335-0321

DOUG MARSHALL/ BXLE SYSTEMS LTD./ 617 SENECA HILL DRIVE/ WILLO WDALE ONTARIO M2J 2W6/ CANADA

BRUCE DAVIDSON/ DEPT. 806/ IBM CANADA LABORATORY/ 1150 EGLINTO N AVE. EAST/ DON MILLS ONTARIO M3C 1H7/ CANADA/ (416) 443-3162

AT1/NTION: DIANNE CAMERON/ SOFTWARE DEVELOPMENT/ CONSOLIDATED COMPUTER INC./ 50 GERVALS DRIVE/ DON MILLS ONTARIO M3C 1Z3/ CANADA/ (416) 449-8401
JOHMN C. MCCALLUM/ COMPUTER SCIENCE DEPT./ YORK UNIV./ DOWNSVIE W ONTARIO M3J LP3/ CANADA

TOM A. TROTTIER/ 411 DUPLEX AVE. — APT. 612/ TORONTO ONTARIO M 4R 1V2/ CANADA/ (416) 488-8802

M. DIANNE CAMERON/ 66 EDITH DRIVE/ TORONTO ONTARIO M4R 172/ CANADA/ (416) 488-5738 (HOME)/ (416) 449-8401 (WORK)

DAVID ROSENBOOM/ P.0. BOX 543 - STATION z/ TORONTO ONTARIO M5N 226/ CANADA

DONALD R. BAIN/ 319 THE KINGSWAY APT #10/ ISLINGTON ONTARIO M9 A 3V3/ CANADA

T. A. CARGILL/ DEPT. OF €OMP. SCI./ UNIV. OF WATERLOO/ WATERLO O ONTARIO N2C 3EQ/ CANADA

F. A. CELLINI/ NCR CANADA LTD./ 580 WEBSTER ST. N/ WATERLOO ON TARIO N2J 4G5/ CANADA/ (519) 884-1710 X196

W. MORVEN GENTLEMAN/ COMPUTER SCIENCE DEPT./ UNIVERSITY OF WAT ERLOO/ WATERLOO ONTARIO N2L 3G1/ CANADA/ (519) B85-1211 X2187/ (519) 885-1211
PAUL DENNISON/ LONDON LIFE INSURANCE CO./ 255 DUFFERIN AVE./ L ONDON ONTARIO N6A 4K1/ CANADA/ (519) 432-5281 X164

ATTN: PROGRAM LIBRARY/ COMPUTING CFWTER/ 223 NATURAL SCIENCE C ENTER/ U OF WESTERN ONTARIG/ LONDON ONTARIO N6A 5B7/ CANADA/ (519) 679-2151 X45
GORDON BARKER/ NATURAL SCIENCE CENTRE/ 223 COMPUTING CENTER/ U NIVERSITY OF WESTERN ONTARIO/ LONDON ONTARIO N6A 5B7/ CANADA/ (519) 679-2151
L. MCHARDY/ ENG. & MATH. SCI. BLDG./ COMP. SCI. DEPT./ UNIV. O F WESTERN ONTARIO/ LONDON ONTARIO N6A 5B/ CANADA/ (519) 679-2636

ROSS ALEXANDER/ P.0. BOX 1175/ HAILEYBURY ONTARIO POJ 1KO/ CAN ADA/ (705) 672-5193

ATTN: DEPT. OF MATHEMATICAL SCI./ LAKEHEAD UNIV./ THUNFER BAY ONTARIO P7B 5SE1/ CANADA/ (807) 345-2121 X469

D. A. MOIR/ C/O CYBERSHARE LTD/ 550 BERRY ST./ WINNIPEG MANITO BA R3H OR9/ CANADA/ (204) 786-5831

DEREK F. ANDREW/ 223 6TH ST. EAST/ SASKATOON SASK. S7H 1B5/ CANADA/ (306) 665-3226

MARK R. JOHNSON/ ATMOSPHERIC SCIENCES DIV./ ALBERTA RESEARCH C OUNCIL/ 11315-87 AVENUE/ EDMONTON ALBERTA T6G 2C2/ CANADA/ (403) 432-8125
KIM WILLIAMS/ SUITE 602/ 7818 6TH ST./ BURNABY B.C. V3N 4N8/ C ANADA/ (604) S524-9741

1. GANAPATHY/ COMPUTING CENTRE/ NOOTKA BUILDING/ SIMON FRASER UNIV./ BURNABY B.C. V5A 1S6/ CANADA/ (604) 291-4712

NORMAN J. JAFFE/ GNS SYSTEMS LTD/ 3054 W. 8TH AVENUE/ VANCOUVE R B.C. V6K 2C1/ CANADA/ (604) 731-9028

C. A. MILLER/ TRIUMF/ UNIV. OF BRITISH COLUMBIA/ VANCOUVER 8.C . V6T WS/ CANADA/ (604) 228-4711

PETER NEEDHAM/ 2771 NUMBER FOUR RD./ RICHMOND B.C. V6X 2L4/ CA NADA

JORGEN OXENBOLL/ COMPUTER DEPT./ H.C.ORSTED INSTITUTET/ UNIV. OF KOBENHAVN/ UNIVERSITETSPARKEN 5/ KOBENHAVN 0 DK-2100/ DENMARK

ROLF MOLICH/ DANSK DATA ELEKTRONIK/ HERLEV HOVEDGADE 207/ HERL EV DK-2730/ DENMARK/ 45 2 84 50 11

FLEMMING PEDERSEN/ POSTPARKEN 31 1 7TV./ KASTRUP DK-2770/ DENMA RK/ 01-513885

JOSE M. FLOREN/ ENS. PIANTINI/ CALLE 22 #42A/ SANTO DOMINGO/ D OMINICAN REP./ 565-8557/ 567-6515

JAN-HENRIK JOHANSSON/ PORVOONKATU 26 C 36/ HELSINKI 51 SF~0051 0/ FINLAND/ 90-140022

HEIKKT LEHTINEN/ LEHTITIE 16/ LAAKSOLAHTI SF-02730/ FINLAND

JYRKI TUOMI/ PELLERVONKATU 9/4009/ TAMPERE 54 SF-33540/ FINLAN D/ 931-50000/570 (HOME)/ 931-162125 (WORK)

BERND MARTENS/ SCHILLERSTR 84/ BERLIN 49 D-1000/ GERMANY

HEINZ KLEENE/ LISTERMEILE 23/ HANNOVER D-3000/ GERMANY

KARL KOEHNE/ INST. FUR MED. DOKUMENTATION/ UNIVERSITAET ZU KOE LN/ JOSEF-STELZMANN STR 9/ KOELN D-5000/ GERMANY/ 0221 4784164

PETER C. AKWAI/ SOPHIENSTR. 32/ FRANKFURT 90 D-6000/ GERMANY/ 0611-665-4331

HAN5-WILM WIPPERMANN/ FB (NFORMATIK/ UNIV. OF KAISERSLAUTERN/ PFAFFENBERGSTR. 95/ KAISERSLAUTERN D-6750/ GERMANY/ (0631) 854 2635

PETER T. SPECK/ EMBL/ POSTFACH 102209/ HEIDELBERG D-6900/ GERM Any

DIRK KRONIG/ AEG-TELEFUNKEN/ POSTFACH 2154 / BUECKLEST2ASSE 1- 5/ KONSTANZ D~7750/ GERMANY/ 07531-862066

TILL GEISER/ FALKENSTEINWEG 8/ NEU-ULM D-7910/ GERMANY

P. E. FISCHER/ CSID/ OETTINGENSTR 8A/ MUNCHEN 22 D-B00)/ GERMA NY/ 089-229131

FELIX POPPLEIN/ SELDENECKSTR. 10/ MINCHEN 60 D-8000/ CiRMANY

HARSONO/ PUSAT KOMPUTER/ INSTITUT T:KNOLOGI BANDUNG/ JALAN GAN ESHA 10 / TILPON 82051-82055/ BANDUNG/ INDONESTA

NAKHSHON YESHURUN/ COMPUTATION CENT-R/ BEN GURION UNIV./ P.O.B, 2053/ BEER SHEVA/ ISRAEL/ 5764453

KOICHI FUKUNAGA/ MITSUBISHI RESEARCi! INSTITUTE INC./ 1-6-1 OHT ENACHI - CHIYODA-KU/ TOKYO 100/ JAPAN/ 03-214-5531

EIITT WADA/ DIVISTON OF ENGINEERINC/ INFORMATION ENGINLERING C OURSE/ UNIVERSITY OF TOKYO/ BUNKYOKU TOKYO 113/ JAPAN/ (03) 812-2111 X748F
RYUJI TAKANUKI/ LANGUAGE ArrLICATION DEPT./ SOFTWARE WURkS OF HITACHL L¥D./ 5030 TUTSUKA-CHO — TOTSUKA-KU/ YOKOHAMA 244/ JAPAN/ 045-s81-7161 X2102
MARIO MAGIDIN/ BUHARROS 67/ MEXICO 20 D.F./ MEXICO/ 522.56:94

FERNANDO JAIMES/ CENTRO ELECTRONICO DE CALCULO/ ITESM/ SUCURSA L -.CORREOS “J°/ MONTERREY N.L./ MEXICO

TERJE NOODT/ INSTITUTE OF INFORMATICS/ UNIVERSITY OF OSLO/ P.O . BOX 1080 / BLINDERN/ OSLO 3/ NORWAY/ (02) 466800

ATTN: LIBRARY/ CONTROL DATA B.V./ J. C. VAN MARKENLAAN 5/ RLJS WIJK HOLLAND/ NORWAY/ 070-949344

ATTN: OSTFOLD D H. LIBRARY/ OSTFOLD DISTRIKTSHOGSKOLE/ 0S ALLE 5/ HALDEN N-1750/ NORWAY

DAVID E. OLAVSSEN/ KONGSBERG INGENIOREOGSKOLE/ KONGSBERG N-300 0/ NORWAY

OLAV NAESS/ WELHAVENSGT.65/ BERGEN N-5000/ NORWAY

THEODORE J. HERRMAN/ BOX 1778/ BALBOA CANAL ZONE/ PANAMA

JACK PAGE/ PAGE-ASIA ASSOCIATES/ 279-M SELEGIE COMPLEX/ SINGAP ORE-7/ SINGAPORE/ 326102

COLIN MIEROWSKY/ 101 FAIRWAYS/ CORLETT DRIVE - ILLOVO/ JOHANNE SBURG/ SOUTH AFRICA/ 788 2474

J. F. DE BEER/ COMPUTER SCIENCE/ POTCHEFSTROOM UNIVERSITY/ POT CHEFSTROOM/ SOUTH AFRICA/ 22112

ATTN: PERIODICALS SECTION/ CSIR LIBRARY/ P.O. BOX 395/ PRETORL A 0001/ SOUTR AFRICA

ATTENTION: JUDY BISHOP/ APPLIED MATHS DEPT./ STAFF COMMON ROOM / UNIV. OF THE WITWATERSRAND/ JOHANNESBURG 2001/ SOUTH AFRICA/ (01) 394011 X8656
ALASDAIR D. STUART/ KENSINGTON/ 84 NOTTINGHAM RD./ JOHMANNESBUR G 2191/ SOUTH AFRICA/ 25 2553

M. HOWARD WILLIAMS/ COMPUTER SCIENCE DEPT./ RHODES UNIVERSITY/ GRAHAMSTOWN 6140/ SOUTH AFRICA/ 0461-2023

STEVEN B. RAKOFF/ 19 LOBELIA STREET/ MILNERTON 7405/ SOUTH AFR ICA/ 521447 (CAPE TOWN)

I. N. CHRISTOFFERSON/ 3 GUILDFORD ROAD / ROSEBANK/ CAPE TOWN 7 700/ SOUTH AFRICA/ 691875

S. R. SCHACH/ COMP. SCI. DEPT./ UNIVERSITY OF CAPE TOWN/ RONDE BOSCH 7700/ SOUTH AFRICA/ 698531 X172

RAFAEL M. BONET/ PROVIDENCIA 137/ BARCELONA 24/ SPAIN/ 34-3-32 57599

PERE BOTELLA/ CASANOVA 148/ BARCELONA 36/ SPAIN/ (93) 253.60.7 0

KEITH ELKIN/ DIANAVAGEN 30/ STOCKHOLM S-115 43/ SWEDEN

MICHAEL EVANS/ BALDERS VAG 3 6TR/ NORSBORG S-145 71/ SWEDEN

SVANTE HELLSING/ TORS VAG 8 - 6 TR/ NORSBORG S-145 71/ SWEDEN/ 0753-82033

EGON JORANSSON/ DEPT. KDTS/ ASEA/ VASTERAS $-721 83/ SWEDEN/ 0 21-102988

HANS FLACK/ DEPT. COMP. TECHNOLOGY/ TEKNIKUM/ BOX 534/ UPPSALA §-751 21/ SWEDEN/ 018 10 04 70

PER-AKE WEDIN/ INSTITUTE OF INFORMATION PROCESSING/ UNIV. OF U MEA/ UMEA S-901 87/ SWEDER/ 090-125600

GORAN LINDAHL/ MARIEREMSV. 17A4/206/ UMEA $-902 36/ SWEDEN/ 090 -137803

NORBERT EBEL/ CENTRE DE CALCUL/ UNIVERSITE/ CHATEMERLE 20/ NEU CHATEL CH-2000/ SWITZERLAND/ 038 25 64 34

ATTN: HONEYWELL BULL S.A./ MINI OEM/ JAKOB FUGLISTR. 18 / P.O. B/ ZURICH CH-8021/ SWITZERLAND/ 01-474400/ 01-2416760

ATTENTION: C. V. D. WLJGAART/ TECHNISCH CENTRUM FSW/ UNIV. OF AMSTERDAM/ ROETERSSTRAAT 15/ AMSTERDAM/ THE NETHERLANDS

DAVID A. COOPER/ C/O CACI/ KEIZERS GRACHT 534/ AMSTERDAM/ THE NETHERLANDS

ATTN: BIBLIOTHEEK 05627/ TECHNISCHE HOGESCHOOL/ POSTBUS $13/ E INDHOVEN/ THE NETHERLANDS

NIGEL W. BENNEE/ QOSTEINDE 223/ VOORBURG ZH/ THE NETHERLANDS

D. R. GIBBY/ KROMWATER 60/ ZOETERMEER/ THE NETHERLANDS

P. VAN EMDE BOAS/ ITW/VPW/ UNIVERSITEIT VAN AMSTERDAM/ ROETERS STRAAT 15/ AMSTERDAM 1018 WB/ THE NETHERLANDS/ 020-522 3065

P. A. SLATS/ INFORMATION PROCESSING AND STATISTICS/ INST. TNO FOR MATHEMATICS/ P.O. BOX 297/ THE HAGUE 250t BD/ THE NETHERLANDS

T. J. VAN WEERT/ ELZENLAAN 28/ PEIZE 9321 GN/ THE NETHERLANDS

PATRICIA HEATH/ COMPUTER CENTRE/ PLYMOUTH POLYTECHNIC/ DRAKE C IRCUS/ PLYMOUTH ENGLAND PL4 8AA/ UNITED KINDOM

J. M. MCCAIG/ SCHOOL OF MATHEMATICS/ KINGSTON POLYTECHNIC/ PEN RHYN RD./ KINGSTON-UPON* SURREY/ UNITED KINGDOM

JOHN ROSCOE/ SYSTEMS ENGINEERING/ 11TH FLOOR 7/BLOCK/ I. C. L./ WENLOCK WAY / WESTGORTON/ MANCHESTER ENGLAND/ UNITED KINGDOM/ 061 223 1301 X2589
RICHARD CLAYTON/ 10A STATION ROAD / MERSTHAM/ REDRILL SURREY/ UNITED KINGDOM

C. T. BRITTON/ 63 GIBBS COUCH / CARPENTERS PARK/ WATFORD HERTS / UNITED KINGDOM

WILL PICKLES/ 166 FISHPOOL ST./ ST. ALBANS HERTS. AL3 4RZ/ UNI TEp RINGDOM

BRIAN WILLIAMS/ 67 DAVIGDOR ROAD/ HOVE SUSSEX BN3 1RA/ UNITED KINGDOM/ 0273-778389

1. R. MAC CALLUM/ DEPT. OF COMPUTER SCIENCE/ UNIV. OF ESSEX/ P ,0. BOX 23 / WIVENHOE PARK/ COLCHESTER ENGLAND CO4 35Q/ UNITED KINGDOM/ (0206) 44144
IAN H. WITTEN/ EES DEPT./ UNIV. OF ESSEX/ WIVENHOE PARK/ COLCH ESTER ENGLAND CO4 35Q/ UNITED KINGDOM/ 0206 44144 X2285

C. J. THODAY/ 1A BANK ST./ RUGBY WARWICKS CV2I 2QE/ UNITED KIN GDOM

S. AMBLER/ 12 KELSO STREET/ DUNDEE SCOTLAND DD2 15J/ UNITED KI NGDOM

D. S. H. ROSENTHAL/ DEPT. OF ARCHITECTURE/ UNIV. OF EDINBURGH/ 22 CHAMBERS ST./ EDINBURGH SCOTLAND EHI 1GZ/ UNITED KINGDOM

D. R. ALLIM/ DEPT. OF PHYSICS/ UNIVERSITY OF EXETER/ EXETER RO AD/ EXETER ENGLAND EX4 4QL/ UNITED KINGDOM

JORN HUTCHINSON/ 13 D SYLVAN ROAD / WANSTEAD/ LONDON ENGLAND E 11 1QL/ UNITED KINGDOM/ 01-980-4811 X778

M. J. L. YATES/ F/0603 X66HQ/ GOVERNMENT COMMUNICATIONS HQ/ OA KLEY PRIORS ROAD/ CHELTENHAM ENGLAND GL52 S5AJ/ UNITED KINGDOM/ 0242 21491 X2192
A. R. M. WATIH/ GENERAL ENGINEERING DEPT/ PULLMAN KELLOGG LTD/ STADIUM WAY/ WEMBLEY ENGLAND HA9 OEE/ UNITED KINGDOM/ 01-903 8484 X3481

D. A. JOSLIN/ COMPUTER SERVICES/ HULL COLLEGE OF HIGHER EDUCAT ION/ INGLEMIRE AVE/ HULL ENGLAND HU6 7LJ/ UNITED KINGDOM/ (0482) 42157

ROB: RT KIRKBY/ 77 FLOOR 2 - R8.1.1/ RES D MARTLESHAM HEATH/ IP SWICH ENGLAND IP5 7RE/ UNITED KINGDOM/ IPSWICH 642 082

ATTi : PULSE TRAIN TECHNOLOGY LTD./ 15 LAKESIDE DR./ ESHER SURR EY KT10 9EZ/ UNITED KINGDOM

P. i.. WALWYN/ LITTLE GABLES/ BELLLANE / FETCHAM/ SURREY ENGLAND KT22 9NF/ UNITED KINGDOM

B. E. BARKER/ COMP. CENTRE/ LEICESTER POLYTECHNIC/ P.O. BOX 14 3/ LEICESTER ENGLAND LEl 9BH/ UNITED KiNGDOM

DAYVDD ROBERTS/ COMPUTING LABORATORY/ U.C.N.W./ BANGOR/ GWYNED D WALES LLS57 1UT/ UNITED KINGDOM

M. A. PELL/ DEPT. OF COMMUNITY MEDICINE/ UNIV. OF MANCHESTER/ OXFORD ROAD/ MANCHESTER ENGLAND Mi3 9PL/ UNITED KINGDOM/ 061-273 8241 X0 / X58
TA: ROBERT WILSON/ DEPT. OF COMPUTER SCI./ UNIVERSITY OF MANCH ESTER/ OXFORD ROAD/ MANCHESTER ENGLAND M13 9PL/ UNITED KINGDOM/ 061-273-7121
DAVID J. SKYRME/ ARNDALE HOUSE/ DIGITAL EQUIPMENT CO. LTD./ CHESTER ROAD/ MANCHESTER ENGLAND M32 9BH/ UNITED KINGDOM/ (61-865-8676

GERALD C. KEIL/ DEPT. OF EUROPEAN STUDIES/ UMIST/ P.O. BOX 88/ MANCHESTER ENGLAND M60 1qD/ UNITED KIIGDOM/ 061-236 3311 X2261

D. J. LEGGE/ DEPT. OF PHYSICS/ U.M.I.S.T./ P.O. ROX A%/ MANCHE STER ENGLAND M60 3QD/ UNITED KINGDOM

PASCAL NEWS #13 DECEMBER, 19738 PAGE 27

W6 6DL UNITED KINGDOM STEPHEN G. S. PROUT/ 2 KESLAKE ROAD/ LONDON ENGLAND N6 6pi/ u NITED KINGDOM/ 01 960 4270

0X1 2DL UNITED KINGDOM J. N. PAINE/ ST. PETER’S COLLEGE/ OXFORD UNIV./ OXFORD ENGLAND OX! 2DL/ UNITED KINGDOM/ OXFORD 48436

RG6 2LH UNITED KINGDOM ROGER P. WRIGHT/ 16 RAGGLESWOOD CLOSE / EARLEY/ READING BERKS. RG6 2L/ UNITED KINGDOM/ READING 663178

SEL OTE UNITED KINGDOM™F. BOEUF/ HIGHWAY ENGR COMPUTER BRANCH/ ROOK 3/05 = sT. ciiryst OFUER HOUSE/ DEPT OF TRANSPORT/ SOUTHWARK STREET/ LONDON ENGLAND SEl OTE/ UNITED KINGDO!
01 928 7999 X3026

SG1 2DY UNITED KINGDOM JOE B. MONTGOMERY/ ICL/ CAVENDISH RD/ STEVENAGE HERTS sG1 2py/ UNITED KINGDOM/ 0438 3361

S09 5NH UNITED KINGDOM J. T. GOODSON/ DEPARTMENT OF MATHEMATICS/ COMPUTER STUDIES GRO UP/ THE UNIVERSITY/ SOUTHAMPTON ENGLAND S09 5NH/ UNITED KINGDOM/ 0703-559122 X2387

$09 5NH UNITED KINGDOM MIKE J. REES/ DEPT. OF MATHS./ COMPUTER STUDIES GROUP/ THE UNI VERSITY/ SOUTHAMPTON ENGLAND SO9 SNH/ UNITED KINGDOM

ST16 2AT UNITED KINGDOM S. STRUDWICK/ R.W. HOURD & SON LTD/ 7-8 MILL ST./ STAFFORD ENG LAND ST16 2AJ/ UNITED KINGDOM/ 0785-44221

ST7 ITL UNITED KINGDOM D. K. MESSHAM/ 1.C.L./ WEST AVENUE / KIDSGROVE/ STOKE-ON-TRENT STAFFS ST7 1TL/ UNITED KINGDOM/ (0782) 29681

SW7 2BY UNITED KINGDOM P. DAVID ROSE/ DEPT. OF CHEMICAL ENGINEERING/ IMPERIAL COLLEGE / PRINCE CONSORT ROAD/ LONDON ENGLAND SW7 2BY/ UNITED KINGDOM

SW7 2BZ UNITED KINGDOM PETER W. THROSBY/ DEPT. OF COMPUTING & CONTROL/ IMPERIAL COLLE CE/ QUEENSGATE/ LONDON ENGLAND SW7 2BZ/ UNITED KINGDOM/ 01-589 S111 x2

SL0 2TN UNITED KINGDOM L. V. ATKINSON/ DEPT OF APPLIED MATH AND COMP SCIENCE/ UNIV. O F SHEFFIELD/ SREFFIELD ENGLAND S10 2TN/ UNITED KINGDOM 74z

TWI1 OLW UNITED KINGDOM I. GOODE/ NATIONAL PHYSICAL LABORATORY/ DNACS/ TEDDINGTON MIDD LESEX TWI1 OLW/ UNITED KINGDOM/ 01-977 3222

WCIN 3D4 UNITED KINGDOM ATTN: COMPUTER ANALYSTS & PROGRAMMERS/ 14-15 GREAT JAMES STREET/ LONDON ENGLAND WCLN 3D4/ UNITED KINGDOM/ 01-242-0021

YU-61000 YUGOSLAVIA ATTN: FNT - ODDELEK ZA KEMIJO/ KNJIZNICA/ MURNIKOVA 6/ LJUBLJANA YU-61000/ YUGOSLAVIA

JAMES G. BARON 98105

ART BARRETT 22312 W. E. CLARK 92138
BRUCE A. BARRETT 94066 JOHN C. CLARSON 23669
ANN S. ADAMS 08033 RANDY BARTH 20810 M. B. CLAUSING 45424
HARRY S. ADAMS 91301 S. J. BATTORY JR. 01247 RICHARD CLAYTON UNITED KINGDOM
KENNETH LEROY ADAMS 47907 ELMER T. BEACHLEY 15236 JOE CLEMA 45432
RICHARD E. ADAMS 43229 FRANCIS H. BEARDEN 45241 DAVID G. CLEMANS 90064
KIM ADELMAN 55414 CHARLES R. BEAUREGARD 90712 DAVID G. CLINE 01581
KARL P. ADEY 07932 JAMES E. BECKLEY 60603 ROBERT COLE 18017
JAMES L. AGIN 90278 RICHARD BEELER 92802 PETER CONKLIN 01451
ARVIND AGRAWAL 92805 C. Y. BEGANDY 15069 DANIEL F. CONWAY 95132
THOMAS J. AHLBORN 19380 LOUIS N. BELEOS 89502 H. A. COOK 20903
JOHN AHLSTROM 95014 BELLOMY 312 T. J. COOK 87544
PETER C. AKWAL ~D-6000 GERMANY L R O oo STEVEN L. COOL 01880
JACK D. ALANEN 44106 NIGEL W. BENNEE THE NETHERLANDS RICH COON 01581
K. M. ALBRIGHT 30342 BARBARA BERGER 10014 DAVID A. COOPER THE NETHERLANDS
ROSS ALEXANDER POJ 1KCO CANADA SERGIO BERNSTEIN 87112 NICK COPPING 91103
ROBERT ALKIRE 90260 ROBERT W. BERRY 87107 JOHN J CORCORAN 3RD. III 87107
DAVID M. ALLAN 66102 SCOTT S. BERTILSON 55455 RICHARD CORE 94088
ROSS ALLARDYCE 3;*3% JAMES L. BEUG 93407 MARCUS C. CORNELL 96224
BRUCE ALLE! R _THOMAS CORRIGAN 60686
D. R. ALLUM EX4 4QL UNITED KINGDOM KAsI sasuglis:: :‘:::2’;1 ziﬁg FRED COTTON 02174
RICHARD ALRUTZ 14580 ROB BIDDLECOMB 21203 JAMES C. COZZIE 52402
ALTMAIER 94086
RICH JEFFREY H. BIGGERS 30305 FRANK F. CRANDELL 92635
FRANK ALVIANI 6062(; DEAN BILLING 95401 JOHN EARL CRIDER 77043
ALLEN L. AMBLER 9512 ox LARRY BILODEAU 97330 E. CRITTSINGER JR. 23505
S. AMBLER DD2 1SJ UNITED KINGDH JOHN BLACKWOOD 95660 ELIZABETH CROCKER 94546
CHARLES ANDERSON 08816 BRAD BLASING 55455 WILLIAM E. CROSBY 92704
FRANK ANDERSON 85061 LYNN BLICKENSTAFF 90065 DAVID B. CROUSE 15213
GARY 5. ANDERSON 98043 PETER BLONIARZ 12222 HEODORE R. CROWLEY 01720
OLE ANDERSON 97330 P. VAN EMDE BOAS 1018 WB THE NETHERLANDS JOHN P. CUCHES 30033
RICHARD L. ANDERSON 80306 HAROLD L. BOERLIN II 55435 HOWARD CUNNINGHAM 97077
RON ANDERSON 55455 F. BOEUF SE1 OTE UNITED KINGDOM NICK CVETKOVIC 19172
WILLIAM F. ANDERSON 94133 J. BOGAR 21701 STEVE DALSIMER 90291
DEREK F. ANDREW S7H 1B5 CANADA LARRY D. BOLES 37076 JAMES A. DARLING 92027
DENNIS S. ANDREWS 94086 RAFAEL M. BONET SPAIN BRUCE DAVIDSON M3C 1H7 CANADA
DAVID ANDRUS 80301 TIM BONHAM 55454 W. DAVIS 3046 AUSTRALIA
F. ANTONIO 92121 WILLIAM R. BONHAM 89511 RICHARD L. DAY 19102
PETER A. ARMSTRONG 98115 GARY J. BOOS 69341 J. F. DE BEER SOUTH AFRICA
BOB ARNOLD 55337 JOHN BORGELT 94025 DAVID J. DE FANTI 02871
GEORGE N. ARNOVICK 95927 RONALD V. BOSSLET 02154 ARTINE DE GERLACHE B-1170 BELGIUM
CHARLES N. ARROWSMITH 14?22 PERE BOTELLA SPAIN HARD P. DE ROBERTS 30354
PETER R. ATHERTON 63 SPEC BOWERS 21030 JOHN DE ROSA IR.
L. V. ATKINSON S10 2TN UNITED KINGDOM KEN BOWLES 92067 JOHN L. Su"és ?2?33
NTION: COLIN G. CAMPBELL 77001 GORDON C. BOWRON L1S 3B4 CANADA MICRAEL DEISEMROTH 47907
NTION: Co V. Do WLJGAART THE NETHERLANDS CHRIS BOYLAN 55042 ROBERT I. DEMROW 01810
TENTION: DIANNE CAMERON M3C 1Z3 CANADA ROBERT BOYLAN 08540 TIMOTHY DENNIS 0603$
ATTENTION: Ds L. MYERS 80639 ALEX BRADLEY v2714 PAUL DENNISON N6A 4Kl CANADA
ATTENTION: KRED BEVENSEE 15236 PAUL BRAINERD 55454 EDWARD DEPPE 55404
ATTENTION: JUDY BISHOP 2001 SOUTH AFRICA JOE B. BRAME JR. 84105 SHAUN DEVLIN 48010
ATTENTION: k:‘é?a;(ﬂglz 32?’;? DAVID E. BREEDING 75234 GEORGE B. DIAMOND 08826
ATTENTION: W K H. DICK BREIDENBACK 48033 ROBERIO
ATTENTION: ROY W. FILEGER 32204 BILL BRENNAN 19401 LAURA L DICKIS;SS sazao0 it
ATTENTION: WILLIAM MAIN 01943 FRANK BREWSTER 16701 MARY DIEGERT 13902
ATTN: ADP CENTER 500lQ WILLIAM A. BRIGGS 60010 BOB DIETRICK
TN: AIR FORCE WEAPONS LABORATORY 87117 WILLIAM D. BRISCOE 07762 RICHARD F. DILLON KIS 5B6 CANADA
ATTN: AMERICAN COMPUTER SERVICES 90801 C. T. BRITTON UNITED KINGDOM J. W. DISSELKAMP 37660
ATTN: BIBLTOTHEEX 05627 THE NETHERLANDS CHARLES L. BROOKS 02139 FRED DITTRICH 65201
ATTN: BIBLIOTHEQUE CENTRALE BELGIIM BRUCE A. BROWN 92805 WILLIAM H. DIUGIUD 27702
ATTN: COMPUTATION CENTER 78363 ox MICHAEL D. BROWN 17331 J. SCOTT DIXON 02138
COMPUTER ANALYSTS & PROGRAMMERS WCIN 3D4 UNITED KINGD RICHARD T. BROWN 97207 RANDY DODGE ALC 587 CANADA
ATTN: DB/DC SOFTWARE ASSOC. 03103 CHARLES H. BROWNING 10022 ALLEN F. DOWNARD 33803
ATIN: DEPT. OF COMP. SCI. 3168 AUSTRALIA C. H. BROWNING 10022 DORSEY DRANE 97202
ATTN: DEPT. OF MATHEMATICAL SCl. P7B SEL CANADA JERRY F. BRUMBLE 90278 KENNETH R. DRIESSEL 74102
ATTN: D. M. MOFFETT 50307 HERBERT M. BRYANT JR. 33549 JEFFREY J. DRUMMOND 55455
ATTN: FNT - ODDELEK ZA KEMIJO YU-61000 YUGOSLAVIA S. R. BUCHANAN 53092 LARRY DUBY 22209
ATTN: HONEYWELL BULL S.A. CH-8021 SWITZERLAND AKNA BUCKLEY 47401 DOUGLAS DUNLOP 23185
ATTN: INFORMATION CENTER 01742 JOHN BUCZEK 97850
ATTN: INFORMATION/RESOURCE CENTER 68588 DAVID M. BULMAN 92123
ATTN: J. M. P. ASSOCIATES 22030 VILHELM BURCER 18712
: J. M. Pe THOMAS K. BURGESS 77302 BOB DUPREE 74145
ATTN: KINDLER ASSOCIATES INC. 02142 DONALD D. BURN m17%7 DAVID DYCHE
ATTN: LARRY MARKWORTH - LIBRARIAN 90404 y 77001
ATTN: LIBRARY NORWAY JOHN W. BURNETT 95051 PAUL T. DYKE 22151
ROGER F. BURROWS KZH 553 CANADA RICHARD R. DYMANT 98188
ATTN: LJS COMPUTER SERVICES 10530 VINGENT BUSAM 95030 JEFF EASTMAN 80537
TN: OREGON MINI-COMPUTER SOFTWARE INC* 97201 R. BUSH 97450 NORBERT EBEL
. CH-2000 SWITZERLANL
ATIN: OSTFOLD D H. LIBRARY N-1750 NORWAY RICHARD A. BYERS 46205 FRITZ EBERLE 01852
ATTN: PERIODICALS SECTION 0001 SOUTH AFRICA DAVID CALCATELLI 85002 PETER ECCLESINE 94043
ATTN: PROGRAM LIBRARIAN 5001 AUSTRALIA J. D. CALLAHAN 84108 GLENN T. EDENS 94086
ATTN: PROGRAM LIBRARY N6A 5B7 CANADA M. DIANNE CAMERON M4R 1Z2 CANADA BRUCE J. EDMUNDSOR 95051
ATTN: PULSE TRAIN TECHNOLOGY LTD. KT10 9EZ UNITED KINGDOM
R ASRTNGTRIEF INSTISUTE 46202 GEORGE P. CAMPBELL 08052 P. 5. EDWARDS 3130 AUSTRALIA
ATTN: RUTH SUGARMAN 95014 STEVEN CAMPBELL 03768 ARNIE EGEL 95129
ATTN: SAM CALVIN 09175 MAL CAREY 04473 BILL EHLERT 80201
ATIN: SERIAL RECORDS 49008 T. A. CARGILL N2C 3EQ CANADA 10D SRS 48108

THERON D. CARLSON 80401

ATTK: SERIAL RECORDS DIV. 94305 VINCENT ELIAS 46312

ATTN: TECHNICAL LIBRARY 01821 mnm"‘j"é‘mmg& ffé;’; KEITH ELKIN $-115 43 SWEDER
ATTN: TECHNICAL LIBRARY 47-687 53202 EDDIE CARRIE 91311 DENNIS R. ELLIS 80303
ATTN: TIMESHARING BUSINESS SYSTEMS 95128 TERRENCE M. CASELLA 90069 MONTE ELLIS 33142
ATTN: UNIV. OF WASHINGTON 98195 VAYNE CATLETT 53202 LARRY E. ELLISON 08046
ATTN: INFORMATICS INC. BOOKSTORE 20852 AVERY CATLIN 22901 ROBERT J. ELLISON 13323
ATTN:WESTERN RESERVE COMMUNICATIONS 44512 D. A. CAUGHFIELD 79601 AGNES H. ELMORE 23284
Ho 1. AUALC SM3 CANADA DAVID F. CAUTLEY 97330 ROBERT EMERSON 98040
CHUCK AUGUSTINE 15213 STEVE CAVENDER 76059 R. D. EMRICK 33601
DAVID AULT 22101 F. A. CELLINI N2J 4G5 CANADA TOM ENTERLINE 20822
LEE D. AURICH 91711 MIKE CHALENBURG 56381 GLENN ENTIS 10016
AYERS LOCKSMITHING 94941 G. CHALIFOUR L7M 1K4 CANADA E. W. ERRICKSON 85613
DAVE BAASCH 97210 JOHN L. CHANEY 72205 R. L. ESHELMAN 80210
GUS BACOYANIS 90403 P. & C.F.BLOMKE CHANG 91359 R. ETZI 06830
ROBERT M. BAER 94941 JOHN P. CHAPMAN 64110 TOM EUBANK 40206
DONALD R. BAIN M9A 3V3 CANADA BILL CHESWICK 19122 HERMAN EUREMA 08540
S. BALASUBRAMANIAN 77001 LAURIAN M. CHIRICA 93106 MICHAEL EVANS S-145 71 SWEDEN
LYSNE J. BALDWIN 68182 CARLOS CHRISTENSEN 02176 ROGER H. EVANS 92123
L. DAVID BALDWIN 03055 KENNETH L. CHRISTENSEN 61701 RICHARD A. EVERMAN 92717
MICHAEL S. BALL 92152 WILLIAM G. CHRISTIAN 30305 R. NEIL FAIMAN JR. 48228
FRED BALLANTINE 98161 DAVID B. CHRISTIE 60202 JOSEPH R. PALKNER 88130
RICHARD BALOCCA 61801 I. N. CHRISTOFFERSON 7700 SOUTH AFRICA SHAL FARLEY 91126
STANLEY E. BAMMEL 75116 GERALD W. CICHANOWSKI 55987 JOSEPH H. FASEL IIT 47907
DEAN BANDES 01741 RICHARD J. CICHELLI 18103 WALT FEESER 78758
B. E. BARKER LEl 9BH UNITED KINGDOM JON F. CLAERBOUT 94305 MICHAEL B. FELDMAN 20052
GORDON BARKER N6A 5B7 CANADA DONALD L. CLAPP 47272 LINWOOD FERGUSON 22923

DAN +ROBIN BARNES 95926 IRA A, CLARK 10024 SID FERMI 97077

PASCAL

JEANNE FERRANTE
ALAN B. FINGER
LLOYD D. FINK
JIM FINN

HERMAN FISCHER
P. E. FISCHER
GLENN FISHBINE
GENE FISHER
RICHARD B. FITZ
ROBERT G. FITZGERALD
HANS FLACK

JOSE M. FLOREN
WAYNE FLOURNOY
RUDY L. FOLDEN
JIM FOLEY

WARREN C. FORDHAM
RICHARD FOULK

AL FRANCIS

LEE FRANK

STEPHEN D. FRANKLIN
ROBERT FRANKSTON ~COPY A
ROBERT FRANKSTON -COPY B
ROGER W. FRECH

KARL FRYXELL

KOICHI FUKUNAGA
GLEN FULLMER

DAN FYLSTRA

DAVID JON FYLSTRA
I. GANAPATHY
LAWRENCE M. GARCIA
JOHN T. GARDNER
PATRICIA J. GARSON
PATRICK D. GARVEY
DALE GAUMER

EDWARD F. GEHRINGER
TILL GEISER

W. MORVEN GENTLEMAN
P. U. GEORGE
THOMAS L. GERBER
DANIEL E. GERMANN
D. R. GIBBY

ROBERT A. GIBSON
MIKE GILBERT
SHELLEY GILES

J. GILMER

CHARLES 0. GIMBER
BRIAN GLASSER
MAURY GOLDBERG
LOUISE GOLDSTEIN
PHILLIP I. GOOD

1. GOODE

EUGENE K. GOODELL
J. I. GOODSON
ROBERT GOODWIN
GEORGE S. GORDON JR.
KEITH GORLAND

E. GOTTWALD

JOHN S. GOURLAY
DAVID GRABEL

DAVE GRAHAM
JEFFREY W. GRAHAM
WILLIAM Q. GRAHAM
THOMAS E. GRANVOLD
DAVID N. GRAY

JOHN W. GRAY

ARTIE GREEN

STEVEN J. GREENFIELD
RICHARD GREENLAW
TIMOTHY GRIESER
DONALD E. GRIMES
JOHN R. GRINDON
JAMES GROSSMAN
JOHN GULBENK

GARY R. GUTH

JOEN G. GUTHRIE
HARRY P. HAIDUK
JOEL M. HALPERN
DAVID E. HAMILTON
E. MICHAEL HAMILTON
RICHARD W. HAMILTON
TERRY HAMM

MIKE HAMMAN

NICK HAMMOND

J. W. HANCOCK
ALAIN J. HANOVER
BRIAN HANSON

DAVID R. HANSON
MARC HANSON

PETER J. HARRINGTON
MARGERY HARRIS
MIKE HARRIS
HARSONO

JAMES F. HART
ORVAL F. HART JR
RONALD HARTUNG
JOHN P. HARVELL
STEPHEN HATCH
LARRY HAWLEY

W. F. HAYGOOD
ANTHONY R. HEALY
PATRICIA HEATH
WILLIAM HEILAND
JESSE HEINES

DICK HEISEN

SVANTE HELLSING
PAUL HELVIG

JORN M. HEMPHILL
CARROLL HENNICK
CHRISTOPHER J. HENRICH
RICHARD HERBERT
JAMES T. HERINGER
CLINTON HERLEY
THEODORE J. HERRMAN
H. F. HESSION
LOREN L. HEUN

BRUCE HIBBARD

DAVID HICKOK

THOMAS C. HICKS

D. R. HILL

JOSEPH N. HILTON
MAX HINCHMAN

THOM HOARD

PHILIP T. HODGE

BOB HOFKIN

DAVID HOLLAND
STEPHEN HOLLATZ
RALPH G. HOLLINGSWORTH JR.

12561
02154

NEWS #13

23505
1L5C 1C8 CANADA

91409

D-8000 GERMANY

55404
92651
20016
22180
§-751 21

77074
92714
91364
28214
96786
9460

6

08002
92717
02139
02154
78753
91125
100
97123
02134
94305
V5A 156
10580
93501
06851
90291
46808
47907
D-7910
N2L 3Gl
90403
57401
55455

22110
01752
97301
94105
92024
10003
13203
11713
49001
TW1L OLW
09403
509 5NH
60510
02173
60174
14450
48169
02173
94086
78873
19711
94086
78769
02747
95050
90010
43230
02215
95014
63042
33181
964596
60204
20904
79109
55403
23502
20052
94702
97077
49464

SWEDEN
DOMINICAN REF.

JAPAN

CANADA

GERMANY

CANADA

THE NETHERLANDS

UNITED KINGDOM

UNITED KINGDOM

2600 AUSTRALIA

ClA 4P3
01887
55110
85721
90254
11552
02173
62702

02195
87544
22401
75081
01730
91103
84121
11530
PL4 BAA
55402
01505
90401
$-145 71
56301
76019
91320
07724
95610
91105
45244

22101
49006
06497
50158
54601
45342
72701
94709
55414
46322
92093
77079
60559
43762

CANADA

INDONESIA

UNITED KINDOM

SWEDEN

PANAMA

DECEMBER,

JOHN B. HOLMBLAD
GEORGE E. HOLZ
DAN HOMER

GREGORY L. HOPWOOD
DAVID HORNBAKER
C. L. HORNEY

TOM HORSLEY
THOMAS P. HOVEKE
JAMES H. HOWARD
CAROL B. HOWELL
HUGO HSIUNG

GARY HUCKABAY
THOMAS W. HUEBNER
JON F. HUERAS
JAMES W. HUFFMAN
JAMES S. HUGGINS
GENE HUGHES

PHIL HUGHES
ALFRED J. RULBERT
ALICE HUNT

DAVID HUSNIAN
STEPHEN G. HUSSAR
JOHN HUTCHINSON
LYNN €. HUTCHINSON
ELIZABETH IBARRA
N J. ILIFF

CRAIG M. INGLIS
ARON K. INSINGA
AVRUM ITZKOWITZ
KENNETH K. IWASHIKA
GEORGE T. JACOBL
NORMAN J. JAFFE
FERNANDO JAIMES
DEAN JAMES

SCOTT JAMESON
ROBERT L. JARDINE
GEORGE D. JELATIS
HAROLD D. JENKINS JR.
JOHN JENKINSON
GREGORY JENNINGS
JEFFREY C. JENNINGS
AUTHOR R. JETER
EGON JOHANSSON
JAN-HENRIK JOHANSSON
GERALD C. JOHNS
CLARA L. JOHNSON
JUSTINA JORNSON
MARK R. JOHNSON
SUE JOHNSON

DAN B. JOHNSTON
RICHARD A. JOKIEL
DAVID TERRY JONES
D. A. JOSLIN
JOSEPH M. JOYCE
MARK JUNGWIRTH
SAMUEL C. KAHN
ALAN M. KANISS
FRED KATZMAN

HUGH M. KAWABATA
MATTHEW KAZLAVSKAS
JOE KEEFE

GENE KEENOY
GERALD C. KEIL
BOB KELLER

W. A. KELLEY
GINGER KELLY
WALLACE KENDALL
N. KERMAN

HENRY D. KERR III
MARK C. KERSTETTER
GURUPREM SINGH KHALSA
DENNIS F. KIBLER
TIM KIEFFER

JOHN H. KILFOIL
DANIEL R. KILLORAN
ROBERT J. KING
ROBERT KIRKBY
JAMES KLAJA
HENRIETTE KLAWANS
HEINZ KLEENE
BARCLAY R. KNERR
D. L. KNITTEL
JULIANA M. KNOX
EDWARD W. KNUDSEN
MIKE KNUDSON
DENNIS KODIMER
RICHARD A. KOEBBING
HARRIS M. KOEHN
KARL KOEENE

KURT KOHLER

DENIS KOMINSKY
ALAN A. KORTESOJA
RICHARD KRASIN

G. M. KREMBS
STUART J. KRETCH
DIRK KRONIG

H. M. KUHLMANN
DARRYL KUHNS
MARVIN E. KURTTL
RICHARD J. KWAN
ARTHUR LACROIX LA CROIX
JOSEPH LACHMAN
RICHARD M. LADDEN
DAN M. LALIBERTE
MARY K. LANDAVER
LARRY D. LANDIS
H. LASHLEE

LUC LAVOIE

THOMAS W. LAWHORN
GARY E. LAWRENCE
ED LEARY

WILLIAM G. LEDERER
VICTOR LEDIN
FRANCIS F. LEE

R. GARY LEE

TOM LEE

D. J. LEGGE

TOM LEGRAZIE
CLARENCE LEHMAN
HEIKKI LEHTINEN
RAYMOND M. LEONG
FRANK LEPERA

ALAN M. LESGOLD
MICHAEL H. LESKIN
HOWARD LEVERENZ
CHARLES T. LEWIS
DANIEL LEY

FELIX S, H. LI
PING K. LIAO

BOB LIDRAL

KARL LIEBERHERR

2000>
07060
83720
92714
80203
92803
95376
60618
49931
20770
60025
73501
53201
01945
95014
77081
78231
98507

92521
73106
15222
El1 1QL
44092
9136
6066
30021
01752
61820
90815
53201
V6K 2C1

33068
95014
92691
55417
22151
75006
53207
59801
85028
$-721 83
SF-00510
63110
33528
10570
T6G 2C2
87545
4067
19518
94086
HU6 7LJ
64110
93010
19898
19111
80203
93106
12345
95014
07083
M60 1QD
19317
90274
77001
21043
11714
30067
49008
91101
92627
02115
95126
02139
15221
1P5 7RE
60657
60613
D~3000
92646
92121
95051
21204
01752
85260
77024
60514°
D-5000
97330
01701
48103
01886
12401
65201
D-7750
98115
89503
35801
90406
06460
60077
95035
55812
92110
64108
91030
HC3 3J7
80917
94501
10001
48103
94127
02139
46805
49684
M60 1D
43778
55364
SF-02730
95051
11973
15260
10021
77023
18016
11432
77055
94545
19020
8713f

UNITED KINGDOM

CANADA
MEXICO

SWEDEN
FINLAND

CANADA

AUSTRALIA

UNITED KINGDOM

UNITED KINGDOM

UNITED KINGDOM

GERMANY

GERMANY

GERMANY

CANADA

UNITED KINGDOM

FINLAND

1378

JACK LIEBSCHUTZ
THOMAS L. LIGHT
TERRY LITTTSCHWAGER
JOHN E. LIND
GORAN LINDAHL
STEPHEN LOCKE
MYRON C. LONG
JOHN DE LONGERE
KENT LOOBEY
TOM LOVE
R. A. LOVESTEDT
JAMES R. LOW
TIM LOWERY
HOUSTON P. LOWRY
JOHN LOWRY
R. C. LUCKEY
WILLIAM LUITJE
RICHARD C. LUND
RICHARD G. LYMAN
GILL LYTTON
I. R. MAC CALLUM
LYNN MACEY
BRUCE MACKENZIE
PETER H. MACKIE
BARRIE D. MACLEOD
IAN MACMILLAN
JIM MADDEN
DAVID C. MADSEN
MARIO MAGIDIN
JAMES P. MAGNELL
RICHARD L. MAHN
DARYL E. MALENA
RAJ MALHOTRA
KAMRAN MALIK
T. M. MALIN
WESLEY E. MANGUS
J. F. P. MARCHAND
THOMAS A. MARCINIAK
RICK L. MARCUS
CHRIS D. MARLIN
GAYE MARR
BILL MARSHALL
DOUG MARSHALL
HOWARD S. MARSHALL JR.
JON MARSHALL
BERND MARTENS
M. MARVINNEY
GEORGE MASSAR SR
FRED A. MASTERSON
ROBERT J. MATHIAS JR
TOM MATHIEU
S. B. MATTHEWS
WERNER G. MATTSON
J. M. MCCAIG
JOHN W. MCCAIN
JORN C. MCCALLUM
JOHN K. MCCANDLISS
DONALD H. MCCLELLAND
JIM MCCORD
JOEL MCCORMACK
PAUL L. MCCULLOUGH
DAVID P. MCDONNELL
HENRY MCGILTON
JOHN P. MCGINITIE
JAMES A. MCGLINCHEY
MICHAEL R. MCGUIRE
L. MCHARDY
J. W. MCINTOSH
JOHN MCMANUS JR.
KENNETH M. MCMILLIN
P. D. MCMORRAN
DAVID MCQUEEN
RODNEY MEBANE
_WILLIAM MEIER
PAUL MEILAND
BERT MENDELSON
R. L. MERCER
D- K. MESSHAM
WILLIAM R. METZ
BOB METZGER
KURT METZGER
DAVID MEYER
TOSEPH A, MEZZAROBA
COLIN MIEROWSKY
C. A. MILLER
DAVID MILLER
DEAN MILLER
JOHN MILLER
MARTIN MILLER
PAUL MILLER
VICTOR S. MILLER
JUDITH MINAMIJI
JAMES F. MINER
DENNIS MISENER
EDWARD E. L. MITCHELL
KEITH MITCHELL
W. MITCHELL
ROBERT H. MIX JR.
JESSE D. MIXON
D. A. MOIR
ROLF MOLICH
MORRIS MOLIVER
JOHN MONTAGUE
EUGENE P. MONTGOMERY
JOE B. MONTGOMERY
G. D. MONTILLON
A. D. MOORE
JAMES L. MORAN
CHARLES ROBERT MORGAN
CLEMENT MORITZ
R. A. MORRIS
HERBERT E. MORRISON
DAN MORTON
DON MOXON
CHARLES F. MURPHY
JOHN MURRAY
TERRY MYHRER
OLAV NAESS
BOBBY OTIS NASH
RICHARD J. NAST
JOHN NAUMAN
PETER A. NAYLOR
DAVID NEAL
THOMAS M. NEAL
PETER NEEDHAM
R. CARLYLE NEELY JR.
GREGORY L. NELSON
JOHN E. NEWTON
ROBERT C. NICKERSON
RANDY NIELSEN
STUART C. NIMS

PAGE 238

60614
80027
97402
55414
$-902 36 SWEDEN
53511
90732
49503
97401
20850
98055
14627
92627
06032
92110
99352
48103
94114
84116
90066
€04 3SQ UNITED KINGDOM
67460
01754
97005
HIP 1J3 CANADA
H3N 2T6 CANADA
92093
60658
MEXICO
03755
43147
68154
92041
97331
84109
48098
48824
20853
55455
5001 AUSTRALIA
01867
03060
M2J 2W6 CANADA
33065
97077
D-1000 GERMANY
44106
91367
19711
48043
99352
L5N 1W2 CANADA
91020
UNITED KINGDOM
63367
M3J 1P3 CANADA
63184
20802
93017
92008
97077
76107
95051
94304
19044
98178
N6A 5B9 CANADA
55901
90230
49931
KOJ 1PO CANADA
35803
19047
07009
44106
01060
90045
ST7 LTL UNITED KINGDOM
45201
48640
48105
97401
08854
SOUTH AFRICA
V6T IW5 CANADA
94042
94025
99163
H3S 2L7 CANADA
94109
10598
90249
55455
B3IL 4L5 CANADA
01742

98008
K2K 1X4 CANADA
95610
75961
R3H OR9 CANADA
DK-2730 DENMARK
11566
87545
91342
SG1 2DY UNITED KINGDOM
45215

66030
10005
02138
75088
02125
90266
19117
95014
94618
95129
55066
N-5000 NORWAY
63105
32670
55414
19422
07724
92634
V6X 2L4 CANADA
20022
94040
78148
94611
94702
90266

PASCAL N
JOHN NOLAN

TERJE NOODT

KATIE NOONING
BARBARA K. NUxIH
BARTON F. NORTON
FRANK NUSSBAUM
DAVE NUTTING
WILLIAM J. NYBACK
DAVID F. OHL
CHRISTOPHER OHLAND
DAVID E. OLAVSSEN
A. OLDENBURG

ERIC OLSEN

RON OLSEN

ROBERT OSBORN
RONALD OTTO

JORGEN OXENBOLL
GREGORY J. O“BRIEN
JAMES W. 0 CONNOR
MIKE O’DELL

G+ 0°SCHENECTADY
CLINTON PACE

R K. PAETZOLD

F. G. PAGAN

JACK PAGE

J. N. PAINE

W. 0. PAINE

L. PAINTER

RICHARD PALCHIK
JEFF PALMER

PAUL J. PANTANO

T. L.(FRANK) PAPPAS
TED C. PARK
DENNIS PAULL
THOMAS J. PAULSON
FRANK PAVLIK

ERIC PEABODY
DONALD D. PECKHAM
FLEMMING PEDERSEN
M. A. PELL
RUSSELL J. PEPE
HAL PERKINS

JALT PERKO

ROBERT C. PERLE
JODY PAUL PERONI
ANDREW L. PERRIE
DAVID L. PETERSON
W. WESLEY PETERSON
CHRISTOPHER A. PHILLIPS
PAUL PICKELMANN
DAVID PICKENS

WILL PICKLES
STEPHEN PIKE
NORMAN V. PLYTER
FELIX POPPLEIN

ANN PORCH

JORN G. POSA
DAVID R. POSH
WALTER L. PRAGNELL
DARRELL PREBLE
KENNETH A. PRESCOTT JR.
CHARLES R. PRICE
RICHARD E. PRICE
WILLIAM C. PRICE
WILSON T. PRICE
STEPHEN G. S. PROUT
JOHN L. PRUN

EPIC PUGH

CHARLES J. PURCELL
JAMES L. PYLES
STEVE QUALLINE
RAYMOND QUIRING
BILL RAEUBER

M. RAHILLY

STEVEN R. RAKITIN
STEVEN B. RAKOFF
JOHN F. RATTI
LINDA LEA RAY
EDWARD K. REAM
DAN REED

MIKE J. REES
PHYLLIS A. REILLY
STEVEN A. REISMAN
PETER RENNICK

KEN RENWORTH
EDRICE REYNOLDS
ROBERT J. REYNOLDS
D. LLOYD RICE
PETER RICHETTA
DAN RICHMOND
GEORGE H. RICHMOND
LORIN RICKER
CHARLES RIDER
ROBERT W. RIEMANN
CARROLL B. ROBBINS JR.
DAYFDD ROBERTS
JOE C. ROBERTS
TERRY R. ROBERTS
PARLEY P. ROBINSON
PEGGY ROBLYEN

BOB ROGERS

GORDON W, ROMNEY
JOHN ROSCOE

P. DAVID ROSE
SAUL ROSEN

DAVID ROSENBOOM
A. FREDERICK ROSENE
ESTHER ROSENSTOCK
D. S. H. ROSENTHAL
MICHAEL ROSIAK
BERNIE ROSMAN
PHILIP W. ROSS
RICRARD ROTH
JEAN-CLAUDE ROY
RUSSELL RUBY
BEARDSLEY RUML 11
HOWARD RUMSEY JR.
MARTIN RUNYAN
LESTER SACHS
DAVID W. SALLUME
E. J. SAMMONS
MARCELO SANSEAU
LES SATENSTEIN
LYNN SAUNUERS
ABRAHAM SAVITZKY
C. W. SAWYER

JAY SAX

PHILIP H. SAYRE
BOB SCARLETT

S. R. SCHACH

EWS
20755

78664
13760
21045
60626
60005
60606
95014
94105
N-3000
53218
92714
80234
02178
22310
DK-2100
02181
07632
73070
12202
95650
08101
62901

0X1 2pL
91103
84737
95014
64118
19145
19083
92408
94022
92630
10533
75042
92713
DK-2770
M13 9rL
07207
14853
55102
08753
02154
54901
56301
96822
48093
48109
80302
AL3 4RZ
60419
14420
D-8000
94137
10020
48184
02149
30303
92714
80301
60630
97068
94619
NW6 6DL
90630
90024
55113
02181
13210
90019
29210
3072
7462
7405
19128
68131
53705
72554
509 5NH
90277
55455
10023
94086
98407
92138
90406
16057
92103
80027
97225
91326
98112
28704
LL57 1UT
75042
80202
84602
32304
20855
84010

SW7 28Y
47907
M5N 226
02194
11374
EHl 1GZ
19446
01701
18914
06468
95127
97330
02146
91105
60120
21235
95051
75080
RA-8000
H3C 3A9
97077
06856
46201
90278
90045
87545
7700

#13

NORWAY

NORWAY

DENMARK

SINGAPORE
UNITED KINGDOM

DENMARK
UNITED KINGDOM

UNITED KINGDOM

GERMANY

UNITED KINGDOM

AUSTRALIA

SOUTH AFRICA

UNITED KINGDOM

v
UNITED KINGDOM

UNITED KINGDOM
UNITED KINGDOM
CANADA

UNITED KINGDOM

ARGENTINA
CANADA

SOUTH AFRICA

DECEMBER,

ANTHONY J. SCHAEFFER
IRVING S. SCHECHTMAN
R. S. SCHLAIFER
IAN SCHMIDT
WARREN SCHODER
ED SCHOELL
JAMES R. SCHRAGE
JAY SCHUMACHER
ROBERT SCHUTZ
FRANK SCHWARTZ
JOHN SCOBEY
CHARLIE SCOGIN
DAVID L. SEARLE
BRUCE S. SEELY
NORM S EETHOFF
JOHN SEITZ
GERALD P. SHABE
JIM SHALLOW
BILL SHANNON
JACK P. SHAW
GARY B. SHELLY
PATRICIA SHELLY
CHARLES F. SHELON
BOB SHEPARDSON
FREDERICK E. SHIPLEY JR.
KIM L. SHIVELEY
LAWRENCE A. SHIVELY
ALBERT SHPUNTOFF
W. A. SHULL
BOB SIEGEL
STEVEN SIEGFRIED
WEBB SIMMONS
T. R. SIMONSON
MIKES SISIOS
CHARLES SISKA JR.
STEPHEN SKEDZELESKI
DAVID J. SKYRME
ROBERT C. SLATE
P. A. SLATS
G. THOMAS SLUSSER
WARD SLY
SID SMART
JOSEPH W. SMITH
LYLE B. SMITH
RICHARD M. SMITH
REID SMITH-VANIZ
CRAIG A. SNOW
DAVID V. SOMMER
1. D. SOUTHWELL
FRANK S. SPARKMAN
JON L. SPEAR
PETER T. SPECK
glggggn P. SPR

JIM SQUIRES
RICHARD A. STACK
VINCENT STANFORD
MICHAEL STAUFFER
ROD STEEL

LARRY STEIN

MIKE STEIN

PETER STEIN
JAMES STEINBERG
TIM STEVENS

T. Q. STEVENSON

O. ARTHUR STLENNON
Re A. STILLMAN

A. I. STOCKS

J. P. M. STOFBERG
WIBERTA STONE
THOMAS J. STOODLEY IIl
DON STOVER

JOHN M. STRAYHORN
S. STRUDWICK
ALASDAIR D. STUART
JERRY W. SUBLETT
CONRAD SUECHTING
J« MICHAEL SULLIVAN
GENE A. SUMNER
ASHOK SURI

DENNIS SUTHERLAND
MARY SUTTON

ALAN H. SWANN

TOM SWANSON

G. B. SWARTZ
BEVERLY SWISSHELM
MYRON R. SYPHUS
KEITH G. TAFT
RYUJI TAKANUKI
JAMES E. TARVID
PAUL TEICHOLZ

C. J. THODAY

RON THOMAS

JAMES B. THOMPSON JR.
R. C. THORNTON
PETER W. THROSBY
T. R. THURMAN
MIKE TILLER

RON TIPTON
CATHERINE C. TOBEY
ROBERT H. TODD JR
ANTHONY TOOGOOD
WILLIAM D. TORCASO
P. TORGRIMSON
CARL J. TOSETTO
GREGG TOWNSEND
ARON SHTULL TRAURING
MIKE TRAVIS

JOHN TROTTER

TOM A. TROTTIER
JEAN TROUDT

JIM TSEVDOS

JYRKI TUOMI
ROBERT TUPPER
ROBERT L. TURPIN
FREDERICK JOHN TYDEMAR
FRANK W. TYRON JR.
JOHN URBANSKI
JAMES P. URONE
JOHN E. VAN DEUSEN IIT
ROBERT R. VAN TUYL
T+ J. VAN WEERT
DAVID VANCE

M. W. VANNIER
ANDREW VARANELLI
V. VINGE

LES VOGEL

HANS JONGE VOS
EMANUEL WACHSLER
ROBERTA WACHRTER

49085
08540
91030
46526
07960
95051
088354
80302
11756
02173
55419
75229
55441
91343
98043
JoB 2C0
22309
19004
44107
53012
92631
20852
76133
95014
15230
75231
45414
51106
45424
11215
55113
92111
94105
95053
90405
91103
M32 9BH
98115
2501 BD
53217
55443
61701
92127
60115
03102
06430
92138
21401
94402
30305
55414
D-6900

92714
10024
92660
60604
20037
22801
97077
07067
56320
01890
02142
60106
20250

53715
94043
95051
19422
93003
01824
52302
02139

STL6 247

2191
94086
74145
61101
85008
94040
52302

H4T INI
95955
99507
07764
40583
84014
94087
244
53927
94708
cv2l 2QE
55435
07054
90631
SW7 282
52302
55116
64134
91335
19020
10021
01002
94087
75205
85721
15217
95051
90240
M4R 1V2
80231
15213
SF-13540
11968
76101
78758
06457
92704
92630
83702
95132
9321 GN
11790
63132
10038
92182
95014
97223
01730
15238

1973

CANADA

UNITED KINGDOM

THE NETHERLANDS

GERMANY

UNITED KINGDOM
SOUTH AFRICA

CANADA

JAPAN

UNITED KINGDOM

UNITED KINGDOM

CANADA

FINLAND

THE NETHERLANDS

EIIT1 WADA
KENNETH R. WADLAND
CLARK F. WAITE

A. R. M. WAJIH
SCOTT WAKEFIELD
RICHARD WALCH
GEOFFREY F. WALKER
R. L. WALLACE
JAMES H. WALTERS

PAGE 29

113 JaPAN
01420
92138
HA9 OEE UNITED KINGDOM
94305
68106
08822

P. R WALWYN KT22 9NF UNITED KINGDOM

JOHN B. WARDLAW
LES WARNER
DORALD WARREN
LOU WARSHAWSKY
PHILIP A- WASSON
JOE WATKINS
ANNA WATSON

CAM WATSON

DAN C. WATSON
JOHN J. WEDEL

77024
48103
02174
60053
90045
80302
32407
91364
45409
91011

PER-AKE WEDIN §-901 87 SWEDEN

GARY L. WEIGEL
DAVID F. WEIL
STEPHEN J. WEINBERGER
DONALD G. WEISS
LARRY WEISS

JOHN H. WENSLEY
JOHN WEST

TERRY E. WEYMOUTH
WENDEL WREELER
RICHARD WHIFFEN
MICHAEL A. WHITE III
WALTER A. WHITE
BILL WILDER
LILLIAN WILHELMSON
BRIAN WILLIAMS

E. HAROLD WILLIAMS
JAMES I. WILLIAMS
KENNETH L. WILLIAMS
KIM WILLIAMS

M. HOWARD WILLIAMS
ARTHUR C. WILLIS
DAVID J. WILSON
DAVID T. WILSON
IAN ROBERT WILSON
GARY W. WINIGER
NIELS K. WINSOR
GREG WINTERHALTER
HANS-WILM WIPPERMANN
IAN H. WITTEN

A. L. WOLBERT
WILLIAM WOLFSON
CHARLES WONG

JOHN WONG

HENRY WOOD

STEPHEN C. WOOD
WILLIAM T. WOOD
JAMES A. WOODS

JAY WOODS

RICHARD M. WOODWARD
JOKN D. WOOLLEY
ARDEN WOOTTON

19380
98124
98006
78721
75043
94022
30327
01003
75221
19446
63132
22205
BOP 1XO CANADA
05402
BN3 1RA UNITED KINGDOM
95050
19342
01581
V3N 4N8 CANADA
6140 SOUTH AFRICA
94086
48106
30305
M13 9PL UNITED KINGDOM
94088
20375
48130
D-6750 GERMANY
€04 35Q UNITED KINGDOM
60544
01778
55411
97201
08540
87108
55343
94703
98907
95051
98006
85352

ROGER P. WRIGHT RG6 2LH UNITED KINGDOM

NICHOLAS WYBOLT
M. J. L.

NAKHSHON YESHURUN
DAVID YOST
RAYMOND YOUNG
RONALD L. YOUNG
PETER YOUTZ

C. A. ZANONI
ALAN ZARING
HOWARD M. ZEIDLER
H. J. ZELL

MARK ZIMMER
ANDREW HARRIS ZIMMERMAN
DAVID J. 200K
DAN ZURAS

01581

YATES GL52 5AJ UNITED KINGDOM

ISRAEL
90046
55165
89119
95051
06455
78712
94025

95132
60626
94061

Applications

Please send all contributions for this section to Rich at the address below.

SOFTWARE TOOLS
sszzERTsZEEEEN

by
Richerd J, Cichelld
981 Whittier Dpr,
Allentown, Pe, 18103
(215) 797#3153

ANPA/RY and
Lehigh University

THE "LONG AGO"™ PAST

P PP TP T T L

In PN#6 of November 1976, I introduced the {des of unfversge)

cal Softwere Tools set, Because the Sgftware Tools section Is now o
of PN, and PUG membership has {n¢preesed by & faetor of ¢tive since
vember 1976, it s relevant to rewstate the {dess developed then,

SOFTWARE TOOLS FOR PASCAL

(*Fpom "Pascal Potpouri® Pascal Newsletter #6 Novembar 1974w)

Pascal {mplementations for new environments are occurring
with ever fncreasing freaquengy, As Paseal is used for more and
mone production programming, it {s important thet & universal
set of ancillary software tocls be agreed upon, Sema of these
tools can be defined {n an environmentsindependent way so thet
when written in standerd Pascal, they ean become part of & un=
{versal Pascal software development facility, I here propose
on {nitial list, W{th PUG membereship help, the 1{sy will dee
velop {nto @ working specificetion and a powerfu)l set of Ppro=
gramming tools,

PASCAL COMPILERS

eesrecneenensowy

Pese
part
Now

Currently there exist Pascal gompilers whigh produce absaw

lute code, relocatsble code, macro code (Pascalrl) and {nter=
preted code (PasceisP), Porteble versions exfst (PascaieP and
Pascal=J), Compiler trunks ex{st, A stendard Pasca) subset
(Pascal=3) exists,

For compiler writers there shoyld be o standard Pascal
Janguage test set, This un{versa) set of Pascal pragrams would
exenrci{se new Pascel compilers and help {mplementors gain confie
dence in the correctness of their compilenrs,

An interactive interpreter should be developed, This syse
tem would provide interactive symbolic run time debugging faw
eititiess breskpoints, interactive dumps, ete, It should be
easy to do better than PL/Ifs Chegkout compiler,

The Legarme and Bochmann compiter writing systems sre alse
i{mportant tools for any shop engaged in lenguage development,

SOURCE PROGRAM TOOLS

Wirth has written a crese reference progrem, Perheps, (¢
the variable names were iImproved, a standard version of this
pregram could be among the softwpre tools, A formatter or
"pretty printer® {s essentia) for producing documentation qual=
{ty 1istings, Mike Caondjct’s might be a geod start{ng place,

A code instrumenter is s very {mportant dedugeing and ree
fining tool, Instrumenters insert statement counters or timere
80 thet repgrts of relative usage of gode can be made, An ine
strumenter s invalueble {n optimizing progranms,

A high level macro preprocessor would alse be a valyable
faci{lity,

SOURCE | IBRARIES

The CDC soyrce library utiliyy program UPDATE {s eyrrently
used for distribution of the SCOPE vers{ons ef Pasesl, It
seems to me that a minieversfon of UPDATE (with enly sequentiel
program librar{es) could be {mplemented (A Pesgel, This would
help standapdize the distribution of Pascsl Tools,
CIncidentally, COC’s UPDATE {s the best source li{brary system I
have ever seen, I think fits quality should be emylated,)

For teuly large systems (56,000+ iines) a source code data
base {s desirable, Such & system keeps track of which programs
access what deta and provides for standard ¢{le and record desw
eriptions emong Programs, etc, I uynderstand such a system fer
Pascel! exists but is s deep, dark m{l{tary secret,

DOCUMENTATION PREPARATION

W, Burger implemented part of Wajtefs PLAP {n Pascel, We
need a universal PLAP=1{ke too) to maintsin manvals and other
dooumentation in machine readable form, Justitication and
hyphenation and facflities for produging high quality printing
{n ypper and lower cese should aexist, Pascal documentation
should be distributed in machine readable form for ease of pubw
1{cation and distribution,

OBJECT PROGRAM FACILITIES

L T T L T T L Y Y T

Work {8 now in progress on progrems which Yoead Pasce) ab~
solyte binarfes, Fagilities for overlay processing should be
provided, Automated aids which help create effegtive overtey
structures should be provided, A binary decoder {s also & usen
ful toot,

TY¥Y23svd

ST# SMIN

R EREN

8L€CT

e 39V d

OTHMER PROGRANMS

LI IIIT Y LY PR YT

An efficient table processor with faciiities Jike COBOL’s
Report Writer would be desfrable, Current work on Pascal date
base management systems, mathemstical function librerfes, and
computer alded (nstryction systems augur the day of {ncreased
use of Pasgal {n business,; endineering, and education, Imn the
area of function Yibrer{es (for mathemstics or businees), few
eflitios should be provided fer net only 1inking in binary mew
dules but also for {ncluding sayree moduleg,n

CONCLUSIONS

mresssuveen

Qbviously, where environmental conditions permit we should
have & yniverssl Pascs) progrem (mplementing ceoh software aid,
Where the environmente) feactors prevent this, we should seek to
provide a stendard vaer {nterface to the desi{red functiens,

*In my opinfan, meroing sregrams at the source level is to be
preferred to binary tevel 1inking, Pascal compilers are typle
cally taster than linkingeloaders,

SOFTWARE TOOLS CONT*D

1 bel{eve that earty article presented » viable perspective for fus
ture Pascal Software Tools (PST) werk, but {t 1eft unanswered many {mpore
tant policy queations, The mest criticel of these wes how to get PST to
PUG members, One obvious answer was that {mplementors could disthibute
the tools with the{pr distribytion package, Of course, when the number of
active {implementors reached nearly 108, Andy and I wepe ageain unsure of
what to do, Abowt this time CACM stepped {ts Algorithms section, [ai=
most cencelled my membership because of my feelings that the most {mpore
tant work of computer scientists {s their pProgranms, Without published
programs, CACM {s hollow for me,

I very much wanted to see quality ppograms in print, Andy was cone
vinced that {t was proper for PN to publish programs by the following are
oument e}

§) Publishing qualfty Paesce) programe would help edycate new PUB
members, I belfeve reading good programs {s the easiest way to
tesrn programming techniques and style,

2) Publishing programs would give proper recognition to progrem eue
thors,

3) Review and {mprovement of PST?e by PUC membenrs would be fecilitated,

4) Published PST’s would encourage {mplementors to adhere to the Pascal
Stendard,

5) Commerciea) ysers could require compiler vendors to use the PST’s to
test the confarmity and performance of their {mplementations,

Andy wes convinced and I even {mpressed myself with these arguments,
The obvious resylt (s the Software Tools section started In PN¥i2,

The above discusaion shoyld help PUGC members understand and shepe PN

Software Tools policy and phijosophy, Applications

JHE WIMMEDIATE® PASY

0f course, publishing programs has its own prebiems, The prelimines
ry statement of what we are trying te do was {n PN#L2:

We decided to creste a new section for printing Pasgal
source progreams for varjous applications {ncluding Software
Tools and Algorithms, Additionally, hers, we will print news
ot sjgnificent applicatfions pragrams weiten in Pescal, Jim
M{ner syggested we index eagh pregrem so that they may be easiw
'y referenced for corrections and griticisms,

Arthupr 38le {s very enthusfastic about the Algorithms sece
tion, He syggested that we allow for:

t) The provision for certification of the program by unrew
lated persons, with elear {dentiflication of the system
usedy and

2) Critiques of the program for)y

a) standards conformanee,

b) style,

¢) algorithm,

d) output conveniemee and genersl] design,

Wef)) number progrems starting with P=i, Software Tools
starting with S={, and Algor{thms starting with A=i,

Alpeady our nymbering scheme s giving us problems, As Se2 (Aygment
and Analyze) made clear, Software Tools may net be Just single programs
but entire systems of programs, So that we cen refer to text l{nes Withe
in progrems uniquely, we will use the notation}

ReferenceNumber = Classificstion "e? Systenm.

Classjfication = "8" | #7" | wA® | wy8,

System = Unsignedlnteger | Unsfgnedinteger "»" Program Designator.
ProgramDesignator = UnsignedInteger | VelfdationSuiteDenignator,

Thus, Augment and Anglyze are sti]] Se2 but Augment, {tseld, beacomes
S=2=] and Analyze 8=2-2,

The val{dat{en suite designators ({,e, *"V* programs) sre being ase
signed by Bpri{en Wichmann, So fap there have been many favarable comments
about PN#12%s progrems, Unfortunately, no certifications of the progranms
have been received to date, It is {mportant that those members who bring
UP the programs comment on eny problems they might have had, We really
need to kmow the performance and ease of installation of yhe programs on
varigus systems,

Im syre the membership would be vepry {nterested {n how well Jim
Miner*s Compare Ppogram (S=}) performs egainst a Pescal {mplementatation
ofPaul Heckel’s file Comparisen Algorithm, (CACM, Apr{} 1978, Vel, 2%,
Nym, 4, "A Techn{aue for Ysolating Differences Between Files"), Sounds
tike & good term project to me,

THE PRESENY

pensannenny

This issue’s pretty printers shoyld help future PST submitters to
produce cameramready copy, We are experimenti{ng with severs) publicatien
styles, We want to be able te publish readable copy of large progranms,

¢T# SKIN 1¥ISVd

R ERTENER

§L61

T¢ 39Vd

We may experiment with putting myult{ple simple statements per Yine and o
vertical tworcolumn format, It seems desirable to be able to Ppublish
systems of am meny as 10,800 |ines of code In & eingle issye, Thus, #ul)
compiiers and large epplfaations 1{brarfes could be accommodated, Anyone
seeking to have o large program sublished should work clesely with me and
Andy, Incidentally, programs which are orimerily tutor{el {mn nature
(fe0y not of gensral ytility) ehould be tngorporsted {n articles for
publication in the Articles section ot PN,

THE IMMEDIAYE FUTURE

I'n sure §t is of no surprise te any roader that slmoat all ef the
software tools deseribed {n PN#6 are now In existence, Unfortunately,
many of these utilfties need carefyl polishing before they are suitable
for publication, Wa are work{ng on getting those to which we have access
into shape, Another problem (s obtaining Publicetion permission from sue
thors and organizatiens, Werk (8 going on In al! these press,

We bel{eve the Software Tool set will grow i{n two wayss nmew utfilie
ties wi)| be added and existing wtilities will be modified or replaced by
improved vepsions, We encourage the membership to help us carefuliy evas
juate publiished pregrams, We hopre 81) those who have developed Pascal
Software Tools wil) try to submit them for publfeetion,

WHAT?S NEW?

Condigt’s pretty printer sllows us to Publteh progrem texy in a gonw
sistent style, Equally {mpertant for prooram sharing are a sevrce ¢ode
tibrapy faaflity and a text formetter for docymentation, After these
high priority {tems have been published, PN wil) dazzle the PUG membere
ship with extraord{napry software,

In addition to the sortware mentigned in the PNK6 aprt{cle, we hope
to publish an APL {nterpreter written entirely {n Pasca) at Villanova, A
program from the Untversity of Montreal drevws NgssieShne{dermen dfiagrems
for Pascal programs (see SIGPLAN notfae, August 1973), We alee have a
program from Norgth Amerfgen Phill{ps Corporation whigh resds Pas ‘Prow
orams and mapks them for standerd conformance, Iho program handles most,
but not 11, stendard Pasgal programe, Anyone nterested in poliehing
ch!: program into resognizing the full standsrd should centeat me {omedis
ately,

WHAT ARE WE LOOKING PFOR?

-

An interactive editor In Pascal weuld be most welecome, A typesets
ting peckage weuld help newstetter production {mmensely, We’ve written o
Moterela 6800 Assembier §n Ppsce) et ANPA/RI, It end ones for the 8084,
260, eta, would make good Software voels entries,

1°9 1{ke %o see & bootatraspable version of PascaleS pyblished {n PN,
Most progremmers weuld be osurpri{ged at just how sady {4y {8 te compiie
Paseal, Reading a nice Pasca) compiler written {n Pasee) would meke

every progremmer reticent te muck with the stgnderd, JIngidentally, the

Pasca)~8 system {8 on {dee! tool! for compiler wiit{ing eourses,

Lars Mossberg of Volva Fiyguotor {n Swegen pointed out the (mpore
tance of aeonverting existing scftware systens te Ragssl, We need FORe
TRAN, ALGOL, COBOL, end PL/§ to Pescal translatoras, Someone nmight «lise
knock off a BASIC system (n Pesen),

SOME FINAL WQRDS

Sescevnccssensupe

Those {mplementers and organizations, whieh {insist on preducing
their own diatects of Pascal and folisting them on an unsuspectimg publfe
s being Pascal, are enemies of us all,

ALGORITHMS
A - 1 Random Number Generator (continued discussion)

University of Lancaster

Department of Computer Studies
Bailrigg, Lancaster
Fﬂ?ihnongf Lancaster 65201 (STD 0524)

Head of Department: J. A. Llewellyn B.Sc., M.Phil., F.B.C.S., FLM.A. 7th September 1978.

Dear Rich,

Jim Miner made a few comments on my random number generator algorithm
(PN #12, algorithm A - 1) which I feel compelled to enlarge upon:

(a) I don't know what Jim meant by the results "seeming” better with circ-
ular left shift. The original algorithm has only one absorbing state
(i.e. a state which you cant get out of once you are in it), which is
the zero state, and this is isolated (i.e. the only way you can get
into it is to start in it). It is relatively simple to show that Jim's
algorithm has two absorbing states, one at least of which is non-
isclated. In practical terms this means that unless you are very care-
ful about choosing your initial seed, you wind up repeating the same
number.

(b) As long as overflow checking is suppressed, multiply overflow can be
ignored. For, if the initial seed is positive, then a,b,acomp and
bcomp are also positive; hence a' (after the first shift) is positive;
thus acomp' is positive, and the result of

(a' and bcomp') or (b' and acomp')
must always be positive, independent of the sign of b.

(c) I take the point about set operations expressing exclusive-or's more
naturally, though this is exploiting a feature available in that
particular implementation - in our implementation, integers occupy one
word, and sets four. In any case, we are both taking liberties with
the system.

(d) I pointed out in my note iv), that the initial seed must be positive and
NoN=2zerO.

I hope the above comments are sufficient to prevent anyone using the
modified algorithm before its properties have been more fully investigated.

e

Brian A.E.Meekings.

ST# ShIN TVISVd

- ERYEREN

.61

¢¢ 319V d

A - 3 Determine Real Number Environment

DOCUMENTATION : ENQUIRY

Language : Pascal

: A.H.J. Sale

Written
Monday, 1978 March 20

Use

To allow programs to enquire into their environment (compiler + computer)
and tailor their behaviour to the properties of the real arithmetic system.
The procedure may be of use in programs that must be portable across many
different PASCAL systems, and which are numerically oriented.

User documentation

Calling the enquiry procedure with the proper actual parameters determines
the base and number of digits of the mantissa of the representation, and an
indication of whether the arithmetic is truncated or not. Though . the pro-
cedure works on a large range of computers, its correct operation depends
on a number of assumptions about the representation of real numbers, and
the operation of floating-point arithmetic. Programmers incorporating the
procedure into programs are advised to cause the deductions to be printed
so that end-users can check the accuracy of the deductions for their partic-
ular systems.

Installation

The enquiry procedure is standard PASCAL, in reference language form, and
should compile on all systems. If assumption (b)(iv) is violated (as for
example on the IBM 1130 which has more mantissa digits in its software
accumulator than in the memory representation), rewriting the parenthesized
expressions (and therefore the control structures) so that each parenthe-
sized sub-expression is assigned to a memory cell will probably give the
correct deductions for the memory representation. The same trick may be
employed in defense against over-clever optimizing compilers that utilize
properties of (mathematician's) real arithmetic, and re-organize expres-
sions.

The displayed driver program illustrates how the best- and worst-case
precision may be computed from the deductions about the arithmetic.

System documentation

The algorithm is an adaptation of one originally due to M.A, Malcolm
(Comm ACM, Vof. 15 No. 11 pp 949-951, November, 1972).

Assumptions

It is assumed that:

(a) Real numbers are represented by floating-point representations which
comply with the following conditions:

(i) There is a mantissa of a fixed number of digits to a fixed base.

(ii) There is an exponent which expresses a multiplying factor to be
applied to the mantissa to obtain the exact representation
value. The exponent only takes on integral values, and the

multiplying factor is the base to the power given by the exponent.

(iii) The representation preserves maximum precision (no digits are
lost unless the representation cannot accommodate them). In
particular integral values with possible exact representations
are exactly represented.

(b) Real arithmetic complies with the following rules:

(i) If operands and results are exactly represented integral values,

no inaccuracy is introduced by the arithmetic.

(ii) The arithmetic is organized along the usual align, operate and

normalize steps, where these are necessary.

(iii) It is presumed that when digits are lost due to the represent-

ation, they are either truncated (ignored), or true rounding

, takes place. (No other possibilities are taken into consider-

ation.}

(iv) The intermediate results of arithmetic operations are held in a
cell which has the same representational properties as the

operands.

FRIDAY, 1078 MARCH 17

86700 PASCAL COMPILER VERSION

2.8.002

$SET $ LIST LINEINFO STANDARD
program(invon!igl!oropr.nonlt!ion:

var
base,
numberofdigits,
i intager;
rounding : boolean;
epsilon :oreal;
procedure enquiry(var radix,digits : integer; var rounds : boolean);
{RNNANNN]
var
number,
increment :oreatl;
begin
{ find large integral value just beyond integer limits)}
number:32;

whils ({(npumber+1)-number) = 1) do number:=numberx2;

{ manufacture the next largest real value }

increment:=2;

while ((number+increment) = number) do increment:=2%increment;
{ subtract these to give radix of representation }
radix:=trunc((number+increment)-number)

{ see¢ if it rounds or truncates by adding (radix-1) }
rounds:=((number+(radix-1)) <> number)

{ work out how many digits in mantissa }

digits:=0;

number:=1;

while (llnumbor01l -number) = 1) do begin
digits:=digitsel;

numb.r::numbornrndix
end
end; { of enquiry procedurs }

begin { of main program body }

{ tind out basic properties }

enquiry(base, numborofd|g|ls rounding);

wrltoln(ou!pul BASE= ba:o $);

writein(output,’ NUMBER OF Di@|TS=z >, numberofdigite:5);

if rounding lho
writelaloutput,' ROUNDED')

olse
writeln(output,’ TRUNCATED'):

{ compute the precision bounds }

epsilon:21;

!or ir=t to numberofdigits do epsilon:=epsilon/base:

if rounding then epsilon: -epsulon/l

{ print the best and worst prec

writeln(output,' BEST AND WORST PRECISIONS ARE
epsilon,(epsilonkbase) |

end.
Certification for Burroughs B6700

00001000
00002000
00002500
00008000
00004000
00005000
00008000
00007000
00008000
00009000
00010000
00011600
00012000
00013000

00014000 -

00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
006030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000

The following output is produced when running the test program on a Burroughs

B6748 processor with the University of Tasmania compiler and is correct:

BASE= 8

NUMBER OF DIGITS: 13

ROUNDED

BEST AND WORST PRECISIONS ARE 0.2094947E-12 0.7275958E-11

CROCNONNOW AN AL lanwameArdORN AN A LA LALL LA LLL LG

$T# Shak TVISV

ERYERNERT

§/6T1

£¢¢ 35Vd

SOFTHWARE TOOLS

One important aspect about Pascal coding style is consistency, although styles certainly
differ from one programmer to the next. The two software tools in this issue are both
Pascal Prettyprinters, which aid Pascal programmers in their coding activities. They
represent 2 vastly contrasting philosophies, and so I think it is appropriate that we
print both, and are assured that we have two of the best in existence. S-3 Prettyprint
adheres to the philosophy that there are serious issues in prettyprinting, and that

it is only necessary to impose a minimum set of restrictions in prettyprinting--not be
heavyhanded, not do full syntax analysis, and not provide a voluminous set of options.
Prettyprint does prettyprinting on a local basis and thus can handle Pascal program
fragments, and even incorrect programs. The important principle is that all blank
lines and blanks supplied in the original source are preserved.

S-4,. Format' indeed does. provide a large set of options because no prettvprinting
style can please everyone, and by allowing complete control over the process, one can
achieve pleasing results. Indeed at our site where both of these prettyprinters are
available, Format is the choice over Prettyprint by 3 to 1. I use both myself.

Prettyprint was first announced in Pascal Newsletter #6 page 70, in November, 1976.
Henry Ledgard reports that they lost a Jot of money distributing it. Charles Fischer
was kind enough to provide some small corrections (indicated in thz program) before
we published it.

Format has been around for the last 3 years, and remains in my opinion, one of the all-
time, best-looking Pascal programs in existence because of its use of long and meaningful
identifiers. It looks all the sharper in upper-and-lower casel

There has been quite a bit of noise in the Titerature about Pascal prettyprinting.

We cited Singer, et al's article “A Basis for Executing Pascal Programmers"” in PUGN 9/10
page 9; Peterson's article"On the Formatting of Pascal Programs" in PUGN 11 page 10;
Sale's article "Stylistics in Languages with Compound Statements" in PUGN 12 page 10,
and in this issue; Mohilner's article "Prettyprinting Pascal Programs™ in this issue;
and I now find Crider's article "Structured Formatting of Pascal Programs" in the
November, 1978 SIGPLAN Notices.

Unfortunately, both prettyprinters could do better in their treatment of comments.

They are living examples of their results, because they have been run through themselves!
And as such I am very pleased that we can present them here together with their superb
documentation. (*Please excuse my role therein.*) If you want to use these pretty-
printers, key them in, or request that your Pascal compiler distributor include them

on the distribution tape for your favorite Pascal system. CDC-6000 Pascal Release 3 will
include both Prettyprint and Format. Happy prettyprinting '79! -

- Andy Mickel
S - 3 Prettyprint

1 < }
2 { b
2 E Program Title: Pascal Prettyprinting Program 3}
}

5 { Authors: Jon F. Hueras and Henry F. Ledgard 3}
6 { Computer and Information Science Department }
7 { University of Massachusetts, Amherst - August, 1976 Y
8 { (Earlier versions and contributions by }
13 g Randy Chow and John Gorman). }
11 { Bugs corrected by Charles Fischer, Department of ;
12 ¢ Computer Science, University of Wisconsin, Madison. }
13 1977. Indicated by (E=3) Y
14 }
15 { Modified for CDC-6000 Pascal Release 3 by Rick L. Marcus }
16 { University Computer Center, University of Minnesota. }
17 « 30 September 1978. 3}
18 { }

D e e N L e R L T T T e e L S NP

B N e T e T e T e T T e N T T e R T W W P NI

Program Summary:

This program takes as input a Pascal program and
reformats the program according to a standard set of
prettyprinting rules. The prettyprinted program is given
as output. The prettyprinting rules are given below.

An important feature is the provision for the use of extra
spaces and extra blank lines. They may be freely inserted by
the user in addition to the spaces and blank lines inserted
by the prettyprinter.

No attempt is made to detect or correct syntactic errors in

the user’s program. However, syntactic errors may result in
erroneous prettyprinting.

Input File: input - a file of characters, presumably a
Pascal program or program fragment.

Output File: output - the prettyprinted program.

Pascal Prettyprinting Rules

[General Prettyprinting Rules]

1. Any spaces or blank lines beyond those generated by the
prettyprinter are left alone. The user is encouraged, for the
sake of readability, to make use of this facility.

In addition, comments are left where they are found, unless
they are shifted right by preceeding text on a line.

2. All statements and declarations begin on separate lines.

3. No line may be greater than 72 characters long. Any line
longer than this is continued on a separate line.

4. The keywords "BEGIN", "END", "REPEAT", and "RECORD" are
forced to stand on lines by themselves (or possibly follwed by
supporting comments).

In addition, the "UNTIL" clause of a "REPEAT-UNTIL" state-
ment is forced to start on a new line.

5. A blank line is forced before the keywords "PROGRAM",
"PROCEDURE", "FUNCTION", "LABEL", "CONST", "TYPE", and "VAR".

6. A space is forced before and after the symbols ":=" and
"=". Additionally, a space is forced after the symbol ":".
Note that only "="s in declarations are formatted. "="s in
expressions are ignored. [£25.)

[Indentation Rules]
1. The bodies of "LABEL", "CONST", "TYPE", and "VAR" declara-

tions are indented from their corresponding declaration header
keywords.

N N S e A e e S e e N e S e N N S N S S e S S

NN S N NN N N S N S e e S N S Y e S e e M S e e St S e A s S S e N

¢T# SKAN TVISVd

ER T ERNEN

8461

he 39Vd

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

A AN A A A Ay

A N AN AN N P A N e A o e A e e e i o P e P P i i A P e A i e o P e i e e e A ey e

2. The bodies of "BEGIN-END", "REPEAT-UNTIL", "FOR", "WHILE",
"WITH', and "CASE" statements, as well as "RECORD-END" struc-
tures and "CASE" variants (to one level) are indented from
their header keywords.

3. An "IF-THEN-ELSE" statement is indented as follows:

IF <expression>
THEN
<statement>
ELSE
<statement>

General Algorithm

The strategy of the prettyprinter is to scan symbols from
the input program and map each symbol into a prettyprinting
action, independently of the context in which the symbol
appears. This is accomplished by a table of prettyprinting
options.

For each distinguished symbol in the table, there is an
associated set of options. If the option has been selected for
the symbol being scanned, then the action corresponding with
each option is performed.

The basic actions involved in prettyprinting are the indent-
ation and de-indentation of the margin. Each time the margin is
indented, the previous value of the margin is pushed onto a
stack, along with the name of the symbol that caused it to be
indented. Each time the margin is de-indented, the stack is
popped off to obtain the previous value of the margin.

The prettyprinting options are processed in the following
order, and invoke the following actions:

crsuppress - If a carriage return has been inserted
following the previous symbol, then it is
inhibited until the next symbol is printed.

crbefore - A carriage return is inserted before the
current symbol (unless one is already there)

blanklinebefore = A blank line is inserted before the current
symbol (unless already there).

dindentonkeys - If any of the specIfied keys are on top of
of the stack, the stack is popped, de~-inden-
ting the margin. The process is repeated
until the top of the stack is not one of the
specified keys.

dindent - The stack is unconditionally popped and the
margin is de-indented.
spacebefore - A space is inserted before the symbol being

scanned (unless already there).

ot Nt N Mt At S Nt S A

N M N N Mt et S M St e e S S it s e S N e A S S S e i M e et S G e e S e S M S N N e e N

151

152

153

154
155
156
157

158
159
160
161

162

163

164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

[the symbol is

spaceafter

gobbleSymbols

indentbytab

indenttoclp

crafter

printed at this point]

- A space is inserted after the symbol being
scanned (unless already there).

- Symbols are continuously scanned and printed
without any processing until one of the
specified symbols is seen (but not gobbled).

- The margin is indented by a standard amount

from

the previous margin.

The margin is indented to the current line

position.

- A carriage return is inserted following the
symbol scanned.

P A P A s P s P A A e e i o e

program prettyprint({ from }

const

type

maxsymbolsize

maxstacksize

maxkeylength

maxlinesize

slofaill

slofail2

indentl

indent2

, .

space = s

keysymbol = (

{ to}

= 200; {

input,
output)3

the maximum size (in characters) of a

{ symbol scanned by the lexical scanner.

= 100; {

the maximum number of symbols causing

{ indentation that may be stacked.

= 10;

= 72

P e

30;

-

48;

N N

i
—

progsym,
labelsym,
beginsym,
casesym,
forsym,
ifsym,
endsym,

the maximum length {in characters) of a
pascal reserved keyword.

the maximum size (in characters) of a
line output by the prettyprinter.

up to this column position, each time
"indentbytab" is invoked, the margin
will be indented by “indentl".

up to this column position, each time
"indentbytab" is invoked, the margin
will be indented by "indent2". beyond
this, no indentation occurs.

funcsym, procsym,

constsym, typesym, varsym,
repeatsym, recordsym,
casevarsym, ofsym,

whilesym, withsym, dosym,
thensym, elsesym,

untilsym,

o o S S e A M N et N A b e e N

L R o

N N A

¢T# Shak T¥ISVd

RERTENER

861

9¢ 39Vd

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

becomes, opencomment, closecomment,
semicolon, colon, equals,
openparen, closeparen, period,
endoffile,

othersym);

option = (crsuppress,
crbefore,
blanklinebefore,
dindentonkeys,
dindent,
spacebefore,
spaceafter,
gobblesymbols,
indentbytab,
indenttoclp,
crafter);

optionset = set of option;

keysymset = set of keysymbol;

tableentry = record
optionsselected : optionset;
dindentsymbols : keysymset;
gobbleterminators: keysymset

end;

optiontable = array [keysymbol] of tableentry;

key = packed array [l..maxkeylength] of char;

keywordtable = array [progsym..untilsym)} of key;

specialchar = packed array [1..2] of char;

dblchrset = get of becomes..opencomment;

dblchartable = array [becomes..opencomment] of specialchar;

sglchartable = array [semicolon..period] of char;

string = array [l..maxsymbolsize) of char;

symbol = record

name : keysymbol;
valu : string;
length : integer;

spacesbefore: integer;
crsbefore : integer
end;

symbolinfo = “symbol;

charname = (letter, digit, blank, quote,
endofline, filemark, otherchar);

charinfo = record
name : charname;
valu : char
end;

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

338
339

340
341

342

343
344
345
346
347

348

stackentry = record

indentsymbol: keysymbol;

prevmargin
end;

integer

symbolstack = array [l..maxstacksize] of stackentry;

var
recordseen: boolean;

currchar,
nextchar: charinfo;

currsym,
nextsym: symbolinfoj

crpending: boolean;
pproption: optiontable;
keyword: keywordtable;
dblchars: dblchrset;

dblchar: dblchartable;
sglchar: sglchartable;

stack: symbolstack;
top : integer;

startpos, { starting position of last symbol written)

currlinepos,
currmargin : integer;

procedure getchar({ from input }

{ updating }
{ returning)}

begin { getchar }
currchar := nextchar;

with nextchar do
begin

1if eof(input)
then
name := filemark

else if eoln(input)
then
name := endofline

else if input™ in [‘a’..’2”]
then
name := letter

else if imput”™ in [“07..°9°]
then
name := digit

else if input™ = “7°°

var nextchar : charinfo;
var currchar : charinfo);

¢T# SKHIAN 1¥YISVd

§L6T “§38W3234G

9¢ 39vd

349 then 415 { returning } currchar);

350 name := quote 416

351 417 case currchar.name of

352 elge if input™ = space 418

353 then 419 blank : spacesbefore := spacesbefore + 13
354 name := blank 420

355 421 endofline : begin

356 else name := otherchar; 422 crsbefore := crsbefore + 1;
357 423 spacesbefore := 0

358 424 end

359 1if name in [filemark, endofline) 425

360 then 426 end { case }

361 valu := space 427

362 else 428 end { while }

363 valu := input™; 429

364 430 end; { skipspaces }

365 if name <> filemark 431

366 then 432

367 get(input) 433 procedure getcomment({ from input }

368 434 { updating } var currchar,

369 end { with } 435 nextchar ¢ charinfo;
370 436 var name t keysymbol;
371 end; { getchar } 437 var valu : string;
372 438 var length : integer)3
373 439

374 procedure storenextchar({ from input } 440 begin { getcomment }

375 { updating } var length : integer; 441

376 var currchar, 442 name := opencomment;

377 nextchar : charinfo; 443

378 { placing in } var valu : string); 444 while not(((currchar.valu = “*°) and (nextchar.valu = 7)%))
379 - 445 or (nextchar.name = endofline)

380 begin { storenextchar } 446 or (nextchar.name = filemark)) do

381 447

382 getchar({ from input } 448 storenextchar({ from input }

383 { updating } nextchar, 449 { updating } length,

384 { returning } currchar); 450 currchar,

385 451 nextchar,

386 if length < maxsymbolsize 452 { in} valu)3

387 then 453

388 begin 454

389 455 if (currchar.valu = “*°) and (nextchar.valu = °)")
390 length := length + 1; 456 then

391 457 begin

392 valu [length] := currchar.valu 458

393 459 storenextchar({ from input }

394 end 460 { updating } length,

305 461 currchar,

396 end; { storenextchar } 462 nextchar,

397 463 { in } valu)3

398 464

399 procedure skipspaces(465 name := closecomment

400 { updating } var currchar, 466

401 nextchar : charinfo; 467 end

402 { returning } var spacesbefore, 468

403 crsbefore : integer); 469 end; { getcomment }

404 470

405 begin { skipspaces } 471

406 472 function idtype({ of } valu : string;

407 spacesbefore := 03 473 { using } length : integer)

408 crsbefore = 03 474 { returning } : keysymbol;
409 475

410 while nextchar.name in [blank, endofline] do 476 var

411 begin - 477 i: integer;

412 478

413 getchar({ from input } 479 keyvalu: key;

414 { updating } nextchar, 480

¢T# SKIN TYISVd

8/6T “%38KW3IJ3Q

L€ 39Vd

481 hit: boolean; 547

then

482 548 name := casevarsym;

483 thiskey: keysymbol; 549

484 550 endsym : recordseen := false

485 551

486 begin { idtype } 552 end { case }

487 553

488 idtype := othersym; 554 end; { getidentifier }

489 555

490 if length <= maxkeylength 556

491 then 557 procedure getnumber({ from input }

492 begin 558 { updating } var currchar,

493 559 nextchar : charinfoj
494 for i := 1 to length do 560 { returning } var name : keysymbol;
495 keyvalu [i] := valu [i}; 561 var valu : string;
496 562 var length : integer)3
497 for i := length+l to maxkeylength do 563

498 keyvalu [i] := space; 564 begin { getnumber }

499 565

500 thiskey := progsym; 566 while nextchar.name = digit do

501 hit = false; 567

502 568 storenextchar{ { from input }

503 while not(hit or (thiskey = succ(untilsym))) do 569 { updating) length,

504 if keyvalu = keyword [thiskey] 570 currchar,

505 then 571 nextchar,

506 hit := true 572 { in } valu)3

507 else 573

508 thiskey := succ(thiskey); 574

509 575 name := othersym

510 if hit 576

511 then 577 end; { getnumber }

512 idtype := thiskey 578 .

513 579

514 end; 580 procedure getcharliteral({ from input }

515 581 { updating } wvar currchar,

516 end; { idtype } 582) nextchar : charinfo;
517 583 { returning } var name : keysymbol;
518 . 584 var valu : string;
519 procedure getidentifier({ from input } 585 var length : integer)s
520 { updating } var currchar, 586 -

521 nextchar : charinfo; 587 begin { getcharliteral }

522 { returning } var name : keysymbol; 588

523 var valu i string; 589 while nextchar.name = quote do

524 var length : integer b 590 begin -

525 591

526 begin { getidentifier } 592 storenextchar({ from input }

527 593 { updating } length,

528 while nextchar.name in [letter, digit] do 594 currchar,

529 595 nextchar,

530 storenextchar{ { from input } 596 { in)} valu)3

531 { updating } length, 97

532 currchar, 598 while not(nmextchar.name in [quote, endofline, filemark]) do
533 nextchar, 599

534 { in} valu)3 600 storenextchar({ from input }

535 601 { updating } length,

536 602 currchar,

337 name := idtype({ of } valu, 603 nextchar,

538 { using } length); 604 { in } valu);

539 605

540 if name in [recordsym, casesym, endsym] 606

541 then 607 if nextchar.name = quote

542 case name of 608 then

543 609 storenextchar({ from input }

544 recordsym : recordseen := true; 610 { updating } length,

545 611 currchar,

546 casesym : if recordseen 612 nextchar,

¢$T# SmdN 1¥ISVd

R TR

§/6T

8¢ 39Vd

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

{ in } valu)
end;
name := othersym
end; { getcharliteral)}
function chartype({ of } currchar,

nextchar : charinfo)
{ returning } : keysymbol;
var
nexttwochars: specialchar;

hit: boolean;

thischar: keysymbol;

begin { chartype }

nexttwochars[l] := currchar.valu;
nexttwochars[2] := nextchar.valu;

thischar := becomes;
hit := false;

while not(hit or (thischar = closecomment)) do
if nexttwochars = dblchar [thischar]
then
hit := true
else
thischar := succ(thischar);

if not hit
then
begin

thischar := semicolon;

while not(hit or (pred{thischar) = period)) do
if currchar.valu = sglchar [thischar]
then
hit := true
else
thischar := succ{thischar)

end;

if hit

then
chartype := thischar

else
chartype := othersym

end; { chartype }

procedure getspecialchar({ from input }
{ updating } yvar currchar,
nextchar : charinfo;
{ returning } var name : keysymbol;
var valu : string;

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

var length : integer
begin { getspecialchar }

storenextchar({ from input }

{ updating } length,
currchar,
nextchar,

{ in } valu)

name := chartype({ of } currchar,
nextchar);

if name in dblchars
then

storenextchar({ from input }

{ updating } length,
currchar,
nextchar,

{ in } valu)

end; { getspecialchar }

procedure getnextsymbol({ from input }
{ updating } var currchar,
nextchar : charinfo;
{ returning } var name : keysymbol;
var valu : string;

var length'® : integer
begin { getnextsymbol }
case nextchar.name of
letter : getidentifier({ from input }
{ updating } currchar,
nextchar,
{ returning } name,
valu,
length)s
digit : getnumber({ from input }
{ updating } currchar,
nextchar,
{ returning } name,
valu,
length);
quote : getcharliteral{ { from input }

{ updating } currchar,
nextchar,

{ returning } name,
valu,
length)3

otherchar : begin

getspecialchar({ from input }
{ updating } currchar,
nextchar,
{ returning } name,
valu,
length)s

)3

)3

¢T# SKIN TVISYd

TR EREN

8§61

6¢ 39Vd

745 if name = opencomment 811 var topofstack : integer; 877 sglchar [closeparen] =)

746 then 812 878 sglchar [period] =00

747 getcomment({ from input } 813 var currlinepos, 879

748 { updating } currchar, 814 currmargin : integer; 880 recordseen := false;

749 nextchar, 815 881

750 name, 816 var keyword : keywordtable; 882

751 valu, 817 883 getchar({ from input }

752 length) 818 var dblchars : dblchrset; 884 { updating } nextchar,

753 819 885 { returning } currchar);

754 end; 820 var dblchar : dblchartable; 886

755 821 887 new{currsym) ;

756 filemark : name := endoffile 822 var sglchar : sglchartable; 888 new(nextsym);

757 823 889

758 end { case } 824 var recordseen : boolean; 890 getsymbol({ from input)}

759 825 891 { updating } nextsym,

760 end; { getnextsymbol } 826 var currchar, 892 { returning } currsym);

761 827 nextchar : charinfo; 893

762 828 894

763 procedure getsymbol({ from input } 829 var currsym, 895 with ppoption [progsym] do

764 { updating } var nextsym : symbolinfo; 830 nextsym : symbolinfo; 896 begin

765 { returning } var currsym : symbolinfo); 831 897 optionsselected := [blanklinebefore,
766 832 var ppoption : optiontable }; 898 spaceafter];
767 yvar 833 899 dindentsymbols =[]

768 dummy: symbolinfo; 834 900 gobbleterminators := []

769 835 begin { initialize } 901 end;

770 836 902

771 begin { getsymbol } 837 linelimit(output,maxint); 903 with ppoption [funcsym] do

772 838 904 begin

773 dummy i= currsym; 839 topofstack := 0; 905 optionsselected := [blanklinebefore,
774 currsym := nextsym; 840 currlinepos := 0; 906 dindentonkeys,
775 nextsym := dummy ; 841 currmargin := 0; 907 spaceafter];
776 842 908 dindentsymbols = [labelsym,

777 with nextsym™ do 843 909 constsym,

778 begin 844 keyword [progsym ‘program H 910 typesym,

779 845 keyword [funcsym ‘function H 911 varsym];

780 skipspaces(846 keyword [procsym ‘procedure ’ ; 912 gobbleterminators := []

781 { updating } currchar, 847 keyword [labelsym “label i 913 end;

782 nextchar, 848 keyword [constsym ‘const ‘s 914 -

783 { returning } spacesbefore, 849 keyword [typesym “type - 915 with ppoption [procsym] do

784 crsbefore)s 850 keyword [varsym ‘var ‘s 916 begin

785 length := 03 851 keyword [beginsym ‘begin ‘s 917 optionsselected t= [blanklinebefore,
786 852 keyword [repeatsym “repeat i 918 dindentonkeys,
787 if currsym~.name = opencomment 853 keyword [recordsym ‘record ‘s 919 spaceafter];
788 then 854 keyword [casesym ‘case ‘s 920 dindentsymbols = [labelsym,

789 getcomment({ from input } 855 keyword [casevarsym ‘case ‘s 921 constsym,

790 { updating } currchar, 856 keyword [ofsym ‘of - 922 typesym,

791 nextchar, 857 keyword [forsym ‘for ‘s 923 varsym |;

792 { returning } name, 858 keyword [whilesym ‘while ‘s 924 gobbleterminators := []

793 valu, 859 keyword [withsym ‘with 7 925 end;

794 length) 860 keyword [dosym ‘do s 926

795 else 861 keyword [ifsym ‘if s 927 with ppoption [labelsym] do

796 getnextsymbol({ from input } 862 keyword [thensym ‘then - 928 begin

797 { updating } currchar, 863 keyword [elsesym ‘else s 929 optionsselected := [blanklinebefore,
798 nextchar, 864 keyword { endsym “end ‘s 930 spaceafter,
799 { returning } name, 865 keyword [untilsym := “until ‘s 931 indenttoclp 1;
800 valu, 866 932 dindentsymbols = [13

801 length) 867 933 gobbleterminators := []

802 868 dblchars := [becomes, opencomment]; 934 end;

803 end { with } 869 935

804 870 dblchar [becomes] = =ty 936 with ppoption [constsym] do

805 end; { getsymbol } 871 dblchar { opencomment] = (% 937 begin

806 872 938 optionsselected := [blanklinebefore,
807 873 sglchar [semicolon] 939 dindentonkeys,
808 procedure initialize({ returning } 874 sglchar [colon 1 940 spaceafter,
809 875 sglchar [equals] 941 indenttoclp];
810 876 »zlchar [openparen] 942 dindentsymbols := [labelsym 1;

ST# SMIN T¥ISVd

§/46T "uwd4k3N3C

Gh 39Vd

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

gobbleterminators := []
end;

with ppoption [typesym] do

begin
optionsselected t= [blanklinebefore,
dindentonkeys,
spaceafter,
indenttoclp];
dindentsymbols 1= [labelsym,

constsym];
gobbleterminators := [}
end;

with ppoption [varsym] do

begin
optionsselected := [blanklinebefore,
dindentonkeys,
spaceafter,
indenttoclp];
dindentsymbols := [labelsym,
constsym,
typesym];
gobbleterminators := []
end;

with ppoption [beginsym] do
begin
optionsselected := [dindentonkeys,
indentbytab,
crafter];
dindentsymbols := [labelsym,

constsym,
typesym,
varsym 1;
gobbleterminators := []
end;

with ppoption [repeatsym] do

begin
optionsselected := [indentbytab,
crafter];
dindentsymbols = [1;
gobbleterminators := []
end;

with ppoption [recordsym] do

begin
optionsselected := [indentbytab,
crafter 1;
dindentsymbols = [];
gobbleterminators := []
end;

with ppoption [casesym] do

begin
optionsselected := [spaceafter,
indentbytab,
gobblesymbols,

crafter];
dindentsymbols = (13

gobbleterminators := [ofsym)
end;

with ppoption [casevarsym] do

begin

1009

1010
1011
1012
1013
1014
1015
1016
1017
1018

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

optionsselected

dindentsymbols

gobbleterminators

end;

:= [spaceafter,

indentbytab,
gobblesymbols,
crafter 1;

=[]
= [ofsym]

with ppoption [ofsym } do

begin

optionsselected

dindentsymbols

gobbleterminators

end;

with ppoption [forsym]

begin

optionsselected

dindentsymbols

gobbleterminators

end;

with ppoption [whilesym

begin

optionsselected

dindentsymbols

gobbleterminators :

end;

:= [crsuppress,
spacebefore |;

[1;
[

do

:= [spaceafter,
indentbytab,
gobblesymbols,
crafter |;

§H

[dosym]

‘|i L

I do

:= [spaceafter,
indentbytab,
gobblesymbols,
crafter |;

=11

[dosym]

with ppoption { withsym] do

begin

optionsselected

dindentsymbols

gobbleterminators

end;

:= | spaceafter,
indentbytab,
gobblesymbols,
crafter |;

= {13

:= [dosym]

with ppoption [dosym | do

begin

optionsselected

dindentsymbols

gobbleterminators :

end;

with ppoption [ifsym]

begin

optionsselected

dindentsymbols

gobbleterminators

end;

:= [crsuppress,
spacebefore J;

= {I;
{1

do

:= | spaceafter,
indentbytab,
gobblesynbols,
crafter |;

=[]

:= | thensym]

with ppoption [thensym] do

begin

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

1088
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

optionsselected := | indentbytab,
crafter |}

[1;
[

dindentsymbols
gobbleterminators :=
end;

with ppoption [elsesym] do

begin

optionsselected := [crbefore,

dindentonkeys,
dindent,
indentbytab,
crafter];
ifsym,
elsesym };

gobbleterminators := []
end;

dindentsymbols 1=

with ppoption [endsym] do

begin
—_EEEtionsselected := [crbefore,
dindentonkeys,
dindent,
crafter };
dindentsymbols = | ifsym,
thensym,
elsesym,
forsym,
whilesym,
withsym,
casevarsym,
colon,
equals |;
gobbleterminators := |[]
end;

with ppoption [untilsym] do
begin
optionsselected

:= [crbefore,
dindentonkeys,
dindent,
spaceafter,
gobblesymbols,
crafter |;
ifsym,
thensym,
elsesym,
forsynm,
whilesym,
withsym,
colon,

eguals |;
endsyn,
untilsym,
elsesym,
semicolon |;

dindentsymbols

gobbleterminators :

end;

with ppoption [becomes | do

begin
optionsselected := | spacebefore,
spaceafter,
gobblesymbols
dindentsymbols = [];
gobbleterminators := [endsyw,
untilsym,

$T# ShaN YISV

“§3446323G

8L6T

Th 39vd

1141 elsesyn, 1207 begin - 1273 else

1142 semicolon] 1208 optionsselected := [crsuppress]; 1274 begin

1143 end; 1209 dindentsymbols = []; 1275 indentsymbol := othersym;

1144 - 1210 gobbleterminators := []) 1276 prevmargin =0

1145 with ppoption [opencomment] do 1211 end; 1277 end

1146 begin 1212 1278

1147 optionsselected crsuppress]; 1213 with ppoption [endoffile] do 1279 end; { popstack }

1148 dindentsymbols 1; 1214 begin 1280

1149 gobbleterminators ! 1215 optionsselected BN 1281

1150 end; 1216 dindentsymbols [1; 1282 procedure pushstack({ using } indentsympol : keysymbul;
1151 - 1217 gobbleterminators := [] 1283 prevmargin : integer);
1152 with ppoption [closecomment]} do }gig end; 1284

1153 begin 1285 begin ushstack

1154 _—%p'tionsselected [crsuppress |; 1220 with ppoption [othersym] do 1286 begin { p y

1155 dindentsymbols [1; 1221 Begin 1287 top := top + l;

1156 gobbleterminators := [] 1222 optionsselected := []; 1288

1157 end; 1223 dindentsymbols =11 1289 stack[top].indentsymbol := indentsymbol;

1158 - 1224 gobbleterninators := [] 1290 stack[top].prevmargin := prevmargin

1159 with ppoption [semicolon] do 1225 end 1291

1160 begin 1226 1292 end; { pushstack }

1161 optionsselected := [crsuppress, 1227 1293

1162 dindentonkeys, 1228 end; { initialize } 1294

1163 crafter |; 1229 1295 procedure writecrs({ using } numberofcrs : integer;
1164 dindentsymbols = | ifsym, 1230 1296 { updating } var currlinepos : integer
1165 thensym, 1231 function stackempty { returning } : boolean; 1297 { writing to output } R
1166 elsesym, 1232 1298

1167 forsym, 1233 begin { stackempty } 1299 var

1168 whilesym, 1234 1300 i: integer;

1169 withsym, 1235 if top = 0 1301

1170 colon, 1236 then 1302

1171 equals]; 1237 stackempty := true 1303 begin { writecrs }

1172 gobbleterninators := [] 1238 else 1304

1173 end; 1239 stackempty := false 1305 if numberofcrs > 0

1174 1240 1306 then

1175 with ppoption [colon] do 1241 end; { stackempty } 1307 begin

1176 begin 1242 1308

1177 optionsselected := [spaceafter, 1243 1309 for 1 := 1 to numberofcrs do

1178 indenttoclp]; 1244 function stackfull { returning } : boolean; 1310 writeln(output);

1179 dindentsymbols =[] 1245 1311

1180 gobbleterminators := [] 1246 begin { stackfull } 1312 currlinepos i= 0

1181 end; 1247 1313

1182 - 1248 if top = maxstacksize 1314 end

1183 with ppoption [equals) do 1249 then 1315 -

1184 begin 1250 stackfull := true 1316 end; { writecrs }

1185 optionsselected := [spacebefore, 1251 else 1317

1186 spaceafter, 1252 stackfull := false 1318

1187 indenttoclp |; 1253 1319 procedure insertcr(updating } var currsym : symbolinfo
1188 dindentsymbols = []; P s end; { stackfull } 1320 : wf‘iitinggto output } Y i
1189 gobbleterminators := [] 1255 1321

1190 end; 1256 1322 const

1191 - 1257 procedure popstack({ returning } var indentsymbol : keysymbol; 1323 once = 13

1192 with ppoption [openparen]| do 1258 var prevmargin : integer); 1324

1193 begin 1259 1325

1194 optionsselected := [gobblesymbols]; 1260 begin { popstack } 1326 begin { insertcr }

1195 dindentsymbols = [1; 1261 1327

1196 gobbleterminators := [closeparen] 1262 if not stackempty 1328 if currsym”.crsbefore = 0

1197 end; 1263 then 1329 " then

1198 1264 begin 1330 begin

1199 with ppoption [closeparen] do 1265 1331

1200 begin 1266 indentsymbol := stack[top].indentsymbol; 1332 writecrs(once, { updating } currlinepos
1201 optionsselected =[] 1267 prevmargin := stack[top].prevmargin; 1333 { writing to output } bH
1202 dindentsymbols :=11; 1268 1334

1203 gobbleterminators := [] 1269 top i= top - 1 1335 currsym”.spacesbefore := 0

1204 end; 1270 1336

1205 1271 end 1337 end

1206 with ppoption [period]} do 1272 1338

¢T# SKIN TVISV

/6T "y34LiI3d

¢h 39Vd

1339
1340
1341
1342
1343
1344
1345
1346
1347
1343
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

end; { insertcr }

procedure insertblankline({ updating } Var currsym
{ writing to output }

symbolinfo

const
once
twice

non
P —

begin { insertblankline }

if currsym”.crsbefore = 0

then
begin
if currlinepos = 0
then
writecrs(once, { updating } currlinepos
{ writing to output })
else
writecrs(twice, { updating } currlinepos
{ writing to output })
currsym”.spacesbefore := 0
end
else
if currsym”.crsbefore = 1
then
if currlinepos > 0
then
writecrs(once, { updating } currlinepos

{ writing to output }

end; { insertblankline }

procedure lshifton({ using } dindentsymbols : keysymset);
var

indentsymbol: keysymbolj;

prevmargin integer;

begin { lshifton }
if not stackempty
then

begin

re zeat

popstack({ returning } indentsymbol,
prevmargian);

if indentsymbol in dindentsymbols
then
currmargin := prevmargin

until not(indentsymbol in dindentsymbols)
or (stackempty);

if not(indentsymbol in dindentsymbols)

)s

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1423
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1461
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

then
pushstack({ using } indentsymbol,
prevmargin)

end

end; { lshifton }

procedure ishift;
var
indentsymbol: keysymbol;
prevmargin integer;
begin { lshift }

if not stackempty

then
begin
popstack({ returning } indentsymbol,
prevuargin);
currmargin := prevmargin
end

end; { lshift }
procedure insertspace({ using } var symbol s symbolinfo

{ writing to output })3
begin { insertspace }

if currlinepos < maxlinesize

then

begin

write(output, space);

currlinepos := currlinepos + 1;

with symbol® do

if (crsbefore = 0) and (spacesbefore > 0)
then
spacesbefore := spacesbefore - 1

end

end; { insertspace }

procedure movelinepos({ to } newlinepos integer;
{ from } var currlinepos : integer
{ writing to output });

var
i: integer;
begin { movelinepos }

for i := currlinepos+l to newlinepos do
write(output, space);

currlinepos := newlinepos

$T# SkaAN T¥ISVd

ER RN

80T

$h 39vVd

1471 1537 then

1472 end; { movelinepos } 1538 newlinepos := maxlinesize - length
1473 1539 else

1474 1540 newlinepos := 0

1475 procedure printsymbol({ in } currsym : symbolinfo; 1541

1476 { updating } var currlinepos : integer 1542 end;

1477 { writing to output }); 1543 —

1478 1544 movelinepos({ to } newlinepos,

1479 var 1545 { from } currlinepos

1480 i: integer; 1546 { in output })3

1481 1547

1482 1548 printsymbol({ in } currsym,

1483 begin { printsymbol } 1549 { updating } currlinepos

1484 1550 { writing to output }

1485 with currsym” do 1551

1486 begin 1552 end { with }

1487 1553

1488 for i :=1 to length do 1554 end; { ppsymbol }

1489 write(output, valu[i]); 1555

1490 1556

1491 startpos := currlinepos; { save start pos for tab purposes } E 1557 procedure rshifttoclp({ using } currsym : keysymbol);

1492 currlinepos := currlinepos + length 1558 forward;

1493 1559

1494 end { with } 1560 procedure gobble({ symbols from input }

1495 1561 { up to } terminators : keysymset;
1496 end; { printsymbol } 1562 { updating } var currsym,

1497 1563 nextsym : symbolinfo
1498 1564 { writing to output })
1499 procedure ppsymbol({ in } currsym : symbolinfo 1565

1500 { writing to output }); 1566 begin { gobble }

1501 1567

1502 const 1568 rshifttoclp({ using } currsym”.name };

1503 once = 1l 1569

1504 1570 while not{(nextsym”.name in (terminators + [endoffilel})) do
1505 var 1571 begin

1506 ~ newlinepos: integer; 1572

1507 1573 getsymbol({ from input }

1508 1574 { updating } nextsym,

1509 begin { ppsymbol } 1575 { returning } currsym);

1510 1576

1511 with currsym” do 1577 ppsymbol{ { in } currsym

1512 begin 1578 { writing to output })

1513 1579

1514 writecrs({ using } crsbefore, 1580 end; { while }

1515 { updating } currlinepos 1581 -

1516 { writing to output }); 1582 1shift

1517 1583

1518 if (currlinepos + spacesbefore > currmargin) 1584 end; { gobble }

1519 or (name in | opencomment, closecomment]) 1585

1520 then - 1586

1521 newlinepos := currlinepos + spacesbefore 1587 procedure rshift({ using } currsym : keysymbol);

1522 else 1588

1523 newlinepos := currmargin; 1589 begin { rshift }

1524 1590

1525 if newlinepos + length > maxlinesize 1591 if not stackfull

1526 then 1592 " Then

1527 begin 1593 pushstack({ using } currsym,

1528 1594 currmargin);

1529 writecrs(once, { updating } currlinepos 1595

1530 { writing to output })s 1596 { if extra indentation was used, update margin. } <<< .
1531 1597 if startpos > currmargin <<<,
1532 if curmmargin + length <= maxlinesize 1598 then <<<,
1533 " then 1599 currmargin := startpos; <<<.
1534 newlinepos := curmmargin 1600 ’
1535 else 1601 if currmargin < slofaill

1536 if length < maxlinesize 1602 then

ST# ShIN 1VISVd

ER T EREN

8061

hh 39Vd

1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668

currmargin := currmargin + indentl
else
1f curmmargin < slofail2
then
currmargin := currmargin + indent2

end; { rshift }

procedure rshifttoclp;
begin { rshifttoclp }

if not stackfull
then
pushstack({ using } currsym,
currmargin);

currmargin := currlinepos

end; { rshifttoclp }

begin { prettyprint }

initialize(top, currlinepos,
currmargin, keyword, dblchars, dblchar,
sglchar, recordseen, currchar, nextchar,
currsym, nextsym, ppoption);

crpending := false;

while (nextsym”.name <> endoffile) do
begin
getsymbol({ from input }

{ updating } nextsym,
{ returning } currsym)3

with ppoption [currsym”.name] do

begin

if (crpending and not(crsuppress in optionsselected))
2£>(crbefore in optionsselected)

then
begin
inserter({ using } currsym
{ writing to output });
crpending := false
end;

if blanklinebefore in optionsselected

then
begin
insertblankline({ using } currsym
{ writing to output });
crpending := false
end;

if dindentonkeys in optionsselected
then
lshifton(dindentsymbols);

if dindent in optionsselected

then
Tshife;

1669
1670 if spacebefore in optionsselected
1671 then
1672 insertspace({ using } currsym
1673 { writing to output });
1674
1675 ppsymbol({ in } currsym
1676 { writing to output }):
1677
1678 1if spaceafter in optionsselected
1679 then
1680 " 1insertspace({ using } nextsym
1681 { writing to output });
1682
1683 if indentbytab in optionsselected
1684 then
1685 rshift({ using } currsym”.name);
1686
1687 if indenttoclp in optionsselected
1688 then
1689 ““rshifttoclp({ using } currsym”.name);
1690
1691 if gobblesymbols in optionsselected
1692 " then —
1693 gobble({ symbols from input }
1694 { up to } gobbleterminators,
1695 { updating } currsym,
1696 nextsym
1697 { writing to output });
1698
1699 1if crafter in optionsselected
1700 then
1701 crpending := true
1702
1703 end { with }
1704 -
1705 end; { while }
1706
1707 if crpending
1708 then
1709 writeln{output)
1710
1711 end.
PASCAL PROGRAM FORMATTER
S -4 Format)

- Michael N. Condict

- Rick L. Marcus

- Andy Mickel

What Format Does

Format is a flexible prettyprinter for Pascal programs. It takes as input a

syntactically-correct Pascal program and produces as output an equivalent but reformatted
Pascal program. The resulting program consists of the same sequence of Pascal symbols
and comments, but they are rearranged with respect to line boundaries and columns for
readability.

Format maintains consistent spacing between symbols, breaks control and data
structures onto new lines if necessary, indents lines to reflect the syntactic level of
statements and declarations, and more. Miscellaneous features such as supplying
line~numbers and automatic comments, or deleting all unnecessary blanks to save space,
are described below.

gT# SHNIN TVISV

IR ER T ENEN

8/61T

9fh 35Vd

The flexibility of Format is accomplished by allowing you to supply various
directives (options) which override the default values. Rather than being a rigid
prettyprinter which decides for you how your program is to be formatted, you have the
ability to control how formatting is done, not only prior to execution but also during
execution through the use of prettyprinter directives embedded in your program.

Experience with Format over the last three years has shown that most users can find
a set of values for the directives which produce satisfactory results. The default
values are typical.

How To Use Format

The use of Format will vary from implementation to implementation, but will involve
one major input file containing a Pascal program and one output file for the reformatted
program. Additionally it may be possible to supply the initial values of directives to
Format when it begins execution.

Directives to Format may always be specified in the program itself inside comments
with a special syntax. Thus the first line of a program is an ideal spot for a comment
containing directives. Subsequent use of embedded directives allows you to change the
kind of formatting for different sections of your program. The syntax of these special
comments 1s given below (The syntax is given using "EBNF"~--Extended Backus-Naur Form--see
Communications ACM, November, 1977, page 822.):

DirectiveComment = "(*" DirectiveList "*)" |
"(*$" CompilerOptionList CommentText DirectiveList "#)".

DirectiveList = "[" Directive {"," Directive} "]" CommentText.

Directive = Letter Setting.

Letter = A" | "B" | “c" | "D" | "E" | "F" | "¢" | "H" |
wpno|oepe | omge o | owpn | RN | mgn | oy,
Setting = Switch | Value | Range.
Switch = "4 | "
Value = "=" UnsignedInteger.
Range = "=" UnsignedInteger "-" UnsignedInteger ["<" | ">"].

UnsignedInteger = Digit{Digit}.

CommentText = {Any character except "]" or close-comment}.
Note: As defined above, a Directive may be within a comment specifying a Pascal
CompilerOptionList. On most implementations this is a "§" followed by a series of

letters and values ("+', "-", or digits), separated by commas. See your local manual.

Examples of DirectiveComments:

(*[A=15, E=3, N=1,1<]*) - good for publication quality.

(*[G=0, W=1-100, C+]*) - good for compact storage.

(*$U+ [R=1-72, I=2]%*) - an example of a DirectivelList with a
CompilerOptionList.

Directives to Format

A=n Align declarations.
The A directive forces the alignment of ":" and "=" in declarationms. If A is
set to a value greater than 0, then n should be equal to the maximum identifier

length for that section of your program. The A directive visually clarifies the
declaration part of your program. See example below.
Default: A=0 (no alignment).

B+ or B~ Bunch statements and declarations reasonably.
B+ will place as many statements or declarations onto one line as will fit
within the specified write margins (W directive) subject to readability
constraints. Bunching (B+) when the display is off (D-) has no effect. 1In
general, B+ saves paper and prevents your program from becoming overly stretched
in the vertical direction. See example below.
Default: B- (one statement or statement part per line).

C+ or C- Fully Compress program.

C+ removes all non-essential blanks, end-of-lines, and comments from your
program. A compilable, packed program will be written within the specified
write margins (W directive). The number of spaces specified by the G directive
will still be written between symbols. C+ might save some space on long-term
storage media such as disk; you might store a program in compressed form and
expand it later by reformatting with C-.

Default: C-.

D+ or D- Turn Display on or off.
D allows you to selectively display portions of your program during formatting.
Therefore, D must be switched on and off with directives which are appropriately
placed in your program. D is perhaps useful to obtain program fragments for
publication (such as one or more procedures) without having to print the whole
program.
Default: D+.

E=n Supply END comments.

The E directive generates comments after "END" symbols 1if none are already
there. Common Pascal coding styles frequently employ these comments. E=1
creates comments after the "END" symbol in compound statements which are within
structured statements, as well as those constituting procedure and function
bodies. The comments take the form: (*StatementPart*) or (*ProcedureName*).
E<2 creates comments after the "BEGIN" and "END" symbols constituting procedure
and function bodies only. E=0 creates no comments at all. E=3 means E=l1 and
E=2. See example below.

Default: E=2.

F+ or F- Turn Formatting on or off.
F allows you to format selected portions of your program. F- causes Format to
copy the input program directly with no changes. Therefore by switching F on
and off with directives which are appropriately placed in your program, you can
preserve text which is already properly formatted (such as comments).
Default: F+ (of course!l).

G=n Specify symbol Gap.
The G directive determines the number of spaces placed between Pascal symbols
during formatting. G=0 still places one space between two identifiers and
reserved words. The symbols [] () , and : are handled independently of G.
Default: G=l.

I=n Specify Indent tab.
I indents each nesting level of statements and declarations a given number of
columns. Using I=2 or I=1 helps prevent excessively-narrow lines within the
specified write margins (W directive) where there are heavily-nested constructs.
Default: 1I=3.

L=n Specify Line-wraparound indent tab.
L determines the indentation of the remainder of statements or declarations
which are too long to fit on one line.
Default: L=3.

N=x-y< or N=x-y> Generate line-numbers on the left or right.
The N directive indicates the starting line-number (x) and the increment (y) for

ST# SMAN TVISVd

R ERENEN

8§61

9h 39Vd

each succeeding line-number. If y > O then line-numbers are written outside the
specified write margins for the formatted program in sequential order starting
at x; y = 0 shuts off line-numbering. "<" writes up to 4-digit, right-justified
line-numbers together with a trailing space to the 1left of each 1line. "
writes 6-digit, zero-filled line-numbers to the right of each line. Use the N
directive along with the W directive.

Default: N=0-0> (no line-numbers).

P=n Specify spacing between Procedure and function declarations.
The P directive determines the number of blank lines to be placed between
procedure and function declarations. n>2 makes procedures and functions
visually stand out.
Default: P=2.

R=x-y Specify Read margins.
The R directive indicates which columns are significant when Format reads from
input file. R allows Format to accept files which have line-numbers in the
first (x-1) columns or after the yth column.
Default: R=1-999 (large enough to read to end-of-line in most cases).

S=n Specify Statement separation.
The S directive determines the number of spaces between statements bunched on
the same line by the use of the B+ directive. Note that this directive is only
in effect if B+ is used.
Default: S=3.

W=x-y Specify Write margins.
The W directive indicates which columns are used for writing the reformatted
program on the output file. Any line-numbers generated (N directive) are
written outside these margins.
Default: W=1-72.

The A Directive

Here is a sample program fragment before using Format:

PROGRAM SAMPLE(OUTPUT) ;

CONST A=6; ABC=‘LETTERS’; THREE=3;
TYPE RANGE=1..6;
COLOUR=(RED,BLUE) ;

VAR

1,12,133,1444,15555:RANGE;
YES,NO,MAYBE : BOOLEAN;

BEGIN END.

Here is the output from Format with all defaults set:
PROGRAM SAMPLE(OUTPUT);

CONST
A= 6;
ABC = ‘LETTERS”;
THREE = 3;

TYPE
RANGE = 1 .. 6;
COLOUR =

(RED, BLUE);

VAR
I, 12, 133, 1444, 15555: RANGE;

YES, NO, MAYBE: BOOLEAN;

BEGIN
END (*SAMPLE*).

Here is the output from Format having added a line with the A=5 directive:

(*[A=5] ALIGN DECLARATIONS. *)
PROGRAM SAMPLE(OUTPUT);

CONST
A= 6;
ABC = ‘LETTERS”;
THREE = 3;
TYPE

RANGE = 1 .. 6;
COLOUR = (RED, BLUE);

VAR
I,
12,
133,
1444,
15555: RANGE;
YES,
NO,
MAYBE: BOOLEAN;

BEGIN
END (*SAMPLE*).

The B Directive

If the input to Format is:

PROGRAM T(OUTPUT);

CONST INCREMENT = 5;

VAR I,J,N:INTEGER;

BEGIN

N:=0;

J:=3; I1:=SQR(N); N:=N+INCREMENT;

IF N>73 THEN BEGIN DOTHIS; DOTHAT END ;

IF N>5 THEN IF J>6 THEN DOSOMETHINGELSE;
END.

then the output from Format (using the default, B-) is:
PROGRAM T(OUTPUT);

CONST
INCREMENT = 5;

VAR
1, J, N: INTEGER;

03
33
SQR(N) ;
:= N + INCREMENT;
F N > 73 THEN
BEGIN
DOTHIS;
DOTHAT

CT# SMAN T¥ISYd

8/6T “¥3dK3INAC

Lf 39Yd

END;
IF N > 5 THEN
IF J > 6 THEN
DOSOMETHINGELSE;
END (*T%*).

and the output from Format with B directives embedded is:

(*[B+] BUNCH STATEMENTS. *)
PROGRAM T(OUTPUT) ;

CONST
INCREMENT = 5;

VAR
I, J, N: INTEGER;

BEGIN
N :=0; J:=3; I :=SQR(N); N := N + INCREMENT;
IF N > 73 THEN BEGIN DOTHIS; DOTHAT END;

(*[B-] UNBUNCH. *)

IF N > 5 THEN
IF J > 6 THEN
DOSOMETHINGELSE;
END (*T*).

The E Directive

Suppose that a Pascal program fragment looked like:

PROCEDURE SAMPLE;
PROCEDURE INNER;

BEGIN END;
BEGIN

IF X=3 THEN
BEGIN X:=1; L:=I+1
END

ELSE

BEGIN X:=X+I; I:=0
END;

WHILE (CH<>“X’) AND FLAGL DO
BEGIN I:=I+3; INNER END; END;

then using Format with E=3 produces:

PROCEDURE SAMPLE;

PROCEDURE INNER;

BEGIN
END (*INNER*);

BEGIN (*SAMPLEX)
IFX=3
THEN
BEGIN
X = 1;
I:=1I+1
END (*IF*)

END (*ELSE*);
WHILE (CH <> “X’) AND FLAGl DO
BEGIN
T :=1+3;
INNER
END (*WHILE*);
END (*SAMPLE*);

How Format Works

Format parses your program by performing syntax analysis similar to the Pascal
compiler: recursive descent within nested declarations and statements. It gathers
characters into a buffer in which the indenting count of each character is maintained.
The characters are being continually emptied from the buffer as new ones are added.

Format has limited error-recovery facilities, and no results are guaranteed if a
syntactically-incorrect program is supplied as input.

The bane of most Pascal prettyprinters is the treatment of comments. Format
considers them in the context of a declaration or statement. Therefore using comments
like:

CONST LS=6 (*LINESIZE*);

is a good idea because Format will carry the comment along with the declaration.
Similarly:

BEGIN (* "Z° < CH <= 7 7 #*)
is also okay.

Stand-alone comments however, receive rough treatment from Format. The first line
of such comments are always left—justified and placed on a separate line. See the F
directive. Thus:

CONST LS=6; (*LINESIZE%*)
will be reformatted as:

CONST
LS = 63
(*LINESIZE*)

Proper treatment of comments is certainly an area of future development for Format.
Format issues the following error messages:

1. " **% °PROGRAM’ EXPECTED."
The Pascal program you fed to Format did not contain a Standard Pascal program
declaration.

2. " *** ERRORS FOUND IN PASCAL PROGRAM."

Your program is syntactically incorrect. The output from Format probably does not
contain all of the text from your input file. The cause could be any syntactic error,
most commonly unmatched "BEGIN-END" pairs, or the lack of semicolons, string quotation
marks, or the final period.

3. ' *%% STRING TOO LONG."
Your program contains a character string (including both the quotes) which is wider
than the specified write margins (W directive).

4. " *** NO PROGRAM FOUND TO FORMAT."
The input file given to Format is empty.

$T# ShaAN 1¥ISVd

R ERITERER

8/61

87 39VYd

History 34 BuffSzPl = 1613
------ 35 BuffSzMl = 159;
36 Buff£SzDivl10 = 16;
Format was originally written in 1975 by Michael Condict as a class project in a 37 { }
Pascal programming course taught by Richard Cichelli at Lehigh University using CDC-6000 38 MaxReadRightCol = 999;
Pascal. After that, making improvements and adding directives became, temporarily, an 39 MaxWriteRightCol = 72;
obsession with the author (note limited usefulness of the D directive). Fortunately, the 40
program eventually stabilized and is now in general use by Pascal programmers at Lehigh 41 type
University and other institutions. After graduation the author transported Format in 42 Alfa = packed array [l .. AlfaLengl of Char;
1977 to a PDP-11 running under the Swedish Pascal compiler and RSX-1l with a total effort 43 { t11111)! IMPLEMENTATION DEPENDENCY: !!11tilt) -
of 2 days. 44 { SET SIZE MAY NOT ALLOW SET OF Char. }
45 CharSet = set of Char;

Assistance in bringing up Format may be obtained by writing to Michael Condict at 46 StatmntTypes = (ForWithWhileStatement, RepeatStatement,
Pattern Analysis and Recognition Corporation, 228 Liberty Plaza, Rome, NY 13440. Format 47 IfStatement, CaseStatement, CompoundStatement,
has been made as portable as possible, but portable programs are hampered by non-standard 48 OtherStatement);
character sets and non-standard techniques for associating program objects (e.g. file 49 Symbols = (ProgSymbol, Comment, BeginSymbol, EndSymbol,
variables) with operating system objects (e.g. files as mass-storage devices). 50 Semicolon, ConstSymbol, TypeSymbol,

51 RecordSymbol, ColonSymbol, EqualSymbol,

The PDP-11 version of Format uses a procedure: 52 PeriodSymbol, Range, CaseSymbol, OtherSymbol,

"ConnectFileVarsToExtFiles" 53 1fSymbol, ThenSymbol, ElseSymbol, DoSymbol,
which serves a function similar to standard Pascal program headers for external files. 54 0fSymbol, ForSymbol, WithSymbol, WhileSymbol,
This version accepts initial values for directives after it types a prompt for you at 55 RepeatSyl:xbol, UntilSymbol, Identifier,
your interactive terminal. 56 VarSymbol, ProcSymbol, FuncSymbol, LeftBracket,

57 RightBracket, CommaSymbol, LabelSymbol,

On the other hand, the CDC-6000 version accepts initial values for directives after 58 LeftParenth, RightParenth, AlphaOperator);
a "/" on the operating system control statement which executes Format. 59 Width = 0 .. BufferSize;

60 Margins = - 100 .. BufferSize;

Format was modified for inclusion with Release 3 of CDC-6000 Pascal by Rick 61 SymbolSet = set of Symbols;

L. Marcus and Andy Mickel, University Computer Center, University of Minnesota, in 62 OptionSize = - 99 .. 99;
November, 1978. 63 CommentText = array [l .. BuffSzDiv10] of Alfa;

64 SymbolString = array [Width] of Char;
65
66 _var

1 {[A=20,B+,R=1-100,1=2,5=2] FORMATTER DIRECTIVES. } 67 ChISEOL,

2 { 68 NextChIsEQOL: Boolean;

3 K dededede ek e Rk R ok Je ke e dek o e ok ek ek ek ek ek Je Rk de ok de ok ok gk ek 69 I: Integer {USED AS FOR LOOP INDEX};

4 * * 70 Character: Char;

5 * PASCAL PROGRAM FORMATTER * 71 ReadColumn,

6 * * 72 ReadRightCol: 0 .. 1000;

7 * * 73 OutputCol,

8 * AUTHOR: MICHAEL N. CONDICT, 1975. * 74 WriteColumn,

9 * LEHIGH UNIVERSITY * 75 LeftMargin,

10 * CURRENT ADDRESS: PAR CORP. * 76 ActualLeftMargin,

11 * 228 LIBERTY PLAZA * 77 ReadLeftCol,

12 * ROME, NY 13440 * 78 WriteLeftCol,

13 * * 79 WriteRightCol: Margins;

14 * UPDATED: AUGUST, 1978. * 80 DisplaylIsOn,

15 * * 81 ProcNamesWanted,

16 Kkkkkkkhkkhkhkhkhkhkhhhkhlehhhkkhhhhkhkhkkhhhhhkhhhkdkhhkhhhhhhdkhkhhkkhik 82 EndCommentsWanted,

17} 83 PackerIsOff,

18 program Format{Input, Output); 84 SavedBunch,

19 85 BunchWanted,

20 label 86 NoFormatting: Boolean;

21 133 87 LineNumber,

22 88 Increment: Integer;

23 comst 89 IndentIndex,

24 Alfaleng = 10; 90 LongLineIndent,

25 { !i1dtlll IMPLEMENTATION DEPENDENCY: t!!tlitl } 91 SymbolGap,

26 { MINIMUM AND MAXIMUM Char VALUES. } 92 DeclarAlignment,

27 MinChar = 03 93 StatmtSeparation,

28 MaxChar = 127; 94 ProcSeparation: OptionSize;

29 LastPascSymbol = 29; 95 LastSymbol,

30 { THE FOLLOWING CONSTANTS MUST ALL BE CHANGED TOGETHER, SO THAT THEIR 96 SymbolName: Symbols;

31 VALUES AGREE WITH THEIR NAMES: 97 AlphaSymbols,

32} 98 EndLabel,

33 BufferSize = 160; 99 EndCons t,

¢T# SMAN 1¥ISVd

R EREREN

8.61

bt 39Vd

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148

149

150
151

152

153
154
155
156
157

158
159

160
161

162

163

164

165

EndType,
EndVar:
Symbol:
Length:
SymbolIsNumber,
LastProgPartWasBody:
Digits,
LettersAndDigits:
Oldest:
CharCount:

BUT

SymbolSet;
SymbolString;
Width;

Boolean;

CharSet;

Width;

Integer { COUNT OF TOTAL CHARS READ,

IS OFF BY BufferSize AFTER END OF FIRST BODY.

IT IS IMPERATIVE THAT CharCount BE MONOTONICALLY
INCREASING DURING PROCESSING OF A BODY, AND THAT IT
NEVER RETURN TO A VALUE <= BufferSize, AFTER PASSING
THAT POINT. THUS "DoBlock” MAY RESET IT AS LOW AS
POSSIBLE, LIMITING THE LENGTH OF A PROCEDURE TO
"MaxInt - BufferSize" CHARACTERS. };

Main:
MainNmLength:
Blanks,
Zeroes:
UnWritten:

PascalSymbol:
PascSymbolName:
NameOf :
StatementTypeOf:

begin
Main[1]
Blanks
for I := 0 to BuffS§
with UnWritten(I]

1= “MAIN

begin Ch := "A%;

end;
for Character := Ch
NameOf [Character]

Character := 73
NameOf[7)] Righ

NameOf[“,”] := CommaSymbol; NameOf[’.’}

NameOf[“["] := Leftl
NameOf[“:’] := Colo
NameOf [“>’] := Equa
PascalSymbol[1l] :=
PascalSymbol([3]
PascalSymbol[5]
PascalSymbol[7] :=
PascalSymbol(9)
PascalSymbol[11]
PascalSymbol{13
PascalSymbol[15]
PascalSymbol([1l7
PascalSymbol[19]
PascalSymbol([21]
PascalSymbol[23]
PascalSymbol[25]
PascalSymbol[27
PascalSymbol[29] :=
PascSymbolName [2]

PascSymbolName [4] := ConstSymbol; PascSymbolName([5]

CommentText;
Width;

Alfa;
array [Width] of record
Ch: Char;
ChIsEndLine: Boolean;
IndentAfterEOL: Margins
end;
array [l .. LastPascSymbol] of Alfa;
array [l .. LastPascSymbol] of Symbols;
array {[Char] of Symbols;
array [Symbols] of StatmmntTypes;

procedure ConstantsInitialization;

‘s MainNmLength := 4;
’; Zeroes := “0000000000";
zMl do
do
ChIsEndLine := False; IndentAfterEOL := 0

r(MinChar) to Chr(MaxChar) do

= OtherSymbol;
NameOf [“(“] := LeftParenth;
tParenth; NameOf[’="] := EqualSymbol;
PeriodSymbol;
Bracket; Nameof[']’] RightBracket;
nSymbol; NameOf[’<”] EqualSymbol;
1Symbol; Nameof[' ‘] := Semicolon;

* PROGRAM ; PascalSymbol[2] := “BEGIN ‘3
“END *; PascalSymbol{4] “CONST ‘s
“TYPE “; PascalSymbol[6] “VAR 73
“RECORD ‘3 PascalSymbol(8] := °CASE ‘s
‘IF ; PascalSymbol[l10] := ‘THEN ‘s
‘ELSE ‘3 PascalSymbol[12] := ‘DO ’s
‘OF ’s PascalSymbol[l4]) := °FOR s
‘WHILE : PascalSymbol{l6] := ‘WITH H
‘REPEAT ‘; PascalSymbol[18] ‘UNTIL H
“PROCEDURE “; PascalSymbol{20] FUNCTION H
‘LABEL 3 PascalSymbol[22] ‘IN 3
“MOD ‘3 PascalSymbol[24] ‘DIV ‘3
’AND ‘3 PascalSymbol[26] ‘OR ‘3
‘NOT ‘s PascalSymbol{28] “ ARRAY ‘3
“NOSYMBOL PascSymbolName[1] := ProgSymbol;

= BeginSymbol; PascSymbolName[3] := EndSymbol;
= TypeSymbolj;

166

167

168

169

170

171

172

173

174

175

176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

PascSymbo1Name [6]

PascSymbolName {8)

PascSymbolName [10])
PascSymbolName [12]
PascSymbolName [14]
PascSymbolName [16]
PascSymbolName [17]
PascSymbolName[18
PascSymbolName [19]
PascSymbolName{21)]
PascSymbolName [29]

for T := 22 to 28 do PascSymbolName[I

1= VarSymbol; PascSymbolName([7] := RecordSymbol;
:= CaseSymbol; PascSymbolName([9] := IfSymbolj

1= ThenSymbol; PascSymbolName[ll] := ElseSymbol;

:= DoSymbol; PascSymbolName[13] := 0fSymbol;

:= ForSymbol; PascSymbolName[l5] := WhileSymbol;

:= WithSymbol;
:= RepeatSymbol;
:= UntilSymbol;

LabelSymbol;
Identifier;
= AlphaOperator;

ﬁgg SymbclName i= ProgSymbol to AlphaOperator do
StatementTypeOf [SymbolName] := OtherStatement
Statement TypeOf [BeginSymbol] := CompoundStatement;
StatementTypeOf [CaseSymbol] := CaseStatement;
Statement TypeOf [IfSymbol] := IfStatement;
StatementTypeOf [ForSymbol] := ForWithWhileStatement;
StatementTypeOf [WhileSymbol] := ForWithWhileStatement;

StatementTypeOf [WithSymbol

= ForWithWhileStatement;

StatementTypeOf [RepeatSymbol] := RepeatStatement;
end {ConstantsInitialization};

var

procedure WriteA(Character: Char);

I: width;

TestNo: Integer;

begin
CharCount :=

CharCount + 1; Oldest :=

CharCount mod BufferSize;

with UnWritten[Oldest] do

begin

f CharCount > BuffSzPl

b_egi_n

if ChIsEndLine

then
begin

if IndentAfterEOL < O

then

begin
Write(Blanks: - IndentAfterEOL);
OutputCol := OutputCol - IndentAfterEOL;

end
else

begin
1f Increment < 0

begln
I := WriteRightCol - OutputCol + 1;

if I > 0 then Write(Blanks: I);
TestNo := LineNumber; I := 0;
repeat TestNo := TestNo div 103 I := I+ 1;
until TestNo = 0;
Write(Zeroes: (6 - I), LineNumber: I);
LineNumber := LineNumber - Increment;
if LineNumber > 9999
then LineNumber := LineNumber - 10000;
WriteLn;

end

else

begin

WriteLn;
if Increment > O

= ProcSymbol; PascSymbolName[20] := FuncSymbolj

ST# SKAN TV¥ISVYd

8/6T "¥3dW3I23d

65 39Vvd

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

then
begin
Write(LineNumber: 4,
LineNumber := LineNumber
end
end;
if IndentAfterEOL > 0

. -

)3

+ Increment;

then Write(Blanks: IndentAfterEOL);

OutputCol := IndentAfterEOL + 1;
end;
ChIsEndLine := False;
end {IF ChIsEndLine}
else
begin Write(Ch); OutputCol := OutputC
end {ELSE};
end {IF CharCount > };
Ch := Character; WriteColumn := WriteColumn
end {WITH};
end {WriteA};

procedure FlushUnwrittenBuffer;

begin
WriteA(’” “);

with UnWritten[Oldest] do
begin ChIsEndLine := True; IndentAfterEOL :=
WriteColumn := 0; for I := 0 to BuffSzMl do Wri

end {FlushUnwrittenBuffer};

procedure StartNewLineAndIndent;

begin
if PackerIsOff and DisplaylsOn

then
begin
WriteA(” ’); LastSymbol := PeriodSymbol;
with UnWritten[Oldest] do

begin
ChIsEndLine := True;

ol + 1;

+ 13

0; end;
teA(”)3

IndentAfterEOL := WriteLeftCol + LeftMargin - 1;

end;
WriteColumn := WriteLeftCol + LeftMargin;
end {IF PackerIsOff};
end {StartNewLineAndIndent};

procedure ReadACharacter;

begin
if ReadColumn > ReadRightCol
then
begin
if ReadRightCol < MaxReadRightCol
then begin NextChIsSEOL := True; ReadlLn end
else ReadColumn := 2;
end
else
if ReadColumn = 1 then
while ReadColumn < ReadLeftCol do
begin
if EOLn(Input) then ReadColumn := 1
else begin ReadColumn := ReadColumn + 1;
end;
if NextChIsSEOL

Get(Input) end

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

;= False; ChIsSEOL := True;

Character := Input ~; ReadColumn := ReadColumn + 1;

Get(Input); ChISEQL := False;

then
begin
Character := ° “; NextChIsEOL
ReadColumn := 1;
if NoFormatting
then
begin
WriteA(” 7);
with UnWritten[Oldest] do
begin
ChIsEndLine := True;
IndentAf terEOL := WriteLeftCol - 1;
end;
WriteColumn := WriteLeftCol;
end;
end
else
if not EOF(Input)
then
begin
NextChIsSEOL := EOLn{Input);
if NoFormatting then WriteA(Character);
end

else begin FlushUnwrittenBuffer;

end {ReadACharacter};

procedure WriteSymbol;

yar
I: Width;
NumberBlanksToWrite: OptionSize;
begin
if DisplayIlsOn
then

begin

goto 13 end

NumberBlanksToWrite := SymbolGap;

if (LastSymbol in [LeftParenth, LeftBracket, PeriodSymbol]) or
(SymbolName in [Semicolon, RightParenth, RightBracket,
CommaSymbol, PeriodSymbol, ColonSymboll) or (SymbolName in
[LeftBracket, LeftParenth]) and (LastSymbol = Identifier)

then NumberBlanksToWrite :=
else

0

if (SymbolName in AlphaSymbols) and (LastSymbol in

AlphaSymbols)
then

if WriteColumn <= WriteRightCol then
begin WriteA(” ‘); NumberBlanksToWrite := SymbolGap - 1j

end;

if WriteColumn + Length + NumberBlanksToWrite - 1 >

WriteRightCol
then

begin
WriteA(”)

with UnWritten[Oldest]) do

begin
ChIsEndLine := True;
if PackerIsOff
then

begin

1if WriteLeftCol + LeftMargin + LongLineIndent +
Length = 1 > WriteRightCol

then Length := 10;

IndentAf terEOL

WriteLeftCol - 1 + LeftMargin +

¢T# SHIN TYISVd

RERVENER

8L61

T6 39Vvd

364 LongLineIndent; 430

begin

365 WriteColumn := WriteLeftCol + LeftMargin + 431 for I := 1 to N do
366 LongLineIndent; 432 —begin -
367 end 433 while not (Character in (Digits + EndDirectv)) do
368 else 434 CopyACharacter;
369 begin 435 Specification[I] := 03
370 Af Length > WriteRightCol - WriteleftCol + 1 436 if not (Character in EndDirectv)
371 B then Length := WriteRightCol - WriteLeftCol + 1; 437 then -
372 IndentAfterEOL := WritelLeftCol - 1; 438 repeat
373 WriteColumn := WriteLeftCol; 439 Specification[I] := 10 * Specification[I) + Ord(Character)
374 end; 440 - 0rd(°0°);
375 end {WITH}; 441 CopyACharacter;
376 end .. 442 until not (Character in Digits)
377 else for I := 1 to NumberBlanksToWrite do writeA(” 7); 443 else Specification[I] := Invalid;
378 for 1 := 1 to Length do WriteA(Symbol[I]); 444 end {FOR};
379 end (IF DisplaylsOn}; 445 end {ReadIn);
380 LastSymbol := SymbolName; 446
381 end {WriteSymbol}; 447
382 448 begin {DoFormatterDirectives}
383 449 EndDirectv := [“*", “]"];
384 procedure CopyACharacter; 450 repeat
385 451 if Character in ["A7, “B", °C°, ‘D", "E’, '¥F’, ‘¢", ‘I’, ‘L*, ‘N,
386 Dbegin 452 ‘P°, ‘R, ’S%, ‘W]
387 if DisplaylsOn 453 then
388 then 454 begin
389 begin 455 FormatOption := Character;
390 1f WriteColumn > WriteRightCol then 456 case FormatOption of
391 begin 457 ‘A, ’E°, ‘1", ‘G’, ‘P°, ‘L7, °S":
392 while (Character = ° 7) and not ChIsEOL do 458 begin
393 ReadACharacter; 459 ReadIn(l, Specification);
394 if not ChIsEOL then StartNewLineAndIndent; 460 if (Specification[l] < WriteRightCol - WriteLeftCol - 9)
395 end; 461 or (FormatOption = "P7)
396 1f ChIsEOL 462 then
397 then 463 case FormatOption of

gin TA”: = H
ggg beLeftMarg:l.n := 0; StartNewLineAndIndent; Zgé ':': DeclarAlignment Specification(l];
400 LeftMargin := ActualLeftMargin; 466 1f Specification[l] < 4 then
401 end 467 begin
402 else WriteA(Character); 468 ProcNamesWanted := Specification[l] > 1;
403 end; 469 EndCommentsWanted := Odd(SPECIFICATON[1]);
404 ReadACharacter 470 end;
405 end {CopyACharacter}; 471 ’G’: SymbolGap := Specification([1];
406 — 472 ‘1’: IndentIndex := Specification[l];
407 473 ‘L’: LongLineInde*#**ecification[1];
408 procedure DoFormatterDirectives; 474 ‘P": ProcSeparation := Specification{l1];
409 475 “8°: StatmtSeparation := Specification[1]
410 const 476 end {CASE};
411 Invalid = - 13 477 end {SINGLE PARAMETERS);
412 478 W, R*, N':
413 type 479 begin
414 ParamCount = 1 .. 23 480 ReadIn(2, Specification);
415 Params = array [ParamCount] of Integer; 481 1f Specification[2] <> Invalid
416 482 then
417 var 483 cagse FormatOption of
418 Specification: Params; 484 W
419 FormatOption: Char; 485 if (Specification[l]) > 0) and (Specification(2] <
420 PrevDisplay, 486 BufferSize - 2) and (Specification([2] -
421 PrevNoFormatting: Boolean; 487 Specification[l] > 8)
422 EndDirectv: CharSet; 488 then
423 489 begin
424 490 WriteLeftCol := Specification[l];
425 procedure ReadIn(N: ParamCount; var Specification: Params); 491 WriteRightCol := Specification(2];
426 492 end;
427 var 493 ‘R7:
428 1: ParamCount; 494 if (Specification[l] > 0) and (Specification[2] -

429 495 Specification[l] > 8)

ST# SHAN TV¥ISVd

R ERTEREN

8§61

¢S 319vd

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

ReadLeftCol := Specification([l];
ReadRightCol := Specification(2];
end;
N7
begin
LineNumber := Specification[l];
Increment := Specification[2];
while not (Character in ([’<”] + EndDirectv))
and (Character <> “>") do
CopyACharacter;
if Character = ">
then Increment := — Increment
end
end {CASE};
end {DOUBLE PARAMETERS};
‘87, C’, ‘D7, TF:
begin
repeat CopyACharacter;
until Character in ([“+, “-="] + EndDirectv);
if Character in [“+7, "-")
then
case FormatOption of
‘B’

.

if DisplayIsOn
then BunchWanted := Character = “+";
’C”: PackerIsOff := Character = “-";
‘D
begin
PrevDisplay := DisplaylIsOn;
DisplaylsOn := Character = "+°;
if PrevDisplay and not DisplayIsOn
then
begin
WriteA(‘*%); WriteA(")");
SavedBunch := BunchWanted;
BunchWanted := False;
end
else
if not PrevDisplay and DisplaylsOn then
begin
StartNewLineAndIndent; WriteA(’(");
WriteA(“*’); BunchWanted := SavedBunch;
end {IF NOT PREV};
end { ‘D": };

“F’:

begin
PrevNoFormatting := NoFormatting;

NoFormatting := Character = "-";
DisplayIsOn := not NoFormatting;
if PrevNoFormatting and not NoFormatting
then ReadACharacter;
if not PrevNoFormatting and NoFormatting
then WriteA(’-");
end;
end {CASE};
end {Boolean PARAMETERS}
end {CASE};
end {THEN)
elgse if not (Character in EndDirectv) then CopyACharacter;
until Character in EndDirectv;
if (Character = “)°) then CopyACharacter;
end {DoFormatterDirectives};

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

procedure ReadSymbol;

const
ReadNextCh = True;
DontReadNextCh = False;

TestSymbol: Alfa;
CharNumber: Width;
I: Width;

procedure SkipComment;

begin
repeat while Character <> “*’ do ReadACharacter; ReadACharacter

until Character = “)”;
ReadACharacter; LastSymbol := Comment; ReadSymbol
end {SkipComment};

procedure DoComment;

var
I: OptionSize;

procedure CompilerDirectives;

begin repeat CopyACharacter; until Character in ["[7, ’*7]
end {CompilerDirectives};

begin {DoCoumment}

begin
f LastSymbol in [Comment, Semicolon] then

_—Begin
LeftMargin := 0; StartNewLineAndIndent;
LeftMargin := ActualLeftMarging
end;
WriteSymbol; if Character = “$° then CompilerDirectives;
Aif Character = “[° then DoFormatterDirectives;
repeat
while Character <> "*° do CopyACharacter; CopyACharacter;
until Character = “)7;
CopyACharacter; LastSymbol := Comment; ReadSymbol;
end;
end {DoComment};

procedure CheckFor(SecondChar: Char; TwoCharSymbol: Symbols;
ReadAllowed: Boolean);

begin
if ReadAllowed then
begin
Length := 1; Symbol[l] := Character;
SymbolName := NameOf [Character]l; ReadACharacter;
end;
if Character = SecondChar
then
begin
Symbol[2] := Character; Length := 2;
SymbolName := TwoCharSymbol; ReadACharacter;
1f (not PackerIsOff) and (SymbolName = Comment)
then Length := 0

SKHIN TVISVd

4

¢ T

RER N ERER

861

£S5 39Yd

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
645
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

end;
end {CheckFor};

begin {ReadSymbol}
if (Character in [“A R R
R”, ‘LT, W, N : .
S T AR Y T TR A
then
case Character of
‘_‘7(,:
begin
CheckFor(’*’, Comment, ReadNextCh);
if (SymbolName = Comment) and PackerIsOff then DoComment
else if SymbolName = Comment then SkipComment;
end;
‘AT, ’B*
N,
‘z
begin
CharNumber := 1; SymbolIsNumber := False;
repeat
Symbol[CharNumber] := Character; ReadACharacter;
CharNumber := CharNumber + 1
until not (Character in LettersAndDigits);
Length := CharNumber - 1;
for CharNumber := CharNumber to Alfaleng do
Symbol[CharNumber] := 7
Pack (Symbol, 1, TestSymbol); I := 1;
PascalSymbol[LastPascSymbol] := TestSymbol;
while PascalSymbol(I] <> TestSymbol do I := I + 1;
SymbolName := PascSymbolName [I]};
end {LETTER};
07, 17, c27, 737, ‘4%, *5°, 767, ‘77, "8, ‘9°:

’

3
.
s

, ‘C”, ‘D’, ‘E°, ‘F°, ‘G", ‘H’, ‘I’
‘0%, "B, 'Q°, ‘R’, ‘57, ‘T°, *

begin
SymbolIsNumber := True; CharNumber := 1;
Fepeat
Symbol[CharNumber] := Character; ReadACharacter;

CharNumber := CharNumber + 1
until not (Character in Digits + ["."]);
if Character in [“B7, “E’]
then
begin
Symbol[CharNumber] := Character; ReadACharacter;
CharNumber := CharNumber + 1;
if Character in Digits + ['+", "-"] then
repeat
Symbol[CharNumber] := Character; ReadACharacter;
CharNumber := CharNumber + 1
until not (Character in Digits)
end;
Length := CharNumber -~ 1; SymbolName := Identifier;
end {NUMBER};

begin
repeat ReadACharacter until Character <> ” ’; ReadSymbol
end;
*>", ‘:”: CheckFor(’=", OtherSymbol, ReadNextCh);
<’
begin
CheckFor(’=", OtherSymbol, ReadNextCh);
if SymbolName <> OtherSymbol
then CheckFor(’>", OtherSymbol, DontReadNextCh};
end;

if LastSymbol <> EndSymbol

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

720
721

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

then CheckFor(’.’, Range, ReadNextCh)
else SymbolName := PeriodSymbol;
begin
CharNumber := 1;
repeat
repeat
Symbol[CharNumber] := Character;
CharNumber := CharNumber + 1; ReadACharacter
until Character = 7’
Symbol[CharNumber] := Character;
CharNumber := CharNumber + 1; ReadACharacter;
until Character <> *°"";
Length := CharNumber - 1; SymbolName := OtherSymbol;
if Length > WriteRightCol - WriteLeftCol + 1
then
begin
FlushUnwrittenBuffer; WriteLn;
WriteLn(” *** STRING TOO LONG.’);
goto 13
end;
end {STRING}
end {CASE}
else
begin
Symbol{l] := Character; SymbolName := NameOf [Character];
Length := 1; ReadACharacter
end
end {ReadSymbol};

procedure ChangeMarginTo(NewLeftMargin: Margins);

var
IndentedLeftMargin: Margins;

begin
ActualLeftMargin := NewLeftMargin; LeftMargin := NewLeftMargin;
1f LeftMargin < 0 then LeftMargin := 0
else
begin
IndentedLeftMargin := WriteRightCol - 9 - LongLineIndent;
if LeftMargin > IndentedLeftMargin
then LeftMargin := IndentedLeftMargin
end
end {ChangeMarginTo};

procedure DoDeclarationUntil(EndDeclaration: SymbolSet);

procedure DoParentheses;

var
SavedLgLnId: OptionSize;

begin
SavedLglnld := LongLineIndent;
if DeclarAlignment > O
then

begin

LongLineIndent := WriteColumn + SymbolGap + 1 - LeftMargin -

WriteLeftCol;
repeat WriteSymbol; ReadSymbol;
until SymbolName = RightParenth;
WriteSymbol; ReadSymbol;

SKIN TVISVd

3
it

¢T

RN

8/61

e 39Vd

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

end
else
begin
LongLineIndent := 13
ChangeMarginTo(ActualleftMargin + IndentIndex);
StartNewLineAndIndent;
repeat WriteSymbol; ReadSymbol
until SymbolName = RightParenth;
WriteSymbol; ReadSymbol;
ChangeMarginTo(ActualLeftMargin - IndentIndex);
end {ELSE};
LongLineIndent := SavedLgLnld;

end {DoParentheses};

procedure DoFieldListUntil(EndFieldList: SymbolSet);

var

LastEOL: Margins;
AlignColumn: Width;

procedure DoRecord;

var
SavedLeftMargin: Width;

begin
SavedLeftMargin := ActualLeftMargin; WriteSymbol; ReadSymbol;
ChangeMarginTo(WriteColumn - 6 + IndentIndex - WriteLeftCol);
StartNewLineAndIndent; DoFieldListUntil([EndSymboll);
ChangeMarginTo{Actuallef tMargin - IndentIndex);
StartNewLineAndIndent; WriteSymbol; ReadSymbol;
ChangeMarginTo(SavedLeftMargin);

end {DoRecord};

procedure DoVariantRecordPart;

var
SavedLeftMargin,
OtherSavedMargin: Margins;

begin
OtherSavedMargin := ActualLeftMargin;

if DeclarAlignment > 0
then
begin
repeat WriteSymbol; ReadSymbol;
until SymbolName in [ColonSymbol, OfSymbol];
if SymbolName = ColonSymbol
then
begin
WriteSymbol; ReadSymbol;
with UnWritten[LastEOL] do

begin
IndentAfterEOL := IndentAfterEOL + AlignColumn -
WriteColumn;
if IndentAfterEOL < 0 then IndentAfterEQOL := 03
end;

WriteColumn := AlignColumn;
ChangeMarginTo(ActualLef tMargin + AlignColumn -
WriteColumn);
end;
end;
ﬁ SymbolName <> OfSymbol then

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

repeat WriteSymbol; ReadSymbol; wuntil SymbolName = OfSymbol;

ChangeMarginTo(ActualLeftMargin + IndentIndex);
repeat
WriteSymbol; ReadSymbol;
if SymbolName <> EndSymbol
then
begin
StartNewLineAndIndent;
repeat WriteSymbol; ReadSymbol;
until SymbolName in [LeftParenth, Semicolon, EndSymbol];
if SymbolName = LeftParenth
then
begin
WriteSymbol; ReadSymbol;
SavedLeftMargin := ActualleftMargin;
ChangeMarginTo(WriteColumn - WriteLeftCol);
DoFieldListUntil([RightParenth]); WriteSymbol;
ReadSymbol; ChangeMarginTo(SavedLeftMargin);
end;
end;
until SymbolName <> Semicolon;
ChangeMarginTo(OtherSavedMargin);
end {DoVariantRecordPart};

begin {DoFieldListUntil}
LastEOL := Oldest;
if LastSymbol = LeftParenth
then for I := 1 to DeclarAlignment - Length do WriteA(” ");
AlignColumn := LeftMargin + WriteleftCol + DeclarAlignment + 1;
while not (SymbolName in EndFieldList) do
begin
if LastSymbol in [Semicolon, Comment] then
if SymbolName <> Semicolon
then begin StartNewLineAndIndent; LastEOL := Oldest end;
lﬁ_SymbETﬁEEe in {RecordSymbol, CaseSymbol, LeftParenth,
CommaSymbol, ColonSymbol, EqualSymbol]
then
case SymbolName of
RecordSymbol: DoRecord;
CaseSymbol: DoVariantRecordPart;
Lef tParenth: DoParentheses;
CommaSymbol, ColonSymbol, EqualSymbol:
begin
WriteSymbol;
if DeclarAlignment > O
then
if not (EndLabel <= EndFieldList)
then
begin
with UnWritten[LastEOL] do
begin
IndentAfterEOL := IndentAfterEOL +
AlignColumn - WriteColumn;
if IndentAfterEOL < 0
then IndentAfterEOL := 0;
WriteColumn := AlignColumn;
end;
if SymbolName = CommaSymbol then
begin
StartNewLineAndIndent; LastEOL := Oldest;
end;
end {IF DeclarAlignment};
ReadSymbol;
end { , 2=}
end {CASE}

¢T# ShAN 1VISVd

REEVERER

L6T1

g

9G 35Vd

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

else begin WriteSymbol; ReadSymbol end;
end {WHILE};
end {DoFieldListUntil};

begin {DoDeclarationUntil}
StartNewLineAndIndent; WriteSymbol;
ChangeMarginTo(ActualLleftMargin + IndentIndex);
StartNewLineAndIndent; ReadSymbol;
DoFieldListUntil(EndDeclaration); StartNewLineAndIndent;
ChangeMarginTo(ActualLeftMargin - IndentIndex);

end {DoDeclarationUntil};

procedure DoBlock (BlockName: CommentText; BlockNmLength: Width);
var
I: Width;

IfThenBunchNeeded: Boolean;
AtProcBeginning: Boolean;

procedure DoProcedures;

var
I: 0 .. 20;
ProcName: CommentText;
ProcNmLength: Width;
begin

for I := 2 to ProcSeparation do StartNewLineAndIndent;
StartNewLineAndIndent; WriteSymbol; ReadSymbol;
for I := 0 to (Length -~ 1) div AlfaLeng do
Pack(Symbol, I * AlfaLeng + 1, ProcName[I + 1]);
ProcNmLength := Length; WriteSymbol; ReadSymbol;
1if SymbolName = LeftParenth then
begin
WriteSymbol;
repeat ReadSymbol; WriteSymbol
until SymbolName = RightParenth;
ReadSymbol;
end;
if SymbolName = ColonSymbol then

repeat WriteSymbol; ReadSymbol; until SymbolName = Semicolon;

WriteSymbol; ReadSymbol;
ChangeMarginTo(ActuallLeftMargin + IndentIndex);
StartNewLineAndIndent; LastProgPartWasBody := False;
DoBlock (ProcName, ProcNmLength); LastProgPartWasBody := True;
ChangeMarginTo(ActuallLef tMargin - IndentIndex); WriteSymbol;
ReadSymbol; StartNewLineAndIndent;

end {DoProcedures};

procedure DoStatement(var AddedBlanks: Width; StatmtSymbol:
CommentText; StmtSymLength: Width);

var
- I: Width
StatmtBeginning: Integer;
StatmtPart: array [l .. 4] of Integer;
BlksOnCurrntLine,
BlksAddedByThisStmt: Integer;
Successful: Boolean;

procedure Bunch(Beginning, Breakpt, Ending: Integer;

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

StatmtSeparation: OptionSize);

begin
if BunchWanted or IfThenBunchNeeded
then
begin
if StatmtSeparation < 1 then StatmtSeparation := 1;
BlksOnCurrntLine := BlksOnCurrntLine + StatmtSeparation - 1;
Successful := ((Ending - Beginning + BlksOnCurrntLine +
UnWritten[Beginning mod BufferSize].IndentAfterEOL) <
WriteRightCol) and (CharCount - Beginning < BufferSize);
if Successful
then
begin
BlksAddedByThisStmt := BlksAddedByThisStmt +
StatmtSeparation - 1;
UnWritten(Breakpt mod BufferSize].IndentAfterEOL :
StatmtSeparation;

end;
end;
end {Bunch};

procedure WriteComment;

yar
I: Width;
SavedLength: Width;
SavedSymbolName: Symbols;
SavedChars: SymbolString;
begin

SavedSymbolName := SymbolName;
for I :=1 to Length do SavedChars[I]) := Symbol[I];
SavedLength := Length; SymbolName := OtherSymbol;
Symbol[l] := “(’; Symbolf2] := “*’; Length := 2; WriteSymbol;
for T := 0 to (StmtSymLength - 1) div AlfalLeng do
Unpack (StatmtSymbol[I + 1], Symbol, (I * Alfaleng + 1));

Length := StmtSymLength; SymbolName := PeriodSymbol;
LastSymbol := PeriodSymbol; WriteSymbol; Symbol{l] := “*7;
Symbol{2] := ")‘; Length := 2; WriteSymbol;
SymbolName := SavedSymbolName; Length := SavedLength;
for I := 1 to Length do Symbol[I] := SavedChars[I];

end {WriteComment};

procedure DoStmtList(EndList: Symbols);

var
BlksAfterPrt2: Width;
AtProcEnd: Boolean;
begin

AtProcEnd := AtProcBeginning; WriteSymbol; ReadSymbol;
StatmtPart[l] := CharCount + 1; StatmtPart[2] := StatmtPart[l];
if SymbolName <> EndList
then
begin
if ProcNamesWanted then
if AtProcBeginning then
if LastProgPartWasBody
then if LastSymbol = BeginSymbol then WriteComment;
AtProcBeginning := False;
DoStatement (AddedBlanks, StatmtSymbol, StmtSymLength);
BlksAfterPrt2 := AddedBlanks;
BlksAddedByThisStmt := BlksAddedByThisStmt + AddedBlanks;

$L6T “¥3@W3dad

99 39¥d

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

while SymbolName <> EndList do
begin
WriteSymbol; ReadSymbol;
if SymbolName <> EndList
then
begin
StatmtPart[3) := CharCount + 1;
DoStatement (AddedBlanks, StatmtSymbol,
StmtSymLength);
BlksOnCurrntline := AddedBlanks + BlksAfterPrt2;
BlksAddedByThisStmt := BlksAddedByThisStmt +
AddedBlanks;
Bunch (StatmtPart[2], StatmtPart[3], CharCount,
StatmtSeparation);
if not Successful
then
begin
BlksAfterPrt2 := AddedBlanks;
StatmtPart [2] := StatmtPart[3];
end
else BlksAfterPrt2 := BlksOnCurrntLine;
end;
end {WHILE SymbolName <> EndList};
end {IF SymbolName <> EndList};
BlksOnCurrntLine := BlksAddedByThisStmt;
Bunch (StatmtBeginning, StatmtPart[l], CharCount, SymbolGap);
StartNewLineAndIndent; StatmtPart[l] := CharCount;
repeat WriteSymbol; ReadSymbol;
until SymbolName in [Semicolom, UntilSymbol, EndSymbol,
ElseSymbol, PeriodSymbol];
if Successful
then
begin
if EndList = UntilSymbol
then StatmtPart[4] := StatmtSeparation
else StatmtPart{4] := SymbolGap;
Bunch (StatmtBeginning, StatmtPart[l], CharCount,
StatmtPart [4]);
end {IF Successful};
if not (Successful and BunchWanted)
then
if EndList = EndSymbol then
if LastSymbol = EndSymbol then
if AtProcEnd and ProcNamesWanted then WriteComment
else if EndCommentsWanted then WriteComment;
end {DoStmtList};

begin {DoStatement}

BlksOnCurrntLine := 0; Successful := False;
BlksAddedByThisStmt := O3
ChangeMarginTo(ActualLeftMargin + IndentIndex);
StartNewLineAndIndent; StatmtBeginning := CharCount;
1f SymbolIsNumber
then
begin
with UnWritten[Oldest] do
begin

IndentAfterEOL := IndentAfterEOL - 1 - Length - SymbolGap;

1f IndentAfterEOL < 0 then IndentAfterEOL := O;
end;
WriteSymbol; ReadSymbol {Write LABEL}; WriteSymbol;
ReadSymbol {Write COLON};
end;
case StatementTypeOf [SymbolName] of
ForWithWhileStatement:

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

begin
Pack(Symbol, 1, StatmtSymbol(l]); StmtSymLength := Length;
repeat WriteSymbol; ReadSymbol
until SymbolName = DoSymbol;
WriteSymbol; ReadSymbol; StatmtPart{l] := CharCount + 1;
DoStatement (AddedBlanks, StatmtSymbol, StmtSymLength);
BlksOnCurrntLine := BlksOnCurrntLine + AddedBlanks;
BlksAddedByThisStmt := BlksAddedByThisStmt + AddedBlanks;
Bunch (StatmtBeginning, StatmtPart[1], CharCount, SymbolGap);
end;

RepeatStatement: DoStmtList(UntilSymbol);
IfStatement:

begin
Pack(Symbol, 1, StatmtSymbol[l]); StmtSymLength := Length;
repeat WriteSymbol; ReadSymbol
until SymbolName = ThenSymbol;
StartNewLineAndIndent; StatmtPart[l] := CharCount;
WriteSymbol; ReadSymbol; StatmtPart[2] := CharCount + 1;
DoStatement (AddedBlanks, StatmtSymbol, StmtSymLength);
BlksOnCurrntLine := AddedBlanks;
BlksAddedByThisStmt := AddedBlanks;
Bunch(StatmtPart[1], StatmtPart[2], CharCount, SymbolGap);
if Successful
then
Bunch (StatmtBeginning, StatmtPart[l], CharCount,
StatmtSeparation)
else IfThenBunchNeeded := True;
if SymbolName = ElseSymbol
then
begin
Pack (Symbol, 1, StatmtSymbol{l]);
StmtSymLength := Length; IfThenBunchNeeded := False;
StartNewLineAndIndent; StatmtPart[3] := CharCount;
WriteSymbol; ReadSymbol;
StatmtPart [4] := CharCount + 1;
DoStatement (AddedBlanks, StatmtSymbol, StmtSymLength);
BlksOnCurrntLine := AddedBlanks;
BlksAddedByThisStmt := BlksAddedByThisStmt +
AddedBlanks;
Bunch (StatmtPart (3], StatmtPart[4}, CharCount,
SymbolGap) ;
BlksOnCurrntLine := BlksAddedByThisStmt;
1if Successful then
Bunch (StatmtBeginning, StatmtPart(3], CharCount,
StatmtSeparation);

end
else
if (CharCount - StatmtBeginning) < BufferSize
then
begin
BunchWanted := not BunchWanted;
BlksOnCurrntLine := 0;
Bunch(StatmtBeginning, StatmtPart[l], StatmtPart([2],
SymbolGap) ;
BunchWanted := pot BunchWanted;
end;
IfThenBunchNeeded := False;
end {IfStatement};

CaseStatement:

begin
repeat WriteSymbol; ReadSymbol

until SymbolName = OfSymbolj;

WriteSymbol; ReadSymbol;
ChangeMarginTo(ActualLeftMargin + IndentIndex);
while SymbolName <> EndSymbol do

begin

¢T# SKIAN TV3ISVd

R AR

§/61

LS 38Vd

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

StartNewLineAndIndent; StatmtPart[l] := CharCount;
for T := 0 to (Length - 1) div Alfaleng do
Pack (Symbol, (I * AlfalLeng + 1), StatmtSymbol(I + 1]);

StmtSymlLength := Length;
repeat WriteSymbol; ReadSymbol

until SymbolName = ColonSymbol;

WriteSymbol; ReadSymbol;
if not (SymbolName in [Semicolon, EndSymbol])
then

begin

StatmtPart[2] := CharCount + 1;
DoStatement (AddedBlanks, StatmtSymbol,
StmtSymLength);

BlksOnCurrntLine := AddedBlanks;
BlksAddedByThisStmt := BlksAddedByThisStmt +
AddedBlanks;

Bunch (StatmtPart (1), StatmtPart[2], CharCount,
SymbolGap);
end {IF NOT(SymbolName...)};
if SymbolName = Semicolon
then begin WriteSymbol;
end;

ChangeMarginTo(ActualLef tMargin - IndentIndex);
StartNewLineAndIndent; WriteSymbol; ReadSymbol;
if EndCommentsWanted and (LastSymbol = EndSymbol) then

ReadSymbol; end;

begin
StatmtSymbol[l] := ‘CASE ’; StmtSymLength := 4;
WriteComment;
end;
end {CaseStatement};
OtherStatement:
begin

while not (SymbolName in [Semicolon, UntilSymbol, EndSymbol,
ElseSymboll) do
begin WriteSymbol;
end {OTHER};
CompoundStatement: DoStmtList(EndSymbol)
end {CASE};
AddedBlanks := BlksAddedByThisStmt;
ChangeMarginTo(ActuallLeftMargin - IndentIndex);

ReadSymbol end;

end {DoStatement};

begin {DoBlock}
LastProgPartWasBody := LastProgPartWasBody and (SymbolName =

if SymbolName = LabelSymbol

if

BeginSymbol);
then DoDeclarationUntil(EndLabel);
then DoDeclarationUntil (EndConst);

Symbo 1IName ConstSymbol

if SymbolName = TypeSymbol then DoDeclarationUntil(EndType);

if SymbolName = VarSymbol then DoDeclarationUntil(EndVar);
while SymbolName in [FuncSymbol, ProcSymbol] do DoProcedures;
if SymbolName = BeginSymbol

then

else begin WriteSymbol;

end

begin
if LastProgPartWasBody
then for I := 2 to ProcSeparation do StartNewLineAndIndent;
IfThenBunchNeeded := False; AtProcBeginning := True;
ChangeMarginTo(ActualLef tMargin - IndentIndex);
DoStatement (I, BlockName, BlockNmLength) { I IS DUMMY PARAM };
LastProgPartWasBody := True;
ChangeMarginTo(ActualLef tMargin + IndentIndex);

end

ReadSymbol {Write FORWARD} end
{DoBlock };

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

procedure Initiallize;

var
I: Width;

begin { CONSTANTS: }

Digits := [’0" .. “97];

LettersAndDigits := ["A°, ’B”, “C", ‘D", ‘E’, ‘F°, “G¢", ‘H’,
T30, R, ‘LY, M7, ‘N°, ‘0%, ‘P*, ‘Q’, ‘R°, °S*, ‘T°, ‘U
‘WY, ‘X", 'Y", ‘2°] + Digits;

AlphaSymbols := [ProgSymbol, BeginSymbol, EndSymbol, ConstSyml
TypeSymbol, RecordSymbol, CaseSymbol, LfSymbol, ThenSymbol
ElseSymbol, DoSymbol, OfSymbol, ForSymbol, WithSymbol,

10,
s TV,

bol,

WhileSymbol, RepeatSymbol, UntilSymbol, Identifier, VarSymbol,

ProcSymbol, FuncSymbol, LabelSymbol, AlphaOperator];
EndLabel := [ConstSymbol, TypeSymbol, VarSymbol, ProcSymbol,
FuncSymbol, BeginSymbol];
EndConst := EndLabel - [ConstSymbol];
EndType := EndConst - [TypeSymbol];
EndVar := EndType « [VarSymboll;
{ Initialize COLUMN DATA: }
WriteColumn := 0; LeftMargin

:= 0; ActuallLeftMargin := 03

OutputCol := 1; ReadLeftCol := 1l; ReadRightCol := MaxReadRi
WriteLeftCol := 1; WriteRightCol := MaxWriteRightCol; Oldes
CharCount := 1; LineNumber := O; Increment := 03

{ Initialize Boolean PARAMETERS: }
PackerIsOff := True; BunchWanted := False;
ProcNamesWanted := True; EndCommentsWanted := False;
NoFormatting := False;

{ Initialize NUMERIC PARAMETERS: }
IndentIndex := 3; LongLineIndent := 3;
SymbolGap := 1; StaimtSeparation :

{ Initialize INPUT CONTEXT DATA: }

NextChIsEOL := False;

ProcSeparation := 2;

ReadColumn := 1; ChIsEQL := False;
for I := 0 to BufferSize do Symbol[I] := ~ 7
LastSymbol := PeriodSymbol; LastProgPartWasBody := False;

end {Initialize};

begin {MainProgram}
ConstantsInitialization;
if EOF(Input)
else
begin
ReadACharacter; ReadSymbol;
if SymbolName <> ProgSymbol
then WriteLn(’ *** "PROGRAM" EXPECTED.’)

Initialize;
then WriteLn(” *** NO PROGRAM FOUND TO FORMAT.’)

H
3; Declaralignment := 0;

ghtCol;
t =13

DisplayIsOn := True;

else

begin =
(N
e L L g A =

* *
* FORMAT THE PROGRAM * 'ﬁ

* e e -2 T *
* . =
Khkkkkkhkhkkkkkkk RREAX KAk hhkkAkkkhkkhkkk B
ek deok ok de s Kk de kA k ek ek k K S
» &
StartNewLineAndIndent; 3
WriteSymbol; ReadSymbol; G
for T := 0 to (Length - 1) div Alfaleng do 8
Pack(Symbol, (I * Alfalenmg + 1), Main{I + 1]); v

MainNmLength := Length;

repeat WriteSymbol; ReadSymbol; until SymbolName = Semicolon;
WriteSymbol; ReadSymbol; StartNewLineAndIndent;

DoBlock (Main, MainNmLength);
FlushUnwrittenBuiffer;

WriteA(“.);

0621

ET

{pus

6871

fpua

8821

SniN 1¥3SVa

¢ T#

RERTEREL

§.6T1

8§59 I5Vd

MOVING A LARGE PASCAL PROGRAM FROM AN LSI-11 TO A CRAY-1
Richard L. Sites, APIS Department, UC/San Diego 92093

In March, 1978, 1 had occasion to move a 2400-1line PASCAL program from an
LSI-11 at the University of California/San Diego (UCSD) to a Cray-1 at Los
Alamos Scientific Laboratory (LASL). At both places, the compiler is a vari-
ant of the P4 portable compiler. This note summarizes the experience and makes
several major points about PASCAL:

1. It was possible to move a substantial PASCAL program from a small
slow machine to one approximately 150 times bigger. No other language
has compatible full-language implementation across such a wide range
of machines~--essentially from the world's slowest micro to the world's
fastest supercomputer.

2. There were compile-time and run-time incompatibilities which should
not have existed. The last part of this note is directed to implemen-
tors, with a plea to avoid such problems.

3. Using a table-top LSI-11 system, an on-going project is developing
production software for the Cray-1. This would not be feasible in
BASIC, FORTRAN, or assembly language.

Before describing the problems encountered in moving the program, a little
background is needed. The P4 portable PASCAL compiler is about 4000 lines of
PASCAL source, and translates from PASCAL to an intermediate language called
P-CODE. P-CODE is the machine Tanguage for a pseudo-machine that has a simple
stack and about 50 operations. The P-CODE version of a program consists ex-
clusively of a stream of these simple operations, with no associated side
tables or assumed information.

On the Cray-1, P-CODE is translated by another 4000 line PASCAL program into
Cray-1 assembly language, which then cascades into the standard assembler and
loader. This sequence allowed a running, reasonably efficient PASCAL system
to be brought up on the Cray-1 with very few months of effort.

On the LSI-11, P-CODE is represented in a very compact form, and is inter-
preted directly. This has two advantages over compiling to native PDP-11 ma-
chine code: First, the P-CODE form of a program is more compact than the ma-
chine code, typically by a factor of two., This space compactness is the sole

reason that the compiler is able to compile itself in a 56K-byte memory. Second,

by changing only the interpreter, the identical P-CODE can be run on other mi-
cros, allowing the entire compiler and operating system to be transported to
other machines.

The program moved from UCSD to LASL is the skeleton of a machine-independent
optimizer for P-CODE. The initial version of the optimizer wiTl work on Cray-1
P-CODE, but later versions should work on other variants, and hence one set of
optimizing algorithms may eventually be running on a wide variety of machines.
The characteristics of the two machines and the initial 2400 line skeleton are
summarized in Table 1.

Source program moved

Pascal source lines 2400
Pascal procedures

P-CODE instructions (Cray- 1) 9200
Cray-1 instructions 9100

Articles

Compile times in seconds LSI-1 _Cray-1 Approximate ratio
Pascal to P-CODE (lines/min.) 245 (600) 1.19 {120000) 200 : 1
P-CODE to Cray-1 asm - 2.30
Cray-1 asm to binary - 4.62
Cray-1 loader - 0.66

TOTALS 245 8.77 (16400) 30 : 1

Execution times in seconds

75 data lines 51 0.32 150 : 1
2400 data lines n.a. 3.43
Memory sizes in bytes 56K 8000K 150 : 1

Table 1. Summary of source program moved and machines-used.

The rest of this note describes the six major portabiﬁity problems en-
countered, along with my suggestions for solutions. Some of these comments
parallel those found in other articles on these pages over the past few
years. The entire process of bringing the program up on the Cray-1 took
1-1/2 days, although I originally expected it to take 1/2 a day. The extra
time was wasted on the problems below.

Portability problem #1

The Cray-1 compiler recognizes only lower-case ASCII reserved words,
while the UCSD compiler recognizes only upper-case ASCII. This meant that
the first compilation died immediately, looking for the word "program".

This problem clearly subverts the essential idea of ASCII as a standard
Code for Information Exchange. It is not sufficient just to have the com-
piler convert all input to a single case, because (1) character string con-
stants must not be changed, and (2) ALIAS SPELLINGS of identifiers should
not be allowed. An alias spelling is defined to be one that may or may not
be recognized as the same as an original spelling, depending on the details
of a particular compiler implementation. In our current context, a variable
declared as:

VAR XYZ : TNTEGER;

could have alias spellings of "xyz" and "Xyz", among others. As a matter
of principle, I believe that such spellings should not be allowed because
they serve only to introduce confusion about whether the original programmer
intended three distinct variables or one. The standard example program for
this issue is:

BEGIN
VAR XYZ : INTEGER;

PROCEDURE ABC;
VAR xyz : REAL;
BEGIN
XYZ := 12; (* which block, inter or outer ??%)
END;

Converting all identifiers to upper case resolves the assignment to the REAL
variable, while treating the case shifted names as distinct resolves the assign-
ment to the INTEGER variable. I believe that the original programmer's intent
in such a program is truly ambiguous, so the program should not be allowed in
the first place. The declaration xyz : REAL should generate a compile-time

ST# SKRIAN 1YISVd

RN

861

65 35Vd

Articles

error {or at least be flagged with a warning) on the basis that an alias spell-
ing of the same variable already exists. Thus, the issue of how to resolve the
assignment never comes up. In quick summary, my proposed portable upper- lower-

case rules are:

{1) Reserved words, such as BEGIN are recognized independent of the
case of the individual letters, so that "BEGIN", "begin", and
"BeGiN" are all recognized as reserved words.

(2) An identifier used in a declaration may have its individual
letters in any case, and that particular spelling is inserted
into the symbol table, SO LONG AS NO ALIAS SPELLING ALREADY
EXISTS in the symbol table.

(3) An identifier used in the body of a program must exactly match
the spelling in the symbol table, including each letter being
of the correct case.

These rules allow any program to be compiled, so long as words in it are con-
sistently spelled with the same pattern of upper- and lower-case letters.

(ASIDE: These same rules can be used to detect most cases of identifiers
which differ after the first eight letters, without needing to store more than
eight tetters in the symbol table. Most compiler symbol tables store 7-bit
ASCII characters in 8-bit bytes. If all the characters after the first 8 in
an identifier are hashed and the hash value stored in the unused bits of thase
bytes, then rule (2) above can be interpreted to mean "an alias spelling exists
{and hence an error/warning message is generated) if some existing identifier
in the symbol table has the same first 8 characters, but a different hash code
for the remaining characters.” Rule (3) above can be interpreted to mean “"the
first 8 characters of an identifier and the hash code for the remaining char-
acters must match exactly." This idea completely clears up the concern of
A.H.J. Sales (Pascal News, Feb. 1978, p. 78), except when the hash codes for
two different tails turn out to be identical; this can be made rare, and can
be guaranteed not to happen for single-character differences. End of ASIDE.)

Portability problem #2

Contrary to the Report, the Cray-1 compiler does not recognize empty field
lists in variant record declarations, RECORD CASE I:BOOLEAN OF TRUE:{X,Y:
INTEGER); FALSE:()END , nor does it recognize untagged variant records,

RECORD CASE BOOLEAN OF ... The lesson here is clear--recognize the entire
language as defined, without taking shortcuts.

Portability problem #3

UCSD Pascal includes non-standard procedures OPEN and CLOSE. I had to re-
work the calls to use the standard RESET and REWRITE, which lack two useful
capabilities: (1) there is no way to close a file explicitly, and hence there
is no way to release a file for other uses before the program terminates; there
also is no way to specify whether the file is to be disposed of (a temporary
disk file) or kept (a disk output file) after termination; (2) there is no way

to open a file explicitly, supplying a character-string file name at that time.

These are limitations I can live with, but I would prefer to see some agreed-
upon standard extensions in this area.

Portability problem #4

Type checking was inconsistent. UCSD Pascal accepted

TYPE WHOLENUM = 0..32767;
VAR 1 ¢ INTEGER;
FUNCTION F(...):WHOLENUM;

1= F(L.)*

while the Cray-1 compiler complained about operand incompatability at the
multiply. Inconsistent type checking is a well-known problem in Pascal, so

1 won't dwell on it. In this particular case, though, I am frustrated because
the whole purpose of introducing the type WHOLENUM is to convey to the reader
(and the compiler) the idea that all WHOLENUMs are intended to be non-negative.
My temporary fix was : TYPE WHOLENUM = INTEGER;

At this point in the process, my 2400 line program compiled properly and
executed for the first time. I had fixed problem #1 by converting the entire
program to lower case, and this fix now came back to haunt me, because the
input data file was still in upper case, and hence did not match any of my
lower-case character-string constants. Converting the entire data file to
Jower case also did not quite do the trick, because my program's output (re-
member, the 2400 line program optimizes P-CODE) cascades eventually into the
Cray-1 loader, which demands standard procedure names (such as SIN) in upper
case. Clearly, the case shift problem was taking more energy than it should.

Portability problem #5

The first real problem to crop up in execution was that my hash function
always returned the same value, zero, instead of reasonably well distributed
series of numbers in the range 0..127. The hash function was built using
(conceptual) shifts and exclusive-or's, and in fact did a fair amount of lying
with variant records to jump between character, integer {I+I used for left
shift of one bit), and set {S1+52, $1*S2, and ALLBITS-S used to build XOR)
representations. There is a serious issue here of how to build a portable
hash function. The problem will be even harder if strong typing advocates’
remove variant records as an “escape hatch". Try it yourself -- build a func-
tion which accepts a PACKED ARRAY 0..7] OF CHAR and returns an integer in the
range 0..127. The particular hash function desired XORs the 8 characters,
each one offset one bit from the next to get a 15-bit intermediate. The upper
8 bits and the lower 7 are then XORed, and the lower 7 bits of this are re-
turned. (This particular function guarantees different hash values for in-
puts which differ by any one character, or which differ by a transposition.

In addition, no overflow is generated on a 16-bit machine.)

Portability problem #6

The final output of the program was spaced funny. In the statement
WRITELN(3,4);

UCSD Pascal inserts no blanks around the fields, giving "34", while Cray-1
Pascal uses a default field width, giving " 3 4". Inmy application,

the blanks are not wanted, but Pascal output editing is not precisely de-
fined, so many implementations supply extra blanks. Often, these blanks
reflect a legitimate desire to separate items of output when specified field
widths are exceeded, as in WRITELN{100:2, 200:2) which normally prints as
"100 200". I propose that a specified field width of zero mean no padding
blanks, and that the exact details of output editing be specified somewhere.

Overall, moving a 2400-3ine Pascal program rroved surprisingly successful,
and having done it once should make it easy to move a 5000-1ine program this
summer.

(* Received 78/05/01 *)

SKIN TV¥ISYd

u
ft

¢T

3234

‘
1]

RERY

§L61

09 35vd

On the Article "What to do After a While"

Roy A. Wilsker - Mass. State College Computer Network

INTRODUCTION

The letter by A.H.J. Sale1 and the article by Barron
and Mullinsz in PASCAL News #11 address themselves to an am-
biguity in the definition of the PASCAL language: should

Boolean expressions be evaluated in a parallel or sequential
manner?

For example, when we write "P and Q", do we mean
1) (parallel or "logical" evaluation)

PAQ (=QApP)
or

2) {sequential evaluation)
if P then Q else false
I argue here for the parallel approach.

THE PROBLEM OF PgeHOLOGICAL SET

My first objection to sequential evaluation is that it
looks parallel to anyone who has had any exposure to symbolic
logic. This is the problem of "psychological set", first dis-
cussed by Gerald M. WeinbergB. This term connotes a state in
which our way of thinking about a situation blinds us to its
reality., For example, a common error encountered by program-
mers who use languages in which variables need not be declar-
ed is the use of misspelled variable names which "look like"
other (valid) names. This kind of error can be extremely hard
to find.

Thus, a maintenance programmer who runs into the expres-~
sion

while (i <= maxsize) and (ali] <> item) do
and later finds

while (alil <> item) and (i <= maxsize) do
may not even see them as different expressions!

PROVING PROGRAMS CORRECT

— e
The advent of structured control statements has generated
a great deal of interest in the problem of proving, either by
hand or automatically, the correctness of programs . My second
objection to symbolic evaluation is that it will probably in-

crease the difficulty of doing such verification by an order
of magnitude. This belief is based on the fact that, in ab-
stract mathematics and logic, non-commutative (i.e., order-—
dependent) objects are much harder to handle than commutative

objects.

ON "THE SPIRIT OF PASCAL"

Barron and Mullins argue that sequential evaluation al-
lows us to program "more in the spirit of PASCAL". Whatever
that patriotic remark means, I strongly disagree. Let's look
at the example they give. We are to search a table for a giv-

en item. Using sequential evaluation, their solution is:

var table : array [1..maxsize] of whatever;

index := 1;

while (index <= maxsize) and (table[indeﬁ <> item)
do index := index + 1;

(* condition for item not found is "index » maxsize" *)
There are two fundamental flaws in this solution:

1) The solution twists the algorithm to fit a given data

structure.

One of the great advantages of PASCAL over most other
languages is the ability it gives the user to create data
structures which work well with a given problem. Consider the
following solution to the table search problem5:

var table : array [O..maxsize] of whatever;
table[0] := item; (* put in sentinel for end of search *)
index := maxsize;
while table [index] <> item
do index := index - 1j;

(* condition for item not found is "index = 0" *)

2) The repetitive construct mixes together logical and
iterative repetition.

Indeed, in Algol 686. a cleaner way to write the Barron-

Mullins algorithm would be:

1 to maxsize while table[i] <> item

do index := i + 1 od;

condition for item not found is "index) maxsize"

ST# SKIN T¥ISVd

RER T ENEN

A

19 39vd

The problem with this technique is that on exiting the
loop, one does not know if termination was caused by the count
being exceeded or by the logical condition failing. This is a
common error—-causing situation, better known as "exiting a

loop to the same place from the side and the bottom"7.

ON "EFFICIENT'" ALGORITHMS

Finally, I would like to take a moment to talk about ef-

ficiency. Barron and Mullins say:

".,.. But in the Pascal community we should have gotten
beyond judging features solely in terms of implementa-
tion efficiency. What matters is being able to write

correct programs that are easily comprehensible.™

The answer to the question of efficiency is not so sim=-
ple. True, the first consideration of the designer should al-
ways be the correctness and clarity of the design. But effi-
ciency often comes in a close second, and sometimes it's a
dead heat: in certain circumstances (e.g., real time appli-
cations or CAI) if the program is not efficient enough, in 6.
terms of either size or execution time, it is irrelevant as
to whether or not it's clear, or even correct - the program
is unusable. 7.
As Donald Knuth8 and others9
lem is generally not that the designer has made efficiency a 8.

have pointed out, the prob-

consideration, but how he has tried to make the design effi-
cient. The villain is not efficiency itself, but micro and
premature optimization.
In fact, the algorithm given in this article is a good 9.
example of how to optimize a program: by improving its data
structures and algorithms. In a Ratfor preprocessor written
in PASCAL, the substitution of the algorithm given above for
the original one {which was essentially the Barron-Mullins
algorithm) resulted in a 30% decrease in the preprocessor's
execution time with no impairment of the clarity of the

programe.

REFERENCES
1. PASCAL News #11, p. 76-78.
2. PASCAL News #11, p. 48-50.

3. Weinberg, Gerald M. The Psychology of Computer Program-—
ming. Van Nostrand-Reinhold, 1970.

See, for example,

Dijkstra, E.J. A Discipline of Programming. Prentice-
Hall, Englewood Cliffs, 1976.

Good, D.I., "Towards a Man-Machine System for Proving

Program Correctness'", Report TSN-11, The University of
Texas at Austin, Computation Center, June 1970.

Hoare, C.A.R., "An Axiomatic Basis for Computer Program-
ming", Comm. ACM, vol. 12, no. 10, October 1969, p. 567~
580, 183.

Marmier, E., "A Program Verifier for PASCAL", IFIP
Congress 1974.

Naur, P., "Proof of Algorithms by General Snapshots',
BIT, vol. 6, no. 4, 1966, p. 310-316.

This sclution to the table search problem is taken from
the excellent article:

Knuth, Donald E., "Structured Programming with GOTO
Statements" in Current Trends in Programming Methodol-

ogy: Volume I, Software Specification and Design, ed.
Raymond T. Yeh. Prentice~Hall, Englewood Cliffs, 1977.

See, for example,

Pagan, Frank G. A Practical Guide to Algol 68. John
Wiley & Somns, 1976.

Kernighan, B.W., and Plauger, P,J. The Elements of

Programming Style. McGraw-Hill, 1974.

Knuth, Donald E., "An Empirical Study of FORTRAN Pro-
grams", Software — Practice and Experience, vol. I,
no. 2 (April-=June, 1971), p. 105-133,

(See also the work cited in reference 5.)

See, for example, the work cited in reference 7, and

Yourdan, Edward. Techniques of Program Structure and

Design. Prentice-Hall, 1975.

(* Received 78/05/11 *)

MASSACHUSETTS STATE COLLEGE COMPUTER NETWORK

T# SwaN VISV

¢

RERLVEREL

§L6T

¢9 33vd

A RESOLUTION OF THE BOOLEAN EXPRESSION-EVALUATION QUESTION
or

IF NOT PARTIAL EVALUATION
THEN CONDITIONAL EXPRESSIONS

Morris W. Roberts
Robert N. Macdonalgd
Department of Information Systems
Georgia State University
Atlanta, Georgia 30303

Introduction

The programming languages ALGCL-60([1] and ALGOL-W[2], which contain
the precursors of many of the elegant features of PASCAL, are richer
than PASCAL in the variety of ways that an expression may be formed.
Both ALGOL-60 and ALGOL-W contain the conditional expression and ALGOL-W
contains, in addition, the case expression and the value block. A
"PASCALized" summary of these constructs is shown in the syntax diagrams
below.

relational expression

. simgle
expression
simple
expression™
expression
N : [
By -1 simple expression [
L* 4¢4E§1ational expressinJ 4
Boolean then expression @ expression |

expression

expression expression

O o

statement

S
@

Although the effects of the conditional expression, case
expression, and value block may be had in PASCAL (or in FORTRAN, for
that matter), the resulting constructs require multiple statements and
the declaration and use of temporary variables that are not otherwise
needed if these forms of expression are used. We recommend the
1ncorgoration of these forms of expression into PASCAL on the following
grounds:

1. The increased programming facility that they offer more than

compensates for the increased syntatic complexity which their adoption
would entail.

2. The conditional expression, in particular, promotes rigor by
removing semantic ambiguities that exist in the evaluation of Boolean
expressions.

3. None of these extensions conflicts with the PASCAL design goals
cited by vavrai3l].

We shall restrict the scope of this paper to the «case for the
conditional expression, showing first some examples of its use, and
second the way in which it avoids the current arguments concerning the
proper evaluation of Boolean expressions.

The Conditional Expression

In BNF notation, the <conditional expression> may be defined to be

if <Boolean expression> then <expression>
else <expression>.

(ALGOL-60 restricts the <expression> following the then to be a <simple
expression>.)

This construct permits such statements as:
a. x := (if n<100 then a+b else a-b) * (c+d);
b. a := sqrt(b[if i in s then i else 0]);

c. while if x<=10 then al[x]<>b else false do x:=x+1;

d. append := if null(x) then copy(y)
else if x .class=list then
cons (copy(x”.car),append(x”.cdr,y))
else referenceerror ('append: lst arg invalid structure');

Expressing these constructs in PASCAL is straightforward. Example
c could be written as

found := false;
while (x<=10) and not found do
if a[x]=b then found:=true else x:=x+l;

Thus. the PASCAL version of ¢ requires two statements and the extra
Boolean variable, "found".

Resolution of a Semantic Froblem

Another possibility is that the previous example could be written
as

while (x<=10) and (alx]<>b) do x:=x+1;

provided the evaluation of the Boolean expression is terminated as soon
as x<=10 becomes false. This avoids errors when a[ll] does not exist or
when it 1is undefined. This approach is currently the subject of some
debate. 1In two recent articles in Pascal News, the authors Sale[4] and
Barron and Mullins([5] have taken opposite positions regarding standards
for the evaluation of Boolean expressions. Sale recommends the "Boolean
operator" approach which forces full evaluation of the complete
expression, whereas Barron and Mullins prefer "seguential conjunction”
which permits the compiler to terminate evaluation of an expression as
soon as its truth or falsity is unegquivocally determined.

ST# ShAN TVISVd

ERYEREL

861

£9 39Vd

The reasons that have been given for partial evaluation seem to be:

1. efficiency

2. the resolution of cases in which one or more of the terms and
factors of the expression are undefined.

Although Barron and Mullins have described three syntactically
correct ways of avoiding the problem of point 2 by segmenting the
expression, still they advocate the wuse of partial evaluation. Their
position is understandable, for the technigues reguired are contrived.
Unfortunately, they are the only reasonable ones available with the
present language, and partial evaluation makes the code appear to be
simpler.

The User Manual[6], as noted by Sale, interprets the Report|[6]
neither to require nor to forbid the full evaluation of Boolean
expressions. However, the syntax of the <expression> given in the
Report clearly implies that all operators are to be applied in the
evaluation of an expression. Thus, it seems reasonable to expect that
any action which appears explicitly in the flow of control must be
evaluated. If this is not the case there will always be an uncertainty
as to what portions of the program have been executed. For example, the
statement

while A and B do ...

means that the statement following do is to be executed if A and B are
both true. According to Barron and Mullins, this would be reinterpreted
to mean "don't evaluate B and don't execute if A is false." There is a
subtle difference between these two notions., The difference is
important because B might involve a Boolean function which performs
necessary operations on global variables or var parameters.

Full evaluation of the expression is in keeping with the syntax
described in the Report and with intuition. From the language-decsign
standpoint, there seems to be no Jjustification for performing a partial
evaluation of an expression. This is particularly true since the most
compelling reason advanced for the partial evaluation is to avoid an
awkward temporary variable. The conditional expression is a complete
solution to this specific problem in that it permits the selection, by
the programmer, of the terms and/or factors that are to be evaluated.

Example c, above, solves problem 2 by explicitly directing the flow
of control around impossible cases. It does not depend on implicit
conventions of partially evaluating expressions.

In our opinion, the only reason for not fully evaluating an
expression is efficiency of time and memory utilization. While the use
of partial evaluation does have an advantage over the standard PASCAL
construction, the advantage is insignificant when it is compared against
the conditional-expression approach. The following shows the code
segments that might be generated for example ¢, above, if the target
machine were a PDP-11,

Conditional Expression

1$: evaluate the condition
put result of x<=10 on stack

CMP (SE)+, #TRUE
BEQ 2$

evaluate the else expression
put false on the stack

ER 3%

28: evaluate the then expression
put al[x}<>b on stack

3$: CMP (SP)+,#TRUE
ENE 43

perform do

BR 1s
4s:

Partial Evaluation

18: evaluate expression
put x<=10 on stack

CMP (SP)+,#TRUE
BNE 43

evaluate expression
put afx]<>b on stack

CMP (SP) +, #TRUE
BNE 4%

perform do

BR 1s
48:

We see from these examples that the space advantage gained from partial
evaluation is that for evaluating the else part of the if and a branch
instruction. In this case it amounts to two instructions. It is more
interesting to note that the execution time advantage is zero as long as
the else condition is not evaluated. We feel that there is insufficient
justification for adopting partial evaluation as a standard feature of
the language. It might, however, be a desirable
implementation-dependent feature activated by a compiler directive.

Conclusions

PASCAL is not yet a complete 1language in that inclusion of several
desirable features of other languages has not yet been openly debated.
We recommend the case expression, the value block, and particularly the
conditional expression as additions to the language. The basis for this
recommendation is that these features will promote semantic rigor, will
not conflict with any language~-design goals, will provide the programmer
with new and useful tools, and will improve the efficiency of the
generated code over standard PASCAL.

References

1. Naur, Peter (Editor), et al., "Revised Report on the Algorithmic
Language ALGCL 60," Communications of the ACM 6 (January, 1963), 1-17.
2. wirth, Niklaus and C. A. R. Hoare, "A Contribution to the
Development of ALGOL," (Communications of the ACM 9 (June, 1966),
413-433, -

3. Vavra, Robert D., "What Are Pascal's Design Goals?", Pascal News 12
{June, 1978), 33-35.

¢T# SkaAN T¥ISVYd

I ERTERER

§L61T

79 dYyvd

4, Sale, Arthur H. J., "Compiling Boolean Expressions," Pascal News 11

(February, 1978) 76-78.

5. Barron, D. W%. and J. M. Mullins, "What to do After a While,"
Pascal News, 11 (February, 1978) 43-50.
6. Jensen, Kathleen and Niklaus Wirth, PASCAL User Manual and Report,
Springer-Verlag (1975).

(* Received 78/08/07 *)

What to do after a while .. longer

Chepstow (029 12) 4850 P,M.N, Irish
5 Norse Way Sedbury
CHEPSTCW Gwent
78 Se 20 W UNITED KINGDCM NP6 7BB
References

(1.) Barronm, Mulling, J.M. WHAT TO DO AFPER A WHILE
)3 11 p. 48, 1977
(2.) Jensen, K, & Wirth, N, PASCAL USEB MANUAL AND REFCRT

2nd cor. reprint o e 2n pringer-Veriag, 1978
(3.) Sale,A.H.J. CCOMPILING BOCLEAN EIPRESSICNS
PN 11 p.

I was brought up to regard B&M (1.) appendix example 1. as the
normal way of searching a table. I deny that it is a distortion,
and, on the contrary, claim that it bears both a simple and an
obvious relationship to the problem. When I study it, I see
only the falsity of their assertion.

User Manual, page 22 :- "The while statement" ... "The
expression controlling the repetition must be of type Boolean.
It is evaluated before each iteration, so care must be taken
to keep the expression as simple as possible."

User Manual, pages 20-21, quoted by Sale (3.), beginning :-
"Boolean expressions have the property ... " I take this to
mean that J&W (2.) have as little sympathy for those who rely on
not well-defined factors as B&M have for those who rely on
side~-effects of functions,

Uger Manual, page 12 :- 'Hence, it ie possible to define each of
the 16 Boolean operations using the above logical and relational
operators.® There follows a table showing the 16 Boolean
operations, in which p and q are Boolean operands, r is a
Boolean variable and ®".® , "1" . XOR , EQV & IMP are
abbreviations for false , true (except "case 1"), exclusive CR ,
equivalence & implication.

case 1 2 3 4
equivalent
p=.0.11 Boolean operator
Q=.1.1 expression expression
TSz o o o o false
P | p and q not (not p or not q)
e e 1. P>aq p and not q
e o 11 P
.1 .. p<q not p and q
s 1 .1 q
e 1 1. p <> q not and q or p and not q | XCR
. 111 porgq not { not p and not q)
1... not (poraq) not p and not q
1. .1 p=2gq p and q or not p and not q EQV
1.1. not q
1.11 p>=gq p or not q NP
171. . not p
11 .1 p<=gq not p or q IMP
111, not (pand q) | not p or not gq
1111 true

If we were starting the language design again and
we wanted to include a facility for telling implementations
how to evaluate expressions (though, in view of B&M's own
remark about architectures, that seems of dubious value),

8o that we were looking for "sequential conjunction® versions of

and > < or >z <=

then I, for one, would oppose the use of "and" & "or" themselves,
on the ground of their old and strong Boolean algebra
connotation.

If ROP-2 and RTL/2 have already "adopted” (it should be "adapted®)

them for such a purpose, that is their problem.

Not that I care, but B&M's function andop seems unnecessarily
complicated to me.
function andop (p , g 3 Boolean) : Boolean ;
begin andop := p and q end ;
is sufficient — because the arguments are both evaluated when
the function is called -~ surely ?

What the spirit of Pascal says to me is that we ought not to
(i) write programs that rely on not well-defined factors
side~effects of functions or undefined values,
(ii) depend on implementors to let us get away with them,
(iii) tell implementors to let us get away with them,
or (iv) complain if implementors use any means they can devise
to prevent us getting away with them.

The spirit of Pascal also says that it rather fancies itself as

a two-edged sword !
Midedeléoh

N TR : ' =<>c<=>2= () [Tt (% %)

copies to :~ D,¥W.Barron J.M.Bishop K.Jensen G.H.Richmond
A.H.J.Sale N,Wirth

78 Se 20 W

(* Received 78/09/26 *)

sT# ShAN T¥ISYd

“u3dk3IdAd

8/61

99 I5Vd

KNOW THE STATE YOU ARE IN

Laurence V. Atkinson
University of Sheffield
England

In a nutshell

A number of recent articles have highlighted problems with multiple exit
loops in Pascal. Many of these problems disappear when a loop is controlled
by a user—defined scalar.

Introduction

Multiple exit loops and problems with their implementation have featured
prominently in four recent articles: Barron and Mullins [2], Bishop [31, Bishop
[4] and Horton [5]. Many of these problems do not occur if user—defined scalars
are introduced as 'state indicators' to control the loop. A multiple exit loop
constitutes a multi-state process. Pascal's ordinal types provide a natural
means of identifying multiple states. This state transition approach is introd-
uced by first considering the Barron and Mullins paper [2] and then taking the
other articles in turn.

Barron and Mullins

Their example is linear search for a specified item within a vector (assumed
full) but considering the possibility that the desired item may be absent. The
program they produce is

const maxsize = ...; sSuccmaxsize = ...;
var table : array [1..maxsize] of whatever;
index : 1..succmaxsize;
index := 1;
while (index <= maxsize) and (table [index] <> item)
do index := index + I;
if index > maxsize then {item absent} . . . else {item found} . . .

Barron and Mullins claim that “this is a natural way of expressing the
operation to be carried out" and is inkeeping with "the spirit of Pascal".
The point of their paper is that this program is viable only if boolean
expressions are evaluated by sequential conjunction on a strict left-to-right
basis. The Report [6] leaves this issue open but the User Manual [6] states
that all operands in a boolean expression will be evaluated. Jensen and Wirth
[61 (Chapter 10) produce an equivalent example to illustrate the problem. A
state transition approach to their solutions is presented by the present author
in [1].

I suggest that a programming style both more natural and more in the spirit
of Pascal is achieved when user—defined scalars are introduced and used as state
indicators.

State Indicators

PASSARR LSS AT 2

In a simple search environment there are three distinct states of interest:

(1) I haven't found it yet but I'm still looking,
(ii) got it,

(iii) 1I've looked everywhere but it's not here.

This leads us to a solution using a three-state scalar (figure 1).

const endoftable = ,..;
type toendoftable =1 .. endoftable;

searchstates = (searching, thingdsent, thingfound);

var item : array [toendoftable] of things;
here : toendoftable;

outcome : searchstates;

here :=

reEeat

if item [here] = thingwanted then outcome := thingfound else

if here = endoftable then outcome := thingabsent else
until outcome <> searching;

case outcome of
thingfound :. . . ;
thingsdbsent :. .

end {case}

1; outcome := searching;

here := succ (here)

Figure 1. Linear search with state tramsition

We now comment upon the program of figure 1.

i)
(ii)

(iii)
@iv)
(v)
(vi)

(vii)

The intent of the program is more readily apparent.

The program is now more easily extended to include other cases of
interest (eg. figure 2).

Subsequent processing, upon exit from the loop, is more transparent:-—
determination of whether or not the desired item has been located

is cleaner.

The compound boolean expression has disappeared and so issues of
'boolean operator' or 'sequential conjunction' approach are avoided.
The order of making the tests is not implementation dependent:-

the desired order is unambiguously expressed.

The subscript cannot go out of the bounds of the array. In Barron
and Mullins' version the range of the subscript must be one greater
than the index range of the array. We return to this point when
discussing Bishop's paper [31].

No redundant tests are made. Barron and Mullins incur a test (index
<= maxsize) which is always true upon entry to the while loop. My
objection to redundant testing is based on considerations of logic
rather than efficiency.

(viii) Efficient implementation of the loop termination test is possible

(jump on zero).

¢T# SkhaAN TVISVd

R ERTERER

5§61

99 39V%d

searchstates = (searching, absent, foundinfirsthalf, foundinsecondhalf);

repeat
if item [here] = thingwanted then

case here <= (endoftable gi! 2) of
true : outcome := foundinfirsthalf;
false : outcome := foundinsecondhalf
end {casel
else « .« «

until outcome <> searching;

case outcome of
foundinfirsthalf : . . . ;
foundinsecondhalf : . . ., ;
absent : . . .

end {case}

Figure 2. Extended linear search with state transition.

Judy Bishop [3] addresses the general problem of subrange exhaustion in a
loop of the form

= min;

le (i <= max) and condition do
in

{ something }

i := suce (i)
end

P e

h

g -

£

in conjuction with

type index = min .. max;
var i : index;

When considering Barron and Mullins it was noted that one natural consequence
of the state transition approach was that the subrange variable could not exceed
its bounds. The present problem is therefore solved by this same approach and
as before, produces a more transparent program (figure 3). The point raised by
John Strait, and discussed by Judy Bishop in [4] is also covered by this approach.

Rexker

Mark Horton [5] considers two examples each involving a double exit loop and
uses them as a basis for suggesting a modification to the Pascal language. He
encourages the use of a deterministic loop which, without any indication

type index = min .. max;
var i : index;
state : (looping, rangeexhausted, otherexitcondition);

i := min; state := looping;

repeat
{something}

if i = max then state := rangeexhausted else
if ... then state := otherexitcondition else
i = suce (1)

until state <> looping;

case state of
rangeexhausted LI
otherexitcondition : . . .

end {case}

Figure 3. Bishop's loop with state transitiom.

of the fact at the loop control level,can jump completely out of itself and far away.

I do not claim that state indicators can remove the need for all gotos but they can
provide a pleasing solution to both Horton's examples. We consider them in turn.

1. Binary search

Horton's program is

const maxsize = ,..; succmaxsize = ...;
var a : array [1..maxsize] of ...}

L : 0 .. maxsize;

u : I .. succmaxsize;
found : boolean;

u) flag found do

if x < a[mid] then u := mid-1 else
if x > a[mid] then & := mid+l else
exit found

end;
if found then ... else ...

which is a syntactic sugaring of the following true Pascal fragment.

SKHIN TV3ISVYd

¢1#

I ERYERER

8/61T

£9 39Yd

found := false;

mid := (L+u) div 2;
if x < almid] then u := mid-1 else
if x > almid] then & := mid+! else

begin
found := true; goto 1
end

end;
1 : if found then ... else ...

Again we find our familiar three-state process.

Although we should not worry unduly about minor points of efficiency we must
still bear overall efficiency considerations in mind when designing an algorithm.
To be most aesthetically pleasing one of the first tests a program should make in
a search loop is 'is what I'm looking at what I want?'. However, for binary
search, we suffer if we test for equality before we test relative magnitude. This
is because, in general, we will hit elements we don't want far more often than we
hit an element we do want. Consequently, for about half of our probes, we should
know which pointer to move after making only one comparison. Accordingly we
follow Horton's order of comparisons (figure 4). Again we comment on the new
program.

i) Program intent is more transparent.

(ii) No modification to the language is necessary to permit a clean solution.

(iii) The subscripts cannot go out of the bounds of the array. Horton's
program suffers from a variant of Bishop's problem: if the sought
entry falls outside the table Horton's version terminates with &-u=1
(ie u = 2-1 or £ = u+l).

(iv) The new program is more easily extended to include other cases of
interest. In particular we may be interested to know if we found
an item on the final probe available {ie when (top = bottom) and
(itemwanted = itemat [topl)} or earlier (in which case itemwanted =
itemat [middlel).

The computation in both programs is the same but for the extra test
'state <> stillchopping' now at the end of each iteration. This test can be
implemented (by any compiler anticipating this form of loop control) as a
single jump (jump on zero) so this overhead should be of little concern to us.

2. Prime numbers
Horton's program is
const n = ,..;
var p, d : 2 .. n3
potential_prime : boolean;
2 to n flag potential_prime do
:= 2 to trunc(sqrt(p)) do

0 then next potential_prime

end;
write (p)
end

const endoftable = ...;
type span = 1 .. endoftable;
var itemat : array [spanl of ...;
bottom, middle, top : span;
state : (stillchopping, found, absent);

bottom := 1; top := endoftable; state := stillchopping;

regeat
if top = bottom then

case itemat [top] = itemwanted of
true : state := found;
false : state := absent
end {case}
else
middle := (top + bottom) div 2;
if itemwanted < itemat [middle]
then top := middle-1 else
if itemwanted > itemat [middlel]
then bottom := middle+l else
state := found
end

until state <> stillchopping;

case state of

found : . .

absent : . . .

end {case}

Figure 4. Binary search with state transition

which, without the syntactic sugar, is

SkIAN T¥ISVd

$T#

333G

-

i ERY

86T

89 39vd

label 1;
const n = ...;
var p, d : 2 .. n;
" potentialprime : boolean;

potentialprime := false;
for p := 2 to n do

begin
for d := 2 to trunc(sqrt(p)) do
if pmod d = 0 then
begin
potentialprime := true; goto 1

end;

write(p);

1 : end

Horton mentions that only odd numbers and divisors need be tested. In the
finite state approach we still sweep through contiguous numbers (although we could
avoid it - as could Horton) but this time start at 5 and test only odd divisors.
Since divisors start at 3 it is sensible to make the loop deal with primes > 3
(hence >= 5). Accordingly primes <=3 are best dealt with separately. Apart

from these modifications we stick to Horton's algorithm (figure 5).
be no need to reiterate previous comments.

There should

const m = ...;
var p, potfactor, rootofp : 2 .. n;
state : (moredivisors, factorfound, pisprime);
ii n <= 3 then primesupto {n) else
primesupto (3);
for p = 5 tondo
if p mod 2 <> O then
begin { p is odd }
rootofp := trunc(sqrt(p));

potfactor := 3; state := moredivisors;

repeat
if p mod potfactor = O then state := factorfound else

if potfactor >= rootofp then state := pisprime else
potfactor := potfactor + 2

until state <> moredivisors;

if state = pisprime then write (p)

end { p is odd }
end

Figure 5. Prime numbers with state transition.

ERReARioRE

We have seen some illustrations of a particular style of programming.

The state transition technique is applicable to a number of programming

situations and to multi-exit loops in particular.
adopted this approach for a number of years and have rarely suffered from
Barron's, Horton's or Mullins/Bishop's complaints.
Mullins' query "What to do after a while?” is "Know the state you are in!"

Refexences

1]

[21]

[31

[43

[51

6]

L.V. Atkinson, "Pascal scalars as state indicators", 1978,
(under review).

D.W. Barron and J.M. Mullins, "What to do after a while",
Pascal News, #11, 48-50, 1978.

Judy M. Bishop, "Subranges and conditional loops",
Pascal News #12, 37-38, 1978.

Judy M. Bishop, Letter to John Strait,
Pascal News, #12, p51, 1978.

Mark D. Horton, Letter to the editor,
Pascal News, #12, 48-50, 1978.

Kathleen Jensen and Niklaus Wirth, Pascal - User Manual
and Report, Springer-Verlag, 1978.

(* Received 78/09/15 *)

LA A R X X X XX X X X X X X X%

I (and my students) have

My response to Barron and

¢$T# SWaAN T1¥ISVd

B ERYERNEN

SLOT

69 39Vd

Forum for Members

DEPARTMENT OF DEFENSE
DEPENDENTS SCHOOTS

DARMSTADT CAREER CENTER
APO New York 09175

EUROPE

25 May 1978
SUBJECT: Pascal News

TO: Pascal User's Group
c/o Andy Mickel
University Computer Center 227 Ex
208 S.E. Union Street
University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy,

Owur school computer group reads with great interest the developments
you have presented in Pascal News and additional papers obtained from
UCSD written by Kenneth L. Bowles concerning Micro Computer Based
Mass Education and the Personalized System of Instruction (PSI).
Until such time when we can pilot and implement microbased systems,
we would like, as a first step, to obtain a Pascal implementation for
ow installed equipment. We have in our overseas schools 32 Interdata
7/16's and 3 Univac 90/30's with some 200 terminals supporting BASIC.
This office represents the European region and has special interest
in the Interdata 7/16 implementation. (Our Pacific region operates
the Univac 90/30's.) These systems are devoted to our instructional
program where one of our goals is to generate computer literate youth.

Many of our graduates become employed with DOD in some capacity. If
DOD, with its "Ironman" project is moving toward a Pascal based
standard system, it is only natural for its own school system to move
in step with the same programing language system.

We would certainly be interested in the experience of other K-12 school
systems which are using Pascal in their computer education programs.
Andy, you speak of jobs for Pascal people. We are a large school system
with over 120,000 students. We invision a real demand for Pascal in-
structors (teachers) in the next few years, but we need help in getting
started.

Our Germaw Apgess fhank you,

DARMETAL CAREER CENTER

SAMUEL W. CALVIN
Coordinator Computer Education

Johnson Controls, Inc.
507 East Michigan Street
Post Office Box 423
Milwaukee, WI 53201
Tel. 414/276 9200

\J LHSr\jSON .giivzgcsi{tb;ig}g:x;uter Center

227 Experimental Engineering
University of Minnesota

Systems & Services Minneapolis, MN 55455
Division

June 8, 1978
Dear Andy:

It was nice talking with you after having been away from
the University of Minnesota for so long. As per your
request, I am documenting in writing the discussion that
we had, in the hope that you will be able to communicate
my request to your readers.

We are currently designing a process control language for
use in our Building Automation Systems. The language

will be similar to (possibly a subset of) PASCAL. In

the course of our system design we have developed a

need to produce a decompiler which will generate a

program in this process control language given an internal
Polish representation. We would like to know if any
literature has been produced on the subject of decompilation
from an internal version (such as Polish or PASCAL P-Code)
to a block structured higher level language such as
PASCAL. If any of your readers have information on this
topic, we would be interested in corresponding with them.

Thank you very much for your assistance in helping me
with this problem. Also, I would like to congratulate you
on the excellent job that you have been doing with the
newsletter.
Sincerely,

QMQ‘-—‘M—-‘M
Dave Rasmussen
DR:ph

P.S. Enclosed is my application for membership for the
next academic year along with the membership fee.

¢T# SKhIAN T¥ISHd

I EETVERER

EL6T

G/ 39Vvd

Sfale o/ j/aritla
Department Of

HIGHWAY SAFETY AND MOTOR VEHICLES

NEIL KIRKMAN BUILDING TALLAHASSEE 32304

COL. J. ELDRIGE BEACH, oiRECTOR
DIVISION OF FLORIDA HIGHWAY PATROL

JOHN D. CALVIN, pirECTOR
OIVISION OF MGTOR VEM/CLES

CLAY W. KEITH, pirecTOR
CIVISION OF DRIVER L'CENSES

RALPH DAVIS

EXZCUTIVE DIRECTCR

AUDRY CARTER, JR.,, 0/RECTOR
OIViISION OF ADFINISTRATIVE SERVICES

April 24, 1978

Dear Andy:

I fear that in my hurry to meet the March 20 deadline for
my letter I allowed two errors to slip by. They are unimportant,
but here are the corrections if anyone wants them.

Paragraph 4 line 5: delete "of".

Paragraph 4 calculations: should be

1000 transactions/day x 30 separators/transaction
=300000 keystrokes/day
24 key entry stations & operators
¥$4,000/month
=$48,000/year

I believe the argument is still valid.

Sincerely

c<d N

C. EDWARD REID
Kirkman Data Center

CER:jem

XXX ERER

UNIVERSITY OF MINNESOTA university Computer Center

TWIN CITIES 227 Experimental Engineering Building
Minneapolis, Minnesota 55455

78/12/01

Open Letter to all PUG members
from Andy Mickel

The Party is Over

I'm tired and want to quit coordinating PUG and editing Pascal News (effective
any time after 1979 July 1). (* Besides, I turn 30 {base 10) on May 4 and you'll no
longer be able to trust me! *)

As I said in this issue's Editor's Contribution, my ability to “"coordinate" PUG
and edit Pascal News may be the best I can do but doesn't seem to be enough. One reaso
is the one T mentioned in PUGN #12: PUG is getting too big for me to handle.

Open Forum for Members

I can't continue; I've done all I can, and my endurance, optimism, good humor,
lifestyle, physical and mental health are all stretched past the limit. The people
closest to me remind me every day.

I'm also a Tittle upset at the seemingly unnecessary growth of politics about
standards, extensions, and the future of PUG and Pascal itself. The politics from my
point of view seems simply a waste of time. If you reply "it's inevitable," I would
answer that it would have happened a lot sooner had PUG been operated and organized in a
conventional and ordinary manner.

What About PUG?

What should happen to PUG and Pascal News?
several possibilities:

I don't know exactly, but there are

1. Disband the organization.

2. Affiliate with a professional society.

3. Institutionalize ourselves and remain independent.
4. Keep PUG the same, but decentralize the work.

Most PUG members I've talked to would 1ike PUG and Pascal News to operate informally,
factually, clearly, and in a friendly manner as it has in the past. One person pointed
out that by not being formalized, PUG was not suxeptible to corrupting influences such as
political, social, or economic gain for personal benefit.

As a fifth alternative, I somewhat doubt that anyone of you will be crazy enough to
step forward and volunteer to take on all the responsibility Tike I did from George
Richmond three years ago. Therefore I didn't include it in the 1ist above.

Disband the Organization

I occasionally have entertained the idea that perhaps the proper ending for an_
unconventional organization like PUG would be to simply shut it down. ("For one br!ef
shining moment there was Camelot.")} I hinted at this in the Editor's Contribution in
PUGN #12.

Shutting PUG down might not be such a bad idea if you realize that eqtities can
outlive their usefulness. In the long term such a decision could be considered brilliant.
You must realize that we have largely accomplished two important goals:

1. Making Pascal programming a respectable activity.
2. Getting an officially-accepted Pascal standard.

However, my friend Steve Legenhausen told me that when thg Whole Earth Catalog project
was stopped, 14-odd cheap imitations appeared, and wouldn't this also happen to Pascal News?

Actually, one of the reasons I've reprinted the roster is to provide insurance against
PUG collapsing--any member had all the information necessary to restart the organization.

Affiliate With a Professional Society

Please realize that with close to 3000 members in 41 countries, PUG functions as one
of the 10 or 15 largest computing organizations in the world. We're certainly one of the
most international.

That is why we are a very desirable "plum" to be annexed by the Computer Society of
the Institute of Electrical and Electronic Engineers (IEEE) or by the Association for
Computing Machinery (ACM) Special Interest Group on Programming Languages (SIGPLAN).

They have made overtures to us recently, and I asked that they put their offers in
writing for publication in a future issue of Pascal News.

Although I think we in PUG do far more to promote good programming ideas and practice
than do those organizations (and indeed, in spite of them!) they would offer us subscriotion
and publication services and a guarantee of continuity. The closest example is STAPL
(Special Technical Committee on APL) within SIGPLAN. But simply looking at STAPL and its
publication Quote Quad might make you forget the idea altogether.

The rates for membership would surely go up, and the "membership services" would not
be much better, and the publication and the group would no Tonger be independent. In fact
you would have to join the parent organization (at absurdly high rates) or else pay nearly
$10 more than you now pay for a PUG-only membership.

$T# SHAN T¥ISVd

“¥3EWIVAC

861

T4 39%d

The simple fact that Pascal News would Tose editorial freedom (manifested for example
by our printing paper clips and crab claws on the cover--or--accepting advertizing, etc.)
is a major concession.

Personally, I've always been against this idea, because I never liked the way I was
(and am) treated as a member and subscriber to SIGPLAN.

Unfortunately, by being late on issues such as this one, I'm not doing much better!

Institutionalize OQurselves and Remain Independent

The most familiar refrain recently among PUG members besides "Keep up the good work!"
and "Hang in there!" is "Keep PUG independent!".

Institutionalization would solve one big headache for me: I was never formally
selected to manage PUG, because I've always considered my work "volunteer." But some
people have demanded that I "represent PUG" at special conferences and make "official
statements.” [I've always hesitated, because at best I realized my authority was by
default, not democratically chosen.

These people always got angry at my hesitation. (Another example of politics that's
making me depressed.) I would always point to the simple mechanism of using the Open
Forum section in Pascal News to air their ideas.

PUG is in good shape financially (a specific report updating the Tast report in
PUGN 9/10 will appear in PUGN 15). Recently, we have been using the extra $2 of the new
§6 memberihip rate here at PUG{USA) to hire some clerical help {about % of a %-time
secretary).

But, you must recognize that technically Pascal User's Group is a non-profit activity
of the University of Minnesota (Computer Center) and that Pascal News is a University of
Minnesota publication. I have taken steps all along to ensure that PUG could be transferred
somewhere else within one week (really!).

The tremendous benefit we've derived from our warm University of Minnesota home
should not be taken for granted. Besides paying my salary, the U of M has provided good
production, publication, and mailing facilities. These are the major reasons the cost
of PUG and Pascal News in my opinion remains reasonable. And we've done what we have
without prostituting ourselves by selling advertizing, without selling the mailing Tist,
and without accepting subsidies from special interests {such as computer companies).

Institutionalization requires a constitution and bylaws, officers, elections, and
more of the same old thing {SOT). PUG member Richard Cichelli wrote a proposed
constitution and sent the following note to me on 78/08/30:

"I hope this is a good enough start. Please work over the
bylaws dues section to reflect the international situation.”

- Rich (Gone Fishing!)
The proposed constitution follows this letter.

In my opinion, this is the best alternative if you want to see PUG continue. However
I do not want to serve as any of the officers or as the editor under a constitution and
bylaws (I will have my hands full simply affecting the transition over the next one or two
years!). The constitution would enable PUG to use authority in standards discussions and
in organizing projects promoting rational programming methods. The constitution would
also give us the independence we would need to sell advertizing etc., in order to keep the
cost of membership Tow. I don't want to waste my time making money for PUG. Count me out.
1'11 be the first person to step aside and not be an obstacle to the greater interest.

Keep PUG the Same, but Decentralize the Work

This is not an alternative as far as I'm concerned. It seems that decentralization
incurs the horrible tradeoff of high overhead and communications problems. If you say
"nonsense" then you may be right, but then I'm the wrong person to coordinate activities.
My involvement in a highly decentralized scheme would be less direct work on PUG and
Pascal News and more a role of an administrator.

I'm not an administrator or editor; I'm a systems programmer!

People have asked me if there was any chance that I want to do PUG full-time. The
answer is "no."

Summar:

I (with the generous help from many dedicated people) have had fun organizing PUG
and putting together Pascal News. We've done so very informally.

I assumed the editorship after issue #4 when George Richmond (who had edited for 2
years) gave up because of lack of time (his management was not as far-sighted regarding
Pascal!). PUG was founded by about 35 persons who attended an ad hoc session at the
ACM '75 conference in Minneapolis. I was there and was "volunteered" by everyone to
coordinate. So if George is Phase I, then I am Phase II.

I became involved with PUG because I wanted to see Pascal succeed, and I knew that
something had to be done urgently to make that happen.

I have had fun in trying to produce a creative and refreshingly different and
unconventional publication to promote a programming Tanguage. At times, it has been
discouraging, and the "bright jdeas" offered by "helpful people" have always tended to
point back to the ordinary--the same old thing (SOT).

I assure you that the SOT approach to PUG and Pascal News would not have succeeded
as well. The conventional wisdom would have doomed Pascal to the role of "just another
Janguage.” But if Pascal hadn't been an extraordinary language, even unconventional
tactics would have failed. The combination was irresistable.

Sometimes I've done things differently just to be different: such as printing
paper clips and a screwdriver on the cover of Pascal News. But other differences I
implemented as "improvements" are those I had alwayswanted to see in the magazines I had
subscribed to. Examples: page numbers on the Teft in the table of contents; a single,
self-explanatory POLICY; enough room on the All1-Purpose Coupon to write a 4-5 line
address and comments about anything; easy-to-obtain and publicized backissues; and
"all the news that fits, we print."

As for price, I would never want to be a PUG member myself if the cost of mem?ership
went over $10/year (in 1977 doTlars). By keeping things simple and excluding special
rates, services, etc., we have also kept the price lower for a longer time, much to the
benefit of students (who show the way to the future).

Well, if you are confused, so am I! It has been sheer agony to write this letter,
not because I don't want to quit, but because the ideas needed to be stated carefully.

In Tate October I wrote to ten or so active Pascalers for advice, and I'm grateful
to Jim Miner, Rich Stevens, Rick, Shaw, Tony Addyman, Bob Johnson, Rich Cichelli, and
Jeff Tobias for the advice they offered.

It has been really disappointing to be without the advice of Judy Mullins Bishop,
David Barron, and Arthur Sale. They are three persons I would consider to be among the
closest to PUG And Pascal News since its beginning. I just know it would have been
easier for me if they had responded. Maybe they were too busy.

But, then, that's the problem! Something else must happen. I think it's time for
Phase ITI.

Sincerely,

ST# SKHIN TVISYd

§/61T "¥34K323d0

¢/ 39Vd

PRoPoseED CONSTITUTION

The following are submitted as a proposed Constitution and initial set of Bylaws for
the Pascal Users Group. The Constitution and Bylaws will be accepted or rejected by a
simple majority of the ballots (enclosed with this copy of Pascal News) returned to Rick
Shaw before April 15, 1979.

A few notes about some of the wording in the documents. First, concerning the choice
of an "official” version of the organization’s name--apostrophes are bad news in
organizational names. The American Newspaper Publishers Association dropped one from
their name--let’s drop it from PUG. Secondly the term '"Chair" 1is intended to be
equivalent to the term "Chairperson". It’s just shorter and sounds a little less clumsy.

- Richard J. Cichelll, August 1978

PASCAL USERS GROUP
Official Ballot ~ October 1978
I believe that the PASCAL USERS GROUP:
___ should institutionalize itself and remain independent.
If so, then I:
do__/ do NOT ____ approve the submitted Pascal Users Group Comstitution;

do / do NOT approve the submitted preliminary Pascal Users Group Bylaws.

My reasons for rejection of either document are:

should NOT institutionalize itself, but instead should:
disband, or

affiliate with a professional society:
ACM SIGPLAN
IEEE
other (

), or

other:

Return this completed ballot by April 15, 1979, to:

Rick Shaw - PUG
Systems Engineering Labs
6901 West Sunrise Blvd.

Ft. Lauderdale, FL 33313 USA

Your signature need only be on the envelope enclosing the ballot. Rick will certify that

voting will be by members only.

Article I

Article II

A.

Article IIT

Article IV

A.

Constitution of the Pascal Users Group

Name of the organization
The name of this organization shall be the Pascal Users Group (PUG).
Purpose of the organization

The primary objective of PUG is to promote the use of the programming
language Pascal as well as the ideas behind Pascal.
Specific objectives shall be:

1. to provide channels of communication among members of the
Pascal community (through Pascal News, etc.).

international
2. to coordinate the efforts of individuals in forming special interest
groups within PUG concerned with standards, implementations, etc.

3. to coordinate sponsored research into
Pascal.

implementations, uses, etc. of

4. to facilitate distribution of Pascal software among PUG members.
Membership
General PUG membership requirement

Any person who is interested in the objectives of the Pascal Users Group may
become a member upon paying the current annual dues.

Voting rights

Formal voting privileges consist of the right to vote at PUG meetings and
through mailed ballots on proposed amendments to the PUG Constitution,
Bylaws, and standing rules, and on all motions made to and by the Chair. All
members are entitled to vote.

The Officers

The government of PUG shall be vested in the Executive Committee which shall
consist of:

The Chair

The Vice-Chair

The Secretary/Treasurer

The Editor of the Pascal News
The most recent previous Chair
Three members-at-large

The Executive Committee members (excepting the most recent
shall be elected for a term of two years by members of PUG.

previous Chair)

Any member of PUG shall be eligible for any office. The office of Chair may
not be held for more than two consecutive terms by the same individual.

SmaAN T¥Y3ISVd

s #

R ERER

¥/61

£/ 3I5Vd

Article

A.

v

Vacancies of Office

1f any office (excepting members-at-large) shall become vacant, the Chair
shall at the earliest possible date thereafter order a special election for
the purpose of filling such office. The member thus elected shall take
office immediately and shall hold office until the next regular election.

Duties of the officers
1. The Chair shall

a. preside at all PUG meetings

b. call special meetings at her or his
limitations of Article V, Section E

c. appoint all committees not otherwise provided for

d. make provision for the discharge pro tempore of necessary duties of
absent members

e. sign all warrants on the treasury of PUG

f. see that PUG’s regulations are enforced

g+ carry out assignments and instructioms
membership

h. perform other duties as customarily pertain to the office of Chair

discretion subject to the

dictated by vote of the

2. The Vice~Chair shall be an aid to the Chair and in case of absence of the
Chair shall pro tempore assume and perform the duties of the office of
Chair.

3. The Secretary/Treasurer shall

a. keep a record of all meetings

b. 1issue timely notices of meetings and agenda after
the Chair

c. conduct correspondence of PUG

d. collect all fees and dues

e. maintain a list of current (paid-up) members

f. render an account at least yearly, or more often if required, of all
receipts and expenditures

g+ pay the bills of PUG only after approval by vote of the
Committee and upon orders or warrants signed by the Chair.

consultation with

Executive

4. Members-at-large and the previous Chair shall attend Executive Committee
meetings and vote on issues raised there.

5. The Editor of the Pascal News shall coordinate the publication and
distribution of the jourmal, edit articles, and write editorials.

Meetings
Time and Place

At least one regular general membership meeting shall be held each year, the
place and time to be determined by the Executive Committee.

Voting

A simple majority shall be required to pass all motions. Members

shall constitute a quorum.

present

Meeting procedure

The procedure at all meetings of PUG shall be governed by this Constitution-

and its Bylaws and by Robert’s Rules of Order.

Article

Article

A.

Article

A.

Article

A.

VI

II

Motions

Any member may make a motion to the Chair. This motion must be
by at least one second to the motion by another member.

accompanied

Special meetings

Special meetings may be called when the Chair, after consulting with other
Executive Committee members, is convinced that the need is sufficiently
urgent. A special meeting shall be called upon the demand of any five
Executive Committee members regardless of the wish of the Chair.

Amendments

This Constitution may be amended at any regular business meeting of PUG by a
2/3 vote of those present and voting, provided that written or printed notice
of the proposed amendment has been given to all members in sufficient time
for it to have been received by them at least one month before the meeting.

Bylaws of PUG may be adopted or modified at any regular meeting by majority
vote provided that notice has been given as described above.

Bylaws of the Pascal Users Group

Fees and dues
The annual dues shall be:

L4.00
Africa;

(U.K.) per year when joining from Europe, Western Asia, or Northern

$A8.00 (AUS) when joining from Australia or Eastern Asia;

$6.00 (U.S.) when joining from elsewhere.

These dues are payable in advance during July.

Mewbers will receive all Pascal News issues of the July-June year during
which they are members, except possibly new members joining after back issues

are not available.

Pascal News subscriptions are available to libraries and other

organizations
at $25.00 (U.S.), L15.00 (U.K.), or $A25.00 (AUS) per year.

Meetings
Date and time of annual meeting

The annual meeting will be held on the afternoon of the Sunday preceding the

Association for Computing Machinery (ACM) annual conference at a location
near the conference site.

Sponsoring Affiliates
Individuals and organizations wishing to fund colloquia, conferences,

research, and other activities of PUG may do so by becoming PUG affiliates,
subject to approval by the Executive Committee.

sT# SHAN YISV

ERTEREN

§/61

W/ 39Vd

Pipe Line Technologists, Inc.

July 17, 1978

Dear Andy,

In Pascal News #12, J. S. Merritt wrote that he couldn't find the
CACM article by Tanenbaum mentioned in PUGN #11, p, 87. I
couldn't either. As it turns out, the publication date of December
1977 is wrong. It appeared in the March 1978 issue, Here is the
correct reference,

Tanenbaum, Andrew S, Implications of Structured Program-
ming for Machine Architecture, Comm. ACM 21 (1978),
237-246,

This is a thought-provoking article which implementors of portable
Pascal systems should read. It shows the advantages of designing

a computer architecture taking into account not only the formal pro-
perties of high level lJanguages, but also impirical knowledge of how
those languages will actually be used. The resultis a stack machine
wherein the vast majority of instructions require only one byte of
code, Tanenbaum's design is called the EM-1. It could be built as
a hardwired computer, microprogrammed, or--and this interests
me--as a software interpreter on byte-oriented microprocessors.

The very compact object code of the EM-1 will go a long way toward
getting large compilers into small memories and external storage
devices. Here are some code space benchmarks (complete programs)
for the EM-1 contrasted with carefully handcrafted assembly language
programs for the PDP-11, which is normally considered an efficient
machine in code space usage:

EM-1 PDP-11 PDP-11/EM-1
Towers of Hanoi 352 bytes 992 bytes 2.82
Sort integer array 562 " 1,248 " 2.22
Dot product 552 " 832 1 1.51
Find Primes 306 " 704 " 2,30

To produce an assembler and interpreter for the EM-1 machine
for all the popular microprocessors would be a worthwile project.
I would be happy to talk to anyone interested in the idea.

Sincerely yours,

b ot

Charles L. Hethcoat III

S[ahz o/ j/ori(la
Departme“t of COL. J. ELDRIGE BEACH, 0IRECTOR

DIVISION OF FLORIDA HIGHWAT PATROL

JOHN D. CALVIN, DiRECTOR

HIGHWAY SAFETY AND MOTOR VEHICLES ~(osetiavcc.
CLAY W, KEITH, CIRECTOR

NEIL KIRKMAN BUILDING TALLAHASSEE 32304 SR S DR e R e s es

AUDRY CARTER, JR., DIRECTGR
YIS

DIVISION OF ADMINISTRATIVE SLRVICES

ise TaR

July 28, 1978

Mr. Andy Mickel, Editor Pascal News
Computer Center, 227 Exp-Engr
University of Minnesota
Minneapolis, MN 55455

Dear Andy:

Pascal-ers should take note of Edsger W. Dijkstra's
article "DoD-I: The Summing Up" in the July 1978
SIGPLAN Notices, pp. 21-26. Many have been proud that
PASCAL will almost certainly base the DoD's new
standard; the results appear likely to prove that
pride not fully justified - not because of shortcomings
in PASCAL but in the bureaucracy. To quote Dijkstra
briefly,

...instead of listing the goals to be reached, IRONMAN
already starts the design by prescribing "features'
from which it is often hard to reconstruct or guess
which sensible goal they are supposed to serve.

And his closing,
Of ALGOL60 C.A.R. Hoare once remarked that it was a
significant improvement over almost all of its successors.
What can we do to prevent PASCAL from sharing that fate?
Sincerely,

I |

C. EDWARD REID
Kirkman Data Center

CER:jem

SKAN T¥2SVd

cT#

ERTERER

A

S/ 3Y¥d

THE UNIVERSITY OF MISSISSIPPI
SCHOOL OF ENGINEERING
UNIVERSITY, MISSISSIPPI 38677

601-232-7353

29 July, 1978

Andy Mickel

University Computer Center:
208 SE Union Street

Univ. of Minnesota
Minneapolis, MN 55455

227 EX

Dear Sir,

I have been using PASCAL here at Ole Miss for the
past two years on the DEC-10. I currently have
available two compiler writing tools written
entirely in PASCAL:

(a) LEXGEN--An Automatic Lexical Analyzer Generator
The generator takes regular expressions for any number
of lexical tokens as input and outputs the minimized
finite automaton for accepting any of that set of
lexical tokens. Intermediate user-controlled output
includes diagrams showing how the NFA is constructed,
the complete NFA (in graph form), the resulting DFA
(in tabular form). These intermediate outputs should
be especially useful for teaching the theory and
application of this type of lexical analyzer.

(b) LALRI--An LALR(1l) Syntax Analyzer.
Given the BNF description of a grammar this program
outputs the LALR(l) tables for driving a parser.

Indication is given whether grammar is SLR(1), LALR(1),
or neither.

Either of these programs and their documentation is
too large or of a specialized nature to be included
1n_thg new algorithms section of Pascal News ; however
I invite any interested parties to contact me directly.

Sincerely,

Ralph D. Jefforés

Asst. Prof. of Computer
Science
University of Mississippi

AUGUST 23, 1978

PASCAL USERS' GROUP

ATTN ANDY MICKEL

UNIVERSITY COMPUTER CENTER: 227 EX

UNIVERSITY OF MINNESOTA .
208 SE UNION STREET

MINNEAPOLIS MN 55455

Andy,

I guess it's about time for me to renew my PUG membership, so I've enclosed an
old "ALL PURPOSE COUPON" and a check for $10.00 in devalued American currency
(since PUG membership fees have surely increased by now). If even $10.00 isn't
enough for two years, let me know how much more is necessary, and I'1l1 send the
balance ASAP.

I hope all is going well with PUG ~- I have some doubts since I haven't heard
a word from you people since March. Was there another 77-78 issue published after
#11?2 If so, I have never received it, and I'd hate to miss anything!

A few weeks after attending the 2nd West Coast Computer Faire, I took a job as
"designated internal programmer" for North Star Computers, here in Berkeley.

North Star is best known for its mini~floppy diskette subsystem, which is compatible
with any 8080- or 2-80 based mainframe incorporating the §-100 bus. To date,

the firm has supported only BASIC (albeit a powerful, feature~laden version of the
language), but Mr. Thos Sumner (who does software evaluation for NS) and I have
convinced the "powers that be” to look seriously into supporting Pascal as both

an internal software development tool as well as a marketable software product.

It is almost certain that Ken Bowles' group will develop a version of their

UCSD Pascal system which will operate on 8080 or Z-80 machines using North Star
disk units, but it isn't clear at the moment whether or not North Star will
itself support and/or market the system (though I am personally lobbying for such
a development) .

Regarding my somewhat sceptical comments on Pascal in the micro-world as published
in PNEWS 9/10, I am pleased to note that UCSD Pascal seems to have "done the trick”
and catapulted full-blown Pascal into the marketplace, at an extremely reasonable
cost, yet! Finally! In the spirit of "hit 'em again, harder”, Part 1 of my own
tutorial series on the language, "Pascal, from beginning to end", will appear
(after innumerable crazy circumstances and delays) in the September-October issue
of Creative Computing magazine. With luck, my own, and other, similar articles
will serve to bootstrap the consciousness of personal/micro-computer users into

the Pascal era.

From my vantage point, in the midst of the small-systems market, I see Pascal's
momentum Iincreasing at an astonishing rate. It appears that we now have the ball.
Let's all pull together and run with it ~- now that many computerists are accepting
Pascal as a "real" language, there must be a concerted effort on the part of we who
support the language to provide documentation and software (systems and applications)

° ° for it. (Need I add that this can also be quite luc-
Jim MerRiTT =oiver
POBox 465%

Berkeley CA 94704
Phone 415-845-4866

Keep in touch

19 08(28

(Notice the Pascal-oriented August, 1978 issue of Byte, for example.)

T¥ISVd

m

4
|

T# S

C
b3

R ER T ENEN

8061

¢4 39V%d

COMPUTER

CAREERS

August 29, 1978

Mr. Andy Mickel, Editor
Pascal News

208 S.E. Union Street
University of Minnesota
Minneapolis, MN 55455

Dear Mr. Mickel:

In review of recent issues of Pascal News, I have noted several
letters from readers in regard to Pascal jobs. Most expressed amaze-
ment in their success in finding PASCAL positions.

I thought it would be of interest to you and your readers that
Computer Careers, Inc. Agency has a full division of consultants
i working with PASCAL type programmers. The demand for the higher level
| block structure languages is growing everyday. We have been quite
: successful in assisting both recent graduates and experienced pro-
fessionals in their pursuance of PASCAL careers.

If we can be of any help to you or your readers, please feel
free to call.

Chuck Beauregard,
Manager - Software Sysfem Div.

CB/r

Enclosures

Computer Careers, Inc. / 280 Atlantic Avenue : Long Beach, California 90802 / (213) 437-2881

%/9/27

INFORMATION ENGINEERING COURSE
DIVISION OF ENGINEERING
UNIVERSITY OF TOKYO GRADUATE SCHOOL

Bunkyehu, Tokyo 113 Japan,
Tedetvne: (03) 812 - 2111

Pascal Users Group

c¢/o Professor Arthur Sale
Department of Information Science
University of Tasmania

Borx 252C GPO, Hobart, Tasmania 7001
Australia

September 8, 1973

Dear Professor Sale:

Enclosed please find our renewal remittance $A56, for the Pascal

Users Group membership 1978-1979 for seven of

M. Arisawa

T. Saisho

T. Hikita

S. Yoshimura

N. Tokura

M. Takeichi and

E. Wada.
Our addresses remain unchanged. As to other Japanese members, Messrs.
H. Ishida, M. Watanabe, K. Noshita, N. Wakabayashi and H. Nishioka have
renawed already or paid more than one year's members fee. Mr. Kishimoto
is presently in the United States.

I am so sorry for not writing vou earlier. We are one of the first
group who introduced Pascal in teaching programming. In my class, all
the examples were swithed fo Pascal since the fall semester of 1972,
and the first Pascal compiller became available in the summer of 1974.
Since then at the University of Tokyo, three versions of Pascal compilers
have been installed, and all the compilers are intensively used. At our
laboratory, a pretty printer for Pascal has just been completed. The
pretty printed output is obtaind through the phototypesetter which really
generates very high quality documents. Besides this, we are still
considering of rewriting the Pascal report in more accurate and under-
standabhle way. The Pascal compiler in Pascal may be improved to become
muclhi more Pascal like, that is, with fuller Pascal spirits.

I hope we are able to see each other at the IFIP congress two

years later, in 1980.
Sincerely yours,

al
é;i‘ o A

EIiti Wada
Professor

EVi/mk

enc,

¢T# SHIN TVISYd

R ERYENER

8l061

L[319Yd

. Health Products Research, Inc.

European Office:
. " Heuberg 12
' 3520 U S.Route 22, Somerville, New Jersey 08876 - (201) 534-4148 4051 Basel, Switzerland

Cable Address: *Healthpro™ Telex: 63972

23 Septenmber 1G78

Ardv kicikel, ¥ditor

PPascal lews

University Computer Center: 227 TX
2303 €€ Union Street
University of Minnes
Minneapolis, MN 554

ota
[~
55

Lear Andy:

4s 'Pascal Coordinator® for the Amateur Computer Group of hLew
Jersey (ACG-HJ), I em in a pcsition to report sone cood news
zbout the enthiusiasm for Pascal among computer hobtbiests in
the iew Jersey area:

a. Tne B{G-4J has tzken scdvantage of the group
subscripticn offer of Ken Lowles' group at the University of
Celifornia at San Diezo. Approxinately btwenty mambers have

obtained the UCSD inplermentation throush the 405, and at least
five nave it “up and running’ on their personal systems. Most
of these systens are (0Z0/2-20C nicrocomputers, althiough there

are two or three L3I-"7s as well.

b. I 7ave 2 4rief talk on Fﬂscal 2t this nonth's ACC-NJ

meeting, which was well received; I have also been invited to
speak on Pescal fto the New York ,1ty aneteur computer froup in
Lecenber.

c. &t least sixty people at ”Fadc—_ Users' Sroup"
session &bt the 'Parsonal Conmput show; helc in the
Philadelrhia Civice Center at the end of August. This turnout
wes rildly astonisning in of the faect that the session on

Pascal was A last-winute additior to the pregraem, nct
publicized except ty posters put up on t first day of the
show, &nd scheduled on the show's last day. A show of hands at
the start of the sessicn yielded the followinp statistics:

Perscns who hrad used UCSD Pascal: I'one
Persons whc had used znother Pascal:
Persons who wanted but did not have Pascal: 25

Persons whe dian't know whether they

wWwanted Pasczl or not: 5
Perscns who knew they didn’'t want Pascal: Hone
T wish to thenk Nr. Bobert Hofkin of UCSD, wic nangenec to

pe at the show on business, for stopping by and helping field
some of the questions.

d. Three other noteworthy presences at "PC '78" were those
of three companies selling UCSD Pascal with their computer
systems:

(1) Northwest Microcomputer Systems, of FEugene, Orgeon,
demonstrated their "Programmer's workbench®, a desk-top systen
containing an 8085 microprocessor running at 3 (optionally 5)
MHz, 56K 8-bit bytes of memory, dual magnetic diskette drives,
and a video display, priced at $7495. I understand that two
people from Zurich wanted to pay cash and walk away with one
of the two systems on display (they didn't because the system
wouldn't have run on 3Swiss electrical power without a
modification too extensive to be done at the show), and that
Carl Helmers, editor of BYTE magazine, was responsible for the
disappearance of one of the systems on the second day of the
show, being "unable to resist the desire to take it to his
hotel room and play with itr.

(2) ALTOS Computer Systems, of Santa Clara, California,
demonstrated their "ACS8000" system, featuring a Z-60
microprocessor running at 4 MHz, up to 64K bytes of memory,
and one or two magnetic diskette drives. Price for a minimal
system with 32K bytes of memory and a single drive: $3,84C.
(This system does not include a built-in videa display.)

(3) Alpha Microsystems demonstrated UCSD Pascal as a
subsystem of their multi-user system, whose CPU is based on
the Wester Digital WD-'6 chipset. Workspace available to a
single Pascal user in this system would be restricted to 48K
bytes, but the system supports multi-megabyte hard-surface
magnetic discs as well as (or instead of) diskettes. I regret
I do not have their prices readily at hand.

e. The August issue of BYTE magazine had a cover
portraying "Pascal's Triangle', an area of snooth water with
well-marked channels bordered by such less hospitable places
as the turbulent "FORTRAN Ocean', the desolate "Isle of BAL",
the "JCL Barrier Reef", the "Straights of COBOL" (in which
much commercial traffic is seen), the perpetual fog bank
wherein lie the "exotic and mysterious jungles of LISP", and
the "interactive and weed-filled Sea of BASIC". Several
vessels, ranging from warships to tiny rafts, are fleeing to
the safety of the Triangle.

On a more serious level, the same issue of BYTE contained
five articles on Pascal, including one by Ken Bowles himself
entitled "PASCAL VERSUS CUBOL: Where Pascal Gets Dcwn to
Business“". This last article may be especially important,
since there seems to be a consensus among those involved in
the 'persconal computer" industry that the big market right now
is small business systems, for which the greatest lack is high-
quality software.

A less welcome development is the discovery that the UCSD is
no more immune than any other vendor to the announce-it-early,
deliver-it-late syndrome: I have been waiting since mid-8ugust
for their Release I.5, my phone calls every other week being
taken by a pleasant but apparently not-too-knowledegeable young
person who assures me that the Release will be forthcoming '“in
another week or two". I guess we should be thankful we get
anything at all!

keep up the good work!
Sincere .
Carl P rre 2
Rod Montyomgf(
P.S.: I prepared this letter on my personal system using the
screen editor that comes with UCSD Pascal. 1t works!

¢T# Sw3aN TVISVd

RERTERNEN

8061

8L 39Vd

Fiachlny 0420

July 10, 1979

Andy Mickel
Pascal Users Group
Univ, of Minnesota

Dear Mr. Mickel:

Enclosed i1s my renewal for the coming year. I have truldy enjoyed
receiving PUG newsletter. (I finished #12 in less than 12 hours and still
haven't read CACM May!) The new section on APPLICATIONS should be an
excellent media for transmittal and evaluation of programming methods.

We at Fitchburg State College have just totally restructured our
course structure to put Pascal into the Freshman year where it belongs.
Other languages are taught within the courses which require them and
assume a knowledge of Pascal.

Re: standardization of Pascal. I vote for Charles Fischer's method
(PUG #12, pg. 54), a standardized set of extensions designed by a small
group and an all-or-nothing vote by PUG membership. I have a great many
changes I'd like to see in Pascal; but, I¥rather see a standard. I'm sure
a lot of other people feel the same way.

Keep up the excellent work.

Sincerely,

Vil
Kenneth R. Wadland

Computer Science Program
Pitchburg State College

s

LK K R

Oct I8 '8

DEAR

ANDIY »

A ROOK
U]hYH’“
Zy AN

TO RE
17y

LEF INE ¢
WITH THE GENF AT

)

WITH HARTMANNTS (3) CLOSE T4 7 ! " WOULD B .THE ORD
MOREENAN'S (4) FOR X RANDELL*YS (%) IUR AIGOL 40y HALSTEAD'S (1)
OR WALTE®S (&) FOR STAGE 2

HAFS TWO OR T
O MINI,

IN ORDER TO BE
HYS (7) IN NOT
THAN FO). PASCAL

ON &
{M18

- QNH NR]VILN TN h HIGHER IFQLL

UIRIH’S (9) ALSO HAS MISSING

BUT
1
2
3
4)
=3
&)
7
@)
@)

BOOK COMBRINEX

GENERATED CODE. FASCAL F4 FERHAFS
ARE AFFROXIMATELY WHAT IS NEELIED.
DEFENIENT COMPUTER FROGRAMMING.

UF CONLURRTNT FROGRAMS

COMPILER FOR MINI-COMFUTERS

ARLHITtCTUR

HARTHANNG 2 A CUNCUR

IS COMFLETE,

BUT

?7{22034f«\ <fi/“k~ot94,

WILLTamM C.
L X R X J
m ComputerAutomation
18651 Von Karman

Irvine, Ca. 92713

October 10, 1978

PASCAL User's Group
C/0 Andy Mickel

Dear Andy:

At Computer Automation's NAKED MINI Division, PASCAL is gaining
interest and support. Our compiler on D0S4 produces code for a
virtual machine. I have recently converted the machine to work
under our new operating system 0S4 on the NM4 series computer.
The same compiler now runs under D0S2, DOS4 and 0S4. For
marketing information, contact Laura Cvetovich (M/S 1167).

PUG members might be interested to learn that several openings
in system software development are available at CA requiring
PASCAL and assembly language experience. The inside track

can be had by writing Dave Robertson (M/S 1175).

Keep up the good work,

D. J. Maine
Research Scientist
M/S 1175

P.S. Bob Hutchins says HI to his friends at PUG!

MOORE «

JR.

¢T# SKhAN TVISVd

i EREENEN

$L61

6/ 39Vd

UNIVERSITAT HAMBURG INSTITUT FUR

INFORMATIK
Prof. Dr. H.~H. Nagel

Tnstitat for toformatik
3 Humbarg 13, Schiterstrage 66-72

Mr. Andy Mickel
Editor, PASCAL News

University of Minnesota Ferasprecher: 040-4123-41 51 }Dw&mm
University Computing Center Bebordenaers: 9.09(,)
227 Experimental Engineering Building
Minneapolis, Minnesota 55455 Telex-Ne.: 214732 unl hhd
USA
L -
Datum und Zeichen Thres Schreibens Aktenzeichen (bel Antwort bitte angeben.) Detum
Na/Ja September 25, 1978

Dear !Mr. Mickel,

last week I came around to study PASCAL News no. 12 which had arrived
at my office during the time I was in vacation. I would like to
congratulate you to the fact that this issue must be the third
aniversary .of starting this activity by you. You have done - in collia-
boration < with other people who followed your example a very fine

job which I consider to be of great importance not only to the
community of people who use PASCAL now. It may be even more impor-
tant for those who are enabled to obtain information about PASCAL

and its implementations in a rapidly expanding environment of small
system users.

Regarding our DECSystem-10 implementation we have been busy, too.
Currently we are testing an improved PASCAL Compiler Version for this
system which employs a register allocation algorithm to generate

more effective object code. This alporithm is based on the work of
Ammann. However, we had to modify it to accommodate the special code
generation for the PDP-10 processors. In addition we have removed

bugs which had been brought to our attention and adapted the com-
piler to the more advanced instruction set of the KI-10 processor
(double word move etc.). In addition we removed the special file
variable TTY introduced for interactive use of PASCAL. We now direct
the standard input/output to the user terminal. According to our agree-
ment we have already modified to the "otherwise" extension recently
agreed upon. We are currently implementing special conversion routines
for input from the user terminal. Instead of aborting in case of
typing errors an error message will be output indicating the error
detected and the user will be prompted to retype the desired input.

As 1 had promised to N. Wirth I intend to incorporate those exten-
sions for which a standard form will be agredd upon.

Before I obtained the PASCAL News no. 12 indicating the new rates I
had already mailed a check over & 8 to you originally intended to
cover my dues for two years. As I now understand distribution of
PASCAL News to Europe costs 4 E per year. Therefore I suggest you cre-
dit these 8 & as my dues for the year ending June 1979. I shall send

the next dues to UK directly in 1979.
YouEs s1ncerely,

CALIFORNIA INSTITUTE OF TECHNOLOGY

FASADENA, CALIFORNIA 91125

DIVIBION OF BIOLOGY 218.76

Andy Mickel

Editor, Pascal News
University Computer Center
227 Exp. Eng. Bldg.

Univ. of Minnesota
Minneapolis, Minnesota 55455

Dear Andy,

Judy Bishop's discussion of subranges and conditional loops (Pascal News #12,
pp 37, 38 and 51) clearly states a basic problem in standard Pascal: how to keep
index variables within their subrange at all times. However, her solution does
not seem entirely satisfactory to me because (1) as she noted, single letter pre-
fixes would hinder readibility; (2) the necessary extra type definitions are a
hassle both to write and to read; and (3) the extra allowed value of the index may
in some cases degrade the ability of the run-time checks to stop an error at it's
source.

Some Pascal compilers, such as the Brinch-Hansen DEC-10 compiler in use here
at Caltech, allow the loop .. exit if construction. Loop .. exit if is the most
general form of the conditional loop, since it contains a statement “block before
the test of the exit condition (as does repeat .. unt11) and another statement
block after it (as does while). This generality is necessary for a natural solu-

tion to some problems, including this one.

Having defined i on the subrange min..max, we can write:

i := min;

loop
(* something *)

exit if (i=max) or (condition);
i = succ(i)M_

end;

Thus we always have 1 <= max. In standard Pascal, a somewhat less elegant but
equivalent counstruction is available:

i := min;
while true do begin
(* something *)
if (i=max) g{_(condition) then goto 10;
T i = succ(i)
end;
70: (* next statement *)

yours sincerely,

Yool Frgull

Karl Fryxell

SNIN TY¥ISVd

el#

i3334

L6T "udgl

g

39V4d

TR

C AN

7850 Metro Parkway, Suite 213, Minneapols, MN 58420 o (612) 854-7472

August 16, 1978

Mr. Andy Mickel

Pascal User's Group

University Computer Center, 227 EX
208 SE Church Street

University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

I'm enclosing twelve (1ld4g) dollars for two years PUG dues. If you don't
think PASCAL will survive for that long please return some of my dues.

Some general comments. First in response to "What To Do After A While"
you need two new operators:

a AND THEN b; C OR ELSE d.

In a more serious vein, many PUG articles contain phrases like "stamp out
FORTRAN", or "kill the dinosaur", etc. The articles seem to be written
with all of the grace and charm of a stiff necked missionary trying to
convert a bunch of ignorant heathens. Why Is there such an emotional
investment in promoting PASCAL? PASCAL, like most human inventions, has
some good ﬁoints and some bad points. PASCAL was implemented on a CRAY-1
Computer by a group at Los Alamos. There also exists a group of 18 short
"kernels", called the Livermore Kernels, which (allegedly) are typical of
the bulk of the computer usage at places like LASL. When coded in PASCAL
the kernels ran (last January) with an average "speed” of about 3.6 MFLOPS
(million floating point operations per second). If a second program is
used to optimize the code generated by PASCAL the rate goes to 5.7 MFLOPS.
When run using the current CRAY FORTRAN Compiler the rate is about 22
MFLOPS, planned FORTRAN enhancements (for "this year"”) should bring it to
over 30 MFLOPS. Now, there are significant differences In implementation
strategies between the LASL PASCAL and CRAY FORTRAN and it would be very
wrong to conclude (from this example at least) that PASCAL is not a good
language. However, with performance ratios of between 4 and 10 (depending
on one's point of view) on a system that costs up to $9 million, it seems
just as wrong to conclude that "FORTRAN is obsolete”. If PASCAL is to
become a universally used language won't implementation become machine
dependent with additions (and deletions) to take advantage of particular
hardware?

Page #2

This leads to the second point. I understand that there recently was a
first (annual?) PASCAL standards meeting. I've heard from two different
people that the PUG representatives were adamant (to the point of being
obnoxious) that nothing in PASCAL should be changed, Wirth has spoken and
not a "," must ever be changed. Is this realistic? As the language is
used shouldn't it grow, much like English or FORTRAN when deficiencies are
discovered? AFTERALLTHEREAREFEATURESINPASCALWHICHDONOTNECESSARILYMAKEA
PROGRAMEASILYUNDERSTANDABLE .

More important, is this a legitimate stand for a "PUG representative” to
take. I'm a PUG member and I don't recall ever being asked whether or not
PASCAL should be changed. Certainly everyone is entitled to an opinion
about the future of PASCAL but shouldn't a "PUG representative" somehow
survey his members? It seems to me that most of the articles in PASCAL
NEWS deals with proposed additions or deletions and most of the implemen-
tations mention deletions.

I hope this gives you something to write an editorial about.

Best -

Richard A. Hendrickson

RAH:al

(* In a phone call to Dick in early October, I (Andy) thanked him for the letter and

explained that one reason that Pascal is at a disadvantage when compared to FORTRAN
is because of the vast difference in the person-years put into compilers, libraries,
etc. However, I appreciated the data he provided and his feelings. I also told

him that the "standards meeting" he referred to was instead the UCSD workshop on
extensions, and that the so-called obnoxious PUG representative was Richard Cichelli
who indeed upset many persons. Since I wasn't there, I can only repeat the reports
1 have heard. I explained that human languages and programming languages are
vastly different, and no, programming languages shouldn't necessarily grow, and in
fact Edwin Newman's recent books (one is Strictly Speaking) deplore the unnecessary
“growth” in the English language. And if you have a decent Pascal implementation,
ThenThereAreFeatures InPascalWhichAreExtremel vElegant InAidingProgramReadability.*)

ST# SHIN TVISVd

“ydEK3II30Q

8§61

16 39Vd

University of Sheffield

Department of Applied Mathematics and Computing Science
Professors

@ _ D N de G Allen, W D Collins, S C Hunter, J R Ulimann

Sheffield S10 2TN
Tel: Sheffield 78555
STD code: 0742

AN

Andy Mickel,

Editor, Pascal News,

University Computer Centen; 227EX ,
208 SE Union Street,

University of Minnesota,
Minneapolis’, MN 55455, U.S.A.

Dear Andy,

4th September, 1978

My copy of Pascal News ##£12, mailed in Minneapolis on June 23rd,
arrived on August 3lst. In it I read that the publication deadline date
for ##13/14 was August 15th, 16 days earlier! Can this be true? I hope

not. Please try to squeeze in the enclosed paper "Know the state you
are in". Although written in great haste it might solve a few problems

for a few people or at least shed a new light on them.

I was interested to read Judy Bishop's comment about booleans
(Pascal News ##£12, page 51). Since first teaching Pascal three years
ago I have encouraged my students to use two-state scalars and case in
preference to booleans and if. The programming style in my enclosed
paper is a natural consequence of this. I have also been following

Dear Mr. Irish,

Many thanks for your note on "What to Do After a While". I would
just like to clarify our points of agreement and disagreement and
then go cn to explain why we think the seguential conjunction/
boolean operator contreversy can row die a natural death.

We take your point about potentially undefined factors. What ycu
are saying is that the afi} in (a) below is permissable because it
is an expression, but the aﬁJ in (b) is not, because it is a factor.

(a) if i<=n then if afi) =
(b) if (id=n) and (i} = ...)

while this may be a valid distinction, it is a hard one to grasp.
After all, the ali} in (a) starts off as a factor!

To POP-2 and RTL/2 remember to add Wirth's new language Modula
and Euclid. All of these specify that factors in a boolean expression
will only be evaluated while necessary. The Boolean algebra con-
notation may ke old, but it is certainly no longer strong in the
world of language design.

The andop function i3 "wrong". Moreover, the loops in our Appendix
examples 2 and 3 should be repeat’s, strictly speaking.

We could argue on and on about this for ever. Fortunately, the

problem - that of searching a list to our satisfaction -~ has been
solved in a completely novel way by Laurence Atkinson of Sheffield
University. He brought to our notice the following solution which
takes account of the fact that there are three states in the loop,

recent work by experimental psychologists studying the (detrimental)
effects of negation in programming logic and, in particular, the
negation implicit in else. One consequence was that I submitted a
paper to CACM in March of this year supporting two-state scalars and
case in preference to booleans and if and, of course, praising Pascal

represented by

i<=n and afiJ <% item : scanning
i<zn and afi] = item : found
i>n : notthere

for encouraging this approach. So please note, Judy, your anticipated
paper "Booleans considered harmful” has already been written!

Yours sincerely,

Z?uﬂﬂa oArtotisen.

L.V. Atkinson

t B X K R J

University of the Witwatersrand, Johannesburg

DEPARTMENT OF APPLIED MATHEMATICS

1 Jan Smuts Avenue, Jonannesburg, 2001, South Alfrica
Telephone 393011, Telegrams ‘University’, Telex B-7330 SA

Mr. T.M.N. Irish,
5 Norse Way,
Sudbury,
Chepstow,

Gwent NP6 7BB,
United Kingdom

telephone ext

your reference

our reference JMB/Sw

date 27 September 1978

Solution 4. USE A STATE VARIABLE
var table : arra Cl..maxsize] of whatever;
"7 state : (scanning, found,notthere);
index:=1; state:= scanning;
repeat
if index p maxsize then state:= notthere else

if table(index]<= item then state:=found else
index:=index+1
until state <? scanning.

It may not be as short and sweet as your favourite solution but it
worl.cs for all cases and does not need additional elements.
Incidentally, this method still requires index to be declared over
1l..maxsizeplusone. (See Mullins PN12 (1978) "Subranges and Conditional

_Loops"}.

I think we should let this matter rest now. In a sense no-one has
won -~ we can't have undefined factors, you can't have side effects
in functions. Pascal is a double edged sword, but it is very sharp
for those who care to use it properly, as Atkinson has shown us.

Best wishes,

P

Judy B:LshoE

ST# SHAN TVISVd

REETERER

8/b1

8 39Vd

PascaL STANDARDS

or Rick Shaw
Systems Engr. Labs
6901 W. Sunrise
Ft. Lauderdale, FL
33313 USA

Please direct all enguiries for this section to Tony Addyman
Dept. of Comp. Sci.
Univ. of Manchester
Oxford Road
Manchester, England
M13 9PL U. K.

Much has happened since issue #12 last June. Rick Shaw is now Tony's "right hand" in the
USA. Thanks to Tony and Rick, Standards discussions are placed within the Pascal User's
Group where it belongs. Arthur Sale was selected to chair the Australian Standards Assoc.
committee on Pascal Standards (MS/20).

On 78/06/18, Niklaus Wirth wrote that there was one error in the EBNF syntax published
in Pascal News #12, June, 1978 on page 52. The definition of FieldList should be:

FieldList = FixedPart [";" VariantPart] | VariantPart

Below are reports from Tony, Rick, and Brian Wichmann. Rich Cichelli reported that when
they are ready, he will distribute the Wichmann-Sale Validation Suite and a standards-
conforming checking program. (There exists a similar program developed for Pascal programs
by North-American Philips Corp. which checks to see if a program conforms to the language
accepted by the Pascal-P compiler.) Rich expects that he will be able to distribute this
software for a reasonable fee.

Tony's working group produced a third draft of the BSI/ISO standards document which will
appear as PUGN #14 (January, 1979). The BSI/ISO standards effort, incidentally was
unanimously endorsed by the participants of the UCSD workshop on extensions in July. On
October 11, it was reported that the ISO vote on the BSI proposal was 8 in favor (U.K.,
U.S.S.R., Brazil, Canada, Italy, Germany, USA (with qualification) and The Netherlands
(with qualification); 1 opposed (Japan), and 10 abstentions (!?). Also in October, ANSI
announced the formation of X3J9, a committee for examining the ISO standard to be adopted
as an American standard.

Rick Shaw, Rich Cichelli, and Jim Miner will attend as PUG's official representatives to
the December 19 meeting.

News from the International Working Group on Pascal Extensions

In PUGN #12 we announced the formation of this group: a small number of competent
implementors of "major" Pascal implementations were chosen by Niklaus Wirth. Why only

a few people? As Bob Vavra stated in #12, a PUG committee-of-the-whole is unthinkable;
with everyone interacting it won't work. We must rest assured that if someone has a great
idea, it will certainly be recognized. Even with a few people, it has been an over-
whelming amount of work (forests of paper have been consumed!). So the project is
delegated to a small group for good or i11. Here is the invitational letter from Niklaus:

ETH

Institut far Informatik

EIDGENUSSISCHE TECHNISCHE HOCHSCHULE
ZORICH

January 30, 1978

Dear Andy,

The "Standardization of Pascal" is a recurrent theme. As you
probably know, I have been rather reluctant to get involved in
such an effort, being aware of the time-consuming nature of
ill~defined and politics infested endeavours. Nevertheless

I am also aware of some genuine motivations for obtaining a
“"standargd”.

A recent visit of Professor Jorgen Steensgaard-Madsen from
Copenhagen, implementor of Pascal for the Univac 1100, has
brought up the topic again. We have had some refreshingly
productive discussions. The gist of them is that we should
try to obtain a consensus among a few implementors of Pascal
on major computers on at least some of the pending problems.
Their agreement to work on such a consensus and to implement
the results on their machine would in our opinion be the most
effective way to reach a standard that does not only exist on
paper and evokes a lot of discussion and controversy, but will
effectively be adhered to..

Jorgen has agreed to work out a draft of a working document
within the next two or three months. We are solliciting your
suggestions. If a positive response should emerge, we would
envisage a meeting, preferrably sometime this summer. I would
appreciate to know your reaction to such a plan.

The draft document to be worked out rests on the basic assumption
that Pascal as defined by the Revised Report shall essentially
remain unchanged. It shall concentrate on three topics:

1. Standard representation of programs in terms of standard
character sets, and definition of the set of standard procedures,
types, etc., 2. Clarification of issues that are left open by the
Report (such as type equality), and 3. Extensions. We agreed
that the following topics would be included:

1. Specifications of the types of parameters of formal procedures.
This would be the only point involving an actual change of
Pascal, since it would require that such types be specified.

2. Array parameters, especially the possibility of omitting the
specification of index bounds for formal arrays. This might
or might not include dynamic actual arrays.

3. An "otherwise" clause in the case statement.

4. Structured constant definitions.

5. External procedures and "forward" declarations.

6. Standard procedures for reading text files according to the

program schemata used for regular files.

I am looking forward to your reply and suggesions and hope that
with your dedicated help a contribution towards a much discussed
goal may evolve. Please send a copy of your reply directly to
Jorgen,

Sincerely vours,
Metoaus

Prof. Niklaus Wirth

cc: O. Lecarme, Université& de Nice, France (CII)
A. Mickel, University of Minnesota, USA (CDC)
H.H. Nagel, Universitdt Hamburg, Germany (DEC)
J. Steensgaard-Madsen, University of Copenhagen, Denmark (Univac)
J. Tobias, Australian Atomic Energy Commission, N.S.W. AustralidIBM
J. Welsh, Queen's University of Belfast, North Ireland (IcL)

$T# SKHAN TYISVd

IRERYERNER

80T

¢% 39Vd

Jim Miner and I suggested in February in our response to this letter that Arthur Sale,
Tony Addyman, and Ken Bowles be added to the list because Arthur's Burroughs B6700

and Ken's microprocessor interpreters were major implementations, and Tony had been doing
all of the standards work so far. They were added. We promised in issue #12 to report
on the results. In the 3 months of activity {from April to June) no one would have
predicted the amount of controversy and heap of paper generated by the 10 participants.
It is an example of the "frailty of human interaction as opposed to problems caused by
individual personalities.” Nevertheless the Working Group rebuffed the hack changes done
by individual implementors by concentrating on just a very few issues. We finally agreed
on some results. Our first result involved a conventional form for the almost universal
extension providing an "otherwise clause" to the case statement. Arthur Sale presented
the report below for publication:

International Working Group on Pascal Extensions

Consensus Position on Case defaults

1. Background

The International Working Group is a group of implementors of Pascal

set up by Nillaus Wirth and the Pascal Users Group to responsibly draft
some key extensions to the programming language Pascal. The following
report details the first consensus decision by the Group, and is published
in Pascal News in the interests of other implementors and to achieve

rapid dissemination of information.

The term conventionalized extension is used here to mean that the feature
described is not to be considered as part of the standard language Pascal,
but rather that some implementations may include the feature in accordance
with the conventions suggested by the Working Group. The purpose of
conventionalizing extensions is to
(i) enhance portability of programs which use the extension, and
(ii) ensure a concern for the integrity of Pascal in making extensions.

The following minor extension to the language is the first consensus
decision by the Working Group and is to be regarded as a conventionalized
extension.

2. Notation

The modifications to the syntax will be described in EBNF notation, as
this is likely to be the form used in the draft standard for Pascal, and
can be used to avoid repetition or the introduction of new non-terminal
symbols.

3. Purpose

The extension described allows a construction to which control is transferred
if the selector expression of a case statement fails to match any case
constant (label) in the statement. The construct is often used in the
writing of lexical analysers so as to ensure robustness against unexpected
input.

4. Modifications to the Report

(a) Add to the list of special-symbols in section 3:

| "otherwise'

(b) Replace the production for case-statement by:
case-statement =
"case" expression "of"
case-list-element { '";" case-list-element }

"otherwise statement { '";" statement }] rend”

(c) Add the following text to the explanation of the semantics of the
case statement in section 9.2.2,2:

"If there is no constant in the case statement whose value
is equal to the current value of the selector, then the
group of statements between otherwise and end are executed.
1f the otherwise part does not occur, then programs which
cause this to occur in execution are invalid."

S. Implications for variant records
The Working Group considers that no corresponding change should be made
in the syntax of variant records.

6. Considerations taken into account
In recommending this syntax and semantics, the Working Group has
considered many alternatives, including

(a) the use of alternative word-symbols, including else,

(b) other syntax constructions,

(c) what the 'undefined' actions might be, and

(d) whether the extension was needed and added to the power of

the language.

NOTE

In the creation of a draft standard, the wording of the Revised Report
may be altered, with consequent effects on the phrasing of this extension
note. The syntax and semantics will not alter.

The full specification of all parameters to procedures and functions which are thenselves
parameters.was agreed on. [Discussion of this topic was very influential and resulted in
its 1qc]gs1on in the third working draft of the BSI/ISO Pascal Standards document. Its
description appears in #14, so we won't waste room here.

In July the UCSD Workshop referred important extensions to the Working Group, such as
conformant array parameter bounds.

On August 24, Jorgen Steensgaard-Madsen had to resign as coordinator of the Working Group
bgcause.he began.spending a sabbatical year. Charles Fischer of the University of
W1scoqs1n.took his p]qce to represent Univac implementations. Jim Miner and I are now
coordinating the WOrk1ng Group. The current topic of discussion is conformant ("dynamic")
array parameters, which are important for building practical subprogram libraries for
both numeric and non-numeric applications. - Andy and Jim

LA R X X XX
Dear Andy

12 June 1978
PASCAL test suite

Readers of PASCAL News will be aware of the standardization effort that
is being undertaken in the UK under the auspices of the British Standards
Institute, As part of that effort, I am collecting together (with

¢T# SHAN TVISVYd

56T "w3€Wd03d

h& 35Vd

Arthur Sale and others) a suite of test programs designed to illustrate
trouble spots in the language definition (and potentially in compilers).
When the standardization is completed, it should be possible to use the
suite to validate compilers, assess their performance or diagnostics as
well as giving some indication as to how they match up to the standard.

Anybody who would like a copy of the tests or who would like to contribute

to the tests should write to mes I am not publishing the tests at this

juncture since they will change rapidly over the next yvear.

Department of Industry

NATIONAL PHYSICAL LABORATORY
Teddington Middlesex TW11 OLW UKo

Telex 262344 Telegrams Bushylab Teddington Telex
Telephone 01-977 3222 ext

Yours sincerely

B, W

B A Wichmann

3916

THE STANDARD
FROGRESS REPORT NUMBER 1
15-9-78

This report will necessarily be brief, since time spent writing the
report is time that cannot be spent on the draft,

At the April meeting of DPS/13/4 it was decided that we should make
an attempt at preparing a draft, Up until the April meeting our
efforts had been largely directed towards identifyinc the problems
rather than the solutinns., Although production of the rough draft
was rather behind schedule (largely due to exomination marking by
the university members of DPS /13/4) 1 was able to take a copy to
LaJolla. This proved to be very valuable. An improved draft was
presented at the Septewber meeting of DPS/13/4 at which a number of
alterations were agreed., These alterations are currently being made.
When completed, this working document will be aiven to BSI for the
necessary editorial and other processing before it is issued as a
draft for public comment.

When 1 was in the USA this summer it was my belief that I could
arrange for the draft BS to appear in Fasc:l News. This will not

be possible, unfortunately. However, I will be submitting to Andy
Mickel a copy of the working document which DPS/13/4 passes to BSI,
The technical contents of this document will be the same as the draft
unless any errors are detected and corrected by the .31 machinery.

The decision to prepare a draft for public comment does not mean that
we have,or even bhelieve that we have, resolved all the questions that
people have concerhnina Poscal., We have-prepar=d a draft because we
believe that many issues have becn resolved and that now is an
opportune time to receive comrents on what has been done.

It is my intention tn send a comnentary on the working document along
with the working document, in an attempt to highlight those areas
which currently are causing concern,

In the next issue of Pascal News I should be in a position to report
on the situation within ISO,
A M ADVYMAN

A1 Ay

Convenor - DPS/13/4

September 12, 1978

ENGINEERING LABORATORIES

Mr. Andy Mickel, Editor
PASCAL News

University Computer Center
208 Southeast Union Street
University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

I apologize for writing this letter so late. My only excuse is
that I have been quite busy.

at the University
was cajoled!) to
User's Group at

charter, elected

As you know by now, Andy, during the conference
of California, San Diego, I volunteered (read I
act as coordinator for standards for the PASCAL
least until some formal arrangement was made by
officers and the like.

However, after conversations with Tony Addyman, we both noticed a
severe overlap in his informal position with the User's Group and
mine. We solved this quite easily. I told him he could have the
whole thing! But, Tony was too smart for that. So here is what I
offered to do:

(1) Act as North American liason for Tony's efforts in
standardization and to generally aid him and the news-
letter staff.

(2) Draw up a first-draft proposal for Program Interchange
Standards ({(by January 1, 1978).

(3) To collect and standardize a more extensive set of syntax
and semantic test programs for the standard PASCAL language
and to propose a uniform way of classifying and organizing
these tests (by April 1, 1979).

I volunteered to do the last item because it is one of the things

I committed to do for my company. I know that both Arthur Sale and
Brian Wichmann are extremely interested in this same effort, and I
will work closely with them as well as any other Pascal User's
Group members who wish to contribute.

I hope to be able to cafry out these tasks in a timely manner.

Singerely,

WFS/esl W. F. Shaw

6901 WEST SUNRISE BLVD., FORT LAUDERDALE, FLORIDA 33313 {305} 587-2900

'
¢]

SKAN TVISY

¢T#

R E NN

6261

Vd

S8

) | UNIVERSITY OF MINNESOTA University Computer Center
: 227 Experimental Engineering Building

“i4 | -, TWIN CITIES
Sy Minneapolis, Minnesota 55455
William F. Hanrahan, X3 Secretary
(612) 373-4360

American National Standards Institute, SPARC
Suite 1200
1828 L Street NW

27.
Washington, DC 20036 Wednesday 78/09/27

Dear William,

I am writing to you regarding an article appearing in the 28 August issue of
Computerworld on page 27 about the proposed IS0 Pascal Standard. | only hope that
this letter is not too late.

| am the coordinator of the international Pascal User's Group (PUG) which now
numbers over 2700 members in 41 countries and 49 states. PUG produces the quarterly
Pascal News, of which | am editor. Pascal News has overseen the rapid spread of
Pascal simply by disseminating vast quantities of information (please see enclosures).
American PUG members number about 2000.

I would like to point out that PUG has been in very close contact with the British
Standards Institute DPS/13/4 group and its chairman, Tony Addyman, which are producing
a draft Pascal Standard. PUG is fully aware of the activities of this British Pascal
group, the Swedish Technical Committee on Pascal, the French AFCET Sub-group on Pascal,
and the Pascal group within the German ACM.

The PUG membership (which certainly comprises the majority of Pascal enthusiasts)
has consistently held the position that the control of the international effort be left
in British hands.

The over 100 persons attending the Third Annual Computer Studies Symposium on
Pascal at the University of Southampton, held in March, 1977, unanimously approved a
motion that the Pascal Report be standardized with the semantics ''tightened up'' and
with no extensions. Tony thus had the support he needed to undertake his effort.

Niklaus Wirth, the designer of Pascal, has given Tony Addyman his enthusiastic
support and is providing technical assistance for the 1S0 standardization effort.

The recent Pascal Workshop held at the University of California, San Diego, was
attended by representatives of over 15 computer companies having used Pascal for more
than a year. That workshop unanimously agreed that every attempt be made to conform
to the resulting BS!/150 standard.

We are proud to say that the simplicity of Pascal which separates it from other
languages has carried over into the standards activity undertaken so far.

In a couple of issues of Pascal News, people who supported a general standards
effort naturally thought of turning to ANSI. It was pointed out, however, that the
ANS! Pascal Standard should be one line which reads: ''See the IS0 Pascal Standard,
document number X.'' just as the 150 standards for FORTRAN and COBOL are one-line
entries (with ANSI's cooperation) which say ''see the ANSI Standard."

Thus ANSI has the opportunity of reciprocating its respect with 150. Pascal is
a language with European origins, and the major work on standards has appropriately
been left to Europeans. The savings in time, expense, and energy to ANSI or any
proposed American ''technical committee for Pascal'' are obvious. We all don't want
national variants for Pascal.

Thankg for your support,

american national standards committee

NEWS RELEASE

October 23, 1978

X3—computers and information processing
X4—oftfice machines and supplies

operating under the procedures of the

American National Stendards (nstitute For more information, contact:

C. A. Kachurik
202/466-2288

PASCAL. PROGRAMMING LANGUAGE STANDARDS COMMITTEE FORMED BY X3

Washington, D.C. -~ "Programming Language PASCAL"” is the responsibility of a new committee
under American National Standards Committee X3. Identified as Technical Committee X3J9,

the initial task of the technical committee is to prepare a proposal for standardization

of the PASCAL programming language and obtain approval of the proposal and program of work.
Committee work will be aligned closely with the international standards subcommittee on
PASCAL, as well as on-going work in the Federal Government, domestic professiomal societies,
equipment manufacturers, and other interested organizations.

The committee is seeking active participation from users of PASCAL, as well as developers
of the PASCAL language compilers. Interested persons and organization representatives are

invited to coatact C. A. Kachurik, 202-466-2288 at CBEMA/Standards, Washington, D.C. for
further details.

X3J9 will be a part of the parent committee X3, which has overall responsibility for
standards on computers and information processing. X3 currently has 29 technical committees
and has completed some 60 standards published by the American National Standards Institute
(ANSI), with as many more in various stages of development. The X3 administrative
secretariat is the Computer and Business Equipment Manufacturers Association (CBEMA).

secretariay: Computer and Business Equipment Manufacturers Associgtion

1828 L Street NW (Suite 1200), Washington DC 20036 Tel: 202/466-2299

CBEMA

NEWS RELEASE

November 10, 1978

american national standards committee

X3—computers and information processing
X4—office machines and supplies

operating under the procedures of the

American National Standsrds Institute For more information, contact:

C. A. Kachurik
202/466-2288

PASCAL PROGRAMMING LANGUAGE STANDARDS COMMITTEE MEETING SCHEDULED

Washington, D.C. —- Mr. Justin Walker will convene the inaugural meeting of the newly-formed
X3 Technical Committee on Programming PASCAL, X3J9, Tuesday, December 19, 10:00 a.m. at the
offices of the Computer and Business Equipment Manufacturers Association. The Association
which serves as Secretariat to the X3 parent committee of X3J9 is located at 1828 L Street
N.W., Suite 1200, Washington D.C. Mr. Walker, of the National Bureau of Standards, has
extensive background in the PASCAL area and has developed several compilers.

The committee is seeking active participation from users of PASCAL, as well as developers
of the PASCAL language compilers. The initial task is to prepare a proposal for standard-
ization of the language and obtain approval of the proposal and program of work.

Interested persons and organization representatives are invited to attend, or contact
C. A. Kachurik, Secretariat Staff, at 202/466-2288 for further details.

secratarist: - Computer and Business Equipment Menufacturers Associstion

1828 L Strest NW (Suite 1200), Waeshington DC 200236 Tet: 202/466-2299

CBEV

$T# SKHAN TVISVd

IRERERER

§L01

98 35Vd

GENERAL INFORMATION

Special note: We are pleased to print Scott Jameson’s announcement (below) of

the

formation of the PUG Implementors Group. Given the wide variety of previous and current
activities in the implementation of Pascal and extensions, this group will f£ill an
important role in coordinating and furthering these efforts. Everyone is encouraged to

read and respond to Scott’s proposal.

As this is the first issue of Pascal News in this academic year, let us explain
this section is organized:

-~ First, Reports of interest from the Implementors Group.

-= A CHECKLIST to be used as a guide to users, distributors, implementors and
maintainers for reporting the status of Pascal implementations on various
computer systems.

-- A PORTABLE PASCALs section reporting distribution information about kits used
to produce Pascal compilers for real computer systems.

-— Information on PASCAL VARIANTS.

—- A FEATURE IMPLEMENTATION NOTES section describing implementation strategies
and detalls of various Pascal features as suggestions to all the compiler
implementation efforts underway. This section may be replaced by the
Implementors Group’s Reports.

—- A list of MACHINE DEPENDENT IMPLEMENTATIONS sorted by name of computer system,
giving news of Pascal compilers for real machines.

-- And an INDEX to all the implementation information in current issues and back
issues of Pascal News.

Note: It is not economically feasible for us to reprint all of the old information
from previous 1issues. We therefore will provide references to back issues when we have

received no new information. (Use the All-Purpose Coupon at the beginning of this

issue

for ordering back issues.) We will be very happy to print new information, or revisions of

previous items, submitted by users, distributors, maintainers, or implementors.

When

appropriate please use the CHECKLIST form. We prefer dark camera-ready COpY,

single-spaced, with wide (18.5 cm) lines.

IMPLEMENTORS GROUP REPORT

HEWLETT W PACKARD

DATA SYSTEMS ® 11000 Wolfe Road, Cupertino, California 95014, Telephone 408-257-7000, TWX 910-338-0221

To: PASCAL NEWS Readers

One of the results of the UCSD Workshop on Extensions to
Pascal was the decision that the Pascal User’s Group would evolve
ip order to continue to meet the needs of its 2200+ members. The
diverse interests of these members, ranging from first-time

Implementation Notes

programmers to language designers, require PUG to structure
itself so that it can better respond to everyone interested in
Pascal. One proposal is that PUG form an “Implementors Group’,
to provide a medium for communicating items of interest for those
involved in developing Pascal compilers, and for those desiring
further information regarding specific compilers or machine
implementations.

The Implementors Group can serve the Pascal community
in many ways. Some of the things we hope to do are:
~ publish a newsletter, aimed primarily toward the compiler
developer. It will contain articles of interest to
implementors, such as how to implement sets, structures of
files, ‘core’ files, and the standard procedure ‘dispose’, as
well as guidelines to ensure transportability and compatibility
with other Pascal implementations. ‘PASCAL NEWS ~ nas provided
this, but the Implementors Group Newsletter could provide
extended and more specialized features,

Provide a means for implementors to add to a “validation
suite’, such as that mentioned in “PASCAL NEWS #12 (pages 52 &
54) , or other set of Pascal test cases, A compiler writer
could contribute a program that gave him fits, and see if other
developers had solved that problem.

Provide an information exchange for all persons interested in
Pascal. The PJUG offices are inundated with requests for
information on a particular implementation, and the
Implementors Group could serve as a clearinghouse, to cChannel
these guestions to the appropriate persons.

Provide an organization to evaluate and decide on proposals
for Pascal extensions, This may include the experimental
language features suggested by the UCSD Workshop or
“conventionalized extensions’ proposed by other persons.

~ Provide a forum for implementors and users to interact with
eacn other. This includes user’s comments about a particular
implementation, to give implementors a better feel for what
users .think of their compiler (many developers share the
complaint that tney don’t get any feedback from users of theic
compilers, and nave no feeling for the number of compilers in
use or how successful they have been), as well as the
checklists which implementors now provide for “PASCAL NEWS .

Tnis list is not complete by any means, and we are looking
for suggestions of other areas wnere the group can serve all
Pascal users.

The logistics of this group still have to be worked out.
I have volunteered to act as the group’s coordinator, at least
until a more formal arrangement is established. The membership
will be open to all interested Pascal User’s 3roup memoers, and a
mailing list will be maintained so that all known implementors
and interested persons receive the newsletters and other
mailings. There will be no feesg until we have a feeling on the
number of people involved, and the cost can be determined.

Everyone who is interested in this group would have to
be prepared to contribute in some form. This could include
responding to queries regarding tneir particular implementation,
and contributing to the newsletter, I can provide the
clearinghouse function and forward inquiries to the right people,
but I don’t have the time or the knowledge to be able to answer

$T# SHAN 1VISVYd

“¥3di3oaa

8461

L% 35V d

Implementation Notes

questions on all compilers. The same is true of the newsletter.
It is for all implementors, and is an excellent venicle to show
off an elegant solution to a sticky problem, as well as a

convenient means to communicate with otner Pascal implementors.

Please send any comments,etc. or requests to pe on tne
mailing list to me:

Scott K. Jameson
Hewlett-Packard
11000 Aolfe Road
Cupertino, CA 35014

(403) 257-7000

C HECKLIST Pascal Implementations Checklist

0.

9.

i0.

DATE/VERSION
(* Last checklist changes; version name or number, if any. *)

DISTRIBUTOR/IMPLEMENTOR/MAINTAINER
(* Names, addresses, phone numbers. %)

MACHINE
(* Manufacturer, model/series and equivalents. *)

SYSTEM CONFIGURATION
(* operating system, minimum hardware, etc. *)

DISTRIBUTION
(* cost, magnetic tape formats, etc. *)

DOCUMENTATION
(* In form of supplement to Pascal User Manual and Report?
Machine retrievable? *)

MAINTENANCE POLICY
(* How long? Accept bug reports? Future development plans. *)

STANDARD
(* Implements full standard? Why not? What is different? *)

MEASUREMENTS
(* -compilation speed (in characters/sec. please; this is a
meaningful measurement for compilation speed);
-compilation space (memory required at compilation time);
-execution speed;
-execution space (the memory required at execution time;
compactness of object code produced by the compiler);
** Try to compare these measurements to the other language
processors on the machine, e.g., FORTRAN. *)

RELIABILITY
(* stability of system (poor, moderate, good, excellent);
how many sites are using it?
when was the system first released to these sites? #*)

DEVELOPMENT METHOD
(* Compiler or interpreter? Developed from Pascal-P / hand-
coded from scratch/bootstrapped/cross-compiled/etc.? What
language? Length in source lines? Effort to implement 1in
person-months? Previous experience of implementors? %)

11. LIBRARY SUPPORT
(* Libraries of subprograms available? Facllities for
external and FORTRAN (or other language) procedures
available? Easily linked? Separate compilation available?
Automatic copy of text from library into source program
available? Symbolic dumps available? *)

Return to: Pascal Implementations
c/o Andy Mickel
University Computer Center: 227 EX
University of Minnesota
Minneapolis, MN 55455 USA

PoRTABLE PASCALS

Pascal-P.

The wmost-widely used portable compiler for creating new Pascal Implementations is
Pascal-P. Basically Pascal-P 1s distributed from three places in the form of a kit
consisting of a magnetic tape and printed documentation.

Pascal-P is a compiler written in Pascal (almost 4000 lines) which generates symbolic
code for a hypothetical stack machine called a "P-machine” because it is a low-level
idealized architecture for Pascal. The symbolic code is thus called P-code.

On the magnetic tape are textfiles containing:

- a sample character set collating sequence. This file is also distributed as a listing to
simplify character set conversion.

- the Pascal-P compiler in Pascal.

- a P-code assembler/interpreter written in Pascal which is intended to document how to
write an interpreter in an existing language on the target computer system.

- a Pascal-P compiler in P-code. In other words, the result of compiling the Pascal-P
compiler on itself.

The person implementing Pascal has several choices. If there is no access to a
working Pascal compiler on another machine, the implementor orders a Pascal-P kit already
configured to the target machine. Configured compilers have constants inserted in them to
specify, for example, the size of each simple data type. These configuration parameters
are given by the implementor on the Pascal-P order form. (See below.)

After receiving the kit, the implementor can write an interpreter for P-code in
another language (usually takes about one person-month), and thus immediately has access
to a Pascal compiler running interpretively by using the P-code version of the compiler
included in the kit.

To produce a real Pascal compiler for the target machine then requires editing of the
Pascal-P compiler written in Pascal to produce code for the target machine (instead of the
P-machine). After recompiling, a Pascal compiler exists in the code of the target machine.

If the implementor initially has access to a working Pascal compiler on another
machine, the step of writing a P-code interpreter can be omitted.

Facts about the Pascal-P compiler:

~ The current version is called Pascal-P4 and is distributed with a copy of Pascal-P3
(which is of interest to previous recipients of Pascal-P2).

¢T# ShAN 1¥ISVd

R ERTTERER

§L61

88 39vd

Pascal-P4 represents a major improvement over earlier Pascal-P versions because it
removes data-type-alignment restrictions, is more efficient, includes runtime tests, and
is a more complete implementation of Pascal.

- Pascal-P2 was developed from a phase in the stepwise refinement of Urs Ammann’s
Pascal-6000 compiler in 1974 by K. V. Nori, Urs Ammann, K. Jensen, and H. H. Nageli.
Subsequent improvements were done by Christian Jacobi.

- Reliability of Pascal-P4 has been fairly good. As of Spring, 1977, it was distributed to
106 sites by George Richmond (from Colorado), to 37 sites by Chris Jacobi (from
Switzerland), and to more than a dozen sites by Carroll Morgan (from Australia).

- The is no promise of maintenance for Pascal-P. P4 is the final version produced at
Zuerich. We do print reports of bugs (and fixes) in P4. Over 25 fixes were printed last
year in Pascal News issues #11 (pp 70-71) and #12 (pp 56-57). More are printed below.

- Documentation for Pascal-P4 consists of a 65-page report entitled The Pascal <P>
Compiler: Implementation Notes (Revised Edition) July, 1976. (A 24-page correction list
to the original December, 1974, edition is also available.)

- Pascal-P4 does not adhere strictly to Standard Pascal (the User Manual and Report).

Among the differences are:

1. nil is implemented as a predeclared constant, and forward as a reserved word. The
standard indicates that nil 1is a reserved word, and forward is not listed as a
reserved word.

2. The standard comment delimiters { and } are not supported.

3. The following standard predeclared identifiers are not provided: maxint, text,
round, page, and dispose. Further, the following standard predeclared identifiers
are recognized but are flagged as errors: reset, rewrite, pack, and unpack.

4. The program heading is not required by Pé4.
5. Non-discriminated variant records are not supported.

6. The compiler does not allow a ";" before the "end" in a record type. (See the P4

bug reports in Pascal News #12 (pp 56-57) for a fix.)

7. None of the following file-related features are supported:

~- Declaration of file types, variables, and parameters.

-~ The standard predeclared type text, and standard procedures reset, rewrite,
and page.

-~ The requirement by the standard that the standard files input and output
appear in the program heading if they are used.

-- Access to non-text files using read and write.

-— Output of Boolean expressions, or output of real expressions in fixed-point
form with write.

8. Formal-procedures and formal-functions are not supported.

9. Set constructors containing the subrange
supported.

notation (e.g., [“07..79°]) are not

10. "Non-local" goto statements are not supported.

Pascal-P can be ordered from three places (write for prices and order forms).
In Europe, Asia, and Africa, order from: Christian Jacobi

Institut fuer Informatik
E.T.H. Zentrum

CH-8092 Zuerich
Switzerland

Phone: 41/1-32 62 11 x2217

Pascal Distribution

c/o Steve Winograd

Computing Center: 3645 Marine Street
University of Colorado

Boulder, CO 80309

USA

Phone: 303/492-8131

In North and South America, order from:

Tony Gerber

Basser Dept. of Computer Science
University of Sydney

Sydney, NSW 2006

Australia

Phone: 61/2-692 3216

In Australasia order from:

Pascal P4 ~- Bug Reports

s T# SKIK 1YISVd

On 78/06/09, Ted C. Park, Systems Development, Medical Data Consultants, 1894 Commercenter

West - Suite 302, San Bernardino, CA 92408 (714) 825-2683, reported:

"I just came across two more bugs in the PASCAL-P4 compider. FUNCTION EQUALBOUNDS

contains an obvious error:
replace P.136 with GETBOUNDS(FSP2,LMIN2,LMAX2);

PROCEDURE GEN2T is used for (among other things) generating 'CHK' instructions. The
fix causes the width of the 'P' field to be 3 or 8 as needed. Without the fix the
lower limits of arrays must be less than four digits long!

replace P.262 with WRITELN(PRR,FP1:3+0RD(ABS(FP1)>99)*5,FP2:8);

(*Thanks Ted!*)

Pascal Trunk Compiler

The trunk compiler is the machine-independent part (e.g., syntax amalysis and error
recovery) of a Pascal compiler in which the code generation has to be dinserted in a
certain number of empty procedures. We have received no new information on the Trunk
compiler since that which we published last year in Pascal News issue #9-10 (p 62).

Pascal J

Pascal-J is a compiler which translates Pascal to the intermediate language Janus, a
totally portable "mobile programming system" -- even to the point of defining its own
character set! Janus in turn 1is macro-processed via Stage2 which is implemented in
standard Fortran. We have received no new information on Pascal-J since that which we
published last year in Pascal News issue #9-10 (p-62).

PascaL VARIANTS

Pascal-§

Pascal-S is a subset of Pascal developed by Niklaus Wirth. We have received no new
information on Pascal-5 since that which we published last year in Pascal News issues
#9-10 (p 63) and #11 (p 72).

§/61 “4¥3EH3IIAG

6§ 39Vd

Concurrent Pascal

A portable pair of Pascal compilers was implemented by Per Brinch Hansen and Al
Hartmann at Cal Tech in 1974-1975 for the PDP 11/45. The system consists of a "Sequential
Pascal" compiler, a "Concurrent Pascal" compiler (used for writing operating systems and
other concurrent programs), and a "kernel" or machine dependent set of run-time routimes
written in assembler. The project at Cal Tech centered around writing a one-user operating
system called SOLO in Concurrent Pascal. Both compilers are written in Sequential Pascal.

In 1975-1976 the system was distributed widely (252 sites) and led to the development
of a machine-independent version with a different kernel.

The distribution tapes ($50) and documentation ($10) can be ordered from:

Pascal Distribution

c/o Steve Winograd

Computing Center: 3645 Marine St.
‘University of Colorado

Boulder, CO 80309

USA

Phone: 303/492-8131

Publications about Concurrent Pascal include:

(1) "The programming language Concurrent Pascal", in the June, 1975, I1EEE
Transactions on Software Engineering 1:2, by Brinch Hansen.

(2) A guest editorial and four articles by Brinch Hansen in the April-June, 1976,
issue of Software - Practice and Experience 6, pp 139-205. The articles are
entitled:

"The Solo Operating System: A Concurrent Program"

"The Solo Operating System: Job Interface"

"The Solo Operating System: Procedures, Monitors, and Classes"
"Disk Scheduling at Compile Time"

(3) The book Operating Systems Principles by Per Brinch Hansen, Prentice Hall, 1973.

(4) An article "Experience with Modular Concurrent Programming" in the March, 1977,
IEEE Transactions on Software Engineering 3:2, by Brinch Hansen.

(5) A Concurrent Pascal Compiler for Minicomputers by Al Hartmann, Springer-Verlag:
Lecture Notes in Computer Science, Volume 50, 1977.

(6) The new book The Architecture of Concurrent Programs by Brinch Hansen,
Prentice-Hall, 1977.

COMPUTER SCIENCE DEPARTMENT
SALvATORT COMPUTER SCIENCE CENTER

(213) 741-5501 October 1, 1978

Dear Concurrent Pascal User,

It is now 3 years ago since the Concurrent Pascal compiler and the
Solo Operating System were first distributed, Since then the system
has been moved to several computers and used for a variety of pur-
poses.

Some users {but not all) have briefly reported on their usage of Con-
current Pascal in the Pascal Newslatter. I am now trying to get a
more complete overview of the current use of the system,

If you are using Concurrent Pascal or Solo then please send me a
letter. I would like to know which computer you are using, how
hard it was to move the system to that machine, how reliable the
software has been, what applications the system is being used for,
and any other comments you may have. I would also like to know if
you have published any papers about your experience.

Andy Mickel and I plan to publish these letters in the Pascal News.
If I receive your letter before February 28, 1979 it will be included

in the newsletter.
Yours sincerely,
/ j
% i vt~
Per

Brinch Hansen

I look forward to hearing from you.

UNIVERSITY OF SOUTHERN CALIFORNIA T NIV RSTIY PARK T OS ANCETE >0 AL TTORNTY o

UMIST

The University of Manchester Institute of Science and Technology

PO Box 88, Manchester M60 1QD
Telephone 061-236 3311

Department of Computation
27th April 1978

Dear Andy,

We have moved Brinch Honsen's S0LO system on to our 40K CIL Modular
One computer. We have found the system to be very reliable und the few bugs
that have been found have been simple to fix. Cur main interest is in

Concurrent Fascacl which we are using as « tool for our work on the development

of programming methods for multiprograms.

Vue to the inhospitable wurciitecture of the lModular One our system
runs at only & fifth of the s,.eed of the original ¥DP-11/45 implementation.
work is under way to improve the speed by the utilisation of a second
processor and a fixed heud disc. 4 simple multi-acce:s system is ulso being
considered.

The transportution of ULV was very straight forward and was accomplished

in about eight months by two undergruduuie students and one lecturer working
part-time. Further details of the move ure contuined in Mulcolm Fowell's
report [1].

We are interested in exchanging informacion and programs with other

users or potential users of S0LU or Concurrent Pascal.

Yours sincerely,

>Q/{¥J/K Colemncn

Derek Coleman
Lecturer in Computation

{13 K.S. rowell. bxperience of Moving and Using the SCLC Operuting System,
Comgutation Department, UM1IST

¢T# SKIN TVISV

IR ENVERNELC

8.0T

66 39Vd

Modula

Modula 1is a small 1language for dedicated computer systems and process control
applications on small machines, developed by Niklaus Wirth and co-workers in 1975-76. It
is conceptually cleaner than Concurrent Pascal in many respects. The Modula language
definition provides for machine-dependent facilities for interacting with asynchronous
devices. Modula 1is still experimental and the implementors in Zurich have insisted there
are no distribution arrangements. Other implementations are complete or underway. See
Pascal News #11 (p 74) for details of the University of York PDP-11 compiler. Also, on
78/10/27, Gerd Blanke (Postbox 5107; D-6236 ESCHBORN Germany; phone (06198) 32448) wrote
"MODULA will be running on a ZILOG MCS with 64K under RIO near the end of this year!"

Published material on Modula includes:

(1) "Modula: A Language for Modular Multiprogramming", Software - Practice and
Experience 7 (1977), pages 3-35, by Niklaus Wirth.

(2) "The Use of Modula", same as (1), pages 37-65, by Niklaus Wirth.

(3) "Design and Implementation of Modula", same as (l), pages 67-84, by Niklaus
Wirth.

(4) "Toward a Discipline of Real-Time Programming', Communications of the ACM 20:8
(August, 1977), pages 577-583, by Niklaus Wirth.

(5) "Experience with the programming language MODULA", University of York — Dept. of
Computer Science (June, 1977), by J. Holden and I. C. Wand.

References (1) through (3) received very interesting reviews in Computing Reviews 18
(November, 1977), #32217, #32218, and #32219.

FEATURE IMPLEMENTATION NOTES

TMPLEMENTATION NOTE

Implementation of INPUT and OUTPUT Arthur Sale and Judy Bishop

PROBLEM

Tt has come to our attention that there is a problem with the implementation
of the pre-defined files input and cutput. What follows refers only to output,
as it is easier to demonstrate the effects on an output file, but applies
equally to the file input.

The problem turns on two of Pascal's Achilles' heels: the elision of a file-name
in read and write and the resulting default, and the singular program

parameter part and its interaction with pre-defined names. The situation

can be summed up by two questions, to each of which there are two reasonable
answers.

QUESTION 1 : Where do default writes go?
Does write(x) write on the default file named output (and pre-defined), or
on the lexically innermost definition of a file named output?
Answer A : x is always printed on the pre-defined file, whatever
redefinitions of the name output may have taken place.
Answer B : the symbol table is searched for output and the write is
attempted on the innermost occurrence of it.

QUESTION 2 : At what level is output defined?
Is the pre-defined file output regarded as declared at the level of the
program block (level 0) or in a lexically enclosing block (level -1)7?
Answer C : the file is regarded as being at the level of the program
block, thereby prohibiting a synonymously named file at
that level,
Answer D : the file is regarded as being in a block enclosing the program,
so that the name can be redefined in the program block.

WHERE DO DEFAULT WRITES GO?

The Tasmania B6700 compiler and the AAEC IBM compiler transmit default
information always to the pre-defined file output, and it seems likely that
the CDC-6000 compiler, the ICL compilers, and most Pascal-P derivatives do
the same. These indicate that Answer A is currently predominant.

What does the Report and User Manual say? The Report (#12.3) defines
write(x)
as equivalent to
write(output,x)
which makes one think of Answer B: the elision of the file-name is to be
handled by a macro-expansion. However, on reading the User Manual (p61) and
earlier in the Report (pl61) we find that output is described as a program
parameter which is assumed by default if the filename is omitted. In other
words: the pre-defined file, and Answer A.

On balance, therefore, the predominant Answer A seems to be approved by the
User Manual. It can be argued that this is abstractly best, for if we have
to have any defaults in Pascal (and we've got these few), then they ought to
be as simple as possible.

The following is a test program to exercise your compiler and test its
performance on this question:
program questionl(output};
procedure inner;
var output : text;
writeln('WRITING ON DEFAULT FILE');
writeln(output, 'WRITING ON LOCAL FILE')
end;
writeln(output,'TEST OF QUESTION 1');
inmer;
writeln('RAN')

end.

AT WHAT LEVEL IS ourpur DEFINED?

Output, in common with other pre-defined names, can be regarded as pre-declared
in a lexically enclosing scope, thus allowing its redefinition in the program
block. This is asserted by the Report (pl61), and is the current interpretation
given by the Tasmania B6700 compiler: Answer D.

The alternative, sanctioned by the User Manual (p%1) in the CDC-specific section,
says that these files are AmpfLiciffy declared in the program block (not
pre-declared). In CDC-6000 Pascal therefore one may not define any object with
the name output at the program level. The AAEC compiler is similar, thus

giving Answer C.

So both answers find some support, and both are in use. Which is better?
Experience of one of us (AHJS) indicates that perhaps Answer C is best:
pre-declared at the program level. This experience arises from a number of
apparent 'bug reports' received from afar which, when traced, turn out to be
derived from a user attempt to redefine the output file by declaring a hiding
occurrence of the name output at the program level. If Answer C had been
adopted in the Tasmania B6700 compiler, these would have been detected as
illegal by the compiler, and other name choices would have been forced on the
users.

¢T# SMIN 1¥ISYd

i ER T ENER

861

I6 39Vd

It is also possible, but inconclusive, to argue from analogy. Focussing on the
analogy with other pre-defined identifiers, such as abs and true, then it

seems consistent to argue that the definition of output should also enclose the
program block. But, of course, these two files (input and output) are the only
two var objects which are pre-defined, so perhaps they should be special. This
view leading to implicit declaration in the program block, is supported by

the analogy with all other file names mentioned in the program parameter part
which must have a declaration in the program block (at least in the CDC-6000
implementation; others allow more freedom).

If then Answer C is more attractive, the Tasmania B6700 compiler should be
changed. In this case however, we shall wait until the draft standard for
Pascal resolves the issue. The following test program will show what your
compiler does:

program question2(output);

var output : integer;

{ if this compiles, you've probabiy got Answer D }
begin

output := 1;

end.

A DEVIANT IMPLEMENTATION
One implementation, which shall remain nameless as a fitting panishment, lies
outside the permitted limits of the Report and User Manual by using a subtle
change. In this implementation, elision of the file-name causes the write to
take place on an un-named pre-defined file. This has the result that
write(output,x)
fails to compile unless another file is declared with the name output, and
that the question of the default file's scope does not arise (because you
can't rename an un-named file). Tt requires additional tests to distinguish
this case from an implementation that answers A and C, and it may give rise
to confusion amongst users.

BRIEF ADVICE

To Pascal users:

(1) Do not use the identifiers input or output for anything other than the
pre-defined files that you don't need to declare.

(2) Preferably do not leave the file-names out of reads and writes, but
put them in explicitly as a good programming practice.

To implementors:

Please modify any implementation plans to be consistent with majority
opinion in Answer A, and watch for more information on Question 2.

To fanguage designens:

{1) Puture languages should make it mandatory for compilers to inform
users of any names they hide under scope rules, if such exist. The
extended searches are only necessary at declaration points.

(2) Defaults of any kind should be avoided.

1978 June 13
Arthur Sale (Revised-1978 August 1)
University of Tasmania
Judy Bishop

University of the Witwatersrand

1978 April
A.H.J.Sale

IMPROVED CHECKING OF COMMENTS

As is well-known, comments of the PASCAL kind have a severe disadvantage in that
if a closing marker is omitted or mis-keyed, intervening source text will be
treated as commentary until a closing marker is found for a later comment. Since
such errors do not give rise to syntax errors, they may remain undetected in
source text for a long time. This feature is exacerbated in PASCAL by allowing
comments to continue over line-boundaries, and highlighted by PASCAL's otherwise
good compile-time error-detection.

In Burroughs B6700/B7700 PASCAL (University of Tasmania compiler), the problem
this creates for programmers (especially learners) has been alleviated by issuing
warnings if a semi-colon is detected within a comment, as this is very likely to
be the result of an error. Very few erroneous comments remain undetected, and
the change in the lexical analyser is very simple. Th{s suggestion £s commended
to othern Limplementorns and maintainenrs.

People who use the comment facility to suppress source text compilation (debug
code; superceded text) may be annoyed by the many warning messages. They can then
suppressed by our compiler option WARNINGS; but better still would be to realise
that this is a misuse of comments and hardly likely to enhance readability!

Many Algol 60 compilers have included similar checks in their handling of the
singularly nasty end-comment in that language; the experience is generalizable to
PASCAL too.

It would be possible to issue warnings for other symbols encountered in comments,
for example a comment opening marker, and this would marginally improve the
detection probability of these errors. We judged such extension as not worth the

effort, especially since both {} and (* *) comments are permitted in our PASCAL,
which would require quite complex checks.

Sample output for error:
{this comment is unclosed
count := 0;
WARNTING : DISCOVERED ";" IN COMMENT. DID YOU FORGET TO CLOSE A COMMENT?

{this closing marker will match the first one}

Lazy 1/0

(* The "Lazy 1/0" scheme has apparently been invented several times. The earliest
implementation of which we are aware is in the Berkeley PDP-11 UNIX compiler. This was
discussed 1in some detail at the UCSD Workshop in July. The consensus there seemed to be
that Lazy I/0 is the best solution anyone has yet proposed, even though it may be somewhat
less efficient than other approaches in terms of execution time.

On October 21, James Saxe and Andy Hisgen added a note written to Andy Mickel which said:
"By the way, the lazy evaluation idea was not cribbed from Berkeley UNIX Pascal, as you
have suggested, but was developed here independently. We are, however, glad to see that
there are other people around who do not feel compelled to introduce unnecessary changes
to the semantics of Pascal at every opportunity.” - Jim Miner *)

¢$T# SRIN T¥YISVd

"¥34K3IVIC

86T

¢6 39Yd

Compviuter Science Devartment
Carnegie-Mellon University
Pittsburgh, PA 15213

August 4, 1978

Subject: LAZY EVALUATION OF THE FILE BUFFER FOR INTERACTIVE I/O
Dear Andy,

A frequently occurring difficulty in Pascal programming, and one which is
particularly puzzling to the novice, arises from the effect of the file lookahead
buffer on interactive 1/0. Specifically, let TTY be a TEXT (FILE OF CHAR) variable
associated with the input stream from the user's terminal and let TTYOUTPUT be a
TEXT variable associated with the output stream to the terminal. Now, consider
the following program fragment:

ReadLn (tty, nplayers):
WriteLn (ttyoutput, 'Number of marbles = ?');
ReadLn (tty, nmarbles):

W N =

Under many Pascal implementations, this fragment will fail to work as intended
because the READLN in line 1 will not complete until the lookahead buffer, TTYt,
has been filled with a character (presumably the first digit of NMARBLES) from
the terminal. The user, meanwhile, will not supply this character until he has
been prompted by line 2, which of course cannot happen until line 1 has finished
execution. Attempted "solutions" to this problem include

- Use of special user-defined procedures for the terminal which read a
single real or integer after doing a READLN. (This approach, of
course, is not very useful for programs that do character input.)

- Altering, in various ways, the semantics of file input when the
run-time system "knows" that the file being read happens to really
be the terminal (e.g., making EOLN(TTY) be FALSE and TTYt be '’
after each READLN(TTY) regardless of the contents of the following

line of input. Note that empty input lines will no longer be reliably
detected and may "hang" the terminal.).

- Introducing a new file type for interactive devices, with slightly
different semantics from those for TEXT files,

We maintain that all these. kludges are completely unnecessary.A Pascal
compiler and run-time system can be made to support interactive I/0 in a perfectly
natural manner without any deviation from the semantics laid out in the
report. This can be achieved by "lazy evaluation” of the file lookahead buffer for
the terminal, that is, the practice of never filling TTYt until it is actually used.

To describe this more precisely, let ACTUALGET be a procedure having the
effect that GET has in most implementations. That is,

ActualGet (tty):

has the effect of grabbing one character of terminal input from the operating
system and sticking that character in TTY+t. We introduce a new Boolean variable,
TTYBFULL, visible only to the run-time system, which, as we shall see, shall be
TRUE iff the "current" character in the file TTY has actually been read from the

terminal. The action of

Get (tty)s

is now precisely defined as

IF ttybfull
THEN ttybfull := FALSE
ELSE ActualGet (tty)s:

Whenever the programmer explicitly does something that requires lookahead
(assigns to TTYt, calls EOLN(TTY) or EOF(TTY), uses TTYt in an expression, or
passes TTY* as a value parameter), the run-time system, behind the programmer's
back, forces the lookahead buffer full by doing

IF NOT ttybfull THEN

BEGIN
ActualGet (tty):
ttybfull 1= TRUE;
END:

When TTY is RESET for input form the terminal an ACTUALGET is not done, but
TTYBFULL is initialized to FALSE. The call

Read (tty, ¢): (% where C is a variable of type CHAR *)

continues to be equivalent (as specified in the Report) to

c = ttyhs
Get (tty):

The procedure ACTUALGET, like the variable TTYBFULL, is directly accessible only
to the run-time system and not to the programmer.

Careful consideration of the rules described above will show that they result
in exactly the semantics described in the Pascal Report. The only difference
between this and other implementations is that the terminal will not "hang" in the
manner described in the opening paragraph. This conformity with the semantics
of the Report has several advantages:

- Conformity to Standard Pascal improves the prospects for software
portability.

- Any program which works correctly under a correct implementation
of Standard Pascal will continue to work, and will give the same
output (given the same input), under the implementation described
above,

- Since the semantics of disk file I/0 and terminal 1/0 continue to be
identical, programs which use input from one source can be easily
modified (say, for debugging) to take input from the other. Also
programs which postpone until run-time the decision whether to
take input from a disk file or from the terminal can be written
without needless duplication of code,

ST# SHNAN T¥ISVd

“u3dN3d3d

861

¢6 39VYd

Let us emphasize again that even programs which make use of the lookahead
buffer will work in the manner defined by the Report, because any program
action which actually requires knowledge of the lookahead character will demand
that character from the terminal before it can continue. Of course it is the
programmer's responsibility to prompt the user for this input, but since the
programmer knows that this information is required at a particular point in the
program, he should have no trouble remembering to prompt for it. Consider, for
example, the following program fragment, which prompts the user for an integer
but allows him to just type a carriage return if he wants the default value (shown
in brackets by the program):

WriteLn (tty, 'Number of runs [10] ! ')3
IF Eoln (tty) THEN

BEGIN

nruns := 10;

Readln (tty):

END
ELSE

ReadLn (tty, nruns):

WANPDUNDHWN-

In line 2, the programmer does an explicit lookahead at the first character on the
line to determine whether it is the line delimiter (i.e., whether the line is empty).
In this case, the lookahead character will be demanded by the run-time system
before the expression EOLN{TTY) can be evaluated. However, the prompt for this
input will have aiready been supplied by line 1.

In closing, we should take note of some tricky aspects of the lazy evaluation
technique which might at first escape the notice of the prospective implementor,
First, lazy evaluation of the lookahead buffer should be performed on all TEXT
files, since it is not necessarily possible to determine at compilation which of these
will be associated with the terminal (for example, TTY may be passed as an actual
procedure parameter), Second, enforcing correct semantics can be very tricky in
cases where the lookahead buffer (TTYt) is passed as a VAR parameter [Our
approach at CMU is to force the buffer full once at the time of function or
procedure invocation and to leave the user on his own thereafter. Since passing
TTY rather than TTYt guarantees the expected semantics, we feel that this
approach does not make impositions on the reasonable user., An alternative
approach would be to disable lazy evaluation for the duration of the
invocation.]. In spite of these difficulties, however, we believe that the lazy
evaluation approach to the interactive I/0 problem is substantially superiar to the
other mechanisms we have seen.

Yours truly,

James B. Saxe

1f P

Andy Hisgen

MACHINE-DEPENDENT IMPLEMENTATIONS

Alpha Microsystems AM-1l

See DEC LSI-11 UCSD.

Altair 680b

See Motorola 6800 St. Paul.

Altair 8800

See Intel 8080.

Altos ACS-8000

It has been reported that Altos Computer Systems; 2378b Walsh Ave.; Santa Clara, CA
950503 408/244-5766 offers a Zilog Z-80 based microcomputer which supports CP/M and
Pascal, but we have received no information from Altos.

Amdahl 470

See also IBM 360/370.
It has been reported that the IBM 360/370 AAEC as well as the Vancouver systems are
running on an Amdahl 470.

Andromeda 11/B

See DEC LSI-11.

Apple II

See MOS Technology 6502.

BESM-6 Moscow

0. DATE/VERSION. 78/9/21.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. S. Pirin; Moscow Computer Center; USSR Academic
Sciences; Moscow, R-S.5.Re3 UeSe5.Rej (* No phone number repotted *)

2. MACHINE. BESM~6.

ST# SMAN T¥ISVd

“¥34dW3I30

8/61

e 39Vd

3. SYSTEM CONFIGURATION. (* No information reported. *)
4. DISTRIBUTION. (* No information reported. *)

5. DOCUMENTATION. (* No information reported. *)

6. MAINTENANCE. (* No information reported. *)

7. STANDARD. (* No information provided. *)

8. MEASUREMENTS. (* No information reported. *)

9. RELIABILITY. (* No information reported. *)

10. DEVELOPMENT METHOD. (* Reported that project has been underway (or possibly complete?)
for some time. *)

11. LIBRARY SUPPORT. (* No information reported. *)

It has been reported that the BTI 8000, a 32 bit multiprocessor system offered by BTI
Computer Systems; 870 W Maude Ave.; Sunnyvale, CA 94086; 408/733-1122, includes a Pascal
compiler bundled with the hardware and that the system software is written in "Pascal-X",
an extended version of Pascal; but we have received no information from BTI.

Burroughs B1700 Zurich

We have received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 73. #12: 57-58.

Burroughs B1800

See Burroughs B1700 Zurich.

Burroughs B4700 Fredonia

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 73.

Burroughs B5700 Edinburgh

UNIVERSITY OF CALIFORNIA, SANTA CRUZ

BERKELEY + DAVIS ¢ IRVINE = LOS ANGELES * RIVERSIDE * SAN DIECO SAN FRANCISCO SANTA BARBARA * SANTA CRUZ

COMPUTER CENTER SANTA CRUZ, CALIFORNIA 95060

3 May 1978
RE: PASCAL for Burroughs B5700

This compiler is in current use here and is available from me.

I imagine it's also available from University of Wisconsin - Fau Claire
as noted in the December, 1977 "Pascal Answers”. The original source

of the compiler is Heriot-Watt University, Edinburgh; and any complaints,
bugs, fixes, etc. should be sent there.

No charge if the requester sends a tape.

L c»'j ljr\,/

Jahes H. Haynes
Associate Development Engineer

Burroughs B6700 Helsinki

According to Antti Salava (* 78/10/18 *): "I’m not working with Pascal nowadays. A
year ago I left the University of Helsinki, where I was implementing Pascal-HB compiler on
the Burroughs B6700. It’s been running now a couple of years without any fatal crashes. We
wrote a report on our compiler, too. Hasn’t anybody noticed it? It’s this: Hannu Erkio,
Jorma Sajaniemi, Antti Salava; "An Implementation of Pascal on the Burroughs B6700";
Department of Computer Science; University of Helsinki; Report A-1977-1. Copies may be
ordered from: Department of Computer Science; University of Helsinki; Toolonkatu 11;
SF-00330 Helsinki 10, Finland.

Burroughs B6700 San Diego

We have received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 74. #11: 81 except that we have received
a copy of the multi-page machine-retrievable installation notes that come with the system.

Burroughs B6700/7700 (Tasmania)

0. DATE/VERSION. Checklist has not been updated since 78/03.

1. TIMPLEMENTOR/DISTRIBUTOR/MAINTAINER. A.H.J. Sale; Pascal Support; Dept. of Information
Science; University of Tasmania; Box 252C G.P.0.; Hobart, Tasmania 7001 Australia; STD 002
23-0561 x435.

2. MACHINE. Burroughs Model III B6700, B7700.

3. SYSTEM CONFIGURATION. Burroughs MCP version II.8 (with few (minor) local mods).
Minimal system to operate not known, but unlikely to be any B6700 that small--storage
demands are low, and little else is critical.

4. DISTRIBUTION. Both 7- and 9- track magnetic tapes available. Annual fee of $100
(Australian) is charged to cover mailing, processing, and maintance costs, payable to '"The
University of Tasmania".

5. DOCUMENTATION. Available documentation: Report R77-1: Supplement to Pascal User Manual
and Report ; Report R77-3: Reference Manual similar to B6700 ALGOL’s; A Pascal Language
card; and A Pascal System card. (* Not known if this documentation is machine retrievable.
*)

6. MAINTENANCE. To be maintained for teaching use within the University as well as larger
aims. Reported bugs will be fixed as soon as possible, with patch notices to users.
Duration of support not yet determined; several other developments are also pending. Each
installation will be issued a supply of FTR-forms similar to those used by Burroughs for
use in corresponding with us, and .we will attempt to do a professional job in maintenance
of the system.

The compiler has been stable in code for some time, reflecting its basic integrity.
However, new features are added from time to time, and notified to users as patches or as
a new version release. The department accepts FTR notices, and will attempt to fix those

¢T# SKHIK 1¥YISVd

RERY RN

8/61

96 39Vd

which warrant such attention. Some modifications have taken place as a result of user
feedback. The compiler was especially designed so as not to generate dangerous code to the
MCP, and no system crashes have been attributed to it since the first few months of
testing, and then only three.

7. STANDARD.

Restrictions: Program heading: reserved word program is synonymous with procedure; no
parameters (files) are permitted after the program heading. Reason: CDC anachronism of no
utility in our installation, and likely to be confusing. Set comnstructor of form A..B not
implemented. Reason: future plan. FORTRAN control character on print line not implemented.
Reason: a ridiculous feature to standardize. Full Pascal I/0 not implemented. Reason:
future plans. Present I/0 scheme is like Pascal-l.

Extensions: otherwise in case statement. Various reserved words, character set
transliterations. Burroughs comment facility. File attributes in declaration. Format
declarations. Extensive Burroughs-compatible compiler options. (Pascal control comment
option mode not implemented).

8. MEASUREMENTS.

compiles about 20% slower than FORTRAN or ALGOL, but in about 2/3 of
their space (for test programs about 4-5 K words on average
instead of 8-10K). Elapsed compilation times similar, though
Pascal slower. Speed should be improved by eventual tuning.

executes at same speed as FORTRAN and ALGOL (code is very similar and
optimal) and takes generally longer elapsed residence time
primarily due to MCP intervention to create new segments for
record structures (not present in FORTRAN/ALGOL). Elapsed
residence times about 207 greater than equivalent ALGOL.

9. RELIABILITY. Excellent. Only one system crash during testing attributed to Pascal.
Compiler now in use at 3 sites. True compiler has been in use since 76/10. First released
to outside sites in 77/4.

10. DEVELOPMENT METHOD. Compiler which generates B6700 code-files which are directly
executed by the B6700 with MCP. Written entirely in B6700 ALGOL. Hand-coded using Pascal-P
as a guide/model. All other paths offered much more difficulty due to special nature of
machine/system. Person-month details not kept, and project proceeds in fits and starts . as
teaching intervenes. Project has thus far been limited to two people: Prof. A.H.J. Sale
and R.A. Freak (Support programmer).

11. LIBRARY SUPPORT. There is as yet no BINDINFO in the code-file so that it 1is not

possible to link Pascal to modules compiled by other language processors, but the system
contains an extended set of predefined mathematical functions.

CDC 2550

See CDC Cyber 18 La Jolla.

CDC 6000, Cyber 70, 170 Bethlethem, PA

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #11: 82.

CDC 6000, Cyber 70, Cyber 170 (Zurich)

0. DATE/VERSION. Pascal 6000 Release 3; 78/11/15.

Wally Wedel Switzerland
Computation Center 01/ 32 62 11
University of Texas-Aus tin

Austin, TX 78712 UsA Maintainer:

512/ 472-3242 John P. Strait / Andy Mickel
~(Australia, New Zealand, or Oceania) University Computer Center

Tony Gerber 227 Ex

Basser Dept. of Computer Science

University of Sydney University of Minnesota

Sydney, N.S.W. 2006 Minneapolis, MN 55455

Australia USA

61 / 2-692 3216 612/ 376-7290

* Arrangements are underway to have the implementor of the CDC 7600, Cyber 176
run-time system take over distribution for Europe, Asia, and Africa from the original
implementor.

2. MACHINE. Control Data 6000 series, Cyber 70 series, and Cyber 170 series.

3. SYSTEM CONFIGURATION. Minimum central memory-49K words. Operates under Scope 3.4,
Kronos 2.1, NOS/1.3, and NOS/BE 1.

4. DISTRIBUTION. Tape format is Scope internal binary 7/9track, unlabelled, 800 bpi.
Specify: person responsible for maintaining the system, your hardware, operating system,
and character set (ASCII or Scientific, 63 or 64) . Distribution includes
machine-retrievable source and object decks, installation notes, and software tools.
Arrangements for distribution (cost, etc.) for the new release have not yet been
finalized. Contact the distributor in your area in further informatiom.

5. DOCUMENTATION. Machine-retrievable supplement to Pascal User Manual and Report.
Documentation of library-support package is available with Release 3.

6. MAINTENANCE. Will accept bug reports at Minnesota for forseeable future.

7. STANDARD. Nearly full standard. [Restrictions include: standard procedures and
functions cannot be passed as actual parameters; file of file is not allowed:] [Extensions
include: additional predefined procedures and functions; segmented files, conformant array
parameters, otherwise in case statement, variable initilization facility (wvalue), and
text-inclusion facility for source 1ibrariesa

8. MEASUREMENTS.
Compilation speed: 10800/5800 characters per second on a Cyber 74/Cyber 172;
Compilation size: 40K (octal) words for small programs; 57K for self-compilation.

Execution speed: self-compiles in 65/120 seconds.
Execution size: binaries can be as small as 2.4K, compared with Fortran minimum of
over 10K.

9. RELIABILITY. Unknown, as this is a new release. However, Release 2 was very reliable
and was in use at over 300 known sites. First version of this compiler was operational in
late 1970. The present version was first released in May 1974. A pre-release version of
release 3 was tested at 10 sites for up to 5 months prior to the official release.

10. DEVELOPMENT METHOD. Bootstrapped from the original Pascal-6000 compiler, but developed
in a 6-phase stepwise-refinement method. Approximately 1.5 person-years. Runtime system
rewritten for Release 3.

11. LIBRARY SUPPORT. Allows calls to external Pascal and assembler subprograms and Fortran
(FIN) subroutines. The user library supplied with the system contains many intrinsic
procedures and functions in addition to the Standard Pascal ones.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER.
Distributors:
~(Europe, Asia, or Africa)
See Ric Collins
Univ. of Manchester (CDC 7600) *
-(North or South America)

Implementor:
Urs Ammann
Institut fur Informatik
E.T.H. -Zentrum
CH-8092 Zurich

¢T# SmIN TVISY

R EEVERER

861

96 39vd

CDC 7600, Cyber 76 (Manchester)

0. DATE/VERSION. Release 3 of the CDC 6000 Zurich compiler (from the Minnesota
maintainer) is a common release for the CDC 6000, 7600, Cyber 70, 170 series. See the
letter under CDC 6000 Zurich.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. This compiler is essentially the Pascal 6000
compiler modified to fit the 7600 and Cyber 76 machines. A new run-time system 1s being
developed using conditional assemblu in the new Release 3 run-time system by A.P. Hayes;
UMRCC; Oxford Road; Manchester M13 9PL; Emgland, U.K.; (061-273 8252).

2. MACHINE. Control Data 7600 & Cyber 76.
3. SYSTEM CONFIGURATLON. SCOPE 2.1.3 or 2.14, 32K SCM.

4. DISTRIBUTION. Contact R. J. Collins at address above. A distribution agreement must be
signed and the cost is 30 pounds sterling.

5. DOCUMENTATION. Same as Pascal-6000.

6. MAINTENANCE. UMRCC will assist with bugs -- in the 7600 dependant code (runtime

system) only. Minnesota will accept bug reports on the compiler itself.
7. STANDARD. Same as Pascal 6000.

8. MEASUREMENTS. None yet for Release 3; [Release 2 was: Compilation speed is about
57,000 characters/sec. Compiler compiles itself in less than 10 sec. Pascal execution
speed has been measured by using the obvious encoding in Pascal of Wichmann’s Synthetic
Benchmark (see Computer Journmal Vol. 19, #1). The Units are in kilo Whetstones.

compiler and no runtime array bound

optimisation level checking checking
ALGOL 4 (OPT=5) 1996 1230

Pascal 6850 6240%
FIN (OPT=2) 945 3174%%

* Using T+ option--all run time checks included.

** Forces OPT=0.
Compiler will recompile itself on a “half-size’(32K SCM) machine. Execution space-- Core
requirements (octal): 42,402 SCM, or 36,045 if segment loaded (using a simple segment
structure). Self compiles in less than 60,000. (* No information provided on size of
compiler or object code produced. *)]

9. RELIABILITY. Same situation as Pascal 6000 (Zurich).
10. DEVELOPMENT METHOD. Cross compiled from Cyber 72 compiler. Based on Zurich 6000
compiler with necessary additions for this machine. (* Person-hours to develop system not

reported. *)

11. LIBRARY SUPPORT. Same as Pascal 6000.

CDC Cyber 18 La Jolla

We have ‘received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 75. #11: 8l.

CDC Cyber 18 Berlin

We have received no new information on this implementation since that which we

published last year in Pascal News issue: #11: 81-82.

CDC Omega 480-I, 480-II

See IBM 360/370.

CDC STAR-100 (Cyber 203) Virginia

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 77.

CII 10070 France

We have received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 77-78. #12: 59-60. (see also Xerox Sigma
7 Tokyo.)

CII IRIS 50 Nice

received no new information

We have
published last year in Pascal News issue: #9-10: 77.

on this implementation since that which we

CII IRIS 80 Paris, France

We have received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 77-78. #12: 59-60. (see also Xerox Sigma
7 Tokyo.)

Commodore Pet 2001

See MOS Technology 6502.

Computer Automation LSI-2 and LSI-4 Irvine

We have received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 78. #12: 60.

CRAY~1 Los Alamos

We have received no new information on this implementation since that which we

published last year in Pascal News issues: #9-10: 78-79.

Cromemco Z-2

See Zilog Z-80.

ST# SKIN TYISV

IRERTEREL

8461

L6 39Y%d

Data General -- Introduction

¢vDataGeneral

Route 9. Westhoro, Massachusetts 01581
Tekephone : 617.366.801]

27 April 1978

Dear Mr. Mickel:

I am writing to you because of the article that appeared in
Computerworld, April 24, on the growth of Pascal and Pascal
Usger's Groups.

The User's Group at Data General will soon have a Pascal
Special Interest Group. It is being organized by a member
of PUG, Rodney Thayer. He has agreed to serve as an interim
co-chairman until the group can elect officers. There will
be a Pascal session at the 1978 Annual User's Group Meeting.

The version of Pascal that we are using is one that has been
supplied by R.E. Berry at the University of Lancaster. If you
have any question about the Pascal User's Group at Data General
please feel free to contact either Rodney Thayer or myself,

Sincerely,

%
- Axw—u/D[£ /é o
Kenneth A. Roy
D.G. User's Group

Richard E. Adams; 967 Atlantic Ave.; Apt. 634; Columbus OH 43229; 614/436-3206 asked
(* 78/7/31 *): "I have not seen any references to a Pascal compiler runmning under Data
General’s Advanced Operating System (AOS). Is anyone out there working on it?"

Data General Eclipse/Nova Columbia

0. DATE/VERSION. 78/3/8.
1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Rhintek, Inc.; Box 220; Columbia, MD 21045 (301).

2. MACHINE. Data General Nova or Eclipse minicomputers or equivalents. We are using the
compiler on a Nova 3/D running Rev. 6.10 mapped RDOS. However, we are cleaning up the code
and expect the compiler to be able to run under unmapped RDOS on a 32k Nova within a few
weeks.

3. SYSTEM CONFIGURATION. Mapped RDOS system or 32k unmapped RDOS with minimum operating
system. The current revision of Data General RDOS will be supported but the compiler
should work with older versionms.

4. DISTRIBUTION. 9 track magnetic tape, 800 bpi, 7.5 inch tape in the RDOS dump format.

Price for a single user license is $375. Multi-use, OEM’s, and educational use licenses

will be handled on a separate basis.
5. DOCUMENTATION. The package includes source code, binary code, and ready-to-run demo

programs. Instructions for executing the compiler are included; the operational
information can be obtained from books by Per Brinch Hansen or Al Hartman.

6. MAINTENANCE. Updates for 1 year and notification of substantial enhancements as long
as interest is shown. We will maintain a users group and encourage bug reports and
suggestions. This compiler is wused by Rhintek as an application and system programing
language and will continue co receive support and enhancements by us.

7. . STANDARD. Based on Sequential Pascal which varies from Standard Pascal. The current
version lacks: file, goto, label, and packed reserved words and sqr, §in, cos, arctan, ln,
exn, sqrt, eof, eoln, odd, and round built in functions.

8. MEASUREMENTS. The compiler compiles source code at the rate of 200 lines/min. This is
about 1/2 the rate of the PDP-11/45 but about 5 to 10 times the speed of other compilers
on the Nova. The compiler will compile itself in about 30 minutes total. (* Compilation
and execution space requirements not reported. *)

9. RELIABILITY. Good. (* date first released, number of sites using system not
reported. *)

10, DEVELOPMENT METHOD. The virtal machine was coded in Nova assembler language and then
the compiler was modified along with the interpreter into its present form.
(* Person-months to develop system not reported. *)

11. LIBRARY SUPPORT. There is no library support as yet. The operating programs support
program swapping or chaining with only minimal effort as this is used with the compiler.

Data General Eclipse San Bernadino D

MEDICAL DATA CONSULTANTS

{714) 825-2683

MDC ECLIPSE RDOS PASCAL
Version 3

0. PRODUCT DESCRIPTION. MDC PASCAL Version 3 is an efficient PASCAL compiler and run-
time support system designed for the execution of small PASCAL programs in a mini-
computer environment, The development criteria are as follows:
A. To support interactive I/0 in a reasonable way.
B. To be compatible with, as far as possible, the existing MDC ECLIPSE RDOS PASCAL
Version 2.
C. Close agreement with the P4 'standard'.
D. A reasonable integration into RDOS. (We support background/foreground,
subdirectories, and a simple command-line form of activation).
E. Speed of execution is a primary concern in Version 3. The size of the object
program is secondary to this speed criterion.
F. Although written in assembly language, much effort has been made to preserve
the modularity and intelligibility of thé code.
The magnetic tape we distribute contains executable object code, source code, and
machine readable documentation. It is assumed that the user has an existing MDC
ECLIPSE RDOS PASCAL Version 2 operating at his site.

1. DISTRIBUTOR/IMPLEMENTOR/MAINTAINER. Ted C. Park; Director, Systems Development;
Medical Data Consultants; 1894 Commercenter West, Suite 302; San Bernardino, CA
92408.

2. MACHINE. Data General - any ECLIPSE-line computer.

3. SYSTEM CONFIGURATION. ECLIPSE must have FPU or EAU, minimum of 16K words user
memory, RDOS REV 6.1 or greater, FORTRAN 5 (any recent revision).

4, DISTRIBUTION. System supplied on 9-track 800 BPI tape in RDOS 'dump’ format.
The cost is $100.00 to cover our majling and duplicating costs.

d

s T# ShaN TVISY

RERTVEREL

8/61

86 I5Vd

5. DOCUMENTATION. User must obtain his own copy of the Pascal Users Manual and
Report. It is recommended that the user obtain an implementation kit from the
University of Colorado. Documentation and operating procedures are supplied on the
tape.

6. MAINTENANCE POLICY. Bug reports are welcome but no formal commitment for support
can be made at this time. Extensive testing of the product has been done and all
known bugs have been eliminated.

7. STANDARD. PASCAL P4 subset.

8. MEASUREMENTS.
Compilation Speed: 40 chars/sec (including blanks and comments)
Word Size: 16 bits
Real Arithmetic: Uses 32 bits
Integer Arithmetic: Uses 16 bits
Set Size: 64 bits
Execution Speed: Approximately the same as the code produced by Data
General FORTRAN V compiler
Minimum Memory Needed: 16K words

9. RELIABILITY. Version 1 exists in at least 10 sites, we believe no bugs exits.
Version 2 is primarily the same as Version 1 except with improved operating procedures,
faster compiles and executions, and increased capability; it also exists in at least

10 sites, we believe no bugs exist here either. Version 3 is a new product and has

had thorough in-house testing. From our past experience, we have every reason to
expect good performance in the field.

10. DEVELOPMENT METHOD. Developed from PASCAL-P4. Version 3 consists of a small
program which rearranges the PCODE output by the compiler into a form syntacticaily
acceptable to the Data General macro-assembler. A macro-library is supplied which
will convert each PCODE instruction into one or more ECLIPSE instructions. The
output from the assembler may then be submitted to the normal Data General relocating
Toad procedure to produce an executable core image file. A runtime support library
which includes some initialization routines, an error routine, I/0 routines, and
transcendental function routines is also included. Al1 programs are written in
assembly Tanguage and are extremely modular and well documented so that any changes
wished by the user should be easy to incorporate.

11. LIBRARY SUPPORT. No Data General libraries are needed to run the system nor is
it possible to use any if desired,

Data General Nova Austin, TX

THE UNIVERSITY OF TEXAS AT AUSTIN
COLLEGE OF NATURAL SCIENCES
AUSTIN, TEXAS 78712

Departinent of Computer Sciences

14 May 1978
Painter Hall 3.28 Y !

Dear Andy,

I am enclosing three reports on work which I have been doing (did)
on implementing Pascal (or a Pascal-like language at least) on a Nova 3/D.
This work differs from the University of Lancaster Version by directly
compiling assembly code, not hypothetical stack code which must then be
interpreted.

Sincerely,

James Peterson
Assistant Professor

(* See Abstracts, above right. *)

"Using Pascal on the Novas"
Abstract: This note describes the procedure for using the Pascal compiler on the Nova
computer system at the Department of Computer Science at the University of Texas at

Austin. It also indicat
es the limitations of the system and how they can be overcome.

"A Compiler for a Pascal-like Language"

Abstract: The development of major software systems for the Nova computer system can
benefit greatly from the existance of a systems programming language. The development of
such a language, and its supporting compiler is currently underway. This note reports on
the language definition ant the mechanics of the compiler.

"Code Generation for a Pascal Compiler for a Nova Computer"

Abstract: A compiler is being written to translate a Pascal-like language into
assembly code for the Data General Nova 3/D computer. A previous note has described the
language and the basic structure of the compiler. In this note, we describe the
code-generation problems encountered and their solution.

Data General Nova 840 Barcelona, Spain

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 81-82.

Data General Nova (Lancaster)

July 27, 1978
Dear Andy,

Enclosed is my renewal and here is some up-to-date information
on our PASCAL distribution effort:

We are currently distributing Revision 2.01 of the Lancaster
compiler for the NOVA. This revision has eliminated some of the
minor problems found in the first release and has added some enhance-
ments, such as separately compiled procedures and support for random
1/0. The source code and binaries are available on magnetic tape
for $140. The binaries only are $70.

We have had a tremendous response to our press releases about
the compiler, and have shipped some 59 copies so far, including
copies sent to 7 foreign countries, even though we are only soliciting
U.S. business. The number of reader response bingo-card inquiries is
approaching 1000, indicating a high degree of interest in the language,
particularly from the commercial and industrial community. In fact,
many of the inquiries have come from England, where this version was
originally developed. Our customers have had very few problems with
the Lancaster software, and we now have several applications programs
running in PASCAL on the NOVA.

Sincerely,
Heamde.

H. S. Magnuski
Gamma Technology, Inc.

GAMMA TECHNOLOGY

800 Weich Road = Palo Alto = California 94304 » 415-328-1661 s TWX: 910-373.1296

¢T# ShAN T¥ISVd

R ERYEREL

§/61

66 39Vd

0. DATE/VERSION. Checklist last updated 77/10/27.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER.
Distributors:
(Europe, Asia, Africa):
R. E. Berry and A. Foster;
Dept. of Computer Studies;
University of Lancaster;
Bailrigg, Lancaster LAl 4YX, U.K.;
65201 (STD 0524) .

(Western America):
H. S. Magnuski
Gamma Technology
800 Welch Rd.

Palo Alto, CA 94304
415/326-1161

TWX: 910-373-1296
R. E. Berry and A. Foster.

(Eastern America):

Jim Herbert

51 Thomas Rd.

Swampscott, MA 01907

(* No phone number
provided. %)

Implementors:
2. MACHINE. Data General Nova series (2/10, 820).
3. SYSTEM CONFIGURATION. RDOS 4.02/5.00 operating system; 32K core, disk backing store.
No hardware multiply/divide or floating point needed. One user reports using system with
RDOS without any trouble.
4. DISTRIBUTION. From Lancaster: Cassette tape or 2.5 Mbyte cartridge disk (* cost not
reported *) From Palo Alto: 800 bpi 9 track tape, binary only-$70,with source-$140; From

Swampscott: (* format, cost not reported *).

5. DOCUMENTATION. A 82-page user manual is provided. (* Not
retrievable. *)

known if this 1is machine

6. MAINTENANCE. No formal commitment to provide support can be given, however, bug
reports-are welcome. To date all known bugs have been fixed and this policy will continue
as long as is practicable.

7. STANDARD. Pascal P4 subset accepted. Extensions for random I/0 provided.

8. MEASUREMENTS. Typical runtimes compare favorably with those of other languages
generally available on the Nova. P-code is generated, assembled and then interpreted.

Release 1 Release 2
Compiler NMAX (decimal) 14,055 15,505
additional fixed table space 1,092 1,197 (in words)

The workspace remaining depends upon size of the RDOS system used. The size of program
which can be compiled depends on the number of user defined symbols (dyunamic area used)
and depth of nesting of procedures/statements. Thus it is difficult to make any general
statement about the size of program which can be compiled, however, we observe that the
assembler for the system is some 1,100 lines of Pascal source generating 7,400 P-code
instructions and we can compile this on our 32 k system. We cannot compile the compiler
but would expect to do so with more than 32 k core.

Timing information for Nova Pascal Lancaster Release 2: We have not yet compiled the
compiler with our system so we cannot give figures for that. Instead to provide the basis
for our statement that the performance of our Pascal "compares favorably" with DG ALGOL a
1list of times obtained by running some well known small, and often uninteresting program
are given. The timings are taken from a Nova 2/10 running under RDOS 4.02 with 32 k of
core an no hardware multiply/divide or floating point. They were (rather crudely) obtained
by wusing the GTOD command to prefix and postfix the CLI command necessary to load the
appropriate program. "Compile" should be taken to mean the production of a save file (.5V)
from the source program.

Programs:

1) A program consisting simply of begin end.

2) Matrix Mutiply of two 50 x 50 integer matrices (no 1/0).

3) Matrix Mutiply Of two 50 x 50 real matrices (no I/0).

4) Sort an array of 1000 integers from ascending order into descending (no 1/0).
5) Ackermans function (3,6) (no I1/0).

6) Write 10,001 integers onto a file.

7) Read 10,001 integers from a file.

8) Generate 5000 random integers (printing only the last).

9) Generate 5000 random integers and write to a file.

ALGOL Pascal
compile run compile run
#1 155 :06 1:31 107
#2 1:15 1:54 1:39 2:35
#3 1:16 14:32 1:40 11:59
#4 1:10 2:06 1:38 5:56
#5 1:09 2:52 1:37 1:55
#6 1:06 3:18 1:35 1:11
#7 1:08 1:28 1:36 1:03
#8 1:36 1:56 1:57 3:13
#9 1:36 4:46 1:57 4:30

Timings such as these offer much scope for debate. It is safer to let others draw what
conclusions they will from these figures (and from any other figures which may be
produced). I simply wish to observe that interpretive Pascal "compares favorably" with the
code produced by DG ALGOL. In the programs used above the ALGOL and the Pascal look very
much the same. No attempt is made to exploit one feature of a particular language or
implementation, and no tuning has been done. If anyone has other examples to contributre
to such timing comparisons I would be glad to hear about them.

9. RELIABILITY. Release 2.0l has been distributed to 50 known sites. No significant bugs
have been reported from external users. First released 77/0l; Latest release 78/7/27.

10. DEVELOPMENT METHOD. Originally cross-compiled from a CDC 7600. The P-code assembler
was written from scratch in Pascal; the P-code interpreter was implemented in Nova
assembly language. (* Person-months to create system not reported. *)

11. LIBRARY SUPPORT. No library support in release l. Under Release 2 user procedures may
be separately compiled enabling the user to set up his own libraries. It is not possible
to link into any other libraries.

DEC -- Introduction

DEPARTMENT OF COMPUTER SCIENCE
University of Montana Phone: (406} 243-2883

Missoula, Montana 59812

October 12, 1978
Dear Andy:

The DECUS PASCAL SIG is alive and well even though I am now in the Big
Sky Country (Montana). My steering committee now resides in the four corners
of the United States, but we are actively working on several PASCAL related
projects. We are keeping in touch with Seved Torstendahl (Sweden) as a US
focal point for his PDP-11 PASCAL Compiler. In addition, we are actively
pursuing the implementation of the NBS (Natjonal Bureau of Standards) PASCAL
Compiler on the following PDP-11 operating systems: UNIX, RSX-11, IAS, RSTS,
and RT-11. In addition to PDP-11's a small portion of our group is working
on a version of the NBS PASCAL Compiler for the VAX-11/780. We are very in-
terested in all of the standardization efforts currently under way. I attended
part of Ken Bowles' meeting at UCSD this summer and Justin Walker (NBS) is
interested in implementing some of the agreed upon extensions for externally
compiled modules. Please publish as much of the UCSD summer meeting report as
possible in future issues of the PUG newsletter.

ST# SHMIN TVISYVd

REETVERER

861

(CT 39vd

Dr. Roy Touzeau, also of the Computer Science Department here at the
University of Montana, is also working on a DECSYSTEM-20 version of Charles
Hedrick's DEC-10 (KL10) PASCAL Compiier from Rutgers University. He has mod-
ified the run-time system to remove the dynamic page management code as the
DEC-20 does its own paging. He is presently changing the run-time support to
use TOPS-20 system calls rather than depending on the DEC-10 compatibility
code. Future plans are to produce a one-step compiler/linker for student use
in introductory programming courses. Any comments or suggestions regarding
this effort may be sent directly to Roy.

Sincerely yours,

20 Fan

John R. Barr
DEC LSI-11 UCSD Assistant Professor

We have received copies of two papers on the UCSD Pascal system; the titles are: "A
Brief Description of the UCSD Pascal Software System” (* 78/6/1 *), and "Newsletter
#2--UCSD Pascal Project" (* 78/5/30 *).

Jim McCord; 330 Vereda Leyenda; Goleta, CA 93017; 805/968-6681 reports: "I am acting
as the distributor for UCSD Pascal for hobby users of the LSI-1l. Cost is $50, of which
$35 goes to UCSD for continued work. Other $15 pays for documentaion and postage, if user
sends me 4 floppies. (Else I will provide for $3 each.) This includes all source code for
everything, including the interpreter. Anybody interested should get in touch with me (we
already have 7 users).

Following checklist submitted by George Gonzalez,
Lahoratory; 134 Space Science Center; University of Minnesota; Minneapolis,
78/10/01.

Special Interactive Computing
MN 55455 omn

0. DATE/VERSION. I.4, released about May, 1978.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER.
Studies; University of California-San
715/452-4526.

Institute for Information
Jolla, CA 92093;

UCSD Pascal Project;
Diego; Mail Code C-021; La

2. MACHINE. PDP-11, LSI-1l series with
micros: Intel 8080, Zilog Z-80, etc.

16-28 kwords memory; and various 8 and l6-bit

3. SYSTEM CONFIGURATION. Has own operating system. Does not run under any other system

(but can be brought up under CP/M). Requires 16-28 kwords (unmapped).

4, DISTRIBUTION. Source & object programs available on RXOl diskettes. Contact UCSD for
more information. Cost — $50 for binaries; $200 for source, maintenance and binaries.

5. DOCUMENTATION. User Manual. Gives overview of operating
with/extensions to Standard Pascal. Not machine retrievable.

system and differences

6. MAINTENANCE. One~year maintenance (optional at higher cost).

7. STANDARD. Not implemented: Program header with file parameters; procedures dispose,
pack, unpack; no procedures or functions as parameters; no boolean conversion in write
procedure;

Differences: input™ 1s initially undefined; read(input,ch) is defined as begin
get(input); ch := input™ end, instead of the Standard Pascal definition; rewrite requires
a second parameter which specifies the system file name; files are not automatically
closed at block exit; gotos cannot cross block boundries.

Extensions: Numerous (but ill-defined) extensions: character strings as an intrinsic
type; string-manipulation facilities; random access to files; dynamic file
opening/closing; shared variables for system communication; I/0 error detection
capability; segmentation (overlay) scheme.

8. MEASUREMENTS. Compiles a 3400-line program in 28k words, at 400-600 lines /minute.

(* How this compares with FORTRAN, other 1an$uages not reported. *) (* Execution speed,
space not reported. *)

9. RELIABILITY.

The reliability of the Standard Pascal constructs is good.

Large (3000 line) programs, plus several ‘portable’ Pascal programs
PRETTYPRINT) have been run with no problems attributable to the
constructs.

(XREF, COMPARE,
Standard Pascal

The reliability of the UCSD "extensions" is generally poor.

The string-manipulation intrinsics (COPY, POS, CONCAT) do
checking. The graphics intrinsics do not check for out-of-range arguments (which wusually
crash the program). Writing on a reset’ed file can destroy other files. The compiler
allows literal strings to be passed as var parameters to string intrinsics. This can
change the value of the literal. Writing a file which overflows available space does not
cause an error.

insufficient error

10. DEVELOPMENT METHOD. P-code compiler/interpreter system. Based on P2.
77/8/1. About 300 sites using system.

First released

1l. LIBRARY SUPPORT. Compiler can read external source files. Predefined procedures are
provided for text-string manipulation, memory-mapped graphics, and system level
input/output. These intrinsics are generally ill-defined and unreliable. No symbolic dump
is available. The object-code level debugger supplied requires extensive knowledge of the
object code layout.

DEC PDP-8 (Minnesota)

0. DATE/VERSION. Checklist updated 78/10/5.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. John T. Easton, 612/373-7525; James F. Miner,
612/373-9916; Address correspondence to: Pascal Group; SSRFC; 25 Blegen Hall; University
of Minnesota; 269 19th Ave. South; Minneapolis, MN 55455; 612/373-5599.

2. MACHINE. Digital Equipment Corp. PDP-8/e.

3. SYSTEM CONFIGURATION.

0S/8 version 3. Hardware required:

-RK8-E disk, or other direct access mass storage.

-12 K minimum of core/RAM. 32 K is required for compilation. Can use up to 128K.
4, DISTRIBUTION. Release scheduled for second quarter, 1979.

5. DOCUMENTATION. Machine-retrievable supplement to Pascal User Manual and Report (about
25 pages), in preparation.

o

+ MAINTENANCE. A policy has not yet been determined.

7. STANDARD. Emphasis has been on close adherance to the Pascal User Manual and Report.
There are two major restrictions: a) Procedures and functions may not be passed as
parameters. This restriction will not be lifted without full type checking (which requires
a change in the Pascal Standard). b) Files may be declared only in the main program, and
files may not be components of arrays, records, or files; nor may files be allocated with
the procedure NEW. Minor restrictions: set size=96 elements; maxint=8,388,607 (2*%23-1).
Full-ASCII character set is supported. Major extemsions supported: a) direct-access files;
b) default case; c) run—time file binding; d) overlays.

8. MEASUREMENTS.
Execution speed--roughly comparable to FORTRAN IV (F4). 1I/0 tends to be
faster than FORTRAN, while computation tends to be slower.
Execution space--Interpreter takes 8K, space needed for P-code and run-
time storage depends on program.

13N TVISYd

¢cT# S

R ER AR

86T

TGT 39V d

9. RELIABILITY. Fair to good and improving. An earlier implementation has been in use at
1 site since 76/11.

10. DEVELOPMENT METHOD. As with most languages on the PDP-8, Pascal makes use of an
interpreter (a modification of P-code) written in MACREL. The compiler (about 5000 lines,

based on Pascal-P4) is written in Pascal. All standard procedures are written in MACREL.
The implementation is not suitable for real-time applications.

11. LIBRARY SUPPORT. Currently (78/11/15), none planned for the first release.

DEC PDP-11 (Amsterdam)

0. DATE/VERSION. Checklist not updated since 78/02.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Sources, binaries, and documentation are part of
the third UNIX software distribution. Implementor: Johan Stevenson, Vrije Universiteit.
Maintainer: Andrew S. Tanenbaum; Vakgroep Informatica; Wiskundig Seminarium, Vrije
Universiteit; De Boelelaan 1081; Amsterdam, The Netherlands; 020/ 548-2410.

2. MACHINE. Any PDP-11 on which UNIX version 6 will run.
3. SYSTEM CONFIGURATION. See 2.

4. DISTRIBUTION. Through the UNIX sof tware distribution center. (* No information on cost
reported. *)

5. DOCUMENTATION. Short manuals for the compiler and interpreter in UNIX MAN format and a
12 page description giving details about the implementation.

6. MAINTENANCE. Bug reports are welcome. There will be an improved release of the current
system. However, we are working on a totally new one. Main differences from the old one
are:
~a new hypothetical stack computer named EM1 (see Tanenbaum, A. S., "Implications
of structured programming for machine architecture', CACM, Dec. 1977).
This intermediate machine allows very compact code (only 15,000 8-bit bytes
for the compiler itself) and fast interpretation. Emulating EMl on a
microprogrammable computer must be easy. Moreover, this EM1 machine
allows compilation of other high level languages as well.
—an new interpreter with all kinds of run-time checks and debugging aids.
—expansion on EM]l codes into PDP-11 instructions.
-less restrictions on the language Pascal.

7. STANDARD. Main differances with Standard Pascal are:

-no gotos out of procedures and functions.

-procedures and functions can not be passed as parameters.

-extern procedures and functions not implemented.

-mark and release instead of dispose.

-at most 8 files(all text), including input and output.

-An explicit get or readln is needed to initialize the file window

-empty fields and fieldlists are not allowed in record declarations.

-procedure unpack not available, packed ignored; all records are automatically packed.
Maximum length of string constant is 80 characters. Ordinal value of a set element must be
between 0 and 63 inclusive. maxint = 32,767 (2**15 -1). Setsize = 0..63. Full ASCII
accepted (parity ignored). Keywords and standard names are recognized in lower case.

8. MEASUREMENTS.
compilation speed--40,000 char/min on a 11/45 with cache.
compilation space--48k bytes to compile the compiler. Very big programs can be compiled.
execution speed~-you lose a factor of 8 by interpretation. However, 1/0
is relatively fast. Compared to interpreted Pascal on
a big machine (CDC Cyber 73) it is 10 times slower.
execution space--the size of the complete interpreter is 5300 bytes.
The binary code of the compiler is 23,000 bytes.

9. RELIABILITY. The compiler and interpreter are good. However, the run-time checking of
the interpreter is poor. Preliminary version first ran in 1977. (* Date system first
released to users, number of sites using system not reported. %)

10. DEVELOPMENT METHOD. The compiler is based on the Pascal-P2 compiler. A Cyber 73 was

used for bootstrapping. The time needed by one inexperienced implementor was about 6
months.

11. LIBRARY SUPPORT. No library support at all. There are some hidden library routines
used by the system.

DEC PDP-11 Berkeley

UNIVERSITY OF CALIFORNIA, BERKELEY

BFIKELEY * DAVIS * JAVINE * LOS ANGELES * RIVERSIDE « SAN DIEGO * SAN FRANCISCO SANTA BARBARA * SANTA CRUZ

2220 PIEDMONT AVENUE
BERKELEY, CALIFORNIA 94720

29 April 78

PROGRAM IN QUANTITATIVE ANTHROPOLOGY
DEPARTMENT OF ANTHROPOLOGY

Dear Andy,

I was suprised that there wasn't anything in the PN last time about
the Berkeley UNIX (PDP-11) Pascal. I thought I'd let you know it exists, since
the implementors apparently haven't told you anything.

It is an interpretive system written for support of computer science
instruction, so it is very fast at generating (intermediate) code, but slow at
execution. The syntax scan is the best I've seen (of any compiler for any language) ;
it is very informative for unexperienced users, comments on suspicious (but syntactly
correct) code, and corrects some trivial syntax errors such as semicolon before
ELSE. Such corrections show on the listing but the correct intermediate code is
generated -- the note will continue to appear on subsequent listings until the
source file is changed by the user, of course. Definately accepts Standard Pascal:

I swap very large programs back and forth between the PDP-11 and the CDC 6400 with
only changes required in first and last character constants (MINCHAR and MAXCHAR).

The development was supported at least in part by US ERDA, and the authors
seem willing to distribute it for imstructional use. A fifty-one page user's manual,
titleg "UNIX Pascal User's Manual, Version 1.0 ~- September 1977" is available from
the Computer Science Library for a couple of bucks. The authors of the manual are
William N. Joy, Susan L. Graham and Charles B. Haley. Joy and Graham can be
reached at the UCB Computer Science Division, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, Berkeley, CA 94720.
Graham's office phone # is 415-642-2059. I think Haley has left, I have a vague
recollection that he is at Bell Labs now.

This is an exeellent Pascal system, which I would recommend highly to
anyone running under UNIX. Of course, since it is an interpretive system there
would be execution time problems for some production applications.

Sincerely,
/

Willett Kempton

p.s. Runs on 11/45 and 11/70. Doesn't accept procedure and function names
as parameters. I'll send you some documentation if I get time.

¢T# Sh3IN TYISYd

R ERTERNER

8/61

¢0T 39vd

DEC PDP-11 Los Altos

11. LIBRARY SUPPORT. Separate compilation of procedures with load-time insertion and

Ve have received no new information on this UNIX, RT-1l, DOS, and RSX-11

implementation since that which we published last year in Pascal News issue: #9-10: 83.

DEC PDP-11 Missdla, MT

We have received no new information on this RSX-11 implementation since that which we
published last year in Pascal News issue: #11: 91.

DEC PDP-11 (OMSI) (formerly ESI)

Maurice R. Munsie; Network Computer Services p/l; 69 Clarence St.; Sydney 2000
Australia reports: "We are distributing in Australia OMSI Pascal-l. A number of sales have
already been made and plans are being made for the OMSI implementors to hold workshops in
Australia later this year." (* 78/8/28 *)

0. DATE/VERSION. 77/12/76.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Oregon Minicomputer Software, Inc. (OMSI); 4015 SW
Canyon Road; Portland, OR 97221; 503/226-7760. Implementors: John Ankcorn, Don Baccus, and
Dave Rowlar

2. MACHINE. Any model Digital Equipment Corp. PDP-11 or LSI-Il.
3. SYSTEM CONFIGURATION. Minimum of 16K words. Operates under RT-11, RSTS/E, or RSX.

4. DISTRIBUTION. Compiler, support module, cross referencer, text editor and instruction
manual available for $1500 ($995 for educational use). Available on 9 track 800 bpi
magnetic tape, or DEC cartridge disk.

5. DOCUMENTATION. Over 70-page machine-retrievable instruction manual. Currently
(76/11/02) working on more.

6. MAINTENANCE. One year of unlimited fixes and updates, followed by annual subscription
service. (* Reported by users that "vendor seems to be responsive in terms of support”. *)

7. STANDARD. Full standard plus extensions: additional features for real-time hardware
control; separate compilation of procedures; Macro (assembler) code in-line insertion;
actual core addresses of variables can be fixed (giving access to external page I/0
addresses at the Pascal level.

8. MEASUREMENTS.

compilation speed--About 3500 characters /second, on the PDP-11 model 05.
compilation space--very economical-it can compile 3000 line programs in
28K on PDP-11/40. No overlays are used in the system.

execution speed--about twice as fast as the DEC FORTRAN IV and many times
faster than DEC BASIC. A worst-case ‘number-cruncher”

example ran at 40% faster than the DEC original FORTRAN.

execution space--very economical-much of the space improvement over DEC
FORTRAN is due to the smaller support module for Pascal.

9. RELIABILITY. Excellent--far better than DEC FORTRAN. In use since 75/11. Over 100
installations, and growing steadily.

10. DEVELOPMENT METHOD. Single-pass recursive-descent compiler written in Macro-l11.
Hand-coded based on University of Illinois bootstrap (with extensive changes) in about two
person-years of effort. First compiler written by both implementors. Compiler translates
source into Macro-11 which is then assembled and linked to the support module for
execution.

linkage is implemented.

DEC PDP-11 Redondo Beach

We have recelived no new information on this Concurrent Pascal (SOLO) implementation
since that which we published last year in Pascal News issues: #l1: 89~90.

DEC PDP-11 (Stockholm)

0. DATE/VERSION. 77/12/22.

1. TIMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Seved Torstendahl; Tn/X/Tdg.; Telefon AB LM
Ericsson; AL/Ufe; S-125 26 Stockholm, Sweden; 08/719-4909.

2. MACHINE. Digital Equipment Corp.:

DEC-10 (cross-compiler that generates code for all PDP-117s);

PDP-11 model 35 and up (self compiles

and generates code for all PDP-11"s);
The compilers generate code for floating point hardware and extended arithemtic
instruction sets if option switches are set.

3. SYSTEM CONFIGURATION. DEC~10 cross-compiler: TOPS-10. PDP-11: RSX-11M (Probably it is
an easy task to replace the RSX interfacing routines with new ones interfacing to DOS or
RT-11; but we do not plan to do that work here. Maybe routines to interface with RSX-11S
will be made.) PDP-11 with memory management and a user partition of at least 28k words,
preferably 32k words.

4. DISTRIBUTION. The compilers are available at $50, plus $10 if we supply the tape (600
feet). The distribution set includes source and object modules of the compilers and the
runtime library, command files for compiler generation and maintenance, user manual and
compiler generation instructions. The compiler will be distributed in one or more of the
following formats; indicate which you want:

- three DECtapes in PDP-11 DOS format (DEC-10 and PDP-11 users)

— one 9-track magnetic tape in DEC-10 format (DEC-10 users)

- one 9-track magnetic tape in industry standard format

- one 9-track magnetic tape in DOS format (PDP-11 users).

5. DOCUMENTATION. A machine-retrievable user manual, complementing the Pascal User Manual
and Report, is included on the distribution tape.

6. MAINTENANCE. No respomsibility, but if errors are found reports will be distributed to
known users. Error reports and improvemeunt suggestions accepted.

7. STANDARD. With regard to the definition of Pascal in Pascal User Manual and Report,
the following restrictions hold:

- packed data structures are only implemented for character arrays (always packed, two
chars/word) and for Boolean arrays (packing optional, one Boolean / bit). The stan-
dard procedures pack and unpack are not implemented.

- only local jumps are allowed.

- a pair of procedures, "mark" and
dynamic storage.

The following extensions have been implemented:

- function results can be of a nonscalar type.

- arrays with unspecified bounds (but specified index-structure) can be used as formal
parameters to procedures, allowing differently declared variables or constants to be
used as actual parameters.

- a string parameter type has been introduced in which one-dimensional character arrays
or substrings thereof may be passed as parameters. Such strings and their constitu-
ent characters are considered as '"read-only".

release", have been added to allocate and deallocate

¢T# SHIN TVISYd

“434K323d

8§61

¢CT 39Vd

- procedures may be compiled separately.

- separately compiled procedures can be accessed through a declaration with
the procedure block replaced with "extern".

- most option selectors ((*$M+ *), etc.) are selectable by switches
on the MCR command line (version 5, 77/12).

8. MEASUREMENTS.
compilation speed--about 300 characters/second; increases to 3000
characters/second in a 64 k words partion using
PLAS under RSX-1IM.
compilation space--The compiler requires a 32k word partion (at least
26 k words for very small programs).
execution speed--(* No information provided. *)
execution space--(* No information provided. *)
(* How this compares to FORTRAN and other languages not reported. *)

9. RELIABILITY. Excellent. The compiler is now in use at over 200 sites. Only minor
errors have been found since July, 1977. First version released April, 1977. Latest
version: December, 1977.

10. DEVELOPMENT METHOD. The compiler is a modification of the cross compiler from Mr.
Bron, et. al. of Twente University of Technology in the Netherlands. The original
cross—compiler was written in Pascal and developed from Pascal-P. Two major modifications
have been undertaken:

- the compiler generates standard object modules;

- the compiler gives full access to the RSX/IAS file system.
The compilers are written in Pascal, and both have the same source code except for two
separately compiled routines. The cross compiler 1is generated when the DEC-10 Pascal
compiler from Hamburg compiles the source. When it then compiles itself the PDP-11 version
is created. The cross compiler for PDP-1l1 running on DEC-10 produced by Bron et al was
used as input. This compiler was modified to generate object code linkable under RSX-11M
and to give access to the file system of RSX-11M. When the cross compiler was finished it
compiled itself and was thus transfered to the PDP-1l. The implementation effort until now
{(77/02/09) has been about five person-months. To make use of floating point hardware
another two person-months will be needed. A new version which performs some optimization
will probably be developed later.

11. LIBRARY SUPPORT. Separate compilation allowed. Possible to use external procedures
written in FORTRAN or assembler. The December 1977 version also gives: Automatic copy of
text from library into source program (include); execution frequency measurements;
execution trace; option selectors ((*$R- *), etc.), settable by switches 1in the MCR
command line. Next version (Spring, 1978) will also include a symbolic post-mortem dump an
an interactive source-level debugging package (mainly copied from the DEC-10 Hamburg-DECUS
compiler).

DEC PDP-11 Tampere, Finland

The DEC PDP-11 Stockholm Pascal system (for RSX-11M) was modified slightly during
October, 1977 to run under IAS by: Jyrki Tuomi and Matti Karinen; Tampere University of

Technology; Computing Center; SF-33100 Tampere 10; Finland; (* No phone number
reported *). A 60-page report on this implementation (in Finnish) is available from
Tampere.

DEC PDP-11 Twente

We have received no new information on this implementation of a cross—compiler from
DEC-10 to any PDP-1l1 on any operating system since that which we published 1last year in
Pascal News issue: #9-10: 85.

DEG PDP-11 Vienna, Austria

We have received no new information on this RSX-11D implementation since that which
we published last year in Pascal News issue: #9-10: 85-86.

DEC VAX-11/780 Seattle

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #12: 63.

DEC VAX-11/780 (Redondo Beach)

We have heard rumors that an implementation is underway at TRW corporation at Redondo
Beach, CA.

DEC-10 (Hamburg-DECUS)

0. DATE/VERSION. Checklist not updated since 77/08.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Implementor/Maintainer: E. Kisicki; H. -H. Nagel;
Universtat Hamburg; Institut fur Informatik; SchluterstraBe 66~72; D-2000 Hamburg 13,
Germany; 040-4123-4151; TELEX: 214 732 uni hh d.

Distributor(Western Hemisphere): (Eastern Hemisphere):

DECUS; DECUS-Europe;

P. 0. Box 340;

Maynard, MA 01754; CH-1211;

USA; Geneva 26, Switzerland;

617/ 897-5111; 022/ 42 79 50;

TELEX: 94 8457; TELEX 22593.

TWX: 710 347 0212.

2. MACHINE. Digital Equipment Corp. DEC-10. (Adapted to the DEC-20 by DEC).

3. SYSTEM CONFIGURATION. DEC TOPS-10 moniter using Concise Command Language (CCL). Uses
KA-10 instruction set. Modifications to use KI-10 improved instruction set have been made
by Charles Hedrick.

4. DISTRIBUTION. From DECUS (Digital Equipment Corp. User’s Society).

5. DOCUMENTATION. Machine-retrievable manual included on distribution tape.

6. MAINTENANCE. No regular maintainance can be given.

7. STANDARD. Extensions: Functions FIRST and LAST for scalars; UPPERBOUND and LOWERBOUND
for arrays; MIN and MAX available as standard functions; procedures to determine the value
of CCL options available; otherwise in case statement; LOOP...EXIT IF...END statement;
Initialization procedure.

8. MEASUREMENTS. (* No information provided. *)

9. RELIABILITY. Very good. First version released in 75/7. Distributed to at least 60
sites. Later version operational in 76/9. Latest version released to DECUS in 77/2.

10. DEVELOPMENT METHOD. Pascal-P2 and subsequent self bootstraps. Latest version dated
76/12/30.

¢T# SKIN TVISV

“¥438W323d

§L6T

HOT 39V d

11. LIBRARY SUPPORT. Symbolic post-mortem dump available. Interactive run-time
source-level debugging package available. Separate compilation and inclusion in
relocatable object code library of Pascal, FORTRAN, COBOL, ALGOL, and MACRO-10 assembler
routines.

DEC-10 Systems-Pascal

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 90-91.

See DEC-10 Hamburg-DECUS.

Dietz Mincal 621 Hamburg

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 91-92.

FOXBORO Fox-1

We have received no new information on this implementation since that which we
published last year in Pagscal News issue: #9-10: 92.

FUJITSU Facom 230-30 Tokyo

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 92.

FUJITSU Facom 230-55

See FUJITSU Facom 230-30 Tokyo.

Harris/4 Delft

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 92.

Heathkit H-11

(* This machine is based on the LSI-11 microprocessor from DEC and it is believed
that the DEC LSI~1l (UCSD) implementation will run on this machine; though nothing

definite has been reported. *)

According to Bill Schiffbauer; Sales Coordinator, Computer Products; Heath Company;
Benton Harbor, MI 49022; 616/982-3285; TELEX 72-9421: "At this time (* 77/11/15 *), Heath
has no plans to offer a Pascal compiler or interpreter...Since the H-1l uses the LSI-11,
the [UCSD Pascal] compiler should be compatible with the H-11."

According to Robert W. Furtaw; Marketing, Heath Company, Benton Harbor, MI 49022: (*
78/1/19 *) ™We also have been observing the appeals for Pascal appearing in recent
publications. However, we presently have no immediate plans to offer one for our system.
With all the interest, I would not be suprised to see one which could easily be
reassembled for our system.”

Hewlett Packard HP-2100 (Trieste, Italy)

0. DATE/VERSION. 78/10/9.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Implementor: Paolo Sipala; Instituto di
Electrotechnica; Universita di Trieste; Via Valerio, 10, 34127; Trieste, Italy;
Tel. 040-733033. Distributor: Hewlett-Packard Software Center; Contributors Section; 11000
Wolfe Blvd.; Cupertino, CA 95014; (* No phone number reported. *)

2. MACHINE. Hewlett Packard HP-2100 or 2IMX.

3. SYSTEM CONFIGURATION. Old version-DOS 1IIIb; New version~RTE. There are seperate
versions for EAU, non-EAU, and floating point hardware. Requires an 1llk main area.

4. DISTRIBUTION. (* No information reported on cost, distribution formats. *)

5. DOCUMENTATION. (* No information provided. *)

6. MAINTENANCE. (* No information provided. *)

7. STANDARD. (* No information provided. *)

8. MEASUREMENTS. Requires an llk main core area (so it might fit in a 16k system, if the
resident operating system modules are kept to a minimum, but 24k is more comfortable). It
is not noticably slower than the standard compilers when compiling, and not worse than the

standard interpreter(BASIC) when interpreting.

9. RELIABILITY. Has been subjected to rather limited testing (a few dozen programs from
the Users Manual) and is now (* 78/3/20 %) being offered to students for their use.

10. DEVELOPMENT METHOD. A P-code interpreter writtem in HP-Algol.

11. LIBRARY SUPPORT. (* No information provided. *)

Hewlett Packard HP-21 MX Durban

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 93.

Hewlett Packard 3000 Santa Clara

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 94.

CT# SMAIN T¥ISVYd

i ERY ERETH

$/61

SO0T 39¥d

Hewlett Packard 3000 Sunnyvale

We have received no new information on this implementation since

published last year in Pascal News issue: #12: 63-64.

that which we

HITACHI Hitac 8800/8700 Tokyo

See also IBM 360/370. We have received no new information on this implementation
since that which we published last year in Pascal News issue: #9-10: 94.

Honeywell 6000, level 66 (Waterloo)

0. DATE/VERSION. Checklist not updated since 77/08.

Mathematics
CANADA; 519/
Honeywell Information Systems; Waltham, MA (* See local HIS sales

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Implementor: W. Morven Gentleman;

Faculty Computing Facilty; University of Waterloo; Waterloo, ONT. N2L 3Gl;
885-~1211. Distributor:
office first. *)

2. MACHINE. Honeywell 6000 series; level 60/66. Operates under GCOS (TSS).

Currently (*
76/03/08 *) a DRL TASK version is under consideration.

3. SYSTEM CONFIGURATION.
words.

Honeywell level 66 or 6000 series with EIS. Minimum of 26k

4. DISTRIBUTION. (* No information provided. *) (* Rumor has it that distributor
extra for maintenance. *)

charges

5. DOCUMENTATION. From Honeywell Information Systems; Publication Dept.; MS-339; 40 Guest
St.; Brighton, MA 02135: "A Pascal Product Brief", (#AW66, free), 2 pg. (marketing
oriented) and "Pascal User’s Guide", (#AW65, $1.30), 30 pg. (reference manual). Machine
retrievable supplement to Pascal User Manual and Report; also includes extensions,
restrictions, known bugs, etc.--about 45 pages total.

6. MAINTENANCE. Supported by University of Waterloo through agreement with HIS; some
users have reported problems in getting Honeywell to pass bug reports on to Waterloo.
Extensions planned to allow extern to be GMAP, COBOL, ALGOL, PL/I, B, C, etc.

7. STANDARD. Restrictions:
-Program statement not accepted, replaced by required procedure “main’.
-No files with components of type file.
-Only files of type char may be read or written (with the standard
read, write, get, put).
Extensions:
=Files may be opened dynamically.
-Extended file handling is available.
-External separately compiled Pascal and FORTRAN procedures may be used.
~Various procedures and functions to provide access to operating system.
-Optional left-to-right evaluation for Boolean expressions and if statements.
~“else’ clause in case statement.
-Alternate Interactive I/0 package available.
-Full upper/lower case capability.

8. MEASUREMENTS.
compilation space--minimum of 26k words. Typical programs require less than 30k words.
compilation speed-~(* No information provided. *)
execution space--can be as small as 4-5k words depending on the program and the
Pascal support routines required.
execution speed--(* No information provided. *)
(* How this compares to FORTRAN and other languages not reported. *)

9. RELIABILITY. (* No information provided on number of sites using system. *) Some users
have reported problems with compiler reliability and responsiveness of distributor. See
Pascal News #11: 34-36, 92-93. Distributed since 76/05. Version 6 expected in 77/12.

10. DEVELOPMENT METHOD. Independant implementation
Zurich compilers); written in "B", an implementation
(* Person-months to create system not reported. *)

(unrelated to Pascal-P or CDC 6000
language and successor of BCPL.

11. LIBRARY SUPPORT. Separately compiled Pascal and FORTRAN routines may be saved and
called from user specified libraries at run time. A post-mortem debugger is planned, but
presently (* 76/10/25 *) far from being implemented.

Honeywell H316 Minnesota

0. DATE/VERSION. 78/7/4.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Robert A. Stryk; Honeywell Corp. Computer Science
Center; 10701 Lyndale Ave. S.; Bloomington, MN 55424; 612/ 887-4356.

2. MACHINE. Honeywell H-316.
3. SYSTEM CONFIGURATION. 32k, dual cartridge disks, line printer, 7-track magnetic tape.

4. DISTRIBUTION. 7-track tape with programs to bootstrap
reported. *)

from BOS 210. (* cost not

5. DOCUMENTATION. Informal comments on 316 kernal implem entation.

6. MAINTENANCE. No known errors, no work planned. Bob reported on 78/7/4: '"changing
jobs—-Distribution of H316 Concurrent Pascal very cloudy"”.

7. STANDARD. A modified implementation of Concurrent Pascal, which varies from
Pascal.

Standard

8. MEASUREMENTS. SOLO system needs minimum of 40 k to execute compilers.

9. RELIABILITY. No known errors. (* Date first released, number of sites using system not
reported. *)

10. DEVELOPMENT METHOD. The H316 kernal imitates the PDP-11 reversed byte addressing which
makes it compatible with the distribution tape but a bit slow in execution. The
development was done under BOS 210. The kernal is written in DAP700.

11. LIBRARY SUPPORT. That provided by the SOLO system.

IBM 1130

We have received no new information on this implementation since that which we

published last year in Pascal News issue: #9-10: 101.

IBM 360/370 AAEC

We have received a copy of a report titled "Implementation of Pascal 8000 on IBM 360
and 370 Computers" (* 78/8/4 *) which is available from the distributor.

¢T# SKIN TV3ISYd

R ER T ENER

8/61

96T 39vd

0. Date 78/09/12.

1. Implementors:
T. Hikita and K. Ishihata,
Dept. of Information Science,
University of Tokyo,
2-11-16 Yayoi
Bunkyo-ku TOKYO,
113 JAPAN.

(HITAC - 8000 Version)

G.W. Cox and J.M. Tobias,
Systems Design Section,
AAEC Research Establishment,
Private Mail Bag,
SUTHERLAND, 2232,

N.S.W. AUSTRALIA

(IBM 360/370 Version)

Distributors/Maintainers:

G.W. Cox and J.M.Tobias
address as above

2. Machines:
IBM360 and IBM370 - compatible machines
3. System Configuration:
The compiler runs under any of the 0S family of operating systems - i.e.
MVT ,MFT, VS1, VS2, SVS and MVS. A CMS interface is currently being developed,
soon to be available. A minimal program can be compiled in 128K; the

compiler requires about 220K to compile itself.

4. Distribution:

Write to G.W. Cox and J.M. Tobias at AAEC to receive an order form. The
cost is $A100; there is no agreement to be signed. Two systems are supplied:
a "compile-and-go" system which has its own compiled-code format, and a
"linkage—~editor" system which produces IBM-standard object modules. Both source
and load modules for these systems are supplied - the compilers are written in
Pascal and the runtime support in 360 Assembler.

An implementation guide, plus machine-readable implementation JCL, and
machine-readable documentation are alsc supplied.

The system is distributed on a new 600 ft. magnetic tape at a density of
800 or 1600 bpi; the tape is supplied by the distrjbutor.

5. Documentation

Machine-readable documentation is in the form of a report comprising a
summary of extensions to Standard Pascal plus a complete specification of the
language as implemented.

6. Maintenance Policy.

No guarantee on maintenance is given; however we are anxious to receive
bug reports and suggestions, and will do our best to fix any problems which may
occur.

7. Standard.

The full standard is supported with finiteness in a few areas:

- maximum static procedure nesting depth is 6.

maximum set size is 64. (this precludes set of char.) It is hoped to
increase this very soon.

maximum number of procedures in a program is 256

maximum size of compiled code in any one procedure depends on its static
level: the main program may be up to 24K, and this is reduced by 4K for

each increment of static nesting level.

Significant extensions to the standard are in the following areas:

Constant definitions for structured types. It is therefore possible
to have arrays, records and sets as constants.
A 'value' statement for variable initialisation
A 'forall' statement of the form:
forall <control variable> in <expression> do <statement>
where <expression> is of type set.
A 'loop' statement, specifying that a group of statements should be
repeatedly executed until an 'event' is encountered. Control may then
be transferred to a statement labelled by that event.
The types of parameters of procedures or functions passed as parameters
must be specified explicitly, and this enables the compiler to guarantee
integrity.
The 'type identifier', restriction in a procedure skeleton has been
relaxed to allow ‘type'.
Functions ‘pack' and 'unpack' are supported, as are packed structures
in general.
Exponentiation is fully supported, and is used via the double character
symbol '®*!,
A 'type-change' function has been introduced that extends the role of
'chr' and ‘ord'.
Case-tag lists may now range over a number of constants, without
explicitly having to list each oconstant.
The range is denoted by

<constant> .. <constant>
Thus,

4,6..10,15,30..45
is now a valid case tag list

A default exit is also supplied which can be used-if none of the other
tags match.

Other interesting features of the system are:

Procedure 'new' is fully supported, obtaining the minimum

heap requirements as specified by variant tags. Procedures

'mark' and 'release' are also supported.

Files may be external or local. Thus, structures such as ‘array of files'
are available. External files are named in the program statement, local
files are not. Both external and local files may be declared in a

procedure at any level.

¢T# SHAN 1¥ISYd

R EREENEN

§L6T

L0GT 39Vd

- Text-files with RECFM of F[B] [S] [a], V[B] [S] [A] and U[A] are supported.
Non-text files must have RECFM = F([B].

- All real arithmetic is in double precision (64 bit floating-point format).

- Control of input and output formatting is as described in the Jensen and

Wirth report. The form is

X[in] [;m], where n and m are integer expressions.

Further, elements of type packed array of char may be read on input.

- Execution errors terminate in a post-mortem dump, providing a complete
execution history that includes procedure invecations, variable values,
type of error, etc.

- the use of separately-compiled procedures in Pascal, FORTRAN or other
languages is supported by the linkage-edit version. Thus one can build
up a library of Pascal procedures or use a pre-existing library of

FORTRAN routines.

8. Measurements.
- compilation speed about 2,500 chars/sec on an IBM 360/65
- compilation space : 128K for small programs
160K for medium programs
220K for the compiler
- execution speed : comparable with Fortran G, at times better than FORTRAN H.
- execution space : about 30K plus the size of the compiled code, stack and
heap
Compiled code is fairly compact - the compiler itself

occupies 88K.

9. Reliability.
The system was first distributed in its current form early in 1978. It is
currently used at about 90 sites. Reliability reports have been generally good to

excellent.

10. Development Method

The compiler was developed from Nageli's trunk compiler and bootstrapped
using Pascal-P by Hikita and Ishihata, who got it running on a HITAC-8000 computer
(similar instruction set to IBM360). This version was further developed by Tobias
and Cox for use under the OS family of operating systems on IBM360/370 computers.
The compiler is written in Pascal 8000 (6000 lines) and runtime support is in 360

Assembler (3500 lines). Cox and Tobias spent about 10 person-months on the system
Most of this time was spent improving the OS support and adding enhancements to what

was already a very workable system.

11. Library Support.

The linkage-edit version has the ability to perform separate compilation of
procedures or functions. These can be stored in a library and selected by the
linkage editor as necessary. It can also link to routines written in FORTRAN or

other languages which use a FORTRAN calling sequence. To use an externally compiled

routine, one must include a declaration for it. Such declarations consist of the
procedure or function skeleton followed by the word ‘pascal' or 'fortran'. The
linkage-editor then automatically searches for that routine when it is linking the
program. Global variables are accessible to externally compiled Pascal routines.
Pascal procedures cannot be overlayed.

A symbolic dump of local variables and traceback of procedures called is provided

on detection of execution errors.

12. Future Developments.

Version 2.0 is currently under development.

IBM 360/370 Berlin

) We have received no new information on this VM370 (CP + CMS) and 0S implementation
since that which we published last year in Pascal News issue: #11: 99-100.

IBM 360/370 Grenoble

We' have received no new information on this 0S/MVT and VS/MFT implementation since
that which we published last year in Pascal News issue: #9-10: 100.

IBM 370 London

‘We have received no new information on this CMS implementation since that which we
published last year in Pascal News issue: #11: 96-98.

IBM 360/370 Manitoba

) We have received no new information on this MFT, MVT, VSl, VS2, MVS, and CMS
implementation since that which we published last year in Pascal News issue: #9-10: 97-98.

IBM 360/370 Stanford STANFORD UNIVERSITY

Mail Address
STANFORD LiNearR AccELERATOR CENTER Sept. 15, 1978 SLAC, P. O. Box 4349
Stanford, California 94305
Dear Andy:

This is to announce the release of a new version of the
Stanford PASCAL Compiler. This version provides comprehensive
runtime checking as well as provisions for user-requested or
post-mortem (symbolic) dump, sSeparate compilation and generation
of program profile (i.e. frequency of execution of source
program statements). The compiler is now about 5004 lines long
and, except for a few restrictions, implements the language
described in Jensen & wirth's "User Manual and Report”. There
are also some minor extensions to allow timing and clean
termination of programs without GOTOs across procedure
boundaries.

SHIK TVISVYd

s T#

I EEYVERERN

5.61

i5¥d

50T

The postprocessor, which translates the output of the
conpiler into IBM/379 assembly or object code, has also grown to
3508 source lines but the compilation/postprocessing time for
the compiler has remained almost unchanged (i.e. about 19
seconds of compilation followed by 5 seconds of postprocessing
on the 379-168, or a compilation rate of ~ 5088 1lines per
second). The combined system is still capable of self compiling
in a 128K region, but a larger area improves the 1/0 efficiency
by allocating largyer buffers.

Our earlier decision in leaving the compiler as wachine
independent as possible and writing a separate program to
translate our modified P-code into target machine code (as
explained 1in the Pascal dewletter #8) proved to be very helpful
in simplifying the task of bootstraping the compiler on a set of
drasticaly different target machines. For example, after
analyzing the static and dynamic properties of programs
expressed in the intermediate form, we concluded that this form
was quite suitable for a very compact encoding.

A postprocessor, intended primarily for microprocessor
environments, translates the full compiler into a mere 24K bytes
which could be run interpretively, or implemented by a
micro-coded emulator on any of the existing bit-slice
processors. Another interesting outcome of this implementation
was that a very small (3K bytes) 8088/Z80 based interpreter, in
conjunctin with the obove postprocessor, resulted in a
microprocessor-resident compiler with a coapilation speed of
about 109 times slower than the 37¢-168 in terms of the CpPU
time, but guite comparable in "turn around" or terminal time.

Independent from these justifications, there are also sone
other projects 1involved in writing machine independent P-code
optimizers which would potentially benefit all the programs
which are translated into the common intermediate form before
being tied to the final target wachine.

In conclusion, the PASCAL P-compiler seems to have helped
spread the use of PASCAL far more than the sophisticated (and
certainly more refined) 6099 Compiler from which it was derived.
The Zurich group should be credited for its farsightedness in
developing this compiler as a separate program as well as
defining the original 'P' pseudo machine which has since
established the common grounds for the portability of PASCAL
systems.

Sincerely

§. Hecze (J \o, \x

Sassan Hazeghi
Computation Research Group

P.S. The new version of the 374 Compiler is available through
SHARE Program Library as well as Argonne Code Center, the
nicroprocessor implementation is available only from the Argonne
Code Center.

IBM 360/370 Stony Brook

We have received no new information on this 0S implementation since that which we
published last year in Pascal News issue: #9-10: 98-99.

IBM 360, 370 (Vancouver)

0. DATE/VERSION. Barry Pollack reported (* 78/8/7 *): "Pascal/UBC is almost ready for its
next round of distributions--it 1is an upward compatible superset of the old Pascal/UBC
system, which is upwards compatible with Standard Pascal. The system runs on IBM 360/370
and Amdahl 470 machines. We plan to begin this round of distribution in Sept. or Oct.--of
course, the old system is still available."

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Barry W. Pollack and Robert A. Fraley, Department
of Computer Science, University of British Columbia, Vancouver, British Columbia,
Canada V6T 1W5 (604/228-6794 or 604/228-3061)..

2. MACHINE. IBM 370/168.

3. SYSTEM CONFIGURATION. The current version runs under the MTS (Michigan Time Sharing)
operating system. The monitor may be modified with minimal effort to rum under VS, 0S8,
etc. Standard O0S object modules are generated. The translator requires about 320K bytes of
store. Division of the compiler into overlays for non-VM systems would be possible.

4. DISTRIBUTION. The current version is available for distribution now, via 9 track
magnetic tape. Costs will be limited to postage (and tape purchase, if one is not
supplied) .

5. DOCUMENTATION. A User’s Guide describes completely the implementation’s departures
from the Jensen and Wirth Pascal User Manual and Report. (* Apparently not machine
retrievable. *)

6. MAINTENANCE. No policy has been decided. It is anticipated that periodic upgrades and
modifications will be distributed at least once a year. Reported bugs will be corrected as
quickly as possible with notification to users.

7. STANDARD. The compiler provides numerous extensions and a few restrictions. A compiler
option issues error messages when non-standard features are used. A complete description
is contained within the documentation provided. A summary of the differences follows.

Extensions:
Strings are padded on the right with blanks.
a case default label: "<>".

Optional ";" allowed before else.

"(...)" may be used instead of "[...]".

The character eol has been retained.

packed is ignored.

Input of character strings using read is allowed.

Support of EBCDIC characters "&", "|", and (logical not sign). (* Sorry, we use
ASCI1 at Pascal News. *)

Use "..." for comments.

value section exists for variable initialization.

Hexadecimal integers are supported.

A return code is available in the pre-declared variable rcode.

FORTRAN subroutines may be called. [<Direct access files are supported.

Additional built-in functions include: min, max, substr (using constant length),
position (direct access files), I/0 interface functions and extensions to
reset and rewrite, and insert for data packing.

Restrictions:
Sets are limited to 32 elements (0..31).

ST# SHIK TVISYd

“¥434d303d

861

60T 35V d

Program heading is not used.

Files may not be components of other structures.

Set constructors may not include <expression>..<expression>.

input™ is initially eol instead of the first character of the file. This is
transparent when read 1s used.

Projected extensions:
McCarthy if.
or and and lower precedence than relations.
"Usual"™ precedence used throughout.
Setgs over the range 0..255.
Better control of input and output formats.

8. MEASUREMENTS. The compiler is written in Pascal and is modeled after the CDC 6000
implementation, but it has been extensively modified and improved. The translator consists
of approximately 8000 lines of Pascal code. The run-time library consists of approximately
500 1lines of Pascal code. The monitor (which contains the interface to the operating
system) consists of approximately 2000 lines of IBM Assembler G code. The translator speed
has not been determined, but it seems faster than our Algol-W compiler. The code produced
has been timed against Algol-W code and 1is almost uniformly 10-15% better. This is
especially true of any program using a large number of procedure calls. The compiler
compiles itself 1in less than 60 seconds of 370/168 processor time. The compiler requires
320K bytes of core.

9. RELIABILITY. To date has been excellent. A student version of the tramslator has been
running since September, 1976, with only one detected compiler error. The main system
version has been in operation since December, 1975. All problems which have been
encountered to date have been corrected. (* Number of sites using system not reported. *)

10. DEVELOPMENT METHOD. The original translator was developed by Wirth and several
graduate students at Stanford University as a partial re-write of the CDC 6400 version in
1972. The current translator and monltor have been extensively modified, a run-time
library has been implemented, and a post-mortem symbolic dump package has been developed.
The translator has been under continuous development at UBC since December, 1975, by two
faculty members and one (* anonymous? *) graduate student.

11. LIBRARY SUPPORT. Fortran routines can be called. The compiler generates standard O0S
object modules.

IBM 360/370 Williamsburg

We have received no new information on this 0S/VS implementation since that which we
published last year in Pascal News issue: #11: 95-96.

IBM Series 1 (East Providence)

It has been reported that SPAN Management Systems; Westminister Industrial Park; East
Providence, RI 02914; 401/438-2200 has developed a dialect of Pascal which they call TSS
and which will run on the IBM Series 1 computer; but we have received no information from
them on their system.

IBM Series 1 (Reston)

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 85.

ICL -- Introduction

PCHICL - the Pascal Clearing House for ICL machines - exists for the purposes of:

- Exchange of library routines;

- Avoidance of duplication of effort in provision of new facilities;

- Circulation of user and other documentation;

~ Circulation of bug reports and fixes;

= Organisation of meetings of Pascal users and implementors;

- Acting as a "User Group" to negotiate with Pascal 1900 and 2900 suppliers.

There are currently about 40 people on PCHICL’s mailing list, mainly in Computer
Science departments and Computing Centres of U.K. Universities and Polytechnics. Any user
of Pascal on ICL machines whose 4institution is not already a member of PCHICL should
contact:)

David Joslin;

Hull College of Higher Education
Inglenure Avenue

Hull HU6 7LJ

England, U.K.

(0482) 42157

All ICL Pascal users are urged to notify David of any bugs they find, any compiler
modifications they make, any useful programs or routines or documentation they have
written, anything they have that may be of use or interest to other users.

Pascal Compilers fer the ICL 1500 series (& ICL 2903/4) D.A.Joslin,

May 22nd 1978

1. éPASO Iscue 3

This compiler is the most suitable for ICL 1900s operating under George
4, and for those with a large core store (256K, say) operating under
George 3. This i1s the compiler descrited in the Implementation Checklist
in "Pascal News". It incorporates a Diagnostics Package (written by
D.Wetts & W,Findlay of Glasgow University) and a Source Library facility.
It tekes 44K to compile most progrenms (60K to compile itself). It may
be obtained by sending a mag.tape (7-irack NRZI 556 bpi or 9-~track PE
1600 bpi) to the implermentor, viz: Dr. J,Welsh,

Dept. of Computer Science,

Queen's University,

BELFAST, V.Ireland, 3BT7 1NN.

2. _/éPASQ Maxk 24

This compiler is suitadble for all ICL 190Cs (except 1901, 1901A, 1902,
1903. 1904, 1905) & 2903/4s with at least 46K of core; it is the most
suitable compiler for ICL 13005 operating under George 2, and for those
operating under George 3 where core is at a premium. The language
processed (the language of the revised report) is identical to that
processed by #ﬁmSQ Issue 3, thie compiler Jdescribed in the Impienmentaiion
Checklist in "Pascel Fews", but there is no Diagnostics Package or Source

Library facility. The compiler fakes 36K to conpile many programs, 40K

ST# ShaAN YISV

/6T "w3dWddIq

OTT 39vd

to coopile all tut the most complex (48K to compile itself). It was
implemented originally bty Queen's University, Felfast, and has been
ernhanced to include:

Selective compilation listing and insertion of run-~time checks;

Nested comments;

Improved compilation listing layout, and full *text of compilztion

error necssages;

Inproved execution error handling;

More efficient mathematical standard functions;

Facility to compile 154l prograns;

Specification of object-program card & line lengths;

Correction of various errors.
It zay be obtained by sending 2 nmag.tape (7-track FRZI 556 bpi ox 9-irack
PE 1600 bpi) to: D.A.Joslin,

(* address on previous page *)

3. #XPAC lierk 1B

This compirter is suitable for all ICL 1900s & 2903/4s with at least 32K
of core. The language processed is Pascel Mark 1, ie the language of the
original report. The compiler tekes 24K to compile most programs (32K to
compile itself). It may be obtained by sending a mag.tape to Sussex

(as in para 2 abcve),

4. Pascal-P

4 Pascal to P(4)-code translator, configured for ICL 1900s & 2903/4s, may
be obtained by sending & mag.tape to Sussex (as in pera 2 above). This
is suitable for all ICL 1900s (except 1501, 19014, 19C2, 1903, 1904,
1905) & 2903/4s with at least 32K of core. The language processed is
broadly the lanzuage of the revised report - see the Pascal-P section
of "Pascal News". The translator takes 24K to compile most programs (28K
to compile itself), To conplete the compilation process, either & P-code
interpreter (based on the model interpreter provided) or a P-code to
machine-code translator must be written,

5« Future Developnment

A two-stage Pascal compiler, which will be suitable for all ICL 190Cs
(except perhaps 1901, 1301lA, 1502, 1503, 1304, 1905) & 2903/4s with at
least 32K of core, is to be produced by belfast, possibly by October 1978,
The languege processed will be identical to that processed by ;¥PASQ,

and o Diagnostics Package and Source Library facility (George 3/4 only)
may be provided,

ICL 1900 (Belfast)

0. DATE/VERSION. Checklist last updated 77/11/4.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Jim Welsh, Colum Quinn, and Kathleen McShane,
Department of Computer Science, Queens University, Belfast BT7 INN, Northern Ireland, U.K.
(* No phone number provided. *) Enhancements by David Watts and Bill Findlay, Computer
Science Department, University of Glasgow, Glasgow Gl2 8QQ, Scotland, U.K. (* No phone
number provided. *)

2. MACHINE. ICL 1900 Series.

3. SYSTEM CONFIGURATION. Has been installed under George 3, George 4, Executive, MAXIMOP,
and COOP operating systems. Requires 36K; uses CR, DA, LP files. (Source library facility
only possible, and diagunostics package only practicable under George 3 or 4.)

4. DISTRIBUTION. Free--send 9-track 1600 bpi PE or 7-track 556 bpi NRZI tape to Belfast.

5. DOCUMENTATION. Belfast’s Users’ Guide (supplement to Pascal User Manual and Report
(Revised edition)) and implementation documentation is distributed with the compiler.
Glasgow’s Supplement to the Revised Report is available from : Bill Findley or David Watt,
Dept. of Computer Science, University of Glasgow, Glasgow, Scotland, Gl2 8QQ, United
Kingdom (who also produced the Diagnostics package).

6. MAINTENANCE. No formal committment to maintenance. No plans for development in near
future. Send bug evidence to Belfast, and also a note of the bug to PCHICL (see notice

under ICL—-Introduction) who circulate the bug reports and fixes to their members.

7. STANDARD. The level of the Revised Report; with:

Exceptions: There are no anonymous tag fields; files cannot be assigned, passed as
value parameters, or occur as components of any structured type; Predefined procedures and
functions camnot be passed as actual parameters; The correct execution of programs which
include functions with side effect is not guaranteed; Only the first 8 characters of
identifiers are significantj sets are limited to X..y where 0<= ord(x) <= ord(y) <= 4&7;
The ICL 64 character graphic set is used for type char; packed is implemented, and text =
packed file of chari alfa = packed array(l..8] of char.

Extensions: value and dispose are implemented; integers may be written in octal;
additional predefined functions and procedures include: DATE, TIME, MILL, HALT, CARDj

procedures ICL, ADDRESSOF allow use of inline machine code.

8. MEASUREMENTS. Compares favorably to Fortran, requiring about 32K to compile. Generated
code is better than that produced by the old 1900 Pascal compiler. (* Compilation speed
not reported. *) Performance is better than most other ICL 1900 language processors
(exceptions are incore compile-and-go batch systems of the WATFOR type).

9. RELIABILITY. Reported to be good. The compiler is in use at about 50 sites. (* Date
first released not reported. *)

10. DEVELOPMENT METHOD. This compiler resulted from a complete rewrite of the old ICL 1500
compiler, which was bootstrapped from the CDC 6000 Zurich compiler. The new compiler is
designed for portability, with a clean separation between semantic analysis and code
generation. The compiler 1is about 14,000 lines of Pascal plus about 3500 lines of
assembler code and produces absolute binary machine code. The post-mortem analysis program
is about 2500 lines of Pascal.

11. LIBRARY SUPPORT. Allows access to Fortran routines.

ICL 2900 (Southampton)

0. DATE/VERSION. Checklist last updated 77/11/4.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Implementors: Project Supervisor: Dr. M. J. Rees;

¢T# ShdN TVISVd

R ERATERER

8/61

ITT 39vd

Computer Studies Group; Faculty of Mathematical Studies; The University; Southampton, S09
5NH; England, U. K. 0703/559122 x2270. Implementors: J. J. M. Reynolds; Computer Centre;
Queen Mary College; University of London; Mile End Rd.; London, El1 4NS; England, U. K.; 01
980 4811 x778 and H. J. Zell (deceased). The Pascal compiler will be distributed as a
standard ICL program product. Contact the nearest ICL sales office or the Project
Supervisor above.

2. MACHINE. ICL 2960, 2970, 2980 series.
3. SYSTEM CONFIGURATION. VME/B and VME/K.

4. DISTRIBUTION. Contact the nearest ICL sales office or the Project Supervisor above.
(* No information provided on cost, tape formats, etc. *)

5. DOCUMENTATION. Standard ICL manuals will be available: a) Pascal Language Manual:
operating system independant aspects of the Pascal language. b) running Pascal Programs on
VME/B and VME/K: information on how to run Pascal under the operating system.

6. MAINTENANCE. Full maintenance will be provided by the implementation group and/or ICL
while the compiler is offered as an ICL product. The usual ICL procedure for bug reports
will be adopted.

7. STANDARD. The compiler implements "all" [sic] features of the language as described in
Pascal: User Manual and Report.

8. MEASUREMENTS. Code generated is fairly compact, the compiler itself producing 80000
bytes. This 1s better than the 2900 standard compilers. The (CDC) Pascal 6000 compiler
compiles the 2900 compiler on a CDC 6400 in 82 seconds. The ICL compiler self-compiles on
the 6400 in 100 secs. Running on a 2900, the 2900 compiler self-compiles in 360 seconds.

John Reynolds tells us, "I‘ve determined that almost all time required for a
compilation on the 2900 is just burnt up by the system and that hardly any time at all
goes in the actual act of code generation." (* 77/7/8 *) (* Execution speed .of generated
code not reported. *) The source listing is approximately 10,000 lines of Pascal and
produces 80k bytes of code. Approximately 160k bytes of store are required to compile the
compiler.

9. RELIABILITY. The compiler has been extensively tested and seems to work fairly well.
Current (* 77/12 *) reliability is moderate to good. (* Date of first release and number
of sites using system not reported. *)

10. DEVELOPMENT METHOD. The compiler is written in Pascal and produces Object Module
Format (OMF) compatible with all standard ICL compilers. The OMF module may be directly
loaded or linked with other OMF modules. The compiler was bootstrapped using the 1900
compiler from Queen’s University of Belfast as a base. Twenty-four person-months of effort
from experienced programmers were required.

11. LIBRARY SUPPORT. As the compiler produces OMF modules, separate compilation and the
inclusion of external procedures will be possible providing the necessary operating system
facilities are present.

IMSAI VDP-40

See Intel 8080.

Intel 8080 Ann Arbor

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #12: 64-66.

Intel 8080 INSITE

We have received no new information on this implementation since that which we

published last year in Pascal News issue: #9-10: 102.

Intel 8080 (Minneapolis)

A 25-page report on "Tiny Pascal", a cross-compiler for a greatly restricted variant
of Standard Pascal which is written in CDC 6000 Zurich Pascal and produces machine code
for the Intel 8080 is available from: Tiny Pascal Project; Peter H. Zechmeister;
University Computer Center: 227 Exp Eng; University of Minnesota; 208 Church St.;
Minneapolis, MN 55455 (612/373~4181).

Intel 8080 Munich

We have received no new information on this since that which we

published last year in Pascal News issue: #12: 66.

implementation

Intel 8080 Stanford

We have heard reports that there is an implementation of Pascal for the Intel 8080
microprocessor that has been developed at Stanford University (Stanford Linear Accelerator
Center), but the only information we have received on it is that in the letter under IBM
360/370 Stanford in this issue.

Interdata 7/16 San Diego

We have received no new information on
published last year in Pascal News issue: #12: 67.

this implementation since that which we

Interdata 8/32 Manhattan, Kansas

We have received no new information on this implementation since

published last year in Pascal News issue: #9-10: 103-104.

that which we

Interdata 8/32 San Diego

We have received a copy of two reports (* dated 78/5/2 *) on cross—compilers for
Sequential and Concurrent Pascal which run on the Univac 1100 series and produce code for
the Interdata 8/32. These reports, titled "Pascal-V 1.0" and "Concurrent Pascal—-V 1.1",
are available from: Mike Ball; Code 632; Naval Ocean Systems Center; San Diego, CA 92152;
714/225-2366.

Intel 8080a UCSD

See DEC LSI-11 UCSD.

sT# SKIN TVISV

RER Y ERER

8/61

¢TT 39Vd

ITEL AS/4, AS/5

See IBM 360/370.

Marinchip Systems M9900

Marinchip Systems

computer hardware and software
16 Saint Jude Road
Mili Valley, Ca. 94941
(415) 383-1545

Marinchip 9900 Sequential Pascal

Implementation Checklist

Distributor/Implementor/Maintainer.
John Walker
Marinchip Systems
16 St. Jude Road
Mill Valley, CA 94941 (415) 383-1545
Machine.
Texas Instruments TMS9900, This system runs on the M9900 CPU,
which adapts the TMS9900 to the S-100 (Altair/IMSAI/etc.) bus.
System configuration,
Runs under Marinchip Disc Executive. Minimum configuration to
compile compiler is 56K bytes main memory and one IBM-compatible
floppy disc drive.
Distribution,
Pascal is available to purchasers of the M9300 CPU board for $150.
The system is distributed on an IBM-compatible floppy disc in
Disc Executive format,
Documentation.
Documentation supplied is a supplement to Per Brinch Hansen's book,
The Architecture of Concurrent Programs, and his Sequential Pascal
Report. The documentation is in machine-readable form,
Maintenance policy.

Bug reports accepted from purchasers of the system. Fixes are available
at reproduction cost. System is brand new: no maintenance track record.

Standard.

Based upon Per Brinch Hansen's Sequential Pascal, so all comments in
the Pascal Variants section about that compiler apply to this one too.
The lexical scanner has been modified to permit identifiers to be
upper and lower case (case does not affect matching), to accept curly
brackets for comments, and square brackets for subscripts and sets.
Sequential Pascal syntax still accepted as before.

8. Measurements.

The M9900 permits use of either 8 bit memories or 16 bit memories.
With 8 bit memories, the memory cycle time is 3 us, and with 16
bit memories, the cycle is 1 us. Which kind of memory is used
has a radical effect on performance. With 8 bit memories the
compile speed is about 44 significant characters per second, and
with 16 bit memories, the speed is about 130 characters per second.
No good benchmarks have been run to judge execution speed. Based
on the performance of the original PDP-11 system and comparison of
the PpP-11 and 9900 interpreters, we expect performance to range
between 25% and 50% of native machine speed based upon instruction
mix.

9. Reliability.

No extensive testing of the system has been done by users, However,
since the compiler has been compiled through itself without problem,
the system is felt to be quite stable.

10, Development method.

The system was bootstrapped from the PDP11/45 version of Sequential
Pascal. The interpretive object code was loaded onto the 9900 system,
and an interpreter was written for the interpretive code. Rather

than implement the entire Solo operating system with which the compiler
is shipped, an interface was developed to convert Solo calls into

calls on the Marinchip Disc Executive., The execution environment of

a Sequential Pascal program is completely simulated. The compiler
root segment and seven passes were then compiled through the compiler.
The code interpreter and operating system interface total 3000 lines

of 9900 assembly code. The compiler was transported and brought up

in less than one man-month. The implementor has previously written and
moved numerous compilers, but this was the first work on Pascal.

1l. Library support.

Separately-compiled Sequential Pascal programs may call each other,
passing up to 9 arguments of type INTEGER, BOOLEAN, POINTER, or
IDENTIFIER (12 character array of CHAR). The program is loaded
coresident with its caller, executed, and a completion status is
returned to the caller (termination type and source line)., Program
calls may be recursive, and nesting depth is limited only by
available memory and a configuration parameter. A utility program
may be called either from the user terminal, or from another program,

12. General comments

The Sequential Pascal compiler was found to be excellently documented,
very reliable in our tests, and extremely easy to move, The current
9900 system is source and cbject compatible with the PDP1l version.
Efficiency considerations may force divergence from the current object
code compatibility.

MITS Altair 680B

See Motorola 6800 St. Paul.

Mitsubishi MELCOM 7700

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 104-105.

¢T# SMIN TV¥ISVYd

“¥y34WIVIC

8/.61

¢TT 39vd

MOS Technology 6502 (Parksley, VA)

Stephen P. Smith; P. O. Box 84l; Parksley, VA 23421; 804/665-5090 is working on a
Pascal system for the MOS Technology 6502 chip (using the Ohio Scientific Industries
Challanger I system). The system will originally be the minimum subset of Pascal needed to
write its own compiler. The original versiom will cross-compile on any machine which
supports a full standard Pascal compiler. The compiler will then convert itself to 6502
machine code and further revisions will then be written in the Pascal subset resident on
the 6502. As of 77/12, the parsing procedures were completed and undergoing testing on a
DEC-10.

M0S Technology 6502 UCSD

See DEC LSI-11 UCSD.

Motorola 6800 St. Paul

We have received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 105. #11: 102.

Motorola 6800 UCSD

Motorola 6809

Motorola 68000

See also Motorola 6800.

Computer Weekly reported on 78/9/7: "Giving further credence to the view that Pascal
could become the dominant high-level language of microcomputing, Motorola Semiconductor
has revealed that this software will be the prime language supported by its new processor,
MACS, due to be unveiled early next year.

"As an intermediate upgrade to MACS, Motorola will also be offering Pascal on its
existing 6809 processor chip. The language is already available for the 6800 family from
an independant source.

"MACS, the Motorola Advanced Computer System, is expected to see the light of day
early next year, and to show its lineage with the 6800 family, will probably be officially
known as the 68000."

Nanodata QM-1 California

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 105.

NCR Century 200

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 105.

Norsk Data NORD-10 CERN

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 106.

Norsk Data NORD-10 Oslo

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 106.

North Star Horizon

0. DATE/VERSION. Summer 1978.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER- North Star Computers; 2547 Ninth St.; Berkeley, CA
94710; 415/549-0858.

2. MACHINE. North Star Horizon Z-80 based system.
3. SYSTEM CONFIGURATION. Requires 48K of RAM and the Micro Disk System.

4. DISTRIBUTION. $49 including software on diskette and complete documentation (* not
known if this is machine retrievable *).

5. DOCUMENTATION. (* No information reported. *)
6. MAINTENANCE. (* No information reported. *)

7. STANDARD. The system is an implementation of UCSD Pascal, which varies from Standard
Pascal.

8. MEASUREMENTS. (* No information provided. *)
9. RELIABILITY. (* No information provided. *)
10. DEVELOPMENT METHOD. (* No information provided. *)

11. LIBRARY SUPPORT. (* No information provided. *)

Northwest Microcomputer Systems 85/P

Northwest Microcomputer Systems; 121 East Eleventh; Eugene, OR 97401; 503/485-0626
offers the Northwest 85/P; a self-contained Intel 8085 based microcomputer which includes
2 double density full size Shugart floppy disks (1 Mbyte online), 54K of 450ns Static RAM
(1/0, ete. in PROM), Hall effect typewriter keyboard with numeric pad and 29 user
definable function keys, 24 line 80 character 12"(30 cm) Video RAM display, 2 serial ports
and 16 parallel ports. The basic system includes with the hardware the CP/M operating
system and the Pascal system for $7,495. The Pascal compiler/interpreter runs at 725
lines/min and "provides the full Pascal environment", including random and sequential
files, screen~oriented editior, interactive source linked debugger, and full
documentation.

$T# SM3IN TYISVd

“¥434W323a

§L61

RTT 39Vd

Ohio Scientific Industries Challanger I

See MOS Technology 6502.

THE UNIVERSITY OF HULL

HULL HU6 7RX. ENGLAND

Prime P-300 and P-400 Hull

Telephone: Hull 46311

Department of Computer Studies

30th August, 1978
Dear Andy,

We're enclosing a fuller set of notes for our implementation of PASCAL
on a PRIME 300. The work is now almost complete and we're very pleased with
the result.

We have appended some extra sections to the notes. One of these deals

| with other implementations on PRIMEs and provides a brief summary of the
information we hold on them. Unfortunately we can't do a comparison of all
implementations since the Georgia Tech. version only runs on a PRIME 400.

Thanks again for your work with "PASCAL News".

Yours sincerely,
{
faat

Barry Cornelius.
Ian Thomas.
Dave Robson.

THE UNIVERSITY OF HULL'S PASCAL COMPILER

FOR PRIME 300 COMPUTERS

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER: Barry Cornelius, Ian Thomas or
Dave Robson; Department of Computer Studies, University of Hull, Hull, HU6 7RX
England; Hull (0482) 497951.

2. MACHINE: Developed on a PRIME 300 but will also run in 64R mode on a
PRIME 400.
3. SYSTEM CONFIGURATION: The PRIME 300 currently has 64K words running

under PRIMOS-3 Revision 10.

4. DISTRIBUTION: Two versions of the compiler have been released to PRIME (U.K.)
! for evaluation and testing. It is hoped to have a distribution arrangement agreed
with PRIME in the near future.

S. DOCUMENTATION: A 30 page manual describing the PASCAL system is available
in machine-readable form. It includes instructions on how to build a new compiler

6. MAINTENANCE POLICY: This will depend partly on the agreement with PRIME -
nevertheless we intend to correct reported errors for the next few years.

7. STANDARD: The PASCAL-P variant of PASCAL is implemented.. Some of its
restrictions have been removed and some extensions have been added. The
extensions include external procedures (see 11 below) and an initialisation
facility for variables in the outermost block.

8. MEASUREMENTS: When range-checking code is produced the compilation speed
is approximately 550 characters/second. When code with no checks is required
the speed is approximately 650 characters/second which is the same as FORTRAN's
compilation speed (without trace or checking).

PASCAL input/output is considerably superior to FORTRAN's input/output.
A text copying program takes about 4 times longer to execute in FORTRAN than
PASCAL.

We do not have any comparisons for processor-bound programs since no-one
can be persuaded to write a sufficiently large program in FORTRAN! However,
we would expect PASCAL to be slower than FORTRAN since little optimisation of
the code is currently performed.

9. RELIABILITY: The compiler is very reliable and will reach a stable state
by September 1978. It is hoped that the first release will then be available.
As stated in 4 above, a preliminary release of the compiler is currently avail-
able on PRIME (U.K.)'s demonstration machines.

The Run-time Support and the input/output routines have been designed so
that, when an execution time error occurs, an error number is output together
with a "wordcount". The wordcount is the address relative to the start of the
program of the instruction causing the error. The value of the wordcount
appears at the start of each line of the compilation listing and so the error
can be traced to the line of the source program at which the error occurred.

10. DEVELOPMENT METHOD: The code generation sections of the PASCAL-P compiler
have been extensively rewritten to generate 64R mode PMA. It is a true compiler
rather than a compiler/interpreter system or a threaded code interpreter. The
compiler is now some 6000 lines and compiles itself (without a compilation
listing) in 300 C.P.U. seconds on the configuration described in 3 above. The
first version of the compiler was developed from the PASCAL-P compiler on the
University's ICL 1904S using the Belfast Mk.2 compiler.

11. LIBRARY SUPPORT: Calls of external procedures are permitted. The parameter-
passing protocol is a superset of that used by PRIME's standard system routines.

12. OTHER IMPLEMENTATIONS: There are a number of other implementations of

PASCAL on PRIME machines. Some of these are described in more detail in an
article we wrote for the Bulletin of the European PRIME Users Association,

(see "PASCAL", E.P.U.A. Bulletin, Volume 4, Issue 1 {(June 1978)).

(1) Per Brinch Hansen's Sequential PASCAL - very slow.

(ii) University of Brunswick's PASCAL compiler. Translates into modified
Pcode which is subsequently optimised and translated into relocatable
binary. The code produced contains calls to routines to perform Pcode
instructions and it is thus a threaded code system. Compilation takes
approximately 3 to 4 times as long as the University of Hull's imple-
mentation but the translation into relocatable binary is very much
faster than the assembly of the PMA that our implementation produces.

(iii) Georgia Tech's PASCAL compiler. The compiler was developed for a
PRIME 400. From "PASCAL News" #12 the current version appears to be
a threaded code interpreter.

13. FUTURE PLANS: It is likely that we will implement translation into reloca-
table binary in the near future. The additional compilation time overheads will
probably be offset by the reduction in the amount of character input/output
currently necessary to output PMA text.

More of the restrictions ~f the PASCAL-P subset are also likely to be
removed. It is possible that we will implement the post-mortem dump facility
written (in PASCAL) by Glasgow University for the ICL Belfast Mk.2 compiler.

CT# SHAN TYISVd

R ENER

8/61

STT 39Vd

Prime P-400 Atlanta

We have received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 106. #12: 67.

Processor Technology SOL

According to Ralph 1I. Palsson, Customer Applications Manager: Processor Technology
Corp.; 7100 Johnson Industrial Dr.; Pleasonton, CA 94566; 415/829-2600: "We do not
currently (* 78/1/11 *) have any intentions of providing Pascal. We will be providing a
FORTRAN compiler this spring as well as PILOT... Providing good software support for users
of Processor Technolagy hardware is one of our primary committments [sic]. As of this
time, there has been relatively 1little demand for Pascal. Consequently our software
emphasis has been in other areas."

According to S. M. Sokolow, Editor; Solus News; 1690 Woodside Rd. 219; Redwood City,
CA 94061 (* 78/10/13 *): "We’re in the process of preparing to distribute the Stanford
Linear Accelerator Center’s implementation of P-code Pascal for the SOL with Helios disk.”

Radio Shack TRS-80

See also Zilog Z-80.

According to Hugh Matthias, Radio Shack, 205 NW 7th St., Fort Worth, TX 76101; Radio
Shack does not intend to produce a Pascal system for the TRS-80 now or at any time in the
future. "It appears to be to [sic] costly-—-ever!™ (* 77/11/19 *).

RCA Spectra 70

See Siemans 4004, 7000 and Univac 90/70.

SEL 8600

Jim Gilbert; Systems Structuring Technology; 30436 N. Hampton Rd.; Laguna Niguel,CA
92677; 714/640-5222 (work); 714/495-6039 (home) reports (* 78/9/30 *): "I am the
implementor of the SEL 8600 & SEL 32 P2 Pascal mentioned in Pascal News #4.
[Co-implementor Michael] Richmond is with D.G.C. in Carolina last I knew. I am available
on a contract basis for language consulting."

SEMS T1600 Nancy, France

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 106.

Siemens 150 and 330

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 107-108.

Siemens 4004, 7000 Munich

0.

-

DATE/VERSION: 78/10/01 Version 2.0
For version 1 see 4;%&0 : 108

Distributor/Implementor/Maintainer
Dr. M. Sommer

SIEMENS AG Dep: D AP GE 1
Otto-Hahn-Ring 6

D - 8000 Miinchen 83

Germany

Machine:
SIEMENS series 4004 and series 7000

System configuration:
all systems under cperating system BS2000 (>= rel.3.C)

Distribution
- please contact implementor

Documentation

Machine retrievable user manual

Maintenance Policy
- please contact implementor -

Standard.

Standard PASCAL is accepted.

Extension: Sets of any range (maxelements: 2048)

are implemented by minimal byte-strings, separate
compilation of PASCAL, FORTRAWN,-procedures and PASCAL~-
Modules many additional standard procs.

- compiler cpticns, like optimise, xref, debug, codelist, etc.

- compiler instructions like copy from include-1ib, skip.

Measurements: (For a SIEMENS 7.755)
3200 chars (inel. blanks) /second
140 lines/second

Compilation speed:

(#speed is depending on options/listings*)
Execution speed and execution space of an

average of 6 test programs including prim, queens,
palindromes, quicksort. etc.

PASCAL version 2 | PASCAL version 1 |other language

SPACE (bytes 326 580 hl6

TIME

(sec)

4,2 7.8 5.2

SIEMENS PASCAL BS2000 PROGRAMMING SYSTEM

ST# SHAN TVISVd

ER T ENER

8§61

9TT J9vd

PASCAL NEMS #13

Telefunken TR440

9. Reliability

is hoped to be excellent as the reliability of version 1

DATE/VERSION
78/06/01, Version 36

DISTRIBUTOR/IMPLEMENTOR/MAINTAINER
H.D. Petersen

Institut flir Informatik
Azenbergstrasse 12

D-7000 Stuttgart 1

Germany

Phone: (0711) 2078 376

MACHINE
TR440

SYSTEM CONFIGURATION
BS3, MV = 18

DISTRIBUTION

Send magnetic tape, 9 track, 800 bpi.
Object module library; source files for
reference only.

DOCUMENTATION
Manual in German (preliminary)

MAINTENANCE POLICY
Bug reports welcome; no commitment for
maintenance yet,

STANDARD
Full standard is implemented.
Extensions: - separate compilation of

procedures and modules
- external procedures

DECEMBER,

- large sets (max. 624 elements)

- set of char possible

— —
A Q
A .
= o [
& S ¢
2} . - =3
<<) S 3 0
fu < § < w
» O [&)
£ o n P S =}
O o < = o A
0~ E o A
— LS - & . o
. [P]
@ T 2 o A S
3 ¢ 0 9« 54 5
> Q2 p o . o g o
i o % g8 o — [} &~
«” — 9 O o o B o
1% © []
(@) >y —~ O oA —
M Q0 ooy 7] &
T o 0 %) = £
. ~ B o < ©
@ o w O o £
o s o g - =) [} —~
0w S
£ [SR S8 03 >
a O © m~ O LR S T -
A = o 0
ko] w1 O A @ g O
* T & IS3) ®
0 5 O — g .
=] S P 0o o= = =)
~ L L oH o P o A]
v E o o & O <
. £ O & . e o £ 0 A4
» &0 O @ o [T
= RoT S T ~JR ST [SI N o] £y e
© =1 [o = TR = B | oS
— QT W o0 b [Z B+ =1
— E O o A~ o] QO T o O
o & g » £ 0 & w10~
Q O 0 0 &g v f © O o =) e
" ooH Ao b o 8 £ % 9 F1
o [! o S oA g O &
> b =z £ & o d Bl
0 o U 0 @ % H o~ o~ b ol %)
ol an = am bW oo A °
; - =&
(o] Aa) x|
- - < |
ot
S
@l

SouthWest Technical Products

See Motorola 6800.

1.

1978 PAGE 117

Telefunken TR-440

- random access files

- interactive I/0

- packed structures

- several machine-oriented
facilities

- dynamic arrays (in preparation)

MEASUREMTS

- compilation space > 160 kbytes.

- compiles itself in 320 sec using 230 kbytes.

- execution speed between ALGOL and FORTRAN.

- 1/0 faster than ALGOL or FORTRAN.

- run-time system needs up to 18 kbytes
depending on features used.

RELIABILITY

No information yet available; previous version
delivered to 15 installations, moderately
stable.

DEVELOPMENT METHOD

Compiler derived from P-2; new version has

two passes coupled by extended SC-code. Appro-
ximately 9000 PASCAL lines total; run-time
system in Assembler (TAS).

LIBRARY SUPPORT

Separate compilation and linkage to FORTRAN,
ALGOL and Assembler available. Full error
messages in source listing. Options: cross-
referencing, intermediate code listing. Run-
time error messages keyed to source line and
call hierarchy. Symbolic post~mortem dump for
all data types, including heap objects, sca-
lar types and records. Text inclusion into
source in preparation.

in

for outside

intended

109 is the rumor that the implementation
probably not

is

#9-10:
is being done by the Advanced Software Technology group and is currently (* 78/2/28 *)

the

but that the compiler

stage;
George Cohn, Wrubel Computer Center, Indiana University/HPER, Bloomington, IN 47401,

The only new information we have received on this implementation since that which we
(812) 337-1911, has had a Pascal version running for quite some time in the Computer Science
Department, although no formal distribution arrangements have been made.

See DEC LSI-11 UCSD.

debugging

Texas Instruments TI-980a

published 1last year in Pascal News issue:

Texas Instruments TI-ASC

TERAK 8510, 8510A UCSD

distribution.

Texas Instruments TI-990, 9910 Houston

DATE/VERSION
Release 1.4.0, May 1978.
DISTRIBUTER/IMPLEMENTATION/MAINTAINER

Implemented by Texas Instruments. Information is available
from Tl sales offices, or write to:

Texas Instruments

Digital Systems Division, MS 784
P. 0. Box 1444

Houston, Texas 77001

or call (512) 258-7305. Problems should be reported to:

"

Texas Instruments

Software Sustaining, MS 2188
P. 0. Box 2909

Austin, Texas 78769

or call (512) 258-7407.
MACHINE
TI 990/10
SYSTEM CONFIGURATION
Runs under the DX10 operating system (release 3) on a TI

DS990 Model 4 or larger system, which includes a 990/10 with
128K bytes of memory and a 10 megabyte disk.

DISTRIBUTION

Available on 9-track magnetic tape (either 800 or 1600 bpi)
or on a disk pack for a TI model DS10, DS31, DS25, or DS50 disk
drive. Contact a TI salesman for a price quotation,

DOCUMENTATION

Complete user-level documentation is given in the "TI Pascal
User's Manual", TI part number 946290-9701.

MAINTENANCE POLICY

TI Pascal is a fully supported product. Bug reports are
welcomed and maintainence and further development work are in
progress.

STANDARD

TI Pascal conforms to '"standard" Pascal, with the following
principal exceptions:

% Functions cannot alter global variables.

% A GOTO cannot be used to jump out of a procedure.

% The control variable of a FOR statement is local
to the loop.

* The precedance of Boolean operators has been
modified to be the same as in Algol and Fortran.

* The standard procedures GET and PUT have been

8.

replaced by generalized READ and WRITE procedures.
TI Pascal has a number of extensions to standard Pascal,
including random access files, dynamic arrays, ESCAPE and ASSERT
statements, optional OTHERWISE clause on CASE statements, and
formatted READ.
MEASUREMENTS

The compiler occupies a 64K byte memory region. Compilation

speeds are comparable to the 990 Fortran compiler.

9.

10.

11.

RELTABILITY

There are some known problems which are currently being
worked on, but none are so serious that they can't be worked
around. The system has been used by several different groups
within TI since October of 1977, and by a number of outside
customers since May of 1978.

DEVELOPMENT METHOD

The compiler produces object code which is link-edited with
run—-time support routines to form a directly executable program.
The compiler is written in Pascal and is self-compiling.

LIBRARY SUPPORT

TI Pascal supports separate compilation of routines and
allows linking with routines written in Fortran or assembly
language.

Texas Instruments 9900/4 Vienna

We have

received no new information on this implementation since that

published last year in Pascal News issue: #9-10: 109.

Univac 90/30

We have received no new information on this implementation since that which we

published last year in Pascal News issue: #9-10: 109.

Univac 90/70

See Siemens 4004, 7000 series.

$T# SMAN TVISVYd

IREEUERER

861

8TT 39Vd

Univac 90/70 Philadelphia

UNIVERSITY ofPE]VNSYLVA.NIA

PHILADELPHIA 19104

The Moore School of Electrical Engineering D2
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

April 20, 1978
Dear Andy,

I just wanted to let you know about the PASCAL 8000 implementation
which I recently brought up on our Univac 90/70 (VS/9 operating system).

The system is based on the Australian AEC compiler of Cox, Tobias,
Hikita and Ishihata (which is quite an excellent piece of software), and
was implemented by modifying the runtime system to interface with VS/9.
Only the compile-and-go version has been implemented at this time. All
features of the Australian compiler have been retained, and additional
support added for some VS/9 features: the system files SYSDTA, SYSLST,
SYSOUT, SYSIPT, SYSOPT and * are supported, and a COMMAND function has
been added which allows PASCAL programs to issue VS/9 commands, i.e.
COMMAND (' /ERASE filename'); This implementation will probably not run
on Univac Series 70 VMOS without modification, since interrupt handling
is done with operating system features that I am told are specific to
vs/9.

No formal distribution plans have been made, but anyone who is
interested (hopefully with software to trade) should contact me at
P.0. Box 8191, Philadelphia PA 19101.

Very, truly yours,
Vlh/ég
I/ a/h’,,________—
G. Kevin Doren

Univac 1100 (Copenhagen)

We have received a copy of a 60 page users manual (* dated 77/8 *) titled "A Pascal
Compiler for the Univac 1100 Series" which is available from the implementor.

0. DATE/VERSION. Checklist not updated since 77/08.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. J. Steensgaard-Madsen, DIKU (Datalogisk Institut
Kobenhavns Universitet), Sigurdsgade 41, DK-2200 Copenhagen N., Denmark. (* No phone
number reported. *)

2. MACHINE. Univac 1100 series.

3. SYSTEM CONFIGURATION. Exec-8 operating system. (* Minimum hardware requirements not
reported. *)

4. DISTRIBUTION. The charge for distribution from Datalogisk Institut is Dkr. 200. The
distributors are attempting to maintain a distribution tree to reduce costs and hassles.
Purchasers must sign a license agreement. The system is released only in relocatable form.

5. DOCUMENTATION. A 19-page machine-retrievable supplement to the Pascal User Manual and
Report is available. It is "A Pascal Compiler for the Univac 1100 machines", by J.
Steensgaard-Madsen and Henrik Snog of DIKU.

6. MAINTENANCE. There is no promise of maintenance, but bug reports are required under
the license aggreement.

7. STANDARD.

Deviations from the standard: Reset(f) on any textfile f will cause eof{f) = false
and eoln(f) = true; Parameter types of formal procedures and functions must be specified.

Restrictions: file of file is not allowed; standard procedures cannot be passed as
actual parameters.

Extensions: otherwise in case statements; conformant array parameters.

Machine dependencies: Sets may have 72 elements, char is defined as (6-bit) Fieldata,
ASCII is an additional type; real is double precision always.

8. MEASUREMENTS. Compilation space is roughly 42K; speed is 100 lines per SUP second.
Compiled programs run efficiently compared to other processors.

9. RELIABILITY. Excellent. (* Date first released and number of sites using system not
reported. *)

10. DEVELOPMENT METHOD. Pascal-P with a team of 4 persons. ¢ (* Person-hours to develop
system not reported. *)

11. LIBRARY SUPPORT. External procedures may be written in Pascal or (ASCII) Fortran.
Inclusion of assembler code is possible.

Univac 1100 Madison, Wisconsin

We have received no new information on this implementation since that which we
published last year in Pascal News issues: #9-10: 110-112. #11: 103.

Univac 1100 (San Diego)

We have received a 33-page report on this implementation titled "Pascal 1100" which
is available from the implementor.

0. DATE/VERSION. Checklist not updated since 77/08.

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. Michael S. Ball; code 632; Naval Ocean Systems
Center; San Diego, CA 92152; 714/225-2366.

2. MACHINE. Univac 1100 Series.
3. SYSTEM CONFIGURATION. Exec-8 operating system; can be run in Demand mode.

4. DISTRIBUTION. As a member of USF, you may request a copy from Mike by sending a mag
tape and noting any restrictions on it s format.

5. DOCUMENTATION. A machine-retrievable supplement to the Pascal User Manual and Report
entitled "Pascal 1100" documents the implementation.

6. MAINTENANCE. (* No information provided. *)

7. STANDARD. Restrictions: entry, processor, and univ are reserved words; standard
procedures and functions may not be passed as actual parameters; file of file is not
allowed. Sets may have at most 144 elements. The compiler accepts the full ASCII character
set. A compiler option allows processing of Brinch Hansen Sequential Pascal programs.

¢T# SMIAN T¥YISVYd

‘¥3dWInadG

8/6T1

6TT 39Vd

8. MEASUREMENTS. The compiler compiles into 34K words and requires 6K words of library
routines. (* Compilation speed not reported. *) Self-compilation requires about 15.5K for
stack and heap.

Execution times for code compiled by Pascal was compared with code generated by the
NUALG and ASCII FORTRAN processors. Fortran’s local optimization was taken as a base
value. The programs used for comparison were taken from Wirth’s paper on the design of a
Pascal compiler (Software - Practice and Experience, Vol. 1 (1971), pages 309-333). The
results are summarized in the following table.

Pascal NUALG FORTRAN FORTRAN
Pascal no tests NUALG no tests FORTRAN local opt. global opt.
(rel) (rel) (rel) (rel) {rel) (rel) (time) (rel)
PART 0.62 0.61 0.85 0.84 1.00 1.00 15.10 0.99
PARTNP 1.18 1.06 3.29 3.17 0.94 1.00 0.93 0.85
SORT 1.37 1.12 1.83 1.49 1.00 1.00 18.01 0.59
MATMUL 1.82 1.43 2.05 1.70 1.00 1.00 10.26 0.39
COUNT 0.30 0.28 0.72 0.66 1.00 1.00 16.83 0.97

9. RELIABILITY. Quite good; it should approach excellent. The system has been in local
use since about February, 1976, and it has been installed at 25 sites (11 university, 4
government, 10 industry).

10. DEVELOPMENT METHOD. The compller was developed from Pascal-P2. (* Person-hours to
develop system not reported. *)

11. LIBRARY SUPPORT. Generated code can be linked to subprograms written in Fortran or
agsembler.

Varian V-70 VOICE

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 112.

Western Digital Newport Beach

WESTERN DIGITAL

c g /R P O R A4 T 7 g N

3128 RED HILL AVENUE, BOX 2180
NEWPORT BEACH, CALIFORNIA 92663
(714} 557-3550 TWX 910-595-1139

Thank vou for vour interest in Westerp DigiTal's innovative new Fascal MICROEMGiHE'M

proguct line, We are pleased To enclose our initiai literaturs whizh wiil socn be
followed by more conclusive and detailed data sheets.

Our first product offerinrgs for the Pascal MICROENGINE are at both *the svstem and
chip level. The desktop system (CP900078-0X) configured in a stylized enzlosure
retails for $2995, although a special introcductory offer of $1995 is ir sfrect for
the tirst 300 customers to raserve a system. A 20% down payment must zzcompany
orders for +his special cffer. OCrders shculd te accompanied by the model number
(above) with the appropriate "-0OX" suffix to specify the ciskette type for receipt
of software: -03 and -24 for 3 inch standard diskette, single and double density,
respectively; and -05 and -0o for 3 1/4 inch mini disketrta, single and double den-
sity, respectiveiv. The chip set (CFP 90003B-02) retaiis for $195. Al| pricas are
subject to applicable tax. Hoth products are offered to the CEM and retall market
segments with correspending srice schedules targeted *o *hose markets. Deliveries

«#ill begin in the first quarter of 1979.

Additicnally, Western Digital offers a wide range of chip-level products whicn have
been successfully used in a variety of applications inciuding the following.

e Cata Communications ® Minicomputers

o Telecommunications Systems e Microcomputers

o Peripherat Controllers @ Smali Busiress Systems

e Terminais and Printers o Custom Microprocessor Environmente

Flease call ocur regional coffices or *his author here at Newpo~t Beach for acdditiona!
information.

o Western - Mr. Ed Raether, Los Gatos, California (408) 354-2813

e Central - Mr, Dave Renwick, Troy, Michigan (313) 643-4432

e Eastern - Mr. Bob Green, Marbiehead, Massachusetis (617) 62[-6466
We believe these new Pascal MICROENGINE products will provide you The rost cost

effective solutions for processing requirements across a wide spectrum of appli-
cztions where a high leve! languege is required

Sincerely,

*4 —==::::_> ———

J.T. Boren
Marketing Manager
Computer Products Division

Xerox Sigma 6, 9 Quebec

We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 112.

Xerox Sigma 7 Tokyo

See also CII 10070 and CII IRIS 80. We have recéived no new information on this
implementation since that which we published last year in Pascal News issue: #9-10: 112.

Zilog Development System

See Zilog Z-80 UCSD.

¢T# SRIN TYISVd

R AT N

861

6CT 39Vd

Zilog Z-80 Indiana

INDIANA UNIVERSITY
78/04/07 Wrubel Computing Center
MEMORIAL HALL WEST, ROOM

BLOOMINGTON, INDIANA 47401

TEL. NO. B12--337- 1911

Andy Mickel

University Computer Center

227 Experimental Engineering Buitding
Minneapolis, Minnesota 55455

bear Andy,

Over the past several months I have been working aon 3
PASCAL compiler fcr the Zilog 783. The project *s row at
the point where it gerierates pretty gocd code. Any ‘further
enhancements will have to be done either at a much siower
pace or ty somebody else.

I started with the P4 compiler and wrotve a PASCAL
program that transtated the PCODE to ZRJ assembly mnemonics.
I discovered that for the sake of efficiency of space, many
of the PCODE instructions have to generate czalls to a
runtime support library that was growing at a good ciip. My
next step was to eliminate the 780 assembler,
incorporated address resolution and an intermediate fil
into my postprocessor so that it could generate standard 28
cbject code. My final step was to move ths lLogic from the
postprocessor up into tihe main ccmpiler, making it one pass.
In order to avoid having an intermediate file, it assembles
the <code for each procedure body 1in a chain of arrays
allocated from the heap. Thus, the Llargest orocedure
determines the amount of memcry needed by the compiler. The
compiler itself stitl thinks it is generating PCODE. 1 have
undermined procedures GENQ, GEN1, GEN2, GENOT, GEN1Y, GEN2T,
and a couple of others so that instead of printing PCODE
mnemonics onto the object file, they <catl 280 code
generating routines which do the real work. As a bonus, 1
now have actual 280 addresses alongside my listings, making
breakpointing convenient.

My compiler is probably doomed to remain a cross
compiler for the duration of its existence. Its output code
cannot hope to compete with interpreter code for efficient
utilization of space. However, the runtime suppoert package
takes up about 4K byta2s, and a good interpreter *that used
that package extensively could probably be written in a few
hundred bytes. The compiler could be remodified to generate
a binary dinterpr2ter code in Z80 loader format. Then some
really big programs could be run on the 720, oerhaps =ven
the compiler itself., But that is another project.

I have made some Llittte white modifications to the
compiler to make it more convenient to the microprocessor
programmer, These include the following:

1) Files. Not really an extension, since they are
part of the language definition. In the current

2)

4)

5)

6)

implementation, file names actually serve as
device designators.

Nondescriminated variants. Also standard PASCAL.

ASCII coding. CASE statement constants and SET
constants based on characters are translated to
ASCII. This is absolutely necessary for <cross
compilation on non-ASCII machines.

External procedures and functions. These must be
accompanied by an absolute address, since we have
no relocating loader.

Hex and octal 1in the source code. 256, for
example, is represented as 100H for hex and 400Q
for octal.

Hex output on textfiles.
Example: WRITECOUTPUT,A: & HEX);

Under the present configuration, characters range from

out of

to 255, sets may contain up to 128 elements, integers are
32 bit two's complement, and reals are not yet implemented.
was
would work wonders for efficiency, but Al Towell talked me
it. What can you do with a 16 bit integer?

once tempted to cut integers down to 16 bits, which

PASCAL can provide a convenient medium for applications

systems
the

lines.

with the help of assembly Language procedures for
tight spots. We seem to be getting into I80s more and more
Wrubel Computing Center, so I am confident that the
code I worked on will see plenty of action on the front

I am sending a listing of my runtime support package
Listings of a couple of compilations for you to lLook

Tell me what you think.

Respectfully,

Zilog Z-80 UCSD

Coenge

George Cohn III

See also DEC LSI-11 UCSD.
We have received no new information on this implementation since that which we
published last year in Pascal News issue: #9-10: 112.

believed that many of the present Zilog Z-80 Pascal systems could be easily

modified ‘to run.on the Z-8000; since Zilog says "using an automatic translator, present
the Z-80 can easily convert to the Z-8000, since the Z-8000 instruction set is,
in effect, a superset of the Z-80 instruction set." We would appreciate hearing from

has made such a conversion; or from anyone who has developed a Pascal system

directly for the Z-8000.

¢T# SKIN 1¥ISVd

RN ENER

861

T¢T 39vd

INDEX To IMPLEMENTATION NOTES

General Information
#9&10: 60.
#11: 70.
#13: 87.

Checklist
#9610z 60.
#12: 56.
#13: 88.

Portable Pascals

Pascal-P
#9&10: 61-62.
#11: 70-72.

#12: 57. #13:

Pascal Trunk

#9&10: 62. #13:

Pascal J

#9610: 62. #13:

Pascal Variants

Concurrent Pascal

#9&10: 63.

#11: 72-74. #13:
Modula

#9&10: 63.

#11: 74. #13:
Pascal-§S

#9&10: 63.

#11: 72, #13:

88.
89.

89.

90.

91.

89.

Feature Implementation Notes

Boolean Expressions
#11: 76-78.
Comments
#13: 92,
Default Case
. #9&10: 69-70.
For Statement
#9&10: 66-69.
#11: 79-80.
Input and Output
#13: 91,
Interactive I/0
#9&10: 71-72.
#13: 92,
Long Identifiers
#11: 78-79.
Sets
#9&10: 64-66.
#12: 57,
Unimplementable Features
#11: 75.

Machine Dependent Implementations

Alpha Micro Systems AM-11

See DEC LSI-11.
Altair 680b

See Motorola 6800.
Altair 8800

See Intel 8080.
Altos ACS-8000

#13: 94,
Amdahl 470
See also IBM 360, 370.
#13: 94,
Andromeda Systems 11-B
#11: 80.
Apple 1II
See MOS Technology 6502.
BESM 6
#13: 94.
BTI 8000
#13: 95,
Burroughs B1700
#9&10: 73.
#12: 57.

Burroughs 1800
See Burroughs 1700.
Burroughs B3700, B4700
#9&10: 73.
#12: 58.
Burroughs B5700
#9810z 74.
#11: 81.
#13: 95.
Burroughs B6700, B7700
#9&10: 74-75.
#11: 81.
#12: 58-59.
#13: 95.
CDC 6000, Cyber 70, Cyber 170
#9&10: 76.
#11: 82-83.
#13: 9¢.
CDC 7600, Cyber 76
#9&10: 76.
#11: 83.
#13: 97.
CDC Cyber 18 and 2550
#9&10: 75.
#11: 81-82.
CDC Cyber 203 (STAR-100)
#13: 97.
CDC Omega 480
See IBM 360, 370.
CDC Star-100
#9&10: 77.
CII Iris 50
#9&10: 77.
10070, Iris 80
#9&10: 77-78.
#12: 59-60.
Comodore Pet 2001
#12: 60.

Cl

2]

Computer Automation LSI-2, LSI-4
#9&10: 78.
#12: 60.

Cray Research CRAY-1
#9&10: 78-79.

Data General Eclipse
#9&10: 79-80.
#11: 85.
#12: 60-61.
#13: 98,

Data General Nova
#9&10: 79-82.

#11: 83-85.

#12: 60-61.

#13: 98.
DEC PDP-8

#9&10: 82.

#11: 85.

#13: 101.

DEC LSI-11 and PDP-11
#9&10: 82-88.
#11: 86-91.
#12: 62-63.
#13: 100.
DEC VAX-11/780
#13: 104.
DEC DECSystem~-10
#9&10: 89-91.
#11: 91-92.
#13: 104.
DEC DECSystem—20
See DEC DECSystem-10.
Dietz MINCAL 621
#9&10: 91-92.
Foxboro Fox-1
#9&10: 92.
Fujitsu FACOM 230
#9&10: 92.
Harris / 4
#9&10: 92-93.
Heathkit H-11
#9&10: 93.
#13:
Hewlett Packard HP-21MX
#9&10: 93.
#11: 92.
#12: 63.
#13: 105 .
Hewlett Packard HP-2100
#9&10: 93.
#12: 63.
#13: 105.
Hewlett Packard HP-3000
#9&10: 94.
#12: 63-64.
Hitachi Hitac 8700, 8800
#9&10: 94.
Honeywell 6000
#9&10: 94-95.
#11: 92-93.
Honeywell H316
#9&10: 94.
#11: 93.
#13: 106.
#9&10: 95.

IBM 1130
#9&10: 101.
IBM 303x
See IBM 360, 370.
IBM 360, 370
#9&10: 95-101.
#11: 93-100.
#12: 64.
#13: 106.
IBM Series 1
#13: 110.
ICL 1900
#9&10: 101-102.
#11: 100-101.

#13: 110.
ICL 2900
#9&10: 102,
#11: 100, 101-102.
#13: 111.

IMSAI VDP-40

See Intel 8080.
Intel 8080, 8080a

#9&10: 102-103.

#11: 102,

#12: 64~66.

#13: 112.
Intel 8085

See Intel 8080.
Intel 8086

See Intel 8080.
Interdata 7/16

#9&10: 103.

#12: 67.
Interdata 7/32, 8/32

#9&10: 103~104.

#12: 67.

#13: 112.
ITEL AS/4, AS/S

See IBM 360, 370.
Marinchip Systems M9900

#13: 113,
Mitsubishi MELCOM 7700

#9&10: 104-105.
MITS Altair 680b

See Motorola 6800.
MITS Altair 8800

See DEC LSI-11.
MOS Technology 6502

See also DEC LSI-11.

#13: 114.
Motorola 6800

#3&10: 105.

#11: 102.
Motorola 6809

See Motorola 68000.
Motorola 68000

#13: 114.
Nanodata QM-1

#9&10: 105.
NCR Century 200

#9&10: 105.
Norsk Data NORD-10

#9&10: 106.
North Star Horizon

#13: 114.

Northwest Micro Systems 85/P
#12: 67.
#13: 114.
Prime P-300
#11: 103.
#13: 115,
Prime P-400
#9&10: 106.
#12: 67.
Processor Technology SOL
#13: 116.
Radio Shack TRS-80
#13: 116.
RCA Spectra 70
See Siemens 4004, 7000.
See Univac 90/70.
SEL 8600
#13: 116.
SEMS T1600, SOLAR 16/05/40/65
#9&10: 106.
Siemens 150
See Siemens 330.
Siemens 330
#9&10: 107-108.
Siemens 4004, 7000
#9&10: 108.
#13: 116,
SOLAR 16-05/40/65
See Sems T1600.
Telefunken TR-440

#9610: 108.
#13: 117,
Terak 8510

See DEC 1LSI-11.
Texas Instruments TI-ASC
#9&10: 109.
#13: 117.
Texas Instruments TI-980a
#13: 117,
Texas Instruments TI-990, 9910
#13: 117,
Texas Instruments 9900/4
#9&10: 109.
Univac 90/30
#9&10: 109.
Univac 90/70
#9&10: 109.
#13: 118,
Univac 1100
#9&10: 109-112.
#11: 103.
#13: 119,
Varian v-70
#9&10: 112.
Western Digital
#13: 120.
Xerox Sigma 6, 9
#9&10: 112.
Xerox Sigma 7
#9&10: 112.
Zilog Z-80
#9&10: 112.
#11: 103.
#13: 120,
Zilog Z-8000
#13: 120.

ST# ShAN T¥ISVd

R ER R ENEN

8§L6T

¢ZT 39Vd

POLICY: PASCAL USER’S GROUP (78/10/01)

Purposes: Pascal User's Group (PUG) tries to promote the use of the programming
language Pascal as well as the ideas behind Pascal. PUG members help
out by sending information to Pascal News, the most important of which
;s ab?gt implementations (out of the necessity to spread the use of

ascal).

The increasing availability of Pascal makes it a viable alternative for
software production and justifies its further use. We all strive to
make using Pascal a respectable activity.

Membership: Anyone can join PUG: particularly the Pascal user, teacher, maintainer,
implementor, distributor, or just plain fan. Memberships from libraries
are also encouraged.

See the ALL PURPQOSE CQUPON for details.

FACTS ABOUT Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these design goals and is being used quite widely and
successfully for:

e * teaching programming concepts
* developing reliable "production" software
* implementing software efficiently on today's machines
* writing portable software

Pascal is a leading language in computer science today and is being
used increasingly in the world's computing industry to save energy and
resources and increase productivity.

Pascal 1implementations exist for more than 62 different computer systems,
and the number increases every month. The Implementation Notes section
of Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth

Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $6.90.

Policy

Introductory textbooks about Pascal are described in the Here and There
Books section of Pascal News.

The programming language Pascal was named after the mathematician and
™ religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Pascal User's Group is each individual member's group. We currently have more than
2712 active members in more than 41 countries. This year Pascal News is
averaging more than 120 pages per issue.

