
PASCAL USER'S GROUP

Pascal News
(FORMERLY PASCAL NEWSLETTER)

NUMBER 11

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

FEBRUARY~ 1978

TAB LEO F CON TEN T S o
C")
N
I"-
'0

U'I
0'1

"'.- Co. U'I
"'

OJ c:
Co.+- "'(..)"'~

3. OJ -I- 0'1"'"C+-
"C L1J .-J::.
::0 '0 u
"'

C") .-
01"-3

COVER:Paper Fasteners from the mail of international
Pascalers

o POLICY: Pascal N€ws

1 M.L PURPOSE COUPON

3 EDITOR1S CONTRIBUTION

4 HERE AND THERE WITH PASCAL
4 News (Jobs, Help Wanted!, Tidbits from Pascalers)
8 Pascal in the News '

10 Conferences
10 Books and Articles
13 Errata to Pascal User Manual and Report, Second Edition
16 Review of Pascal Newsletters 5 - 8
19 Roster Increment

33
33

..
(I)-a:::
CD-

Oi(~ *=

i

L1J

~--_/

34
36
40

41
48

51
54

57
64

70
70
70
70
72
75
80

104

105

ARTICLES
"Type Compatibility Checking in Pascal Compilers"
,

Pierre Desjardins
uA Novel Approach to Compiler Design" James Q. Arnold

,IIStatus of UCSDPascal Project" Kenneth L. Bowles
"Su~gestions for Pascal Implementations"
.'

,
,Wi11 ett Kempton

'ISuggested Extensions to Pascal II Robert A. Fraley
IIWhat to do After a Whil e" David W. Barron and

Judy M. Mull ins
"Adapting Pascal for the PDP 11/45" David D. Miller
"Pascal: Standards and Extensions" Chris Bishop

OPEN FORUM FOR MEMBERS
Special Topic: Pascal Standards

IMPLEMENTATION NOTES
General Information
Applications
Portable Pascals
Pascal Variants
Feature Implementation Notes
Machine Dependent Implementations
Index to Implementation Notes

POLICY: Pascal User's Group

>-u.--o
a.

POLICY: PASCAL NEWS (77/12/30>

* Pascal News is the official but informal publication of the User's Group.

Pascal News"contains all we (the editors) know about Pascal; we use
the vehicle to answer all inquiriesbecaus'e our physical energy and
resources for answering individual requests are finite. As PUGgrows, we
unfortunately succumb to the reality of (1) having to insist that people
who need to know "about Pasca'" join PUGand read Pascal News - that is
why we spend time to produce it! and (2) refusing to return phone calls
or answer letters full of questions - we will pass the questions on to
the readership of Pascal News. Please understand what the collective
effect of individual inquiries has at the "concentrators" (our phones and
mailboxes). Weare trying honestly to say: "we cannot promise more than
we can do."

* An attempt is made to produce Pascal News4 times during an academic year from
July 1 to June 30; usually September, November, February, and May.

* ALL THE NEWSTHAT FITS, WE PRINT. Please send written material for Pascal News
single spaced and in camera-ready form. Use lines 18.5 em wide!

* Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO
THE CONTRARY. .

* Pascal News is divided into flexible sections:

POLICY - tries to explain the way we do things (ALL PURPOSECOUPON,etc.).

EDITOR'S CONTRIBUTION- passes along the opinion and point of view of the'~ 1
editor together with changes in the mechanics of PUGoperation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal applications, history, membership rosters, etc.
ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.)
OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interestctb the readership of Pascal News.
IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain inf6rmation about Software Writing Tools
for a Pascal environment, Portable Pascals, Pascal Variants, Feature
Implementation Notes, Machine Dependent Implementations, etc.

~"
.

'~'.
f

* Volunteer editors are:
Andy Mickel - editor
Tim Bonham and Jim Miner - Implementation Notes editors
Sara Graffunder - Here and There editor
John Strait and John Easton - Tasks editors
Rich Stevens - Books and Articles editor
Rich Cichelli - Software Tools and Applications editor
George Richmond - past editor (issues 1 through 4)

.
RECEIVED

.~

~

fElt6" 1

CYTROI- PtC..
..
r

.'\;!
.~

PASCAL USER'S GROUP

USER'S ALL PURPOSE COUPON,
******************.

; GROUP
(77/12130)

.
Pascal User's Group, c/o Andy Mickel
University Computer Center: 227 EX
208 SE Union Street
University of Minnesota
Minneapolis, MN 55455 USA

+ Clip, photoeopy, 04

+
+ 4ep40duee, ete. and
+
+ mail. to thi6 add4e,6J.>.

/ / Please enter me as a new member of the PASCAL USER'S GROUP for Academic
year(s) ending June 30 I shall receive all 4 issues of Pa6eal N0W~

for each year. Enclosed please find ($4.00 for each year). (* When
joining from overseas, check the Pa6eal N~ POLICY section on the reverse
side for a PUG "regional representative." *)

.

/ / Please renew my membership in PASCAL USER'S GROUP for ___ Academic year(s)

ending June 30 Enclosed please find ($4.00 for each year).

/ / Please send a copy of Pa6eal N0W~ Number(s) (* See the Pa6eal N0W~
POLICY section on the reverse slde for prices and issues available. *)

/ / My new
address is printed below. Please use it from now on. I'll enclose anphone

old mailing label if I can find one.

address
/ / You messed up my phone' See below.

/ / Enclosed please find a contribution (such as what we are doing with Pascal at
our computer installation), idea, article, or opinion which I wish to submit
for publication in the next issue of Pa6ea-t N0W~. (* Please send bug reports
to the maintainer of the appropriate implementation listed in the Pa6eal N0W~
IMPLEMENTATION NOTES section. *)

/ / None of the above.

Other comments: From: name

mailing address

phone

computer system(s)

date

' (* You!, ~~~~e numbe!,,__~ i ds_~qrn!11un i ca t i 0-'" wit~_ other PUG members. *)

~-~._-

------- ---- ---

JOINING PASCAL USER'S GROUP?
membership is open to anyone: particularly the Pascal user, teacher, maintainer,

implementor, distributor, or just plain fan. Memberships from libraries are also
encouraged. ,

please enclose the proper prepayment - we will not bill you.
please do not send us purchase orders - we cannot endure the paper work! (if you a' ~

trying to get your organization to pay for your membership, think of the cost of .j

paperwork involved for such a small sum as a PUGmembership).
when you join PUGanytime within an academic year: July 1 to June 30, you will

receive all issues of Pascal News for that year unless you request otherwise.
You will-receive a membership receipt.

please remember that PUGis run by volunteers who don't consider themselves in the
"publishing business." We consider production of Pascal News as simply a means
toward the end of promoting Pascal and communicating news of events surrounding
Pascal to persons interested in Pascal. We are simply interested in the news
ourselves and prefer to share it through Pascal News (rather than having to

(j answer individaally every letter and phone call). We desire to keep paperwork
~ to a minimum because we have other work to do.
-1C)
CL JOIiHNG THROUGH "REGIONAL REPRESENTATIVES" ?

- To join through PUG(USA), see address on reverse side. International telephone:
1-612-376-7290. PUG(USA) produces Pascal Newsand keeps all mailing addresses on
on a common list. Regional representatives collect memberships from their regions
as a service and reprint and distribute Pascal News using mailing labels sent from
PUG(USA). Persons in the Australasian Region must join through PUG(AUS).

European Region (Europe, North Africa, Australasian (Australia, NewZealand,
Middle and Near. East): Region Indonesia, Malaysia):

send £2.50 to: Pascal Users' Group (UK) send $A10 to: Pascal Users Group (AUS)
c/o Computer Studies Group c/o Arthur Sale
Mathematics Department Dept. of Information Sci.
The University University of Tasmania
Southampton S09 5NH GPO Box 252C
United Kingdom Hobart, Tasmania 7001

telephone: 44-703-559122 x700 Australia
telephone: (002) 23 0561

RENEvJING?
please renew early (before August) and please write us a line or two to tell us what

you are doing with Pascal, and tell us what you think of PUGand Pascal News to
help keep us honest. To save PUGpostage, Wedo not send receipts when you renew.

ORDERING BACKISSUES OR EXTRA ISSUES?
Our unusual policy of automatically sending all issues

who joins within an academic year (July 1 to June 30) means
requests for backissues ahead of time, and we don't have to
in every issue - especially about Pascal implementations!

Issues 1, 2, 3, and 4 (January, 1974 - August, 1976) are out of print.
Issues 5, 6, 7, and 8 (September, 1976 - May, 1977) are out of print.

(A few copies of issue 8 remain at PUG(UK) available for i1 each.)

of Pascal News to anyone
that we eliminate many
reprint important information

Extra single copies of new issues (current academic year) are:
$2 each - PUG(USA); ~1 each - PUG(UK); and $A3 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?
(such as ideas, queries, articles, letters, opinions, notices, news, implementation
information, conference announcements and reports, etc.) "ALL THE NEWS THAT FITS,
WE PRINT." Please send written material for Pascal News single spaced and in camera-_
ready form. Use lines 18.5 cm wide! Remember: ALL LETTERS TO US WILL BE PRINTED
UNLESS THEY COiHAIN A REQUEST TO THE CONTRARY.

MISCELLANEOUS I QUIRIES? Please remember we will use Pascal News as the vehicle to
answer all inqu ries and regret to be unable to answer individoal requests.

PUGN USA UK

number pages per copy per page per copy per page

5 64 $0.70 1.09c ?
6 96 $1. 18 1. 23c $0.50 .52c
7 48 $0.69 1. 44c $0.14 .29c
8 64 $1.07 1.67c $0.40 .62c

9/10 112 ? ? $0.56 .5lc

Postage for 9/10 was

Country _ group Unit Cost Previous group Unit Cost

U.K. 350g 45c 300g 39c

Europe 500g 48c 250g 26c

r

l5i1 UNIVERSITY OF MINNESOTA
"!WIN CITIES

University Computer Center
227 Experimental Engineering Building
Minneapolis, Minnesota 55455
(612) 376-7290

The DEADLINE for written contributionsto Pascal News #12 is March 20. Please send DARK copy~

New companies committed to Pascal (add to the list in PUGN#9): Ericsson Telephone and ICL in
Europe, Interdata and Tektronix in the US. TI continues to be very mysterious about their
heavy use of Pascal - they haven't told us a word in a year now~ DECmay be finally waking up
because of DOD-1 (see Here and There). Thanks to everyone who sent material for this issue.
We sent renewal notices to 315 holdouts in November. Wemay have to stop sending receipts for
membership - it is getting too time consuming. We will probably have to combine issues 13&14

next autumn.

Judy sent the letter below to "The Editor, Pascal News":

UNIVERSITY OF SOUTHAMPTON

Faculty ofMathematical Studies

Sou thampton , S09 5N H. Telex 47661. Tel 0703559122 Ext 2387

5th December, 1977.

Dear Andy,

PUG (UK) PRINTING and POSTAGE

Now that PUGN 9flO is out of the way, I thought I would share some statistics
on printing costs.

As you can see, we have managed to keep our costs at well below half yours.
After No.8, we outgrew the Departmental printing service and took 9/10 to
the University Printing Unit. They were able to do the job at the same
price - in fact slightly cheaper because I did much of the collating myself
to hurry it along. However, indications are that there could be a steep
rise in costs in the New Year. It may be possible to avoid it, and in order

to do so we need to know, accurately,

No. of pages in No. 11

Date of arrival of Masters.

However, should it not be possible to get preferencial rates, we shall have
to face a cost of about 90c for a 64 page issue (compared to $1.07 in the
U.S.A. and 40c previously). Are you still relying on our ultra cheap rates
or can PUG afford to pay the going rate?

Editor's Contribution

and came to a total of $115 (approx.). The mailing included close on 50
renewals received~ you ran the labels off. As you can see, it is

unlikely that any future issue will hit the lower group for European postage,
so that we might have to face 90c + 48c = $1.38 for getting a copy to a
European member. However, with luck we can still do it at under a dollar.

(/)

That seems to be all. I have today handed over the files in good order to
David who will handle everything after my departure. Following his article
in Computing we have had an influx of queries, especially from Industry.
Pascal lives~

I-'
I-'

Thank you very much for all the numerous snippets of information over the
past year, and for the most recent one" on South Africa. The personal touch
is sincerely appreciated. You will be glad to know that ~its are seriously
contemplating switching from Fortran to Pascal for first years (including
engineers) in January. It all depends on whether a decent 370 compiler is
ready.

I'll keep in touch, of course, and won't forget to send a photo of the
wedding.

All the best,

Professors: H.B. Griffiths, S.A.Robertson (Pure Mathematics); P.T. Landsberg (Applied Mathematics);
J.W. Craggs(Engineering Mathematics); D.W. Barron (Computer Studies); T.M.F. Smith (Statistics).

I-'
<.D
"-J
CO

(* It might help explain to new PUGmembers a few related facts. Judy Mullins last year
(76-77) proposed and implemented a reprinting and distribution service of PUGN for PUGmembers
in Europe. Not only was delivery speeded, but also the rates were kept low. Last Mar~h, the
University of Southampton Computer Studies Group headed by Prof. David Barron held thelr
third annual computing symposium on "Pascal - the Language and Implementation." Both Judy and
David have done PUGmany great services. Judy graduated this month and is going home to South
Africa where she will marry her fiance. David (who by the way edits the ever-popular journal:
SOFTWARE - Practice and Ex erience) recently wrote an outstanding article for the 77/10/24
issue of Computing urope a kind of Computerwor1d for Europe); please see Here and There.

David continues to man the PUGEuropean region and as a result had to quit as a Books and
Articles editor for PUGN.

Regarding the question marks under "USA" for PUGN9/10 in Judy's letter, the costs were $1.10
and $0.96. Ken Robinson (see Open Forum) asks for a public explanation of the high ($A10)
cost of PUGN for Australasian membersfor the new distribution service provided this year by
Arthur S~ Arthur on 77/09/07 sent this information about his estimated costs: $2.80 for
printing per issue (based on the size of #8); postage within Australia = $0.70. Arthur says
that he thinks the cost is "dubiously low" and that $10 might leave his operation "out of
pocket, and to understand the costing, you have to realize that Australia has a high postal
charge, and I also am taking on New Zealand." I think it is unfortunate that Arthur's costs
are so high,because it is not in the cheap spirit of PUG. Until Ken wrote I didn:t k~ow ~he
$A10 price was relatively "high". Rememberthough that last year we had severe dlstrlbutlon
problems to Australia. I'm grateful to Arthur for volunteering to do the work, and I'm sure
he's watching costs. - Andy *)

Here and There With Pascal
NEWS

PASCAL JOBS. . , .

People keep calling us at PUG central asking for people to employ who know Pascal. (*If
that isn't evidence of Pascal's viability, I don't know what is:*) With the interest of
Pascalers in mind we list here as a service contacts who desire people with compiler
experience and knowledge of Pascal:

David Shaw, Structured Systems Corp., Suite 6D5, 2600 El Camino Real, Palo Alto, CA 94306.
(415) 321-8111

Charles Moore, ADP Network Services, 175 Jackson Plaza, Ann Arbor, 111 48106.
(313) 769-6800 (also Neil Barta, same address and phone)

Gregory Hopwood, Sperry Univac Mini Computer Division (formerly Varian), 2722 Michelson
Drive, Irvine, CA .92713. (714) 833-2400

HELP WANTED!

If Pascal is to make any inroads into serious scientific computing (currently the almost

exclusive preserve of FORTRAN)it must have a decent library of scientific subroutines -
which means, as far as the U.K. is concerned, that there must be a Pascal version of the

NAG (Numerical Algorithms Group) library. (*...and as far as the U.S. is concerned, that

there must be a Pascal version of the IMSL (International Mathematics and Statistics

Library) library...*)

It should be possible to make a Pascal NAG library largely machine-independent, with all

machi ne-dependent features begi n co 11ected into the "X" routi nes. Probably the easi est

method of production of the library would be straight transcription of the existing

ALGOL-60 versions, together with the writing of the set of "X" routines for each different
range of machines.

Please send your views on this matter, and offers of help, to:

Professor D. W. Barron,
Computer Studies Group,
Department of Mathematics,
The University,
Southampton, Hants, S09 5NH (United Kingdom)

who is coordinating this project and negotiating with NAG.

TIDBITS

D. B. Anderson, 280 Bella Vista Drive, Hillsborough, CA 94010: "I am particularly
interested in implementationsusable on my company's Interdata 7-32." (* 77/12/12 *)

David B. Anderson, Dept. of Math., Lehigh University, Bethlehem, PA 18015: "By the way,
the section in the newsletter called 'Here and There with Pascal' has been very helpful
in stimlilatingthe interest of non-believers." (* 77/12/17 *)

Peter A. Armstrong, Digital Data Systems, 1113 Dexter Ave. N., Seattle, WA 98109: "We
are immediatelyinterestedin informationon PASCAL compilersfor PDP-11 processors
running DEC's RSTS/E monitor. However, we are also interested in any mini- and or

microcomputer PASCAL capabilities." (* 77/12/13 *)

PaulBarr,RaytheonCo.,EquipmentDiv., Boston Post Road, Wayland, MA 01778: "Am
attempting to use PASCAL for a Signal Processing application (FFT). Am designing
hardware to fit the compiler." (* 77/11/21 *)

Michael Behar, 428 Windy Hill Rd., Orange, CT 06477: "Do you know if there is a version
of PASCAL for a MICRO-MIND-II computer (manufactured by ECD of Cambridge, MA)?"
(* 77/9/22 *)

Roy E. Bollinger, Dept. 1965, BLD 529, Lockheed, P. O. Box 504, Sunnyvale, CA 94088:
"Are there any plans to have any Pascal seminars?" (* 77/11/8 *)

Steven L. Brecher, 5221 Marina Pacifica Dr., N. Key 19, Long Beach, CA 90803: "More
generally, I am interested in information on any implementation which can be run
on/adapted to a Digital Equipment LSI-ll based system." (* 77/12/19 *)

A. Charles Buckley, Data/Information Systems, Urban Studies Center, Gardencourt/Alta
VistaRoad,Louisville,KY 40205: "We are currentlyinterestedin any work being done
to implement Hansen's CONCURRENT PASCAL on a DEC-10 and/or an IBM 370." (* 77/11/28 *)

David Burnett-Hall, Univ. of York, Heslington, York, Y01 5DD, England: "In the
discussions on whether array parameters could be dynamic in size, there have been some
suggestionsthat only numerical analystshandlingmatricesneedthesefacilities.A
much more important use, to my mind, is to be able to pass strings of varying lengths.
E. g., the DEC-10 compiler has to have 9 almost identical error routines, to handle
errors of lengths 15, 20, 25, . . . 55 characters: Stupid." (* 77/8/10 *)

Joe Celko, Box II 11023, Atlanta, GA 30310: "Is there a Nova Pascal
around?"(* 77/12/6 *)

sitting

Grant M. Colvin, Management Shares, 2121 W. Airport Frwy., Suite 660, Irving, TX 75062:

"Do you know of PASCAL implementationsfor the Hewlett-Packard3000 series?"
(* 77/12/5 *)

C. R. Corner, 514 S. 9th St., Moorhead, MN 56560: "I have a PDP 11/05 and am interested
in Pascal activity on the 11 and on micro-based systems." (* 77/09/29 *)

Lawrence S. Cram, 64 Bowen Street, Newton, MA 02159: "Although I am not now a user of
PASCAL, I certainly would like to be, and I would like to be on your mailing list. I
program commercial applications on a DECsystem-10 in COBOL and am fed up with the
limitations inherent in COBOL. I was introduced to PASCAL in Wirth's book, Data
Structures + Algorithms = Programs and have followed up with Hansen's Principles of
Operating Systems and the PASCAL Users' Guide. I currently have a second-hand bootleg
PASCAL compiler and I dabble with it occasionally." (* 77/11/8 *)

Pierre Desjardins, Departement d'informatique, Universite de Montreal, rmmeuble
principalV-240, Montreal 101 Quebec H3C 3J7, Canada: "My implementationof the
Concurrent Pascal machine on Sigma 6 is presently being used to implement (using
Concurrent Pascal, of course) the "line access protocol" necessary for communicating
with a packet switching service of Bell Canada called DATAPAC.

"r am currently involved in the organisation and realization of a primitive distributed
microprocessor system. System programs will be written in CP and executed by a CP
machine contained in every MP." (* 77/10/13 *)

Robert 1. Demrow,11 LindaRd.,Andover,MA 01810: "I am interestedin findinga copyof
Pascal that will run on my 8080 computer--presently have 32K and am planning an
expansion." (* 77/11/26 *)

JohnDeRosa,The BostonSystemsOffice,400-1 Totten Pond Road, Waltham, MA 02154:
"We're presently beginning development of PASCAL systems for micro's as well as
resident compilers with the intent of creating a PASCAL well-suited for writing system
software. Any news from people working in this direction would be appreciated."
(* 77/9/21 *)

(I)

--n
rr1
b:J
;;0

=:t:>
;;0

-<

I-'
LO
'-J
00

""'0
:t:>

G>

George B. Diamond, Diamond Aerosol Corp., RD II 1, Glen Gardner, NJ 08826: "Any, other
informati~ PASCAL would be appreciated especially compilers or assemblers for the
Z80 CPU." (* 77/12/14 *)

Roberio Dias, 134 Colin Ave., Toronto, Ont M5P 2C3, Canada: "I am a humble owner of a
digital--g;oup Z-80 minicomputer and as suchvery interested in learning new languages.
I understand that you are publishing four times a year a paper on Pascal. I would very
much like to subscribeto it but insteadof sending US$4right now, I would liketo
know if the price would be the same for a subscriber in Brazil, as I will be moving to
that country in February 78, with my computer." (* 77/11/30 *)

Richard Dievendorff, Dept. 84F, IBM, 620 North Brand Blvd.,
"AlthoughI am havingthissentto my business address, this is
venture." (* 77/12/3 *)

Glendale, CA 91203:
a personal, hobby

Felix F. Dreher, Computer Science, Pittsburg State Univ., Pittsburg, KS 66762: "I am
interestedin obtaininginformationaboutthepossibleimplementationof PASCAL on a
small IBM 370/125 machine. Do you have any data suggesting that this has been done? Is
there a bootstrap interpreter/compiler available that might be modified for this
system?If so, from whom can it be obtained?"(* 77/10/13 *)

William E. Drobish, Silicon Systems, 16692 HaleAve., Irvine, CA 92714: "Additionally, I
would appreciateany informationon PASCALcompilersand the availabilityof one for
the Interdata 7/32." (* 77/11/14 *)

C. E. Duncan, 865 Thornwood Dr., Palo Alto, CA 94303: "I am not at present a user, but
would like to be one.We have availab Ie a number of computing systems,and I would be
particularly interested to obtain a running system for IBM 360/370, Univac 1110, Data
General NOVA and Intel 8080A. Perhaps not altogether at once; these systems happen to
be conveniently available." (* 77/10/24 *)

Randall B. Enger, 28 Briar Patch Lane, Sudbury, MA 01776: "I'm planning to try an
implementation on a small machine, mostly because I'm tired of assembly language, but
also because I've been away from programming languages stuff for too long.

"1 like to believe I'm relatively free from 'N.I.H." disease--'not invented here," and
consequently will eagerly build upon the work of others (borrow from, steal from. . .).
Whatever will help me get an implementation going--listings/source on tape/whatever -
I'd be willing to spend a few $ happily (especially if it were to cover copying
charges. . .)" (* 77/11/10 *)

Robert B. Finch, 910 N. Lk. Samish Dr. II 30, Bellingham, WA 98225, "My interest is
personal/hobbiest computing, and I am currently in the process of implementing Per
BrinchHansen'sSequentialPascalon an Alpha-MicrosystemsAM-100."

Read T. Fleming, Program in Computer Science, Box F, Brown Univ., Providence, RI 02912:
"Brown has an IBM 360/67 running CP-CMS for interactive work, an IBM 370/138 for batch,
running VS 1. We have on order a Pascal compiler from the Australian Atomic Energy
Commission. When it arrives, we hope to put it up on the batch machine immediately, and
at somelaterdateadd it to the interactive(CP/CMS) system.
"Everybodyhere is lookingforward to Pascal;we hope to use it in a courseon compile
design next semester, and we're anxious to see how it works in an instructional
environment." (* 77/12/18 *)

Jim Fontana, 3519 W. Warner Ave., Santa Ana, CA 92704: "The implementor/maintainerof
the 2550/Cyber 18 Pascal compiler is Gordon Wood at CDC LaJolla operation. The compiler
is distributed from PSD in Sunnyvale." (* 77TflT2 *)

Ed F. Gehringer, Dept. of Computer Science, Math
Lafayette, IN 47907: "You guys sure are ,lax
periodicalsbombardyouwith noticesfor months
PUG, you don't get a single notification
expires." (* 77/12/16 *)

Sciences Bldg., Purdue Univ., West
about sending out renewal notices. Most
before your subscription expires. With
until 5 monthsafter yoursubscription

Here and There With Pascal

Thomas Giventer, 1250 Post Road, Scarsdale, NY 10583, "I am currently working on a
PASCAL compiler for the TMS 9900 and would like to find out what other work is being
done in this area. II

Steven B. Hall and Arthur Dartt, 1599 Orchard Grove, Lakewood,OH 44107 (* address for
Hall *): "The installationwith which we are professionally affiliated and are students
(Cleveland State University) currently is running VS1 on a 370/158.. Any help you
can give us in differentiatingbetween the various PASCALs will be appreciated (as we
do not wish to waste valuableman-hoursat vainattempts).We will lookforwardto
hearing from you, as several people are anxious to implement and use PASCAL."
(* 77/12/6 *)

=
f'T1
::e:
en

MichaelE. Harris, 309 W. Edwards 11 4, Springfield, IL 62704: "Does anyone have a "full"
PASCAL that will work with minor modification on an HP3000 ~r on an IBM 370/MVS system?
Micros? Any computer graphics activity in PASCAL?" (* 77/10/26 *)

Charles Hedrick, Computer Science Dept., Rutgers Univ., Hill Center, New Brunswick, NJ
08923: "Implementors should give some thought to implementing machine-independent
representations of data so that data is transportable as well as programs. This
involves the generating of files which are not textfiles. What may be the only way out
is to use ASCII text representations (using blanks as separators where appropriate)."
(* 77/09/20 *)

H. F. Hession, Adv. Record Systems Eng., Gov't. Systems Div., Western Union, 7916
Westpark Drive, McLean, VA 22101: "We are programmingZilogZ-80 microprocessorsin
assembly language for communications controller applications, and noted an article in
the December1977 issueof BYTE magazinereferringto youruser groupon PASCAL.
"None of us has had training in PASCAL, but given the proper documentation, we are
confident we can master it." (* 77/12/5 *) ""T1

f'T1
c::I
:;:0

=:x>
:;:0
-<

Charles Hethcoat, 2416 Yorktown 11 371, Houston, TIC 77056: "I obtained a copy of the
Pascal PCODE assembler-interpreterwith a view to study how it works. I suggest that a
worthwhileprojectwouldbe collectcopiesof thisprogramas writtenfora variety of
machines and languages, or to write them up for those machines not having a version
yet. (This would be especially appealing as a way to implement Pascal on the 8 bit
micros). A project like this would go a long way toward assuring that a common language
is widely distributed, and a the same time it would simplify life for those wishing to
tryout language extensions. Also, the PCODE language can be extended to include
interruption handling, queues and other real-time techniques for operating system
development, as Brinch-Hansen has done with Concurrent Pascal." (* 77/10/10 *)

Robert B. (Buzz) Hill, Eyedentify, Inc., P.O. Box 2006, Longview, WA 98632: "We are a
new company in the business of developingand manufacturingcustom dedicated
microprocessor devices. Our main product, the Eyedentifier, is a microprocessor based
image recognition system that utilizes the retinal image as a means of identification
(as opposed to a finger print).
"Although the Eyedentifier is a simple machine whose software was written in Motorola
6800 assembly language, we anticipate the support products we intend to build for it
will require development with a high level structured language.
"Recently, a group from my company attended a talk at Lewis and Clark college near
here, by Kenneth L. Bowles, UCSD on the PASCAL language. As a result, we are very
interested in implementing it on a 6800."

Philip T. Hodge, Habco, P.O. Box 305, Schererville, IN 46375: "As a Z-80 based
microprocessor user anxiously awaiting the UCSD version of Pascal, it is heartening to
find others who share my opinion of both Basic and Pasca!." (* 77/12/6 *)

RossF. Householder, 1725 Br~oks Drive,
at Texas Instruments and would like to
of the country." (* 77/09/11 *)

Arlington, TX 76012: "I am a Pascal user working
see what is going on with Pascal in other parts

R. Warren Johnson, Dept. of Math. and Compo Sci., St. Cloud State U., St. Cloud, MN

56301: "I am seeing more and more hobbyists in beginning courses who need some
convincing that PASCAL is rea!." (* 77/09/15 *)

V1

Ernest W. Jones, 59 Billou St., San Rafael, CA 94901: "I am interested in certain
languages for use on 16-bit micro's and have investigated the MU}~S language. Pascal

would no doubt provide more suitable capabilities, but may not be suitable for so small

a machine. I would like to learn more about it nevertheless." (* 77/12/81 *)

MarkJungworth,13318NewlandSt.,GardenGrove,CA 92644: "We have recentlyimplemented
Pascal on our CDC 7000 machines at McDonnell Douglas in Huntington Beach. I am a
complete novice at Pascal usage, but can't wait to BEGIN." (* 77/09/12 *)

MilanKarspeck,1149 NorthMichigan,Pasadena,CA 91104: "I am dyingto get my hands on
a PDP-11 PASCAL implementation. According to the December editorial in Byte Magazine,
you ran a list of PASCAL implementations in your issue # 8. I would appreciate it if
you could begin my subscription with that issue." (* 77/12/11 *)

Neil T. Keane, Stansaab Elektronik AB, System Development, Veddestavagen 13, Jaarfaalla,
Sweden S-175 62: "As a manufacturer of Turn Key Computer Systems we are currently
engaged in the assessment of a suitable high level programming language to which we can
standardize our in-house programming. Since we are mainly engaged in real time
applications we are particularly interested in Concurrent Pascal. To this end, we would
like to know the extent to which it has been implemented in the US (apart from the Solo
System), and the status of such implementations." (* 77/11/17 *)

Paul Kelly, Educational Data Systems, 1682 Langley Ave., Irvine, CA 92714: "If you are
aware of any FORTRAN compilers written in PASCAL which are available at a reasonable

cost, I would be quite interested to hear about it." (* 77/10/26 *)

Thomas J. Kelly, Jr., 58-B Meadowlake Drive, Downington, PA 19335: "Here at Burroughs I
have been using the UCSD implementation of PASCAL for the B6700. It is fairly reliable,
although a number of problems have been noted. I have been sending bug reports (most
with fixes) directly to UCSD. If anyone is interested in the bugs and/or the fixes,
drop me a line. I'll be glad to send listings (most fixes are less than 1 page).
"You may also be interested in the fact that a colleague and I have brought up the CDC
6000 compiler at Burroughs (although the code generation has been disabled). This is to
allow us to run checks on what constructs were implemented there. We think we have
found a bug in it. If so, we'll pass along a bug report." (* 77/11/29 *)

William Kempton, Language Behavior Research Lab, 2220 Piedmont Ave., University of
California,Berkeley, Berkeley,CA 94720: "As a linguisticanthropologist,I find the
reasons for using Pascal versus other languages fascinating. You find a lot of the same
factors operating that operate in any other multilingual speech community. Clearly the
merit of the language and the utility of the compiler are only two of many factors
affecting language choice, they may not be the most important for most users. The best
strategy for a long large change is to have computation center staff at least very
familiar with Pascal, and to have it taught in the introductory course in computer
science." (* 77/09/22 *)

John Kenyon, Technical Staff, International Computing, 4330 East-West Highway, Bethesda,
MD 20014: "We are currentlyinvolvedin the planningand conceptdevelopmentfor the
USAFForeignTechnologyDivisiondata processing for FY78-82. One of the primary
subjects of our study will be the use of standard higher-order systems programming
languages within the Department of Defen~e. I understand that Pascal has been chosen as
the candidate language for all DOD and I would appreciate any information you could
sendme on thissubject."

Stephen Klein, 188 Judy Farm Rd., Carlisle, MA 01741: "Computer programming has been a
hobby of mine for a few years, mostly in FORTAN and BASIC, but now I'm sure there are

better languages around so I'm also looking into APL and LISP (* besides Pascal *) to
get an idea what type of work each language is best suited for." (* 77/12/27 *)

John C. Knight, MS 125A, NASALangleyResearchCenter,Hampton,VA 23665: "Any interest
withing PUG in actively pursuing a PASCAL standard with the National Bureau of
Standards?" (* 77/10/20 *)

Henry Ledgard, Compo and Info. Sci., U. of Mass., Amherst, MA 01002: "We've been
inundated with over 50 requests for our prettyprinter and losing money distributing it
in the process, too." (* 77/9/15 *)

K. P. Lee, Dept. of Computer Science, 102 Nicholson, Louisiana State Univ., Baton Rouge,
LA 70803: "You may be interested to know that we are in the process of getting the
Australian compiler. We will be happy to share with PUG any experience we may have with
it." (* 77/10/6 *)

Maria Lindsay, Microcomputer Library ! Resource Center, 5150 Anton Dr., Room 212,
Madison, WI 53719: "Thank you so much for sending us your brochures and issues. Your
newsletter is very impressive. It for onet now view Pascal as a favorable language.
Hopefully it will be available for microcomputers through the manufacturer soon. You
can be sure that when we are asked about computer languages, Pascal is mentioned in a
very favorable light." (* 77/9/21 *)

Peter Linhardt, 1890 Arch St. Berkeley, CA 94709: "I'm interested in PASCAL for use on a
personal system. I understand there is a system that will run on my machine (* TDL Z80
system *)." (* 77/12/9 *)

Ron Mahon, Video Link, 201 N. Main St., P. O. Box 688, Masontown, PA 15461: "Be very
interested in any compilers for direct use on a micro, preferably Motorola 6800."
(* 77/12/06 *)

John P. McGinitie, P.O. Box 655, Berkeley, CA 94701: "During my education at U.C.
Berkeley, I had the honor of learning Pascal as well as Basic, Fortran, Lisp, C,
Snobol, .. Having experienced many languages Pascal has impressed me the most."
(* 77/12/17 *)

Michael McKenna, Time Share Corp., Box 683, Hanover, NH 03755: "We are

ESI/OMSI Pascal for the PDP 11. We are planning a distributed network
stand alone mode and with RT 11; the host computer is an 11/60 under
be programmed in Pascal." (* 77/12/27 *)

currently using
using LSI II's in
RSTS/E - all will

JamesS. Miller, Intermetrics Inc., 701 Concord Ave., Cambridge, MA 02138: "Today my
interest is in finding a solid Pascal compiler for Data General equipment, Novas and/or
Eclipses." (* 77/11/10 *)

Roderick Montgomery, Statistical Associate, Health Products Research, 3520 U.S. Route
22, Somerville, NJ 08876: "I would also appreciate receiving information on the
availability of back issues for the Newsletterand on PASCALimplementationsthat
produce object code for the Intel 8080 microprocessor. (Either "resident" or "cross"
compilers would be acceptable implementations for my purposes, although a "resident"
implementationwould be preferable.)" (* 77/12/4 *)

Herbert E. Morrison, 1257 2nd St., Manhattan Beach, CA "I am interested in
implementing PASCAL on my Poly 88 (8080) computer. Is there someoneyou know of who has
done this in the Los Angeles area?" (* 77/12/7 *)

G. o'Schenectady, 144 Lancaster St., Albany, NY 12210: "Most pleased that the most
rational language ive seen has found 1087 adherants. Read of you-all in Microcomputer
SCCS Interface, ! id like to be one of you.
"My own activity is presently restricted to hardware selection, and i doubt my 8K S-100
system-to-be will support too much of Pascal without additions, but even so it will be
good to be in touch with whats happening." (* 77/9/17 *)

David Peercy, BDM Corp., 2600 Yale Blvd. S.E., Albuquerque, MN 87106: "I was previously
with Texas Instruments, where Pascal is beginning to flourish." (* 77/12/15 *)

Darrell Preble, Computer Center, Georgia State Univ., University Plaza, Atlanta, GA
30303: "Georgia State University would like to implement Pascal on our Univac 70/7 or
barring that,our Interdata8/32. If you have a workingversionof Pascalon eitherof
these machines please contact me at the above address. We would like to obtain a
working source copy of Pascal for either of these machines." (* 77/11/28 *)

Jerry Pournelle, 12051 Laurel Terrace, Studio City, CA 91604: "A consulting engineering
firm is at the moment putting together my Cromemco Z-80, with which I hope to put
together some word-processing and small-business bookkeeping--as well as play about. I
can see some limits to BASIC, and from years ago when I had my only previous experience
with computers I know there are limits to FORTRAN.. . ." (* 77/12/3 *)

Edward K. Ream, 508 Farley Avenue, Apt. 5, Madison, WI 53705: "I am particularly
interested in implementations for the 8080 or Z80." (* 77/11/30 *)

Peter Richetta,ComputerScience,SlipperyRock StateCollege,SlipperyRock,PA 16057:

"I have been trying to get Brinch Hansen's ConcurrentPASCAL compiler. After
distributing hundreds of systems he stopped distribution. Dr. Hartmann, who wrote much
of the compiler, gave me a list of sources to try. Can you help? Any suggestions?
"Our computers are NOVA 3 (soft discs) and 370/135 using DOS/VS. Educational use is all
we want." (* 77/10/26 *)

Mark Riordan, User Services, Computer Laboratory, Michigan State University, East
Lansing, MI 48824: "Here at MSU we are developing(inPASCAL,of course)a word
processing system we call Redact. Our CDC 6500 is becoming badly overloaded, so we are
consideringmoving Redact to an OntelOp-l intelligentterminal,basedpartlyon the
availability of a PASCAL compiler or cross-compiler for an 8080 chip. (We have even
considered modifying the venerable CDC 6000 PASCAL compiler to do the trick.) Any input
from other microprocessor PASCALers would be appreciated." (* 77/10/24 *)

Bowman Ave., Port Chester, NY
computer with floppy disk and
has a compiler/interpreter
not of interestto me, but a

10573: "We willsoon
32K words of memory.
suitable for this

compiler would be of

T. P. Roberts, Kern Instruments, 111
be accepting delivery of a Nova 3/12
I wonder if your PASCAL Users Group
machine? An interpreter alone is
interest.
"If you have such programs, please inform me of the price, core required,
comparison of compile times with Data General Fortran." (* 77/09/08 *)

and rough

Robert Ro~ers, 18625 Azalea Drive, Derwood, MD 20855:"
"

being in Minneapolis, do
you know of any implementations of PASCAL for a Control Data Corp. 3500? I am aware of
the CYBER implementation,but I have a CDC 3500 available for my use." (* 77/12/01 *)

Herb Rubenstein, 1036 6th St., Golden, CO 80401: "I would like any information on Varian
V75 Pascal--even a Pascal to Fortran preprocessor (translator)." (* 77/12/19 *)

Janne Sahady, Systems Programmer,LAMBDA, Div. of Biol. and Med., BrownUniv.,
Providence, RI 02912: "We have recently implemented a Pascal compiler on a V77-600
Univac minicomputer (formerly Varian Data Machines). This compiler is the sequential
version of P. Brinch Hansen's Concurrent Pascal compiler. Our current emphasis is on
upgrading the I/O interface and we hope to be writing major system utilities (a mag
tape utility to start with) in Pascal in the near future.
"Herb Rubenstein, currently working at Autotrol, has referred us to your newsletterand
mentioned that you are maintaining a Pascal software library. . . we would definitely
be interested in contributing to it as we develop useful routines--most likely in the
areas of graphics, signal processing and I/O utilities." (* 77/09/16 *)

Stephen C. Schwarm, duPont Co., 101 Beech St., Wilmington, DE 19898: "Should have Sweden
PDP-11 compiler self-compiling soon." (* 77/12/6 *)

Ted Shapin, 5110 E. Elsinore Ave., Orange, CA 92669: "I have access to an IBM 370 and
Stanford's version." (* 77/12/15 *)

Thomas E. Shields, Software Resources, 2715 Bissonnet, Suite 212, Houston, TX 77005: "We
have UCSD Pascal compiler for B6700 - currently a 1 x 1 (1 cpu, 1 I/O processor); soon
to become a 2 x 2)." (* 77/11/04 *)

John Sigle, Computing and Information Sciences, Trinity Univ., 715 Stadium
Antonio, TX 78284: "We have two Digital Group systems, a Motorola 6800 and
I am interested in developing PASCAL compilers and/or interpreters
(* 77/12/7 *)

Drive, San
a Z-80, and
for them."

Jon Sin~er, 1540 W. Rosemont CE, Chicago, IL 60660: "Do you know of anyone around here
who has a micro running PASCAl? I would like to see such a system." (* 77/12/14 *)

Dave Skinner, Communication Mfg. Co., 3300 E. Spring St., P. O. Box 2708, Long Beach, CA

9080~ust finished reading the article 'Is PASCAl the next BASIC?' in the December
issue of BYTE magazine, where they mention the Pascal User's Group. As a former PASCAl
user (on~e Univ. of Colorado CDC 6400's), I am interested in following the

developments of the language as well as perhaps finding a compiler for one of our
machines (NOVA, PDP-11 , or any microprocessor)." (* 77/12/06 *)

Eric Small, 680 Beach St., San Francisco, CA 94109: "Am using ESI Pascal in process
control type application in broadcasting." (* 77/11/30 *)

Jon A. Solworth, 7 W. 14th St., Apt. 15A, New York, NY 10011: "Please send info on
implementations on ~ minicomputer and addresses if possible (especially Interdata)."
(* 77/09/08 *)

TurneyC. Steward,201DrakeSt.,San Francisco,CA 94112: "I am at present using a
Pascal compiler running on a CDC 6600 at Berkeley, Cal., but would be most appreciative
to obtain info on versions for microcomputers, especially 8080 or Z80 systems, either
resident or cross-compilers." (* 77/12/14 *)

Jim Stewart, 194B Pleasantview Rd., Piscataway,
implementationof a subset of PASCAL on
(* 77/11/20 *)

NJ 08854: "I
a Z-80 based

in the
system."

am interested
micro-computer

Jyrki Tuomi and Matti Karinen, Room 2113, Computing Center, Tampere University of
Technology, Box 527~ Tampere 10, Finland: ''When you wrote to us with info about
PUG, you said that there are 4 members in Finland already.
"Well, now we are doubling that, and more. The coupons are enclosed and here's the
money, too.

"We have a PDP 11/70 at our disposal and have sent for a couple Pascal implementations.
What comes out of this, we shall see. . . ." (* 77/10/7 *)

Steven Vere, Asst. Prof., Dept. of Information Eng., Univ. of Illinois at Chicago
Circle, Box 4348, Chicago, IL 60680: "In the December 1977 issue of Byte Magazine Carl
Helmers mentioned that a PASCAl compiler exists for the Z80 microprocessor. Do you have
any direct information on this compiler, or know where information can be obtained? I
would like to know

1. the core requirements
2. cost of obtaining the compiler
3. if it runs on the Z-80 or is a cross-compiler
4. where and how it can be obtained." (* 77/12/12 *)

Wayne Vyrostek, Tektronix, Inc., MS 74-329, P.O. Box SOD, Beaverton, OR 97077: "I am a
Technical Instructor on Microprocessor Development aids for Tektronix, Inc. I would
like to enroll our training department in the Pascal users group and receive back
issues that are available. I would also appreciate information you have about training
programmers in the use of PASCAl; particularly for Microprocessor software
development." (* 77/09/06 *)

Donald Warren,130 W. 81st St., Apt. 7, New York, NY 10024: "I heard about the group in
Creativ~;Puting. I've been programming in Pascal for the past four years, first at
the State Univ. of N.Y. at Buffalo, and currently at N.Y. University, and I'm pleased
to see its use has spread enough to merit this organization." (* 77/09/12 *)

Hellmut Weber, Leibniz-Rechenzentrum, Der Bayerischen Akademie der Wissenschaften, Barer
Strassen-;-D-8000 Munchen 2, West Germany: "I am collecting from collegues some more
user-orientedpoints of view. (I feelthatsimpleuserswho want to writeproduction
programshaven'tfoundenoughattentionin the PASCAL community)."(* 77/09/12 *)

Terry Weymouth, 4702 Beau Bien Lane East, Lisle, IL 60532: "I'm interested in any news
on microswith PASCAl (or shouldthatbe PASCALwithmicros?)"(* 77/12/7 *)

Fulton Wright, Jr., Yavapai College, 1100 East Sheldon Street, Prescott, Arizona 86301:

"I'm the educational coordinator for Computer Services a Yavapai College. I've just
read an editorial in BYTE magazine about PASCAL. I know almost nothing about it, but
the editorial makes it sound like the language of my dreams. The editorial suggested
you as a source of further information.What should I and my DEC 10 do next?"
(* 77/12/7 *)

MarkZimmer,#10 2750 DwightAve.,Berkeley,CA 94704: "PASCAL is supported in U.C.
Berkeley (in which I am a student) for the use of teaching data-structures (and now)
compilers courses. I learned it in our style course CS 40. I am interested in
implementing PASCAL on the DG ECLIPSE machine. The specification is done (PASCAL has
been modified slightly so that ALGOL code from DG can be a subset) and the code is
pouring forth for the compiler. Since PASCAL is a 'one-pass language,' some readers may
be interested in my three-pass approach with special emphasis on the reversability of
the parse-tree into 'source' form." (* 77/09/23 *)

Dear' Editor',

Just so this newsletter' isn't quite so seY'ious, can I draw your

attention to the evolution of the pug dog that is the heY'aldic emblem of the

Pascal UseY's Group? The York Herald of Arms, in visiting Tasmania Y'ecently, was

at pains to emphasize that aY'tists weY'e fY'ee to Y'e-inteY'pY'et heraldic emblems

and that this was a medieval norm. He said it Was Y'egY'ettable that in this

machine age a sad uniformity had crept in. As you can see fY'om the samples

Y'eproduced heY'e, Pascallers are free from this mechanistic taint, and the

guardian of Y'ational pY'ogY'amming has changed significantly oveY' the months,

even at one stage being Y'ather pig-like (possibly an unintended pun).

~

1976, U.S.A. 1977, Europe 1977, Australia

PASCAL IN THE NEWS

(* This new section will list articles which take note of Pascal, sometimes just in
passing. Most of the entries here don't really belong in a bibliographical section like

"Books and Articles," but they do give some indication of the currency of Pascal. The
references have now become so frequent that they merit being set off in a separate
section of "News. It Several PUGmembers have mentioned that "Here and There" is visible
proof of interest in Pascal. We hope that this section is useful in the same way.
The three most important articles listed here are Carl Helmers' editorial in Byte and
David Barron's article in Computing Europe, and the press release (with editorial
comment by Andy) from the US Dept. of Defense. PUG member David Mundie is doing heroic
work, writing letters to the editor in praise (and defense) of Pascal. Three of his
letters are listed here, as are one each by PUG members George Cohn and Stephen Alpert.
More PUG members should do the same. In addition, we'd appreciate copies of references
made to Pascal in publications you read so that we can make this list more complete. *)

BYTE, 77/09, p. 174, two letters to the editor, one from PUG member George Cohn. Both
suggest Pascal as

"

high-level language for micro-processors.

BYTE, 77/10, "C: A Language for Microprocessors?" J. Gregory Madden. Mentions Pascal as--;;;- reasonable candidate" for a high level, machine-independent language for
microprocessors, but goes on to tout Bell Labs' language C as the candidate of choice.

BYTE, 77/11, "Language Development. A Proposal," Glen A. Taylor. Mentions Pascal as a
"good structured programming language, II but rejectsany "large" language "as the best
choice for a standard home computing language."

BYTE, 77/11, Two letters to the editor suggesting that Pascal be considered as a
-st;ndard language for progrrams and as an execellent high-level language for
microcomputers. The writers are PUG members Stephen Alpert and David Mundie.

~, 77/12, "Is Pascal the next B ASIC?", editorial by Carl Helmers. "We at BYTE are

interested in giving Pascal a boost," best sums up the author's attitude. The editorial
demolishes, point-by-point, several arguments frequently made in favor of BASIC, and
argues the superiority of Pascal in several areas. Well worth reading, if you are
interested in personal computers.

Computer Weekly, 77/10/20, "ICL Pascal users expect boost." Report of a Pascal users'
group for exchange of software among ICL users: organizer, David Joslin, Univ. of
Sussex, Brighton, England. Pascal users in Britain are dickering with the Numerical
Algorithms Group, which produces scientific routines in other languages, to get a
scientific library translated into Pascal. See David Barron's Help Wanted ad in another
part of "Here and There" for details.

Computer Weekly, 77/10/20, "More support for pascal.'~Reports that
procurement agency, EMV, has specified a Pascal-based language as
time software development."

"the Swedish defence
its standard for real

Computing, 77/10/20. "Two pleas to Pascal users." Similar to the first article from
Computer Weekly.

Computerworld, 77/11/14, '''Sounds of Computing' a Record for History," Miles Benson. A
tongue-in-cheekdescriptionof a new recordentitled"Soundsof Computing,"the second
movement of which is called "Pascal Time-Sharing Terminal."

Computing Europe, 77/10/24, pp. 18-19, "Letting the dinosaur know that it's dead," David
Barron. An argument for burying FORTRAN, however great its effect on computing might
once have been. Barron argues the need for using compact, conceptually clear languages
that make writing correct programs and specifying data structures easy. Pascal is the
language of choice.

Creative Computin~, Sept/Oct 1977, p. 11. "A Plug for Pascal" letter to the eidtor from
PUG member David Mundie. He counters an argument for creating a structured COBOL/BASIC
by showing how clearly a main program can be in Pascal. His example program (5 lines
long) is a Pascal version of the one used in the article he criticizes.

Dataline, 77/10/31, "Blazing the trail for Pascal." More reports from the UK about the
ICL user's group, the Swedish defense language contract, and David Barron's commission
to write a Pascal compiler for the ICL 2900 series.

j?irstComputer Faire Proceedings, pp. 245-247, "Computer Languages: the Key to Processor
Power," by Tom Pittman. Discusses the virtues of various high level languages for
personal computers. Mentions Sequential Pascal, and says that Pascal is in many ways

better than FORTRAN or BASIC.

Kilobaud, October 1977, p. 11. Another letter to the editor by PUG member David Mundie.
He says that Pascal is a better language than a structured BASIC discussed in an
earlier article, and gives a sample main program in Pascal which duplicates the program
suggested by the author of the earlier article. 00

The DefenseSupply ServiceWashingtonhasannouncedthea~ardof four
contracts to produce competitiveprototypesof a common high order
computer programming language for Department of Defense embedded
computer systems. These awards came as a result of a request for
proposal and offers received from fourteen firms,both U.S. and
foreign. The successfuI contractors ~ere HoneyweII (CII-HoneyweII
Bul I), Intermetrics,Softech, and SRI-International.

MACC Computing~ (University of Wisconsin Academic Computing Center), 77/11/28.
Mentions plans to distribute a Pascal compiler under a license agreement. Reference
comes in an article about proprietary software.

SCCS Microcomputer Interface, Aug. 1977, p. 52. An announcement about the existance of
PUG and Pascal News.

Standford Campus Computing Bulletin, Nov. 1977, p. 24. A user wrote in to ask that
Stanford acquire a good Pascal compiler. The editor's response was that Stanford is
looking into what compiler to acquire.

Twin Cities Technical Hobbyist, (77:9), pp. 01111-10000, "Pascal in Micros," Geoff
Watt1~ article describing Pascal, with a discussion of the syntax of the language
and Paaca1's usefulness for hobbyists.

Whi Ie di ff<;!rentapproaches~ere offered,all four winning contractors
proposed to start from the computer language PASCAL as a base. They
wi I I provide modifications to construct a resulting language to
satisfy mi litary needs as expressed in the "000 Requirements for High

Order Computer ProgrammingLanguages !RevisedlRONMAN,July 19771 ".

The U. S. Department of Defense High Order Language Effort (or "IRONMAN" or "DOD-1")

(* In
U. S.
March

PUGN8, May, 1977, on page 3, we passed along the summary of a press release by the
Department of Defense which was distributed by the British Computer Society on
3, 1977.

The contracts provide for three phases at the discretionof the
government. The first phase is to be six-monthsand wiII produce a
pre Iiminary language design. At the end of the first phase, an
evaluation of the products wilI result in some of the contractors
being continued through fulI formaldesign,rigorousdefinition,and
prototype implementation. The one contractor ~hose language is
selected by the government ~iII be continued for refinementand
initial maintenance. The languagewiII be ready for initial use in
1879.

.,.,

rr1

tx1

:;0

=:>
:;0

-<

William A. Whitaker, Lt. Col. USAF, Defense Advanced Research Projects Agency
(DARPA) described in the full version of that press release a three year effort by the
U.S. Defense Department (DoD) to develop specifications for a real-time language called
DOD1--a single comlOOnmilitary computer programming language for "embedded systems,"
computer systems on board tanks and ships, on rifles, etc.). This language design is the next step in a Department of Defense

effort to reduce software costs o.f embedded computer systems. Earlier
ac t ions i nc I uded i ssu i ng 000 0 i recti ve 5BBB.29, "Management of
Computer Resources in Major Defense Systems," which, as one of several
management actions, required the uses of approved high order languages
in future Defense systems soft~are. 000 Instruction 5BBB.31, "Interim
List of 000 Approved High Order Programming Languages," stopped
prol iferation by approving only seven existing languages.

I-'
lD
.......

00

The languagewould replaceFORTRAN,COBOL,JOVIAL,and all the others.A working
group at DARPA was formed in January, 1975. A rigorous language definition was sought,
but as it turned out, 4 different stages of development/evolutionhave transpired: first
STRAWMAN, a set of relatively complete, although tentative requirments. WOODENMAN and
TINMAN followed. With each step, the proposals were widely distributed for comment.
Existing languages were evaluated, and, as we reported in PUGN8, only Pascal, Algol-68,
and PL/1 survived.

It is truly amazing how a giant operation ,suchas the HOLWG (Higher Order Language
Working Group) came up with 95% Pascal almost independently in three years working with
commi t tees.

The technical effort in high order languages has, over the last three
years, brought increasingly refined sets of .requirements, produced an

evaluation of existing languages, and has established the technical
feasibi I i ty of a single language for these appl ications. The
successful design of such a language ~i I I be followed by testing and
evaluation, compi ler and tool generation, and the necessary long- term
language control. This program is presently being directed by the 000

High Order Language Working Group, chaired by Lt Col Wi I I iam A.
Whitaker, Defense Advanced Research Projects Agency, 1400 Wilson
Blvd., Arl ington, Va., 222B9.

At the IRONMAN (4th step), specifications gave way to a language definition. In
July, 1977, IRONMAN was released to vendors for competitive bidding. The report below,
sent to us by William Whitaker, tells the results. The four successful contractors will
be narrowed to two in February, 1978. What is at stake is $3 billion spent on
defense-related software per year.

There has been sporadic news coverage of these events in the computer trade
journals. One, in October 1977 Datamation, reported on how a French software
organization's bid got lost in the mail in the original competition. In the December,
1977 SIGPLAN Notices, it is amusing to see the confusion resulting from their just
havi~g Iearned a~ONMAN and still not realizing that it's going to be based on
Pascal.

- Andy Mickel *)

lD

CON FER ENe E S

German ACM meeting on Pascal, held 77/10/14-15 in Kaiserslautern.

(* We received a postcard from Hans Wipperman, Albrecht Beidl, Manfred Sommer,
Helmut Schauer, Lutz Christoph, and Thomas Wagner, all of whom attended the conference.
We haven't as yet received a report on the proceedings; therefore we are printing a list
of the papers presented so that you can write for more information if you like. The
address for inquiries is Hans-Wilm Wipperman, Informatik, F13, Univ. of Kaiserslautern,
Pfaffenbergstr. 95, Kaiserslautern D-6750, Germany. The German titles are from the
program; the English ones PUGN's attempt at translation. *)

H. Burkhart (ETH Zuerich), "Ein interaktives System zur Programmierung in PASCAL."
(* "An interactive System for Programming in PASCAL." *)
H. Balzert (Univ. Kaiserslautern), "PASCAL aus didaktisch-methodischerSicht." (*
"Pascal from the point of view of teaching methods." *)
Brunnstein (Univ. Hamburg): "Erste Erfahrungen mit dem Einsatz von PASCAL-E im
Schulversuch." (* "First experiences on the introduction of PASCAL-E into a school
project." *)
H. J. Hoffman (TH Darmstadt): "Uberlegungen zu PASCAL und zur PASCAL-Implementierung."
(* "Ov~of Pascal and Pascal implementations." *)
M. Sommer (Siemens Muenchen), "Das PASCAL-BS 2000 programmiersystem." (* "The Pascal-BS
2000~amming System." *)
R. T. Kolsch (Univ. Kiel) , "Laufzeitbeschleunigung durch den Einsatz von
Mikroprogriijiiii;n."(* "Run-time system through a microprogram." *)

H. D. petersen (Univ. Stuttgart), "Uber die Implementierung von PASCAL auf der TR 440."

(* "Implementing Pascal on the TR 440." *)

H. ~ (KernforschungszentrumKarlsruhe), "Hilfsmittel zur Analyse des dynamischen
Verhaltensvon PASCAL-Programmen."(*Aids to analysisof the dynamicconstructsof
PASCAL programs. *)

G. ~ and G. Winterstein, "Testdatengenerierung fuer PASCAL-Programme." (* "Test

data generation for Pascal programs." *)
Th. ~ (Philips, Eiserfeld): "Concurrent PASCAL als Entwurfs- und
Implementierungssprachefuer ein kommerzielles Betriebssystem." (* Concurrent Pascal
project and implementation language for a commercial operating system." *)
Spiess (Univ. Braunschweig): "Die Implementierung von PASCAL fuer die PRIME 300."
(* "Implementing Pascal on the PRIME 300." *)

W. MetZ!\;:r(Univ. Karlsruhe), "Entwurf eines dialogorienteirten Programmiersystems fuer
Kleinrec ner auf der Basis der Programmiersprache PASCAL." (* A dialogue-oriented
programming system for a mini-computer based on the programming language PASCAL." *)
W. ~ (Siemens Muenchen), "Ein portables PASCAL-System fur Mikro-rechner (PPS)."
(* "A portable PASCAL system for micro-computers (PP's)." *)

ACM '77, Seattle, held 77/10/27.
(* report from Richard J. Cichelli, loosely transcribed from a phone conversation: *)

"Basically, ACM '77 screwed up the schedule so that the computer chess
tournament and SIGFISH conflicted with the PUG meeting and confused everyone.
Fifteen people came to the Pascal gathering.
IISome people quoted a "Pascal's I/O is no goodllrumor. The confusion was in
thinking that textfiles were Pascal's only form of I/O.

"I emphasized that there should be no attempt to add things to Pascal to make
things compatible with COBOL/FORTRAN; Pascal's I/O is fine: textfiles are for
people, not for programs."

(* Ken Bowles is planning a summer workshop about Pascal. See the letters section for
his letter with details. *)

BOO KSAN D ART I C L E S

APPLICATIONS

S. Matwin, M. Missala, "A Simple, Machine Independent Tool for Obtaining Rough Measures
of PascalPrograms,"SIGPLAN Notices(11:8), August,1976,pp. 42-45.
"Descriptionof a Pascal program to augment Pascal programs with code to gather
execution time information by procedure entry and exit." (* A listing of the programs
will appear as a software tool in PUGN 12. *)

JamesL. Peterson,"On theFormattingof Pascal Programs,"SIGPLAN Notices (12:12),
December, 1977, pp. 83-86.
"One aspect of programming style which affects the usefulness of programs is their
readability.A programis readableif a programmercanpick up theprogramand readand
understand it. Many aspects of style affect readability, including variable names,
commenting, modularity, and formatting. It is this last aspect of readability that we
discuss here." (* from the abstract *)

P. Roy, "Linear Flowchart Generator for a Structured Language," SIGPLAN Notices (11: 11) ,
November, 1976, pp. 58-64.
"This article refers to a paper by Nassi and Shneiderman published in this review. They
introduced a type of flowchart specially designed for structured programming. We have
defined a similar flowchart language for the Pascal programming language and designed a
program which, given a program written in Pascal, generates the corresponding
flowchart. The article presents a description of the output produced by this flowchart
generator." (* from the abstract *)

JoachimW. Schmidt,"SomeHigh LevelLanguageConstructsfor Data of TypeRelation,"ACM
Transactions on Database Systems (2:3), September, 1977, pp. 247-261.
"For the ext;nsion of high level languages by datatypesof mode relation,three
language constructs are proposed and discussed: a repetition statement controlled by
relations, predicates as a generalization of Boolean expressions, and a constructor for
relationsusingpredicates.The languageconstructsare developedstepby step starting
with a set of elementary operations on relations. They are designed to fit into Pascal
without introducing too many additional concepts." (* from the abstract *)

D. A. Thomas, B. Phaguvek, R. J. Buhr, "Validation Algorithms for Pointer Values in DBTG
(DataBaseTaskGroup) Data Bases," ACM Transactionson Database Systems (2:4),
December, 1977, pp. 352-369.
"This paper develops algorithmsfor verifyingpointervaluesin DBTG (DataBaseTask
Group) type databases. To validate pointer implemented access paths and set structures,
two algorithms are developed. The first procedure exploits the 'typed pointer' concept
employed in modern programming languages to diagnose abnormalities in directories and
set instances. The second algorithm completes pointer validation by examining set
instances to ensure that each DBTG set has a unique owner. Sequential processing is
used by both algorithms, allowing a straightforward implementation which is efficient
in both time and space. As presented, the algorithms are independent of implementation
schema and physical structure." (* from the abstract *)

IMPLEMENTATIONS

D. Bates, R. Cailliau, "Experience with Pascal Compilers on Mini-Computers," SIGPLAN
Notices(12:11), November, 1977, pp. 10-22.
"This paper relates the history of an implementation of the language Pascal on a
mini-computer. The unnecessary difficulties encountered on the way led the authors to
reflect on the distributionof "portable"compilers in generaland suggestsome
guidelines for the future. Their experiences described within show that it should be
possible to implement a P4 Pascal System on any 16-bit mini-computer in less than two
man months, given an implementor already familiar with the target machine." (* From the
abstract *)

I--'
lD

'J
00

I--'
o

LANGUAGES

(* This section is sub-divided for this issue. The first section
miscellaneous articles in alphabetical order by author. The second is a
list of articles on the subject of dynamic arrays in Pascal. The third
bibliography on Concurrent Pascal, supplied by Rich Stevens. *)

is a set of
semi-complete
is a short

R. Conradi, "Further Critical Comments on Pascal, Particularly as a Systems Programming
Language," SIGPLAN Notices (11:11), November, 1976, pp. 8-25.
There has recently been SOme controversy between Habermann and Lecarme and Desjardins
on Pascal in "Acta Informatica."This paper contains some more comments on Pascal from
a systems programmer's point of view. Some undefined points are first treated. Then
Pascal's datatypes are critically reviewed. A few remarks on common Pascal constructs
are also given. Since the author has experience with the programming language MARY,
some comparisons between Pascal and MARY will be made.1I (* from the author's
abstract *)

R. Edwards, "Is Pascal a Logical Subset of ALGOL 68 or Not?" SIGPLAN Notices (12:6),
June, 1977, pp. 184-91.
"It is often believed that Pascal is
ALGOL 68 in miniature
well structured

it will be argued that both beliefs are badly founded." (* from the abstract *)

J. Holden and I. C. Wand, "Experience with the Programming Language MODULA," a paper
presented to the 1977 IFAC/IFIP Real Time Programming Workshop held at Eindhoven,
Netherlands, 77/06/20-22.
"This paper describes a compiler for MODULA, written in the programming language BCPL,
which runs on a PDP-ll/40 computer under the RSX-IID operating system. The code
produced by the compiler is run on PDP-lls under a very small executive (less than 150
words). The quality of the code produced compares well with that of compilers for other
high-level languages.
The use of the language is
similar to that written
given of experience gained
inclusion and exclusion of

illustrated by the construction of a real-time scheduler
by Brinch Hansen in CONCURRENT PASCAL. A brief discussion is
in the use of the language and comments made about the
certain language features." (* From the abstract *)

W. H. Kaubisch, R. H. Perrott, and C. A. R. Hoare, "Quasiparallel Programming,"
Software: Practice and Experience (6), 1976, 341-356.
"This paper describes SIMONE, and extension of PASCAL, which provides the quasiparallel
programming facility of SIMULA 67, but without classes or references. The language is
intended to be suitable for the design, testing and simulation of operating system
algorithms. It is illustrated by simple examples, suitable as project material in a
course on operating systems." (* from the abstract *)

E. N. Kittlitz, "Block Statementsand SynonymsforPascal,"SIGPLANNotices(11:10),
October, 1976, pp. 32-35.
"PYXIS is a language which is the result of (still continuing) modifications to Wirth's
PASCAL 1 system. Many of the language concepts are identical to, or slightly evolved
from PASCAL 1, others are incompatible with Pascal and its apparent design philosophy.
Two new features have been implemented in PYXIS: block statementsand synonyms."
(* From the abstract *)

O. Lecarme, "Is ALGOL 68 a Logical Subset of Pascal or Not?" SIGPLAN Notices (12:12),
December, 1977, pp. 33-35.

"A paper by Roy Edwards uses a comparison of ALGOL 68 and Pascal to make some
disputable assertions. The purpose of the present note is simply to correct the most
seriouserrors.It follows exactly the structure of Edwards' paper." (* from the
abstract *)

R. D. Tennent, "A Denotational Definition of the Programming Language PASCAL," Technical
Report 77-47, Department of Computing and Information Science, Queen's University,
Kingston, Ontario, Canada, July 1977.
"This report presents a formal definition of the semantics of the programming language
PASCAL, including static aspects such as scope and type checking, using the concepts
and notation of denotational semantics. It is suggested that the definition can be used
as a standard from which to derive complete informal descriptions, valid proof rules,
and correct implementations." (* From the abstract *)

M. Yasumura, "Evolution of Loop Statements," SIGPLAN Notices (12:9), September, 1977,
pp. 124-129.
"This paper is motivated by two papers. One is written by Ledgard and Marcotty and the
other by Ishihata and Hikita. The former paper is a good summary of control structures
but its conclusions are seriously questioned. The latter paper is the report of a new
Pascal computer in whichZahn's "event" construct is implemented.That constructis,
however, shown to be unsuitable to Pascal." (* From the abstract *)

(* A chronological exchange on dynamic arrays in Pascal *)

B. J. MacLennan, "A Note on Dynamic Arrays in Pascal," SIGPLAN Notices (10:9),
September, 1975, pp. 39-40.
"Pascal is frequently criticized for its lack of any variety of dynamic array facility.
This lack is particularly unfortunate for systems programs which must manipulate
activationrecords and segments whose sizes are not known at compile time."(* From the
abstract. *)

N. Wirth, "Comment on A Note on Dynamic Arrays in Pascal," SIGPLAN Notices (11: 1),
January, 1976, pp. 37-38.
"A reply to B. J. MacLennan and a suggested alternative." (* From the abstract. *)

J. Steensgaard-Madsen, ''Moreon Dynamic Arrays in Pascal," SIGPLAN Notices (11:5), May,
1976, pp. 63-64.
"A further proposal in reply to Wirth's article." (* From the abstract. *)

c. Jacobi, "Dynamic Array Parameters," Pascal User's Group Newletter (5), September,
1976, pp. 23-25.
"A proposed description of dynamic array parameters is given in the form of a set of
amendments to the book, Pascal User Uanual and Report by Jensen and Wirth with syntax
diagrams and examples. The extension was implemented successfully in the Pascal-6000
compiler." (* From the abstract. *)

S. Pokrovsky, "Formal Types and Their Application to Dynamic Arrays in Pascal," SIGPLAN
Notices (11:10), October 1976, pp. 36-42.
"The formal ~ concept is presented as a means to uniformly introduce in the Pascal
language the dynamic array facility (which may be done as a pure extension) and formal
procedure specifications (which would require some changes in the standard language)."
(* From the abstract. *)

Edward N. Kittlitz, "Another Proposal for Variable Size Arrays in Pascal," SIGPLAN
Notices (12:1), January, 1977, pp. 82-86.
"The syntax, semantics, and some implementation details for a flexible array bound
capability in Pascal are discussed. The constructs described are currently implemented
as part of the PYXIS system at the University of Calgary. PYXIS is the result of more
than two years of modifying [the old Pascal-6000 compiler written by Urs Ammann et.
a1.]." (* From the introduction. *)

M. Condict, "The Pascal Dynamic Array Controversy and a Method for Enforcing Global
Assertions," SIGPLAN Notices (12:11), November, 1977, pp. 23-27.
"In a previous article, Wirth commented that allowing expressions (rather than just
constants) as subrange bounds would produce dynamic array capability without
significantly complicating the language. . . . This discussion leads directly into a
method for obtaining automatic enforcement of assertions about variables throughout
their lifetime." (* From the abstract. *)

rn
:::e:

en

m
rn
t:>:I

::c

c:::

»
::c

-<

Concurrent Pascal Literature: September 1977 successfully on a POP 11/45 computer. The book includes the complete text
of these programs and explains how they are structured, programmed, tested,
and described. It also includes the Concurrent Pascal Report and a description
of the Concurrent Pascal Machine. The book suggests promising areas of further
research in structured concurrent programming.

Brinch Hansen, P., Network: A Multiprocessor Program. IEEE Computer Software
&Applications Conference, Chicago, Illinois, Nov. 1977.

Brinch Hansen, Per., The Programming Language Concurrent Pascal. IEEE Trans.
on Software Engineering I, 2 (June 1975), 199~207.

Introduces Concurrent Pascal
-

an abstract language for concurrent progr~ing.
It extends the sequential programming language Pascal with modules called
processes, monitors, and classes. The language is illustrated by a hierarchical
design of a simple spooling system. The main contribution of Concurrent Pascal
is to extend the monitor concept with an explicit hierarchy of access rights to
shared data structures that can be stated in the program text and checked by a

compiler.

Brinch Hansen, Per., The Solo Operating System. Software - Practice &
Experience 6, 2 (April-June 1976), 141-205.

Describes the single-user operating system Solo written in Concurrent Pascal.
It supports the development of sequential and concurrent Pascal programs for

the POP 11/45 computer. Input/output are handled by concurrent processes.

Pascal programs can call one another recursively and pass arbitrary para-

meters among themselves. This makes it possible to use Pascal as a job

control language. Solo is the first major example of a hierarchical

concurrent program implemented in terms of abstract data types (classes,
monitors, and processes). The paper contains the complete text of the
concurrent program. It is a sequence of nearly independent components
of less than one page of text each.

Explores the problems of implementing arbitrary forms of process communication
on a mult~pro~essor network. It develops a Concurrent Pascal program that
enables dlstrlbuted processes to communicate on virtual channels. The
channels cannot deadlock and will deliver all messages within a finite
time. The operation, structure, text, and performance of this program

are described. It was written, tested and described in 2 weeks and worked

immediately. The program has been running on two POP 11/45 computers connected

by bus links.

TEXTBOOKS

Tony Addyman and 1. R. Wilson, ! Practical Introduction to Pascal, Macl1illan,
March-April 1978, 140 pages.
A short and concise introduction to Pascal.

S. Alagic and M. A. Aebib, The Design of

Well-structured and Correct ProKrams, New York: Springer-Verlag, to appear in 1978, 260
pp., $12.80. An undergraduate text. "Using the Pascal language, both the techniques of

top-down program design and verification of program correctness are presented. Many
examplesof program and proof developmentas wellas an explanationof controland data
structures are provided. As a Pascal programmdng text, it gives not only advanced
algorithms, which operate on advanced data structures, but also the full axiomatic
definition of Pascal.
"Although an introductory course in programming is presupposed, no particular
mathematicalbackground is necessary'. An extensive,carefullychosen sample of
algorighms, including some examples from business data processing, is presented.
Supplementing this collection is an extensive set of exercises." (* From the
publisher's ad *)

Brinch Hansen, Per., Experience with Modular Concurrent Programming,
IEEETrans.on SoftwareEngineering3, 2 (March 1977), 156.159.

Summarizes the first 2 years of experience with Concurrent Pascal in the design
of three model operating systems. A Concurrent Pascal program consists of

80dules (processes, monitors, and classes). The compiler checks that the
data structures of each module are accessed only by the operations defined
in the module. The creative aspect of program construction is the initial

selection of modules and the connection of them into hierarchical structures.
By comparison the detailed implementation of each module is straightforward.

The most important result is that it is possible to build a concurrent program

of one thousand lines out of one-page modules that can be comprehended at a

glance. Kenneth L. Bowles, Microcomputer
correct title; it's the first
1977, 563 pp., $9.80.
"Thistextintroducesproblemsolvingand structuredprogrammingusingthe PASCAL (sic)
language, extended with built-in functions for graphics. Designed for a
one-quarter/semester curriculum at the sophomore/junior level, this book serves a dual
purpose: to teach students an organized approach to solving problems, and to introduce
them to the computer and its applications, which may be of use later in their chosen
professions." (* From the publisher's ad. See also R. Cichelli's review in this
section. *)

Problems Solving UsinK Pascal (* Please note the
time we've had it right *), New York: Springer-Verlag,

Hartmann, A.C., A Concurrent Pascal Compiler for Minicomputers. Lecture Notes
in Computer Scienee 50, Springer-Verlag, New York, NY, 1977.

Describes a seven-pass compiler for Concurrent Pascal. The compiler, written
in sequential Pascal, generates virtual code that can be interpreted on any

16-bit minicomputer. The function of each pass is described and the intermediate

languages are defined by syntax graphs. Of particular interest is the checking
of access rights to data structures within classes, monitors, and processes.
This is. done exclusively during compilation and is not supported by hardware

protection mechanisms. The compiler has been running on a POP 11/45 computer

since January 1975.
p~ter Grogono, Programming in~, Addison-Wesley, February, 1978, 350 pp., $10.50.

An introductory book; assumes no prior knowledge of programming linguages or computing
techniques." (*Publisher's ad *)

Brinch Hansen, P.. The Architecture of COncurrent Programs. Prentice-Hall,
EnglewoodCliffs,New Jersey,July 1977.

(*We hear rumors of more texts to come from the UK: one by Jim Welsh and John Elder
""'C(Dept. of Computer Science, Queen's Univ., Belfast, N. Ireland BT7 INN), publisher »

unknown; and one by David Watt and Bill Findlay(ComputingScienceDept.,Univ.of ~
Glasgow, Glasgow, Scotland G12 8QQ), Pittman Publishers. *) ~

Presents a method for developing reliable concurrent programs using Concurrent
Pascal. The use of this language is illustrated by threemodeloperating
systems for minicomputers; a single-user operating system, a job-stream
system, and a real-time scheduler. All of them have been running

I-'
1.0
'-I
00

I-'
N

Book Review - (Microcomputer) Problem Solving Using PASCAL
By Kenneth L. Bowles

Springer-Verlag, New York, 1977

ISBN 0-387-90286-4

563 pp. $9.80

Microcomputer ... PASCAL, the title sounds like a wish. But it's true.
Professor Bowles of the University of California at San Diego (UCSD)
has full PASCAL (with extensions for graphics, character string
manipulation and direct access files) running on interactive single-user
microcomputer systems - Digital Equipment LSI-ll's, Zilog Z-80's, and
8080 based machines. He expects to soon have Motorola 6800 and MOS
Technology 6502 PASCAL systems as well. Almost all of the software for
these systems is written in machine independent PASCAL.

The text. (Microcomputer) Problem Solving Using PASCAL, is an integral
part of a revolutionary environment for computing education. As Bowles
says. "PASCAL is clearly the best language now in widespread use for
teaching ... structured programming at the introductory level". By
using PASCAL Bowles is able to introduce algorithm development and
problem solving as components of top-down. stepwise design. Procedures
are introduced right from the start. Flow of control is presented in
terms of modern programming principles (sequence, selection and iteration).
Recursion is presented as an obvious extension of the procedure mechanism.
Data structures are explained fully and clearly.

Because the text uses graphics and text processing programming examples,
unnecessary numericalization of computer science principles is avoided.
At UCSD students from the arts. humanities and business disciplines are
able to do just as well writing programs for non-numeric applications as
are more mathematically sophisticated students. (Bowles' UCSD course is
phenomenally successful. More than 650 students from all disciplines
registered for it in the Fall of 1977 before registration had to be
closed. They use more than 20 single-user micro-systems - each costs
about $5.500 and consists of micro computer. diskette storage, keyboard
and graphics display.)

In addition to the compiler/interpreter/editor software, the UCSD system
includes a complete computer aided and managed instruction system. The
CAI lessons parallel the text and permit easy management of very large
introductory classes. The system is simple and complete in and of
itself and could also be used effectively by high schools and community
colleges to provide low-cost interactive student computing.

Kenneth Bowles has revolutionized the teaching of introductory computing
at UCSD. The pUblication of this book and release of the UCSD PASCAL
system will permit other schools to follow his lead.

Reviewed by: Richard J. Cichelli
Research Manager. Computer Applications

American Newspaper Publishers Association/

Research Institute

Easton. PA .!!!£
Department of Mathematics
Lehigh University

Bethlehem. PA

NEWS FROM UNIVERSITY OF COLORADO -- PASCAL DISTRIBUTION CENTER

REPORT REQUESTS

The following is a list of reports currently available:

PASCAL-S: A Subset and its Implementation

On Code Generation in a PASCAL Compiler

The PASCAL <P> Compiler: Implementation Notes

An Axiomatic Definition of the Programming
Language Pascal

Concurrent Pascal Implementation Notes

Sequential Pascal Report

$6.50

$4.00
$5.50

$3.00

$3.00

$5.00

;For orders from North America, there is a $2.50 postage and
;handling charge. Overseas orders will be billed for
;appropriate postage.

PASCAL SYSTEM REQUESTS

We are receiving a lot of out-of-date order forms. The prices
and options quoted on any form prior to September 1977 are no
longer valid. Most important, please note that tapes will no
longer be accepted from buyers. Please phone for details or
request an up-to-date distribution statement.

Address requests to: PASCAL Distribution
University of Colorado
Computing Center

3645 Marine Street
Boulder, CO 80309

U.S.A.

(303) 492-8131

ERRATA TO PASCAL USER MANUAL AND REPORT second edition

--

(*Note: These errata were sent to us by Niklaus Wirth in December. The "whole pages"
referred to in a couple of places were not sent. Niklaus stated that so far
25,000 copies of the book have been sold! *)

e. Keys

P pege
1 line
c cad e

:z

I--'
lC>

'"-J
00

(1 1..1? me ens 1 1 un ti1 1 2)

r replace ~
i insert (after the line mentioned) VJ
d delete

p 1 c

6 5..6

21 12 r

35 15 r

35 16 r

5~ 8 d
5~ 9 r
5~ -4 r

5~ -3..-1

69 8 r
86 17 r
86 18 d
89 12 r
9~ -8 r
97 7 r
1~5 25..26

1~5 -4 r

1~5 -4 i

142 -4 r

142 -4
145 -1~ r

145 -9 r

146 12 r

1 c

6 r
-7 r
-1 r
13 r
3 r

-10 r
13 r

-11 r
17 r
-5 r
-14 r
-13 r
14 r

-u r
-7 r

p 1 c

32 -16 r

effec t on the meaning of a
"

36 -1~ r
36 -7 r

36 -~ r
42 2~ r

59 -6 r
f,6 2 r
(,7 -3 r
69 6 r
76 1 r
89 -11 r
105 18 r
163 -6 r
163 -6 i

1. Errors (to be corrected mandatorily)

r both 1 i n e s by

"con struc t.
"by the meta
whole line by
"Assignment is possible to variables of any type.
whole line by
"constant value in the sub range .where the lower bound must not be"
"Ie ss than the" by

"greater than the"
whole line
"implementations"
"first operand is
"second operand

r all the lines by
type. the first of its associated base type;
resul t is true when the first is an element of
second, otherwise false.'.

59 -11..-1~ r both lines by

"tlLl..!;.e.:The standard procedures ~
"applied to the file input (output)."
"a[i]" by "a[1]"
"Then." by "Then:"
whole line
"eof(f)" by "eof(x)"~
"textfiles." by "files,"
"58" by "59"

r both lines by
"read, readln, wri te,

105
1~5

-1
-1

108
110
116
118 r
126, .128 r

136 -1~ r
136 -9 r

2 r
12,.13
1 d

14~ 15..19

E nclo sure

brackets

of
their

con struc ts"

repe ti tion" 158

158
except"158

of a
[.and

seQuence
implies

by "Implementations"
a scalar type." by
is 0f a se t"

(rewrite) must

They

writeln are discussed in chapter 12."

"
by

not be changed"
during execution."
indicates that storaga occupied by
variable pT is no longer needed."

The"
tag field values must be identical to
used when allocating the variable."

"0 oe ra tnJ:.:i
..

must
..

"dispose (p)

r
i

"
by

"

"~~"by
d both lines
"PASCAL"
whole page by the corrected one to be
all three pages by the corrected ones
"three" by "four

..

"and procedure or" by
procedure and"

r all the lines by

::~ ,: thi s ha s in gene ral no

149
154
154
154
158

-15 r
-19 r
-15 r
-14 r
20,.21

r
r
i

..
h ue" by "hue 1"

"1~~" by "63 ""a[i.k] *b[k.J]" by "A[i.k]"8[k,j'"
"c[i .j]" by

"c
[
i. j'

..

r both lines by
"Concerning the proced ures read. wri te. readln. wri teln. and
"see chapter 12."
".c.D:I~

..by ".QIOcedure.Jj"

:: " by" T he tag"
field values must be listed contiguously
order of their declaration and must not
during execution."

::dispose (p) indicates that storage occupied by
is no longer needed. If the second
used to alloca te the va riable then

..dispose(p.t1 tn) with identical tag field values

.. used to indicate that sto;.age occupied
va rian tis no longe r needed.

'+' no line feed (overprinting)"
exchange the two line s
whole page by the corrected one to be found in the enclosure

-13
-8
-8

p

:2

and in the" rr1
..:::e::

be changed en

the variable pT "'1:1::
form of new was "I->

"I->
must be"
by this"

165 -13 i

the' 166 -17. ,-16
the' 167 r

"program (for a restriction see 9.1..2.); but it is a hint to the"
"compiler that storage should be economized even at the price of"

::Some loss in efficiency of access. and even if this may expand"
the code necessary for expressing access to components of the"

o.structure.'.

"test for eguali ty." by
"assignment and the"
"test for eguali ty."
"operands, i.8." by
..

0 pe ra to r S B n d

..

whole line by
"operands, i.e. variables, constants, and functions .0'

"<adding operator>" by "<sign>"

nO t be'2. Printing Errors (to be corrected optionally)

39
6~
61
64
71
71
91
96

th e" 9 8

99
105

tho se "105
163
163
163

"multi dimentional "
by "multidimensional"

"printeo" by "printed"
"paramenter" by "parameter"
..

ne" by "one"
"paramenter" by "parameter"..

f" by "of"..
and are subsituted" by "and are substituted"

"nf" by "of"

"-E"
by "Q.f"

" ut" by "out"
"proce,jure ..by "procedu~es"

"by ----------
"if" by "If"
"if" by "If"
"if" by "If"

3. F urthe r po ssible Correc tion s
found in the enclosure
to be found in the enclosure

"p
"

by "p;"

"The \Jeneral" by "Its"
whole line by
"scalar or subrange type (where
"index" by "not ellowable index"
" field identifier is the smallest"
"field iden.tifier is the innermost"
";" by

";" by

type s in tege r

by

by

";" bye ..."

"(f,)" by "[
6' "

"schemes" by "schemes"

"." by ...".
bY"; preceded by an ap~ropriate number of"
blanks as specified by m.

01
rr1
t:I:!

;;:c

c:::

::I>
;;:c

-<

and real BrB
..

When a refe rence in thi s inde xis no t a sec tion name (e.g.
Appendix A), then the reference may be of the following forms:

x 1 x 1.x2 x 1.x2.x3

x1 is always the chapter number. x2 may be a capital letter in
which case it may be followed by x3, a number, and refers to a
chapter section. When x2 is a small letter, the reference is a
figure; when x2 is a number, the reference is a program.

alfa (PASCAL 6000-3.4) 13.0.1
array type s 6
assignment statement 4.A
binary tree 11.A
tbl0 c k 0

RNF definitions Appendix 0
Roolean 2.A
case statement 4.0.2
char 2.0
charac ter sets 13.8.3
Commen t 1
compiler error messages 14.C .1, Appendix E
compiler options (PASCAL 6000-3.4) 13.8
compound stetement 4.8
conditional statements 4.0
constent declaration pert 3.C
control statements (PASCAL 6000-3.4) 14.A
control variable 4.C.3
deta types 2
declaration part 3
empty statement 4.R
equivalence 2.A
expression 4.A
field Ii st 7
fi 9 u re 5

after (list insertion) 10.c
alternative representation of standard symbols 13.b
ASCII character set (with COC's ordering) 13.a
before (list insertion) 10.b
binary tree struc ture 11.b
block struc ture 0.b
COC scientific character set (with 64 elements) 13.a
expressions 11.a
identifier 1.a
linked list 10.a
syntax diagram of program structure 0.a
two sample people 7.a
unsigned number 1.b

file types 9
external files (PASCAL 6000-3.4) 13.8.1
representation in PASCAL 6000-3.4 13.8.2
segmented files (PASCAL 6000-3.4) 13.A.1

127

textfiles 9.A
for statement 4.C.3
forward reference 11.C
functions 11.8

declaration part 3.F
desipnator 11.8
heading 11.R
predefined (PASCAL 6000-3.4) 13.0.2
standard, table of Appendix A

global variables 11.A
go to statement 4.E
iden tifiers. table of standard Appendix C
if statement 4.0.1
implication 2.A
input 9.B
integer 2.8
I/O 12
label s

case 7.A
decla ra tion pa rt 3.B
goto 3.8, 4.E

lists (linked) 10
local va riable s 11.A
name precedence 11.A
notation 1
numbe rs ,
operator precedence 4.A
operators, summary of Appendix 8
output 9.8
packed structures 6
parameters 11.A
PASCAL 6000-3.4 13, 14
poin ter types 10
procedures 11.A

declaration part 3.F
external procedures (PASCAL 6000-3.4)
heading 11.A
predefined (PASCAL 6000-3.4) 13.0.2
procedure statement 11.A
standard, table of Appendix A

prog ram heading 3.A
(PASCAL 6000-3.4) 13.8.1

programs and program parts
begin end 4.1
bisec t 11.6
complex 7.1
convert 3.1
cosine 4.5
egalfa 13.1
egfor 4.4
egrepeat 4.3
egwhile 4.2
examples of goto 4.E
exponentiation 4.8
expon211.8
fo rwa rd refe rence 11.C
frequency count 9.1

128

9 ra ph 1 4.9

graph2 6.2
inflation 0.1
insert 9.2
matrixmul 6.3
merge two files 9
minmax 6.1
minmax2 11.1
minmax3 11.2
parameters 11.3
pointers, construction via 10
po stfix 11.4
primes 8.2
recursivegcd 11.9
roman 4.7
se top 8. 1
sideffect 11.7
sum file of real numbers 9
summing 4.6
tree traversal 11.5

read, the standard procedure 12.A
real 2.C
record types 7
relational operator 2.A, 4.A
repea t sta teman t 4.C. 2
repetitive statements 4.C
reserved wo rds--see wo rd -del imi ters
restrictions (PASCAL 6000-3.4) 13.C
run-time error messages 14.C.2
scalar types 5.A
sch8ma ta

read a text 9.A
read a text from "input" 9.A
read and write a segmented file 13.A.1
reading a segmented file 13.A.1

13.A.2 reading arbi trary number of numerical
items from a textfile 12.A

write a segmented file 13.A.1
wri te a text 9.A
write a text onto "output" 9.A
wri te a text x to.y 9.A

sc0 pe 0
separators 1
set operators 8
set types 8
side effect 11.8
standard identifiers Appendix C
string 1, 6
subrange types 5.8
syntax diagrams Appendix 0
tab 1 e s

block structure 0
defaul t value for field width 13.8.4
operations on textfiles 9.A
printer control characters 9.B, 13.8.4
speciel symbols 1

truth vel ue s 2.A

.......
c..o

"CO

.......
Vl

I

""U
J>
en
n
J>
r-
Z
rr1
::E:

you en

'1:1:
.......
.......

parameter qroup

DOin te r type
pointer variable
procedure and func tion

de cia ra tion part
proced ure decla ra tion
procedure headinq
procedure identifier

procedure or function declaration
proced ure sta temen t
prag ra m
prnrJ rom headinq
program parameters

record section
reco rd type
record variable
record variable list
refe renced va riable
relational operator
repea t statemen t
re pe ti ti ve sta temen t
maul t type

scalar type
scale factor
set

set type
sipn
simple expression

sim pI e s ta temen t
simple type
special symbol

statement
statement part
s t ri n q

structured statement
st ruc t u red type

subranqe type
taq field

term
type
type defini tion
type definition part

type identifier
U11abelled sta temen t
U1packed struc tured type
unsigned constant
U1siqned inteqer
Lrlsigned number
LI1signed real
\.eriable
variable
VBriable
va riable

\.6riant
varian t ;Ja.::-t
Whi.le sta tcment
wi th s ta temen t

decla ra tion
decla ra tion pa rt
identifier

'67

REVIEW OF PASCAL NEWSLETTERS 5, 6, 7, AND 8,~.
6.3
7.3

Because issues5, 6, 7, and 8 are now out of print, we ought to lay them to rest
properly. This will end a lot of curiousity among new PUG members regarding their
contents.

Issues 5-8 were the first to be produced under PUG auspices - see explanation on
page 11 of Pascal News 9/10, September, 1977. I suggest you contact PUG members near

and photocopy any issues or parts of issues you really want. - Andy Mickel

,~.
HI.
,~.
9.'.2,~.
9.'.2
13.
13.
'3.6.2.2
6.2.2
7.2.2
9.2.4
7.3
8.'.49.2.3.2
9.2.3
".6.'. ,
4.
8.
6.2.3
4.
8.9.,
6.'3.
9.,~.
4.
9.2
6.2
6.'.36.2.2
8.
6.
6.,~.
6.,9.
6.2
8.
4.
4.
4.
7.
7.,~.
7.,6.2.2
(,.2.2
r;. 2.3.1
9.2.4

Pascal Newsletter US, September, 1976.

Editor's Contribution: established user group and newsletter policies; recounted the
history of the formation of Pascal User's Group over the previous year; described
Pascal activities at the University of Minnesota; suggested that all was not well
with Pascal because implementations proliferated different features, implementors
and critics disregarded Pascal's language design goals, and finally people not
having realized the importance of simply making the use of Pascal a respectable
activity; acknowledgments to all that helped PUG make a start.

Hereand There: 2 conferenceannouncements- a Pascalget-togetherat ACM '76
in Houston and a preliminary notice of the Pascal Symposium in Southampton in March.
a summary of existing or planned textbooks on Pascal; news from Pascalers; errata
to the second edition of Pascal User Manual and Report.

Articles:
"Designing Data Structures by Step-wise Refinement"

- Richard J. Cichelli
[Dijksta and Wirth have defined the principles of systematic programming. They
illustrated these principles by designing programs whose control structures
reflected hierarchical abstractions of their logic flow. In this paper, systematic
programming principles are applied to the design of a program's data structures.]

"In Defense of Formatted Input"

- John Eisenberg
[Formatted input can be useful in many cases, and almost necessary in others.
ThrE!'e examples of "typical" basic computer science problems are presented which
would be inconvenient or next to impossible without the use of formatted input.]

.......

cD

'-J
CO

"Overlays: A Proposal"

- James F. Miner

[As the availability of Pascal for serious productions grows wider, it will become
evident that many implementationswill need to cater to features commonly
employed in production work which are not currently found in implementations of
Pascal. The need to reduce the amount of storage required for a program's object
code is such a feature and a proposal for overlays is given here as a remedy.]

"'Minor' Problems in Pascal"

- Timothy M. Bonham

[A number of syntactic details in Pascal are criticized - not to prove that Pascal
is a bad language, but on the contrary to perfect a language which is easily one
of the best around, because of its logical clarity, austerity, and the readability
of source programs.]

"Dynamic Array Parameters"

- Chris Jacobi
[A description is given of a proposed extension to Pascal-6000 to implement dynamic
array parameters. This solves a serious problem in the construction of subprogram
libraries written in Pascal. A set of amendments to the User Manual and Report
are given, as well as syntax diagrams and an example program.]

Open Forum:

75/11/05 John Eisenberg to Andy Mickel: [Pascal-S,University of Illinois PDP-ll Pascal,
the User's Group]

75/11/22 Urs Ammann to Andy Mickel: [Pascal-6000extensions (dynamic array parameters
value part, constructors); Pascal Day in Switzerland]

75/11/25 Andy Mickel to Niklaus Wirth: [questions about the language Pascal, changes
to the language, and to features in Pascal-6000]

75/12/10 Niklaus Wirth to Andy Mickel: [distinguishclearly between language and
implementation; reply to questions about changes; literature.aboutPascal]

75/12/29 Andy Mickel to Niklaus Wirth: [looking at the nature of change - several
versions of the Pascal Report, details on Pascal-6000 changes, conventionalized
extensions; Pascal Newsletter / Pascal User's Group]

76/01/12 Ed Fourt to Andy Mickel: [Lawrence Berkeley Labs and Pascal-6000]
76/01/14 Hellmut Golde to Andy Mickel: [Pascal-6000at the University of Washington

Pascal-Fortran subprogram linkage]
76/03/08 Wilhelm Burger to Andy Mickel: [Pascal-6000at the University of Texas, and

implementation changes]
76/03/09 Richard Cichelli to Andy Mickel: [Soma cube paper, Pascal at Lehigh University

DEC PDP 11 Pascal.and UNIX]
76/03/15 Andy Mickel to George Richmond: [Where is Pascal Newsletter #4?, our plans

for the User's Group / Newsletter, plans for the transition]
76/04/05 Susan Stallard to Andy Mickel: [IBM 370 Pascal at the University of Southern

California]
76/05/04 Philip Enslow to Andy Mickel: [Pascal-6000at Georgia Tech, Brinch Hansen

Pascal on the B5700]
76/05/23 Harry M. Murphy to Andy Mickel: [Pascal-6000at Air Force Weapons Labrrtory

variable dimension array problems]
76/05/26 David Elliot Shaw to Andy Mickel: [PDP-ll Pascal employment at Structured

Systems Corporation]
76/05/27 Charles L. Lawson to Andy Mickel: [Pascal and Numerical Software, adjustable

array dimension problems. Pascal on the 1108 at Jet Propulsion Labs]
76/06/18 George Richmond to Andy Mickel: [PascalNewsletter #4, updates on distribution

information on Pascal-6000 and pascal-P]
76/06/18 Steve Bellovin to Andy Mickel: [Pascal on the 370 at the University of North

Carolina - Chapel Hill, problems with pascal-P2]
76/07/01 James Kendall to Andy Mickel: [Pascal on several machines at the Texas State

MHMR Department]
76/07/22 Steven Soule to Andy Mickel: [Pascal at the University of Calgary, Pascal's

inability to subvert Fortran]
76/07/23 Mike Hagerty to Andy Mickel: [Pascal-6000modifications, Pascal Standards

committee, solicit ACM sponsorship, formatted reads]
76/07/23 George Richmond to Niklaus Wirth: [Explanationof current situation regarding

distribution of compilers, Pascal Newsletter and transfer of duties to other persons]

Implementation Notes: Checklist, Pascal P3 and P4, Pascal Trunk, PascalJ, Pascal-S
Machine Dependent Implementations: B6700, CDC-6000, DEC PDP-ll, DECsystem 10,
Honeywell 6000, IBM 360/370, Univac 1100.

Pascal Newsletter #6, November, 1976.

Editor's Contribution: Standards - course to take very confusing; Pascal User's Group
mechanics and finances; feedback from PUGN#5; establishment of a PUG outpost in
the United Kingdom.

Here and There: News from Pascalers; empirical study of Pascal programs by John Banning
at Stanford; agenda for the international Pascal Symposium at the University of
Southampton; update on textbooks; update to errata to the Second Edition of Pascal
User Manual and Report; listing of contents of Pascal Newsletters I, 2, 3, and 4;
PUG roster of 516 members.

Articles:
"Indexed Files"

- Svend Knudsen
[In addition to the possibility of dividing sequential files into segments
(creatinga "segmented file"), it is also possible to construct, read, and
modify indexed files. This feature also covers the need for rapid location and
modification of segments.]

liThe Need for Hierarchy and Structure in Language Management"

- G. Michael Schneider
[I find it quite ironic that so much concern is being paid to problems of structure
and organization of statements within the Pascal language but so little to the
structure and organization of the management of the language itself. By this I
mean that there is currently lacking a formal administrative hierarchy for the
handling of questions relating to language standards, specifications, and
extensions]

"Pascal Potpourrill

- Richard J. Cichelli
[A set of (perhaps ill-formed) topics for the Pascal User is presented for debate:
the problem of direct access files, standards and the language Pascal, software
tools for the Pascal user]

"The Case for Extending Pascal's r/o"

- Michael Patrick Hagerty
[With the introduction and subsequent increase in the popularity of Pascal, a number
of papers concerning the language, its features and deficiencies, have appeared
in various journals and newsletters. Champions of the language have extolled the
virtues of its structure and unambiguous grammar using both example and theory as
justification of its usefulness. Pascal critics on the other hand, have questioned
the claim of the proponents that Pascal will replace FORTRAN, pointing to the
inadequaciesof the languagein severalareas. Wirth (1974) defendstheabsenceof
certain "favorite features" as necessary to avoid inefficient programming solutions
or reliance upon features which are contrary to the aim of clarity and reliability.
When the features being debated refer to the flexible input of large amounts
of data, the critics hold the stronge~ hand, and with much justification.]

"General Thoughts on Pascal Arising out of Correspondence Between Southampton
and Tasmania"

- Arthur Sale
[a set of topics of potential interest to the Pascal community: Mixed languages,
Portability, Inclusions of Source Text, Files, Standards]

Open Forum:

76/07/28 Rich Cichelli to Andy Mickel: [What happened to Pascal-6000 Release 2?
Pascal CAI system]

76/07/30 Brian Rowswell to Andy Mickel: [Pascal at the University of Sydney Computing
Centre]

76/08/17 Willett Kempton to Andy Mickel: [Pascal for applications in anthropology, the
case for formatted reads.]

76/08/31 Henry Ledgard to Andy Mickel: [Pascal Prettyprinter at the University of
Massachusetts]

76/09/13 Duke Haiduk to Andy Mickel: [Pascal on DEC-I0 for teaching at West Texas
State University]

76/09/16 Olivier Lecarme to Andy Mickel: [European distribution of Pascal Newsletter,
PUG session at IFIP '77, book by Bill Atwood, news about Pascal in France (activities
and efforts), Pascal language publication notation, comments on Tim Bonham's paper
news of translation of the book Systematic Programming into French]

76/09/17 Robert Novak to Andy Mickel: [remarks in reply to Eisenberg's article on
formatted input.]

76/09/22 Stephen Young to Andy Mickel: [Impressedwith Pascal - should have a Pascal
standards committee]

76/09/29 Tony Addyman to Andy Mickel: [Pascal-6000details, Pascal standards group
should be formed.]

z

-n
IT1
t:r.:1
::0
c::
:I>
::0

-<

I-'
lD

'-J
00

76/10/09Rich Cichellito Andy Mickel: [Contributionof WilliamWaite'sdues to PUG
"Which Language?" article in British Computer Society Bulletin]

76/10/11CharlesHedrickto AndyMickel: [PascalversusSAILand PL/1in AI work,
Pascalon theDEC-10at theUniversityof Illinois]

76/10/15 Niklaus Wirth to Andy Mickel: [disagreementwith the policy of printing
private letters and letters to the editor]

76/10/21 Duke Haiduk to Andy Mickel: [liked Pascal Newsletter #5, Brinch Hansen Pascal
on the DEC-10?]

76/10/22 Arthur Sale to Andy Mickel: [series of letters between Southampton and
Tasmania may be of interest; Pascal implementation proliferation; B6700 Pascal]

76/10/04 Judy Mullins to Arthur Sale: [ICL 1900 / 2900 Pascal: I/O, standardization,
compiler options, else in case, syntactic sugar]

76/10/22 Arthur Sale to Judy Mullins: [standards,character sets, B6700 commenting
conventions, else in case, mixed languages, files, diagnostics, compiler options
sets, bounds checking, B6700s: arrays and off stack storage, pointers speed & space]

76/10/29JonathanSachsto AndyMickel: [Interestin the Tokyo370 compilerat
Trans Union Systems Corporation]

76/11/04 Tim Bonham to PUG membership: [Comments on Jacobi's Dynamic Array Parameters
standardization, Pascal on the IBM System 3?, GDC 3200?]

Implementation Notes: General Information, Checklist, pascal-P, Concurrent Pascal,
Pascal prettyprinter, Machine Dependent Implementations: B1700, B4700, B6700,7700
CII 10070, Iris 50, Iris 80, CDC-6000, GDC-7600, CRAY-1, DECsystem 10, DEC PDP-11
Foxboro FOX-1, HP-2100, 3000, Honeywell H316, level 66, IBM 360/370, IBM 1130
Interdata 7/16, Motorola 6800, Prime P-400, Siemens 4004-157, Univac 1100,
Varian V73, Xerox Sigma 6, 7, 9.

Pascal Newsletter #7, February, 1977.

Editor'sContribution:PromotingPascalUsage (experienceat theUniversityof
Minnesota); Pascal and Standards - conventionalizing extensions; PUG and Pascal
Newsletter mechanics.

Here and There: News from pascalers, a new textbook, roster update.

Articles:
"Life,Liberty,and the Pursuitof UnformattedInput"
- David Barron and Judy Mullins
[In PUGN #5, Eisenberg presents three examples which, he claims, demonstrate
the necessity for formatted input. This note attempts to demolish those claims.
...WARNING: FORTRAN CAN IMPAIR YOUR JUDGEMENT.]

"Pascal PrinterPlotter"
- Herb Rubenstein
[Thisprinterplotterconsistsof fourPascalcallableprocedures.A high speed
line-printer or a 132 column hard copy interactive terminal is used for output.
The plotsare X-Y graphsscaledto fit a singlesheetof printerpaper. Axis
labels and axes are automatically set up. Plots may be overlayed and expansions
can be performed to blow up tiny pieces of a plot.]

"YetAnotherLook- at CodeGenerationfor Pascalon CDC 6000and CyberMachines"
- Lawrence A. Liddiard
[Pascal2 is amenableto severaldifferentmethodsof compilerlengthreduction.
As a fellow compiler writer (although since MNF is written in machine language
it may be compared with the last of the dinosaurs speaking to Homo sapiens),
I would rather see the full language specifications and one standard compiler,
than to see small subsets such as Pascal-So For this reason I think it
essential to improve Pascal 2 and with the reductions discussed in this article
it should be possible to obtain load lengths of approximately 30K octal for the
full language rather than the current 44K octal on a CDC 6000 (i. e. a reduction
by one-third).

Open Forum:

76/11/18 DavidBarronto AndyMickel: [Againstthe continuationof Fortran"carriage
controlcharacter" conventions into Pascal]

76/12/09AndyMickelto NiklausWirth: [PUGshouldhave your reactionto the issueof
formal standardization of Pascal]

76/12/10 Andy Mickel to Chris Jacobi: [PUG needs the results of the Pascal-P
questionaire and sites using pascal-P]

77/01/02 Arthur Brown to Andy Mickel: [A Pascal standards committee should be set up
standard Pascal should be close to the Revised Report and extensions to standard
Pascal compilers should be written in standard Pascal.]

77/01/03JimMiner to AndyMickel: [RevisedReportgood in its statedaim;but
production uses of Pascal dictate a need for a standard. Fear that a committee
will decide what the standard will be - current users are vulnerable because we
have an investment in code.]

Implementation Notes: General Information, Checklist, Pascal-P, PascalJ, Software
Writing Tools, B6700/7700, CII Iris 80, 10070, DEC PDP-8, DEC PDP-11, Foxboro Fox-1
IBM 360/370, IBM 1130, Interdata 8/32, Univac 90/70, 1100, Xerox Sigma 6/9,Sigma 7.

Pascal Newsletter #8,May, 1977.

Editor's Contribution: Renewal reminder, new developments with microprocessor Pascal,
PUG and Pascal Newsletter, Pascal publicity, future, backissues, membership, end
of the year acknowledgements.

Here and There: News from pascalers, 2 Pascal get togethers planned at IFIP '77, and
at ACM '77, Report on the University of Southampton Pascal Symposium, large Books
and Articles section with new policy announced, first news about DoD-l (a common
language for U.S. Department of Defense use), a book review, several Pascal
applications reported.

Articles:
"Developmentof a PascalCompilerfor the C.I.I.Iris 50,A PartialHistory"
- Olivier Lecarme
[The history which is the subject of the present paper takes place in the University
of Nice, a medium-scale University with about fifteen thousand students. The
history of the Pascal Compiler development covers several attempts (illustrated by

"T"
diagrams) and finally a description of the nearly completed successful effort.]

"A Further Defence of Formatted Input"
- Brian Meekings
[In PUGN #7, Barron and Mullins attempt to demolish the case for formatted input.
Without wishing to blow up the controversy beyond reasonable proportion, I would
liketo add a voicein favourof formatting.The additionof formattedinput
to supplement the existing unformatted input facilities, can only enhance an
already versatile language.]

"Proposals for Pascal"

- George H. Richmond
[Alaundrylistof idealizedproposalsare presentedmakingthe casefor improvement
in the areasof: the representationof Pascalfor computerinput,compileoptions,
internal character set, removal of current restrictions and asymmetries, the
program declaration, variant records, the case statement, boolean expressions,
constants, declarations, and constructors, value initialization and own variables,
procedure and function types for compile time checking, dynamic array parameters,
new basic types and operators, transfer functions, extension of relational operators
to structured types, files and text files, formatted input and output, file
handling, overlays, and preambles and postamble.]

"A Proposal for Increased Security in the Use of Variant Records"
- William Barabash, Charles R. Hill, and Richard B. Kieburtz
[The use of variant records in most Pascal Implementations is dangerous because
most compilers do not emit a check for conformity with the value of the tagfield

en

."
I'T1
t:x:I
;:;0

=~
;::c
-<

when a variant field is referenced. Indeed, the latest version of the Revised
Pascal Report defines a language in which the tagfield may even be absent, making
conformity checks impossible! Even so, when the tagfield is present and the
compiler does emit conformity checks automatically, the programmer still has the
ability to dynamically assign values to the tagfield.]

"Update on UCSD Pascal Activities"

- Ken Bowles
[A potpourri of lively events at the University of California, San Diego is

reported including their microprocessor Pascal system on LSI-ll, Z-80, 8080,
6502, and 6800 based systems. Also reports on LSI-ll hardware, other micro
hardware, a proposal for a manufacturer independent Pascal System, news about
an introductory Pascal textbook, the UCSD B6700 compiler, and a sample graphics
picture from the LSI-ll system are given.]

"Some Comments on Pascal I/O"
- Chris Bishop
[While admitting that Pascal has I/O specifications involving the concept of files
and the GET and PUT statements that are consistent with the flavour of the
language and with theoretical manipulation of data, I feel that it is lacking
in simple, easy to use I/O and in flexible I/O.]

Open Forum:

77/01/14 Nick Solntseff to Andy Mickel: [The nature of standardization efforts on
Pascal and perhaps operating system independence as well]

77/01/12 Michael Condict to Andy Mickel: [Comment that "slow array" more appropriate
than Rich Cichelli's "long array" in PUGN 116article]

77/01/04 Larry Landis to G. Michael Schneider: [An endorsement of Schneider's standards
proposals in PUGN #6 article]

77/02/14 Robert Fraley to Andy Mickel: [A case for revising Pascal -> 3 mandatory
extensions for Pascal so that it can compete with FORTRAN: parametric arrays
shared variables in separate compilations, and input formatting.]

77/01/24 Mike Hagerty to Andy Mickel: [On the standard, mods to the standard, mods to
the implementation, available software, otherwise in case]

Special Topic - Standards

(* A very important exchange regarding standards and conventionalized extensions
follows. At the Southampton Pascal Symposium, Tony Addyman made the case for
a formal ISO standard without a standards committee through BSI. Votes were
taken which called for standardizing the Revised Report with semantics
tightened up, adopting a set of conventionalizedextensions, and a list of
designated extensions not to be conventionalized.*)

77/01/31 Niklaus Wirth to Andy Mickel: [Regardingstandards, extending Pascal, Standard
Pascal, Recommended set of extensions: dynamic array parameters, array and r:cord
constructors; possibility of unnecessary but convenient extensions:. default 1n
case lists, and formatted input. Other extensions per se for indiv1dual computer
systems admissable but they have no place in the Standard language. Various
comments on PUGN#6, especially regarding criticism of Pascal:]

77/02/09 J~rgen Steensgaard-Madsento Andy Mickel: [Comments inv1ted by Wirth on
initialization of variables, dynamic arrays, exhaustive specification of parameters,

the case statement, and handling of TEXT variables.]
77/03/07 Richard Kieburtz to Niklaus Wirth: [Comments invited by Wirth on complete

typing of formal procedure parameters, field width specifications in the arguments
of the procedure write. On suggested extensions - relax the restriction on the
maximum cardinality of set types, typed structured constants, and variable length
strings. Also comments on dynamic arrays, array and record constructors,
default in case lists, and formatted input.]

77/03/29 Andy Mickel to Southampton Symposium: [The Future of Pascal (Extensions and
Standardization). A summary of the present state of affairs around Pascal and
the desire for a standard; desirable goals for Pascal and current problems;
consideration of a standard.]

77/04/07 Tony Addyman to Andy Mickel: [News on BSI / ISO standardization effort.
A three page "attention list" of problems in the Pascal Report.]

77/04/24 Andy Mickel to Tony Addyman: [When in the BSI Working Group,
principles:"don't confusethe languagewith the implementation"
are intentionally left undefined in Pascal and must be defined by
possible meanings for omissions in the Revised Report.]
(*

* *
End of Special Topic: Standards

* *
*)

77/01/28 Arthur Sale to Andy Mickel: [Pascal has more to fear from its friends than
its enemies, defense of editorial attack in PUGN6; Pascal Files - are Pascal's

files inadequate?, are files variables?, is the best way to random access through
slow array of...? What relation is there between Pascal files and our operating
system files? Pascal's two greatest dangers are from naive extensions and Pascal
fanaticism. The language has defects; it has strengths. Let's be a bit more
cautious.]

77/02/14 Arthur Sale to Andy Mickel: [3 criticisms: 1) Sea mail distribution of PUGN
overseas unacceptable, 2) Editorial sniping, 3) Pascal Support - Bill Waite's
criteria. Distribution of software; we don't need crusaders yet; despite bits
of rubbish PUGN serves a very useful purpose, publishing Arthur Sale - Judy
Mullins correspondence.]

77/04/26 Andy Mickel to Arthur Sale: [Apologies for editorial sniping, reasons for
seamail distribution of PUGN, Pascal files, CDC bias, PUGN's non-academic membership
Pascal usage at Minnesota.]

77/03/04 Olivier Lecarme to Andy Mickel: [PUG produces PUGNs faster than I can read
them. CII Iris 50 news, Pascal Subgroup formed in AFCET (French counterpart
of ACM), compiler writing system.]

77/03/28 Nick Fiddian to Andy Mickel: [Plea to recognize the value to others of the
software products we originate; invest accordingly in faithful standardization -
down with backstreet implementors.]

don't forget the
and "some aspects
implementation",

I-'
lD

'-J
CO

~mplementation Notes: Checklist, General Information, Microprocessors, Software Writing
Tools, Pascal-P4 corrections, Pascal Trunk Compiler, PascalJ, Modula, Feature
Implementation Notes: Reading and Writing Scalars (Arthur Sale), Pointer Values
(Arthur Sale), Pointer Tests (Andy Mickel). Machine Dependent Implementations:
B3700 / B4700, B6700, Computer Automation LSI-2, CDC Cyber 18, CDC 6000,7000,
Cyber 70,170, Data General Nova, DEC-I0, DEC PDP-ll, HP-2100, Honeywell H66.
IBM 360/370, IBM 1130, ICL 1900 / 2900, Intel 8080, Motorola 6800, Nanodata QM-l,
Norsk Data Nord 10, SEMS T1600/Solar, Siemens 4004, 7000, TI ASC, TI 990/9900,
Univac 90/70, UII00, Varian V70, Zilog Z-80.

ROSTER I NeRE MEN T (7 7 /12 /31)

01002

01451
01545
01581
01609
01701
01701
01701

The names listed below represent people who have renewed, changed address or joined PUG
since the roster was printed in PUGN#9/1~.

HENRYF. LEDGARD/COMPUTERAND INFO.SCI./U OF MASSACHUSETTS/AMHERSTMA 01002/(413) 545-2744/ (413) 545-1332
RALPH S. GOODELL/ HILLCREST DRIVE/ HARVARD MA 01451/ (617) 456-8090

JOHN DE ROSA JR./ 32-G BRANDYWINE DRIVE/ SHREWSBURY MA 01545
JOHNNY STOVALL/ 15 TURNPIKE RD./ WESTBORO MA 01581/ (617) 366-8911
STEPHEN R. ALPERT/ COMPo SCI. DEPT./ WORCESTER POLYTECHNIC INSTlTUTE/ WORCESTER MA 01609/ (617) 753-1411 X416
MARGARETTA HOMMEL/ 43 ADAMS ROAD/ FRAMINGHAM MA 01701/ (617) 879-6848/ (617) 890-8460 X208 X351
BARRY F. MARGOLIUS/ DEPT. OF COMPUTER SCI./ FRAMINGHAM STATE COLLEGE/ FRAMINGHAM MA 01701/ (617) 872-3501 X224/ (617) 266-6648 (HOME)
ROBERT J. OBERG/ DEPT. OF MATH AND COMPUTER SCIENCE/ FRAMINGHAM STATE COLLEGE/ FRAMINGHAM MA 01701/ (617) 852-3501

01730
01741
01752
o1754
01776
01778
01810
01852
01886
01960
02035
02114
02132
02138
02138
02138
02138
02139
02142
02154
02159
02165
02165
02172
02840
02912
02912
03060
03755
03824
06106
06268
06437
06477
06520
06810
06901
07054
07470
07724
08077
08512
08618
08826
08854
08854
08876
08903
09098
10003
10009
10010
10011
10012
10012
10016
10019
10024
10024
10025
10027
10510
10573
11210
11439
11740

ROGER D. ROLES/ COMPUTERVISION CORP./ 201 BURLINGTON RD/ BEDFORD MA 01730/ (617) 275-1800 X212

STEPHEN KLEIN/ 188 JUDY FARM ROAD/ CARLISLE MA 01741

CARL W. SCHWARCZ/ MR 1-2/E27/ DIGITAL EQUIPMENT CORP./ 200 FOREST STREET/ MARLBORO MA 01752/ (617) 481-9511
ROBERT TROCCHI/'EDUCATIONALPRODUCTS GROUP/ DIGITAL EQUIPMENT CORP./ PARKER STREET - PK3-1/M40/ MAYNARD MA 01754/ (617) 493-3475
RANDY ENGER/ 28 BRIAR PATCH LANE/ SUDBURY MA 01776
PAUL BARR/ EQUIPMENT DIVISION J9/ RAYTHEON CO./ BOSTON POSTROAD/ WAYLAND MA 01778/ (617) 358-2721 X2825
ROBERT I. DEMROW/ 11 LINDA DRIVE/ ANDOVER MA 01810

EDWARD STEEN/ 119 SHERMAN STREET/ LOWELL MA 01852/ (617) 454-9320

RICHARD KRASIN/ FIRST DATA CORP./ 1 MAIN STREET/ WESTFORD MA 01886
SAM CARPENTER/ 22 PULASKI ST. APT. B-7/ PEABODY MA 01960/ (617) 532-0669
WARREN R. BROWN/ D.330/ THE FOXBORO COMPANY/ 38 NEPONSET AVE./ FOXBORO MA 02035/ (617) 543-8750 X2023
RICHARD PITKIN/ COMPUTER NETWORK/ MASS. STATE COLLEGE/ISO CAUSEWAY ST./ BOSTON MA 02114/ (617) 727-2530
BILL SOUTHWORTH/ 30 POTOMAC ST./ W. ROXBURY MA 02132/ (617) 323-4537
FRED LURMANN/ ABT ASSOCIATES INC./ 55 WHEELER ST./ CAMBRIDGE MA 02138/ (617) 492-7100 X424
JAMES s. MILLER/ INTERMETRICS INC./ 701 CONCORD AVE./ CAMBRIDGE MA 02138/ (617) 661-1840
DENNIS J. MURPHY/ ABT ASSOCIATES INC./ 55 WHEELER ST/ CAlIBRIDGE MA 02138/ (617) 492-7100

ROBERT E. WELLS/ BOLT BERANEK AND NEWMAN INC./ 50 MOULTON STREET/ CAllBRIDGEMA 02138/ (617) 491-1850 X694
CHARLES L. BROOKS/ ABT ASSOCIATES INC./ 55 WHEELER STREET/ CAMBRIDGE MA 02139/ (617) 492-7100

JAMES STEINBERG/ 23/ DOT/TSC/ KENDALL SQUARE/ CAMBRIDGE MA 02142
BRYAN HOPKINS/ EKS/ 200 TRAPELO ROAD/ WALTHAM MA 02154/ (617) 893-3500 X277
LAWRENCE F. CRAM/ 64 BOWEN STREET/ NEWTON MA 02159

THOMAS M. ATWOOD/ 70 BARNSTABLE RD./ W. NEWTON MA 02165/ (617) 235-8171 X131

JOHN C. MILLER/ 105 CHERRY STREET/ W. NEWTON MA 02165/ (617) 272-7070 X160

FRED ElLENSTEIN/ 68 SPRING STREET/ WATERTOWN MA 02172/ (617) 924-2248
DAVID TAFFS/ 42 THIRD STREET/ NEWPORT RI 02840/ (401) 847-3770
ATTN: L.A.M.B.D.A./ BROWN UNIVERSITY/ BOX G/ PROVIDENCE RI 02912/ (401) 863-3162
READ T. FLEMING/ PROGRAM IN COMPUTER SCIENCE/ BROWN UNIVERSITY/ BOX F/ PROVIDENCE RI 02912/ (401) 863-3088
BETTY BUXTON/ NCA 1-3220/ SANDERS ASSOCIATES INC./ 95 CANAL STREET/ NASHUA NH 03060/ (603) 885-5314
MICHAEL MCKENNA/ TIME SHARE CORP./ BOX 683/ HANOVER NH 03755/ (603) 448-3838
WILLIAM J. VASILIOU JR./ COMPUTER SERVICES/ KINGSBURY HALL/ U OF NEW HAMPSHIRE/ DURHAM NH 03824/ (603) 862-2323
A. E. SAPEGA/ ENGINEERING DEPT./ TRINITY COLLEGE/ HARTFORD CT 06106/ (203) 527-3151 X202
TIM RAND/ P.O. BOX 98/ STORRS CT 06268
PAUL KOHLBRENNER/ 261 DUNK ROCK ROAD/ GUILFORD CT 06437/ (203) 453-9540
MICHAEL BEHAR/ 428 WINDY HILL RD./ ORANGE CT 06477/ (203) 878-7141
DICK OSGOOD/ YALE COMPUTER CENTER/ 175 WHITNEY CENTER/ NEW HAVEN CT 06520/ (203) 432-4080
RONA GURKEWITZ/ 181 WHITE STREET/ DANBURY CT 06810
DOUGLAS M. GRANT/ NATIONAL CSS/ 500 SUMMER STREET/ STAMFORD CT 06901/ (203) 327-9100
ROBERT KAST/ 350 BALDWIN ROAD APT. F4/ PARSIPPANY NJ 07054
HAL PACE/ KEARFOTT DIV. - DEPT. 5760/ SINGER CO./ 150 TOTOWA ROAD/ WAYNE NJ 07470/ (201) 256-4000 X3503
CHRISTOPHER J. HENRICH/ SOFTWARE DEVELOPMENT/ INTERDATA INC./ 106 APPLE STREET/ TINTON FALLS NJ 07724/ (201) 229-4040

FOREST VAN SISE SHAFER/ COMCON INC./ 504 U.S. ROUTE 130 AT HIGHLAND AVE./ CINNAMINSON NJ 08077
WILLIAM G. HUTCHISON JR./ N 191 PRINCETON ARMS/ CRANBURY NJ 08512/ (609) 443-6631
WILLIAM J. K. HARRINGTON/ 70 MAIN BOULEVARD/ TRENTON NJ 08618

GEORGE B. DIAMOND/ DIAMOND AEROSOL CORP. / RD 111/ GLEN GARDNER NJ 08826

ATTN: CCIS LIBHARY HILL CENTER/ BUSCH CAMPUS/ RUTGERS UNIV./ p.O. BOX 879/ PISCATAWAY NJ 08854/ (201) 932-2296
JIM STEWART/ 195B PLEASANT VIEW ROAD/ PISCATAWAY.NJ 08854
RODERICK MONTGOMERY/ HEALTH PRODUCTS RESEARCH INC./ 3520 U.S. ROUTE 22/ SOMERVILLE NJ 08876/ (201) 534-4148
CHARLES HEDRICK/ COMPUTER SCIENCE DEPT./ RUTGERS UNIV./ HILL C ENTER/ NEW BRUNSWICK NJ 08903
DOUG FORSTER/ P.O. BOX 1027 UNIT AA/ APO NY 09098
WILLIAM HENRY/ 117 E. TENTH ST./ NEW YORK NY 10003/ (212) 673-6944
NORMAN D. WHALAND/ 430 EAST 9TH STREET - APT. 15/ NEW YORK NY 10009
ROBERTO MINIO/ SPRINGER-VERLAG INC./ 175 FIFTH AVE/ NEW YORK Ny 10010/ (212) 477-8316
JON A. SOLWORTH/ 7 WEST 14TH ST APT 15A/ NEW YORK NY 10011/ (212) 243-2183
EDWARD R. FRIEDMAN/ CIMS/ NEW YORK UNIVERSITY/ 251 MERCER ST./ NEW YORK NY 10012/ (212) 460-7100/ (212) 460-7293
ANDREW P. VALENTI/ COURANT INST. OF MATHEMATICAL SCIENCE/ NEW YORK UNIV./ 251 MERCER ST./ NEW YORK NY 10012/ (212) 641-0274
RAMON TAN/ 305 E. 40TH ST. APT. 12W/ NEW YORK NY 10016/ (212) 682-1013
MARK STAHLMAN/ COMPUTRON INC./ 888 7TH AVENUE - 25TH FLOOR/ NEW YORK NY 10019
PAUL SPRECHER/ 241 WEST 77TH STREET/ NEW YORK NY 10024

DONALD WARREN/ 130 WEST 81ST STREET APT 7/ NEW YORK NY 10024

HOWARD D. ESKIN/ CENTER FOR COMPUTING ACTIVITIES/ ROOM 712/ COLUMBIA UNIVERSITY/ 612 W. 115TH ST./ NEW YORK NY 10025/ (212) 280-2874
LARRY ARONSON/ CENTER FOR COMPUTING ACTIVITIES/ COLUMBIA UNIVERSITY/ 612 W 115TH ST./ NEW YORK NY 10027/ (212) 280-2698
JERRY S. SULLIVAN/ PHILIPS LABORATORIES/ 345 SCARBOROUGH ROAD/ BRIARCLIFF MAN NY 10510/ (914) 762-0300
TIMOTHY P. ROBERTS/ KERN INSTRUMENTS INC./ III BOWMAN AVE./ PORT CHESTER NY 10573/ (914) 939-0200

PAUL S. KLARREICH/ 2809 BEDFORD AVE./ BROOKLYN NY 11210/ (212) 859-1408
LYNN S. MARTINI DEPT. OF ENGLISH/ ST. JOHN'S UNIV./ GRAND CENTRAL AND UTOPIA PARKWAYS/ JAMAICA NY 11439/ (212) 969-8000 X387
M. WAITE/ ~AZELTINE.CORP./ GREENLAWN NY 11740/ (516) 261-7000 X687

"rrJ
b:I
;::c

=J>
;::c
-<

N
o

-0
::t>
U">
n
::t>
r

:z
rr1
:::E:
U">

'!"=
15213 f-'

f-'

11756
11794
11794
11797
12210
13201
13440
14072
14127
14226
14454
14850
15213
15213
15213

ROBERT SCHUTZ/ 93 MERIDIAN ROAD/ LEVITTOWN NY 11756
RICHARD B KIEBURTZ/ DEPT. OF COMPUTER SCI./ SUNY AT STONY BROOK/ STONY BROOK NY 11794/ (516) 246-5987/ (516) 246-7146

GENE ROLLINGS/ COMPUTER SCIENCE DEPT./ SUNY - STONY BROOK/ STONY BROOK NY 11794/ (516) 246-4383

PAUL ZILBER/ ONTEL CORP./ 250 CROSSWAYS PARK DRIVE/ WOODBURY Ny 11797/ (516) 364-2121
GARYO O'SCHENECTADY/ 144 LANCASTER ST./ ALBANY NY 12210
J. DANIEL GERSTEN/ COMPUTEDIMAGE ENG. - CSP 3-21/ GENERAL ELECTRIC CO./ SYRACUSE NY 13201/ (315) 456-7366

STEPHEN B. WATERS/ ROME SENTINEL COMPANY/ 333 W. DOMINICK STREET/ ROME NY 13440/ (315) 337-4000
LEO CHRZANOWSKI/ 67 WARD PARK ROAD/ GRAND ISLAND NY 14072
F. DOUGLAS ROBINSON/57 TANGLEWOOD WEST/ ORCHARD PARK NY 14127/ (716) 843-7142 (WORK)/ (716) 662-4093 (HOME)
STUART W. ROWLAND/ COMPUTER SCIENCE DEPT./ SUNY - BUFFALO/ 4226 RIDGE LEA ROAD/ AMHERST NY 14226/ (716) 831-1351
ANTHONY E. HOFFMAN/ MATHEMATICS DEPT./ SUNY-CAS/ GENESEO NY 14454/ (716) 243-3833
WILLIAM LYCZKO/ SOFTWARE DEVELOPMENT/ NCR CORPORATION/TERMINAL SYSTEMS/ 950 DANBY ROAD/ ITHACA NY 14850/ (607) 273-5310/ X251 X254
ATTN: EARL L. MOUNTS-COMP. SCI. LIBRAR/ E & S LIBRARY/ SCIENCE HALL/ CARNEGIE-MELLON UNIVERSITY/ PITTSBURGH PA 15213/ (412) 578-2426
DAVID B. GROUSE/ GRAPHIC ARTS TECHNICAL FOUNDATION/ 4615 FORBES AVE/ PITTSBURGH PA 15213
KEVIN WEILER/ SCHOOL OF URBAN AND PUBLIC AFFAIRS/ INSTITUTE OF PHYSICAL PLANNING/ CARNEGIE MELLON UNIV/ SCHENLEY PARK/ PITTSBURGH PA

(412) 578-2177

RON MAHON/ VIDEO LINK/ P.O. BOX 688/ MASONTOWN PA 15461/ (412) 583-7786
HOWARD E. TOMPKINS/ COMPUTER SCIENCE DEPT/ INDIANA UNIVERSITY OF PAl INDIANA PA 15701/ (412) 357-2524
PETER RICHETTA/ 129A WEST WATER STREET/ SLIPPERY ROCK PA 16057/ (412) 794-3531
E. R. BEAUREGARD/ P.O. BOX 357/ DILlSBURG PA 17019
ATTENTION: MARJORIE HEINE/ FREAS-ROOKE COMPUTER CENTER/ BUCKNELL UNIVERSITY/ LEWISBURG PA 17837/ (717) 524-1436
DAVID B. ANDERSON/ DEPT. OF MATHEMATICS/ 14 CHRISTMAS-SAUCON/ LEHIGH UNIVERSITY/ BETHLEHEM PA 18015/ (215) 683-5086
CRAIG PAYNE/ LEHIGH UNIV./ P.O. BOX 22A/ BETHLEHEM PA 18015/ (215) 867-6367
ROBERT COLE/ 782 BARRYMORE LANE/ BETHLEHEM PA 18017
JOHN A. WEAVER/ ANPA - RESEARCH INSTlTUTE/ P.O. BOX 598/ EASTON PA 18042/ (215) 867-1085
JOHN W. IOBST/ 22 N. KEYSTONE AVE./ EMMAUS PA 18049/ (215) 965-4677
BILL CHESWICK/ DARIEN 15B / VILLAGE 2/ NEW HOPE PA 18938/ (215) 866-4491
DONALD B. KLEIN/ 145 LOWRY'S LANE/ ROS~roNT PA 19010
JAMES P. MCILVAINE IV/ BRIDGEPORT-TEXTRON/ 200 PRECISION RD./ HORSHAM PA 19044/ (215) 674-2700
DAN MORTON/ 701 WASHINGTON LANE/ JENKINTOWN PA 19046/ (215) 885-2443/ (215) 895-2259

STEPHEN W. CHING/ DEPT OF ELECTRICAL ENGINEERING/ COMPUTER SCIENCE/ VILLANOVA UNIVERSITY/ VILLANOVA PA 19085/ (215) 527-2100 X631
MARK HIPPE/ GEOMETRIC DATA CORP./ 999 WEST VALLEY ROAD/ WAYNE PA 19087/ (215) 687-6550
G. KEVIN DOREN/ P.O. BOX 8191/ PHILADELPHIA PA 19101/ (215) 963-0465/ (215) 963-0551

EARL RALEY/ COMPUTER ACTIVITY/ ACADEMIC SERVICES/ TEMPLE UNIV./ PHILADELPHIA PA 19122/ (215) 787-8527
CLIFTON CHANG-CHAO TING/ 879WYNNEWOOD ROAD- 1ST FLOOR/ PHILADELPHIA PA 19151/ (215) 878-7231
DAVID M. ADAMS/ CSG/T/ BURROUGHS CORPORATION/ P.O. BOX 203/ PAOLI PA 19301/ (215) 648-2000

TOM KELLY/ 58-B MEADOWLAKE DRIVE/ DOWNINGTOWN PA 19335/ (215) 269-3626
JEFFREY D. STROOMER/ 224 HERITAGE LANE/ EXTON PA 19341/ (216) 363-1948
DONALD A. KEFFER/ 252 MANOR ROAD/ HARLEYSVILLE PA 19438

V. LALITA RAU/ HATFIELD VILLAGEAPARTMENTS UTl-5/ HATFIELD PA 19440/ (215) 865-6448

JOHN D. EISENBERG/ COMPUTING CENTRE/ SMITH HALL/ U OF DELAWARE/ NEWARK DE 19711/ (302) 738-8441 X57 (OFFICE)/ (302) 453-9059 (HOME)

WILLIAMS. PAGE/ 23 OLD MANOR ROAD/ NEOIARKDE 19711/ (302) 731-5988
C. E. BRIDGE/ ENGINEERING DEVELOPMENT LAB/ E. I. DU PONT DE NEMOURS AND CO./ 101 BEECH STREET/ WILMINGTON DE 19898/ (302) 774-1731

STEPHEN C. SCHWARM/ E.I. DU PONT DE NEMOURS CO./ 101 BEECH ST./ WILMINGTON DE 19898/ (302) 774-1669
KENNETHR. JACOBS/ FEDERAL SYSTEMS DIVISION/ ADP NETWORK SERVICES/ 2011 EYE STREET NW/ WASHINGTON DC 20006/ (202) 872-0580

KEITH E. GORLEN/ 2017 BLDG.12A/ NATIONAL INST. OF HEALTH/ BETHESDA MD 20014/ (301) 496-5361
TERRYP. MEDLIN/ SCIENTIFIC RESEARCH UNIT - DPSA/ B23 BLDG 30/

NATIONAL INSTITUTE OF DENTAL HEALTH/ BETHESDA MD 20014/ (301) 496-1621

JOHN M. SHAWl BLDG 36 / ROOM 2A29/ NATIONAL INSTITUTES OF HEALTH/ BETHESDA MD 20014/ (301) 496-3204

JOSEPH P. JOHNSON/ 3520 QUEBEC ST. NW/ WASHINGTON DC 20016/ (202) 362-8523

MARGERY AUSTIN/ THE URBAN INSTITUTE/ 2100 M STREET NW/ WASHINGTON DC 20036/ (202) 223-1950 X486
DAVID AULT/ COMPUTER SCIENCE/ VPI AND suI P.O. BOX 17186/ WASHINGTON DC 20041/ (703) 471-4600

STEVE O'KEEFE/ 7328/ U.S. CUSTOMS SERVICE/ 1301 CONSTITUTION AVE. N.W./ WASHINGTON DC 20229/ (202) 566-2974
PETER A. RIGSBEE/ CODE 5494/ NAVAL RESEARCH LABORATORY/ WASHINGTON DC 20375/ (202) 767-3318
LEO DAVIS/ 40 LAKESIDE DRIVE/ GREENBELT MD 20770
CAROL B. HOWELL/ P.O. BOX 326/ GREENBELT MD 20770
EDWARD D. ROTHE/ 7101 VARNUM ST/ LANDOVER HILLS MD 20784

BOB ROGERS/ 18625 AZALEA DRIVE/ DERWOOD MD 20855

PAUL H. BROOME/ BIOPHYSICS BRANCH/ CHEMICAL SYSTEMS LAB/ RESEARCH DIVISION/ PROVING GROUND/ ABERDEEN MD 21010/ (301) 671-3489

JOHN FRINK/ 5304 THUNDER HILL ROAD/ COLUMBIA MD 21045/ (202) 394-2396
RICHARD LLEWELLYN/ 5355 RED LAKE/ COLUMBIA MD 21045/ (301) 765-4570
RAINER F. MCCOWN/ MCCOWN COMPUTER SERVICES/ 9537 LONG LOOK LANE/ COLUMBIA MD 21045/ (301) 730-0379
LESTER SACHS/ OPERATIONS/ MS 3-0-25/ SOCIAL SECURITY ADMINISTRATION/ 6401 SECURITY BOULEVARD/ BALTIMORE MD 21235
PAUL c. BERGMAN/ DIGITAL SYSTEMS CORP./ P.O. BOX 396/ WALKERSVILLE MD 21793/ (301) 845-4141

ROBERT C. JANKU/ 5112 ALTHEA DRIVE/ ANNANDALE VA 22003/ (703) 978-8384
ROBERTLEE SHARP/ P.O. BOX 2170/ FALLS CHURCH VA 22042
HENRYDAVIS/ACUITYSYSTEMSINC./11413ISAACNEWTONSQUARE/RESTONVA 22090/ (703) 471-4700 X243

15461
15701
16057
17019
17837
18015
18015
18017
18042
18049
18938
19010
19044
19046
19085
19087
19101
19122
19151
19301
19335
19341
19438
19440
19711
19711
19898
19898
20006
20014
20014
20014
20016
20036
20041
20229
20375
20770
20770
20784
20855
21010
21045
21045

21045
21235
21793
22003
22042
22090

-0
:J>

=rr1

/

22091
22101
22101
22152
22180
22209
22901
22901
22903
23185
23508
23665
23669
27409
27607
27709
30303
30303
30303
30310
30339
32303
32306
32901
32901
32905
32935
33313
33313
35486
35805
37130
37916
40205
40217
43403
43403
43403
44106
44106
44107
44115
44116
44119
44691
45036
45036
46375
46530
47401
47401
47805
47907
47907
47907
48100
48104
48104
48106
48824
48824
48824
48824
49008
50011
52240

JAMES K. MOORE/ 12345 COLERAINE COURT/ RESTON VA 22091/ (703) 437-2338

H. F. HESSION/ ADVANCED RECORD SYSTEMS ENGINEERING/ WESTERN UNION/ 7916 WEST PARK DRIVE/ MCLEAN VA 22101
ROBERT L. STEELE 11/ INCO. INC./ 7916 WEST PARK DRIVE/ MCLEAN VA 22101/ (703) 893-4330

MARK S. WATERBURY/ 8358 L DUNHAM CT./ SPRINGFIELD VA 22152/ (703) 451-8255
TRUMAN C. PEWITT/ 8507 COTTAGE STREET/ VIENNA VA 22180/ (703) 821-6321/ (703) 573-3192
WILLIAM A. WHITAKER/ DARPA/ 1400 WILSON BLVD./ ARLINGTON VA 22209/ (202) 694-1139
ROBERT A. GIBSON/ WEST LEIGH/ 2380 KINGSTON RD/ CHARLOTTESVILL VA 22901/ (804) 977-3233
STEPHEN F. MERSHON/ SCHOOL OF ENGINEERING--DAMACS/ AERO-MATH BLDG./ UNIV. OF VIRGINIA/ CHARLOTTESVILL VA 22901/ (804) 924-3917
ATTN: J. F. MCINTYRE - LIBRARIAN/ COMPUTING CENTER/ GILMER HALL/ UNIV OF VIRGINIA/ CHARLOTTESVILL VA 22903/ (804) 924-3731
MICHAEL K. DONEGAN/ DEPT. OF MATH. & COMPo SCIENCE/ COLLEGE OF WILLIAM & MARY/ WILLIAMSBURG VA 23185/ (804) 253-4481
FRANCES L. VAN SCOY/ DEPT. OF MATH AND COMPUTING SCIENCES/ OLD DOMINION UNIV./ NORFOLK VA 23508/ (804) 489-6525
JOHN C. KNIGHT/ LANGLEY RESEARCH CENTER/ M/S 125A/ NASA/ HAMPTON VA 23665/ (804) 827-3875

JOHN CLARSON/ 303 TENDERFOOT COURT/ HAMPTON VA 23669
TOM TYSON/ COMPUTER LABS/ 505 EDWARDIA DRIVE/ GREENSBORO NC 27409/ (919) 292-5427
DONALD L. PARCE/ BUSINESS APPLICATIONS SYSTEMS INC./ 7334 CHAPEL HILL ROAD/ RALEIGH NC 27607/ (919) 851-8512

W. J. MEYERS/ DATA GENEHAL CORP./ RESEARCH TRIANGLE PARK/ TRIANGLE PARK NC 27709
ROBERT N. MACDONALD/ INFORMATION SYSTEMS DEPT./ GEORGIA STATE UNIV./ UNIVERSITY PLAZA/ ATLANTA GA 30303/ (404) 658-3880
DARRELL PREBLE! COMPUTER CENTER USER SERVICES/ GEORGIA STATE UNIVERSITY/ ATLANTA GA 30303
MORRIS W. ROBERTS/ DEPT. OF INFORMATION SYSTEMS/ GEORGIA STATE UNIV./ UNIVERSITY PLAZA/ ATLANTA GA 30303/ (404) 658-3882
JOE CELKO/ P.O. BOX 11023/ ATLANTA GA 30310/ (404) 753-7993
DOUGLAS MANN/ SCIENCE APPLICATIONS INC./ 2028 POWERS FERRY ROAD _ SUITE 260/ ATLANTA GA 30339/ (404) 955-2663
C. EDWARDREID/RT. 7 BOX 1257/ TALLAHASSEEFL 32303/(904)488-2451
JOHN H. BOLSTAD/ DEPT. OF MATHEMATICS/ FLORIDA STATE UNIV./ TALLAHASSEE FL 32306/ (904) 644-2580
GEORGE E. HAYNAM/ SYSTEMS DIVISION/ HARRIS CORP./ P.O. BOX 2080/ MELBOURNE FL 32901/ (904) 378-8118
TOM SPURRIER/ ELECTRONICS SYSTEMS DIVISION/ HARRIS CORP./ P.O. BOX 37/ MELBOURNE FL 32901/ (305) 727-4000
DENIS KERMICLE/ WOODLAKE DRIVE EAST APT. D-130/ PALM BAY FL 32905/ (305) 725-2417
ROBERT L. CHEEZEM JR./ 2192 CHERYL CT./ MELBOURNE FL 32935/ (305) 254-6522

S. HAYES/ DEVELOPMENT ENGR. LIBRARY/ SYSTEMS ENGR. LABS/ 6901 W. SUNRISE BLVD./ FT.LAUDERDALE FL 33313/ (305) 587-2900
STEVEMATUS/MARKETPLANNINGAND RESEARCH/SYSTEMSENGINEERINGLABS/6901 W. SUNRISE BLVD./ FT.LAUDERDALEFL 33313/ (305) 587-2900
DONALDB. CROUCH/DEPT.OFCOMPUTERSCIENCE/UNIVOF ALABAMA/P.O. BOX6316/ UNIVERSITYAL 35486/ (205) 348-6363
MIKE D. PESSONEY/ ANALYSTS INTERNATIONAL CORP./ 2317 BOB WALLACE AVE. SEt HUNTSVILLE AL 35805/ (205) 533-4220
SAMUELT. BAKER/1310STONEWALLBLVD./MURFREESBOROTN 37130/ (615) 896-3362 (HOME)/ (615) 741-3531 (OFFICE)
ATTENTION: CHARLES PFLEEGER/ COMPo SCI. DEPT./ U OF TENNESSEE/ KNOXVILLE TN 37916/ (615) 974-5067
A. CHARLES BUCKLEY/ DATA/INFORMATION SYSTEMS/ URBAN STUDIES CENTER/ ALTA VISTA ROAD - GARDENCOURT/ LOUISVILLE KY 40205/ (502) 588-6626

MICHAEL P. ROBINSON/AMERICAN DATA MANAGEMENT SYSTEMS/ 2434 CRITTENDEN DRIVE - SUITE 200/ LOUISVILLE KY 40217/ (502) 637-9765

FRANKJ. BATES JR./ OFFICE OF COMPUTATIONAL SERVICES/ BOWLING GREEN STATE UNIV. / BOWLING GREEN OH 43403/ (419) 372-2911
JOHN M. HEMPHILL/ DEPT. OF COMPUTER SCI./ BOWLING GREEN STATE UNIV./ BOWLING GREEN OH 43403/ (419) 372-2337
RICHARD T. THOMAS/ DEPT. OF COMPUTER SCIENCE/ BOWLING GREEN STATE UNIV./ BOWLING GREEN OH 43403/ (419) 372-2339

R. B. LAKE/ BIOMETRY/ WEARNBUILDING/ CASE WESTERN UNIV HOSPITALS/ CLEVELAND OH 44106/ (216) 444-3491
TOM NUTE/ SYS. & COMPUTER ENG./ CRAWFORD HALL/ CASE WESTERN RESERVE UNIV./ CLEVELAND OH 44106/ (216) 368-2800
STEVEN B. HALL/ 1599 ORCHARDGROVE/ LAKEWOODOH 44107/ (216) 521-4178
ARTHUR C. DARTT/ CHEMISTRY DEPT./ CLEVELAND STATE UNIV./ EUCLID AT EAST 24TH STREET/ CLEVELAND OH 44115/ (216) 687-2473
BILL SHANNON/ 21345 HILLIARD/ ROCKY RIVER OH 44116/ (216) 331-8733
DAVID PESEC/ 21030 MILLER/ EUCLID OH 44119/ (216) 486-4716
ANN C. JOHNSTON/ RD 6/ HAPPY VALLEY RD./ WOOSTER OH 44691
ATTN: BETTE BOLLING-LIBRARIAN/ TECHNICAL INFORMATION CTR-ELECTRONICS/ CINCINNATI MlLACRON INC./ LEBANON OH 45036/ (513) 494-1200
TOM MORAN/ PROCESS CONTROLS DIVISION/ CINCINNATI MILACRON/ MASON RD & RT #48/ LEBANON OH 45036
PHILIP T. HODGE/ 346 KENNEDY/ SCHERERVILLE IN 46375
JOE TORZEWSKI/ 51625 CHESTNUT ROAD/ GRANGER IN 46530/ (219) 272-4670
ANNA BUCKLEY/ WRUBEL COMPUTING CENTER/ INDIANA UNIV./ BLOOMINGTON IN 47401/ (812) 337-1911
ANTHONY J. SCHAEFFER/ 3510 DUNSTAN DR./ BLOOMINGTON IN 47401/ (812) 337-9137
ROBERT L. ARGUS/ 2603 THOMAS AVE. APT 4/ TERRE HAUTE IN 47805
ALLANM. SCHWARTZ/DEPT. OF COMPUTER SCIENCES/ MATH SCIENCES BUILDING/ PURDUE UNIVERSITY/ WEST LAFAYETTE IN 47907/ (317) 743-2473
EDWARD F. GEHRINGER/ DEPT. OF COMPUTER SCIENCE/ MATH SCIENCES BUILDING/ PURDUEUNIVERSITY/ W. LAFAYETTE IN 47907
SAUL ROSEN/ COMPUTING CENTER/ PURDUE UNIV./ W. LAFAYETTE IN 47907/ (317) 494-8235
MARK HERSEY/ 1114 MAIDENLANE COURTAPT. 112/ ANN ARBOR MI 48100/ (313) 994-3934/ (517) 355-1764 (OFFICE)
GREG WINTERHALTER/ HORIBA INSTRUMENTS/ 3901 VARSITY DRIVE/ ANN ARBOR MI 48104/ (313) 973-2171

KARL L. ZINN/ CTR. FOR RESEARCHON LEARNING & TEACHI/ UNIV. OF MICHIGAN/ 109 EAST MADISON STREET/ ANN ARBOR MI 48104/ (313) 763-4410/ 763-0158
CHARLES G. MOORE/ ADP NETWORK SERVICES/ 175 JACKSON PLAZA/ ANN ARBOR MI 48106/ (313) 769-6800
JOHN B. EULENBERG/ COMPo SCI. DEPT./ MICHIGAN STATE U/ EAST LANSING MI 48824/ (517) 353-0831

HARRY G. HEDGES/ DEPT. OF COMPo SCI./ 400 COMPUTER CENTER/ MICHIGAN STATE UNIV/ EAST LANSING MI 48824/ (517) 353-6484

STEVEN L. HUYSER/ USER INFO. CENTER/ 313 COMPUTER CENTER/ MICHIGAN STATE U/ EAST LANSING MI 48824/ (517) 353-1800
MARK RIORDAN/ USER SERVICES/ COMPUTER LABORATORY/ MICHIGAN STATE UNIVERSITY/ EAST LANSING MI 48824/ (517) 353-1800
JACK R. MEAGHER/ COMPUTER SCIENCE AND MATHEMATICS/ WESTERN MICHIGAN UNIV./ KALAMAZOO MI 49008/ (616) 383-0095
AHMED KASSEM/ COMPUTATION CENTER/ 104 COMPUTER SCIENCE/ IOWA STATE UNIV./ AMES IA 50011/ (515) 294-8424
G. STEPHEN HIRST/ 930 FAIRCHILD/ IOWA CITY IA 52240/ (319) 351-5253 (HOME)/ (319) 353-3935 (WORK)

N
N

52242
52302
52402
53149
53201
53219
53705
53706
53719
55057
55057
55066
55105
55108
55112
55112
55112
55165
55337
55343
55343
55391
55404
55404
55413
55414
55414
55418
55420
55427
55427
55429
55435
55436
55437
55455

DONALD L. EPLEY/ DEPT. OF COMPUTER SCIENCE/ UNIV. OF IOWA/ IOWA CITY IA 52242/ (319) 353-5605
DENNIS SUTHERLAND/ 2835 25TH AVE./ MARION IA 52302/ (319) 395-4728
JAMES c. COZZIE/ 254 NORTHPOINTE N.E. - APT. 322/ CEDAR RAPIDS IA 52402

MICHAEL A. BEAVER/ ROUTE 3 BOX 271B/ MUKWONAGOWI 53149/ (414) 728-5531 X249
RICHARD E. NEUBAUER/ JOHNSON CONTROLS INC./ P.O. BOX 423/ MILWAUKEE WI 53201/ (414) 276-9200
JOHN G. DOBNICK/ 3171 S. 83 ST./ MILWAUKEE WI 53219/ (414) 963-5727
EDWARD K. REAM/ 508 FARLEY AVE. - APT. 5/ MADISON WI 53705
LARRY E.TRAVIS/ COMPUTER SCIENCE DEPT./ UNIV OF WISCONSIN - MADISON/ 1210 WEST DAYTON STREET/ MADISON WI 53706/ (608) 262-7971/ (608) 262-1204

LEN LINDSAY/ 5150 ANTON DR. #212/ MADISON WI 53719
CARL HENRY/ COMPUTER CENTER/ CARLETON COLLEGE/ NORTHFIELD MN 55057/ (507) 645-4431 XS04
TIMOTHY W. HOEL/ ACADEMIC COMPUTER CENTER/ ST. OLAF COLLEGE/ NORTHFIELD MN 55057/ (507) 663-3097
TERRY MYHRER/ 1324 EASTAVENUE/RED WING MN 55066

ATTN: COMPUTING SERVICES/ MACALESTER COLLEGE/ 1600 GRAND AVE/ ST. PAUL MN 55105/ (612) 647-6171
JAMES KREILICH/ 1408 ALBANY AVE./ ST. PAUL MN 55108/ (612) 644-1375

ED KATZ/ 3564 N. SNELLING/ ARDEN HILLS MN 55112/ (612) 636-3472
W. B. CHAPIN/ ARM 242/ CONTROL DATA CORP./ 4201 N. LEXINGTON/ ST. PAUL MN 55112/ (612) 483-4673
MARK RUSTAD/ 585 HARRIET AVE #213/ ST. PAUL MN 55112/ (612) 483-0589/ (612) 376-1143 (WORK)
ROBERTA. LAWLER/MS U2M23/ UNIVAC/ P.O. BOX 3525/ ST. PAULMN 55165/ (612) 456-3109
LARRY w. SMITH/ 125 RIVER WOODS LN./ BURNSVILLE MN 55337
ROBERTG. LANGE/ MN 11-2120/ HONEYWELLINC./600 2ND ST. NE/ HOPKINS MN 55343/ (612) 542-4925
ROSS D. SCHMIDT/ MS MNll-2120/ HONEYWELLINC./600 2ND STREET NE/ HOPKINS MN 55343/(612) 542-6741
GREG KEMNITZ/ 1539 CLARE LANE/ WAYZATA MN 55391/ (612) 473-6123
JON G. KLASEN/ 911 22ND AV. SO. #375/ MINNEAPOLIS MN 55404/ (612) 339-4170
RICKL. MARCUS/ 1609 11TH AVE. S./ MINNEAPOLIS MN 55404/ (612) 339-1638
BELLE P. SHENOY/ MS MN17-3670/ HONEYWELLINC./ 2600 RIDGEI~AYROAD/ MINNEAPOLIS MN55413/(612) 378-5418
ATTN:KHK/ 330 11TH AVE. S.E./ MINNEAPOLIS MN 55414/ (612) 331-2133
WALT PERKO/ 727 15TH AVE. S.E./ MINNEAPOLIS MN 55414/ (612) 331-6984
BOB PETERSON/ 2415 POLK ST. NE/ MINNEAPOLIS MN 55418/ (612) 789-2393
JOHN ALSTRUP/ INTERDATA CORP./ 10800 LYNDALE AVE.SOUTH- SUITE 130/ BLOOMINGTON MN 55420/ (612) 884-1757
HUGO MEISSER/ 3021 WISCONSIN AVE. N./ CRYSTAL MN 55427/ (612) 482-3052
DAVID PERLMAN/ 8309 NORTHWOOD PKWY./ NEW HOPE MN 55427/ (612) 546-2154
DAVID L. PETERSON/ 6301 UNITY AVE. NO./ BROOKLYN CTR MN 55429
DANIEL E. GERMANN/ 6813 BROOK DRIVE/ EDINA MN 55435/ (612) 941-1082
JOHN FITZSIMMONS/ 5025 YVONNE TERRACE/ EDINA MN 55436/ (612) 926-8954
DENNIS NICKOLAI/ MNAOZA/ CONTROL DATA CORPORATION/ 5001 W. 80TH ST./ BLOOMINGTON MN 55437/ (612) 830-6903
ATTENTION: BOB JARVIS/ SCH. OF DENTISTRY/CLINICAL SYS. DIV./ 8-440 HEALTH SCIENCE UNITA/ U OF MINNESOTA/ EAST BANK/MINNEAPOLISMN 55455

(612) 376-4131
KEVIN FJELSTED/ UNIVERSITY COMPUTER CENTER/ 227 EXP ENGR/ U OF MINNESOTA/ EAST BANK/ MINNEAPOLISMN 55455/ (612) 373-4181
PAULETTE D. GENES/ UNIVERSITY COMPUTER CENTER/ 227 EXP. ENGR./ UNIV. OF MINNESOTA/ EAST BANK/ MINNEAPOLISMN 55455/ (612) 376-5262
SARA K. GRAFFUNDER/ UNIVERSITY COMPUTER CENTER/ 227 EXP. ENGR./ U OF MINNESOTA/ MINNEAPOLIS MN 55455/ (612) 376-1637

THEA D. HODGE/ UNIVERSITY COMPUTER CENTER/ 227 EXP. ENGR./ UNIV OF MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 373-4599
DAN LALIBERTE/ UNIVERSITY COMPUTER CENTER/ 227 EXP. ENGR./ U OF MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 373-4181
MICHAEL PRIETULA/ MGMT. SCIENCES DEPT./ 773 BA/ U OF MINNESOTA/ WEST BANK/ MINNEAPOLIS MN 55455/ (612) 376-7506

STEVEN A. REISMAN/ UNIVERSITY COMPUTER CENTER/ 227 EX/ UNIV OF MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 376-1762

J. B. ROSEN/ 114 LIND HALL/ U OF MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 373-0133

TIMOTHY J SALOl UNIVERSITY COMPUTER CENTER/ LAUDERDALE/ U OF MINNESOTA/ MINNEAPOLIS MN 55455/ (612) 376-5607

G. MICHAELSCHNEIDER/ C.SCI. DEPT./ 114 LINDHALL/U OF MINNESOTA/ EAST BANK/ MINNEAPOLIS MN 55455/ (612) 373-7582
ANDY LOPEZ/ COMPUTER CENTER/ U OF MINNESOTA - MORRIS/ MORRIS MN 56267/ (612) 589-1665 X321
R. WARREN JOHNSON/ DEPT. OF MATH AND COMPo SCI./ MS-149/ ST. CLOUD STATE U/ ST. CLOUD MN 56301/ (612) 255-2147

PAUL J. WOZNIAK/R. R. 1/ OGEMAMN 56569/ (612) 376-1137
JOHN LUSHBOUGH/ COLLEGE OF ARTS & SCIENCES/ UNIV. OF SOUTH DAKOTA/ VERMILLION SD 57069/ (605) 677-5221
CATHLINE s. HILLEY/ COMPUTER CENTER/ UNIV. OF NORTH DAKOTA/ p.O.BOX 8218 UNIVERSITY STATION/ GRAND FORKS ND 58201/ (701) 777-3171

ROBERT E. NOVAK/ 21 W 551 NORTH AVE. APT. 123/ LOMBARD IL 60148/ (312) 629-3512
STEVENA. VERE/ 1635 S. MICHIGANAVE. APT. 307/ VILLA PARK IL 60181/ (312) 627-2965
ARNOLD LAU/ COMPUTER SCIENCE DEPT./ NORTHWESTERN UNIV./ EVANSTON IL 60201/ (312) 463-2694
ATTENTION: J. M. KNOCK/ BLDG 203-CII0/ ARGONNE NATIONAL LABORATORY/ 9700 SOUTH CASS AVENUE/ ARGONNE IL 60439/ (312) 739-7711
TERRY E. WEYMOUTH/ 4702 BEAU BIEN LANE EAST/ LISLE IL 60532

TONY CHMIEL/ 3900 WEST 84TH PLACE/ CHICAGO IL 60652
ROBERT D. GUSTAFSON/ SIMULATION SPECIALISTS INC./ 609 WEST STRATFORD PLACE/ CHICAGO IL 60657

JON SINGER/ 1540 W. ROSEMONT #3E/ CHICAGO IL 60660/ (312) 262-8545

ATTENTION: MIKE WILDE - CONSULTING OFF/ COMPUTING SERVICES OFFICE/ 138 DIGITAL COMPUTER LAB/ U OF ILLINOIS/ URBANA IL 61801/ (217) 333-6133
BOB LIDRAL/ 406 EAST GREEN STREET - APT. 104/ URBANA IL 61801/ (217) 367-5372

M. D. MICKUNAS/ 297 DCL/ U OF ILLINOIS/ URBANA IL 61801/ (217) 333-6351

ATTN:L. LAWRIE/CERL- SOC/ U.S. ARMY/ P.O. BOX 4005/ CHAMPAIGN IL 61820/ (217) 352-6511
PETER DEWOLF/310 W. EUREKA/CHAMPAIGNIL 61820/(217) 356-1548 (HOME)/ (217) 333-8252 (WORK)
MIKE HARRIS/ APT. 4/ 309 WEST EDWARDS/ SPRINGFIELD IL 62704/ (217) 789-7669 (HOME)/ (217) 782-0014 (WORK)

55455
55455
55455

55455
55455

55455
55455
55455

55455
55455
56267
56301
56569
57069
58201
60148
60181
60201
60439
60532

60652
60657
60660
61801
61801
61801
61820
61820
62704

N
\.;-1

62901

63188
64108
64108
64108
65201
65401
66045
66045
66045
66045

66506
67401
68154
70118
70504
70803
71201
72554
73019
73019
73019
74102
74145
75023
75062
75080
75081
75081
75229
75235
75275
75961
76012
77005
77005
77027

JAMES W. BUTLER/ COMPUTER SERVICES/ WHAM BLDG./ SOUTHERN ILLINOIS UNIV./ CARBONDALE IL 62901/ (618) 453-4361

JOHN K. MCCANDLISS/ ATTN: DRXAL-TF(JOHN K. MCCANDLISS)/ ALMSA/ P.O. BOX 1578/ ST. LOUIS MO 63188/ (314) 268-5361/ (314) 268-5362
LARRY D. LANDIS/ UNITED COMPUTING SYSTEMS/ 2525 WASHINGTON/ KANSAS CITY MO 64108/ (816) 942-6063
JEFFERYM. RA2AFSKY/UNITEDCOMPUTINGSYSTEMSINC./500W. 26TH STREET/KANSASCITYMO 64108/(816) 221-9700
ROBERT R. TEISBERG/ UNITED COMPUTING SYSTEMS/ 2525 WASHINGTON/ KANSAS CITY MO 64108/ (816) 221-9700 X431
DIANE L. KRAMER/ CAMPUS COMPUTING CENTER/ UNIV. OF MISSOURI-COLUMBIA/ 100 LEFEVRE/ COLUMBIA MO 65201/ (314) 882-6382
HOWARD D. PYRON/ 312 MATH - COMPo SCIENCE/ UNIV OF MISSOURI - ROLLA/ ROLLA MO 65401/ (314) 341-4495
JIM ARNOLD/ COMPUTER SCIENCE DEPT./ 18 STRONG HALL/ KANSAS UNIV./ LAWRENCE KS 66045/ (913) 864-4482
CHARLES J. BANGERT/ ACADEMIC COMPUTER CENTER/ UNIVERSITY OF KANSAS/ P.O. DRAWER 2007/ LAWRENCE KS 66045/ (913) 864-4291
STEVENS. MUCHNICK/DEPARTMENTOF COMPUTERSCIENCE/18 STRONGHALL/UNIVOF KANSAS/LAWRENCEKS 66045/(913) 864-4482
GREGORY F. WETZEL/ DEPARTMENT OF COMPo SCI./ 18 STRONG HALL/ UNIVERSITY OF KANSAS/ LAWRENCE KS 66045/ (913) 864-4482
ALAN E. SKIDMORE/ COMPUTER SCIENCE DEPT./ KANSAS STATE UNIV./ MANHATTAN KS 66506/ (913) 532-6350
KEARNEY HILL/ 857 NAVAJO/ SALINA KS 67401/ (913) 825-2971
JERRY L. RAY/ 4540 SOUTH 84TH STREET/ OMAHA NE 68154/ (402) 592-3520
DANIEL B. KILLEEN/ COMPUTER LAB/ RICHARDSON BLDG./ TULANE UNIVERSITY/ 6823 ST. CHARLES AVE/ NEW ORLEANS LA 70118/ (504) 865-5631

DAVID LANDSKOV/ UNIV OF SOUTHWESTERN LOUISIANA/ USL BOX 4-4154/ LAFAYETTE LA 70504/ (318) 233-7949
K. P. LEE/ DEPT. OF COMPo SCI./ 102 NICHOLSON/ LOUISIANA STATE UNIVERSITY/ BATON ROUGE LA 70803/ (504) 388-1495
KENNETH R. DUCKWORTH/ FORD BACON AND DAVIS/ 3901 JACKSON STREET/ MONROE LA 71201
DAN REED/ BOX 22/ MAMMOTR SPRING AR 72554
RICHARDV. ANDREE/MATHDEPT./UNIVOF OKLAHOMA/NORMANOK 73019/ (405) 325-3410
R. A. MORRIS/ MATH DEPT/ UNIV OF OKLAHOMA/ NORMAN OK 73019/ (405) 325-3391

JAMES D. WHITE/ COMPUTING SERVICES/ UNIV. OF OKLAHOMA/ 1610 NEWTON DRIVE/ NORMAN OK 73019/ (405) 325-1882
KENNETH R. DRIESSEL/ AMOCO RESEARGH/ P.O. BOX 591/ TULSA OK 74102
CONRAD SUECHTING/ DATA GENERAL CORP./ 9726 E. 42ND ST. SUITE 200/ TULSA OK 74145
ROGER R. BATE/ 3428 MISSION RIDGE/ PLANO TX 75023/ (214) 238_3052
GRANTCOLVIN/MANAGEMENTSHARESINC./2121 WEST AIRPORT FREEWAY - SUITE 660/ IRVING TX 75062/ (214) 255-7121

E. J. SAMMONS/ M/S 406-246/ ROCKWELL INTERNATIONAL/ 1200 N. ALMA/ RICHARDSON TX 75080/ (214) 690-5802
FRANK DUNN/ 1912 E. SPRING VALLEY ROAD/ RICHARDSON TX 75081/ (214) 231-3423

GEORGE LIGLER/ 626 GOODWINDR./RICHARDSONTX 75081/(214) 238-5311
DAVID E. BREEDING/ HARRIS DATA COMM DIV/ 11262 INDIAN TRAIL/ DALLAS TX 75229/ (214) 620-4294
W. J. PERVIN/REGIONALCOMPUTERCENTER/UNIV.OF TEXAS-DALLAS/5601 MEDICALCENTERDRIVE/DALLASTX 75235/(214)688-2383
JANETTAYLOR/USER SERVICES/COMPUTERCENTER/SOUTHERNMETHODISTUNIVERSITY/P.O.BOX 262/DALLASTX 75275/(214) 692-2900
JESSE D. MIXON/ DEPT. OF ACCOUNTING/ STEPHEN F. AUSTIN STATE UNIV/ P.O. BOX 3005 SFA STATION/ NACOGDOCHES TX 75961/ (713) 569-3105/ 569-2508
ROSS F. HOUSHOLDER/ 1725 BROOKS DRIVE/ ARLINGTON TX 76012/ (817) 461-1149
JOHNNIE BUZEK JR./ SOFTWARE RESOURCES/ P.O. BOX 25210/ HOUSTON TX 77005/ (713) 521-0366
THOMAS E. SHIELDS/ SOFTWARE RESOURCES/ 2715 BISSONNET _ SUITE 212/ HOUSTON TX 77005/ (713) 521-0366

CHARLES L. HETHCOAT 111/ C/O PIPELINE TECHNOLOGISTS INC./ 5251 WESTHElMER P.O. BOX 22146/ HOUSTON TX 77027/ (713) 622-3456 X334 (WORK)

(713) 626-7737 (HOME)
JOHN EARL CRIDER/ 2918 KEVIN LANE/ HOUSTON TX 77043/ (713) 241-4501
EASTON BEYMER/ SAM HOUSTON STATE UNIV./ P.O. BOX 2821/ HUNTSVILLE TX 77341
CHARLESMATTAIR/AGENCYRECORDSCONTROL/P.O.BOX 1009/ BRYAN TX 77801/(713) 693-6122 X253
UDO POOCH/INDUSTRIALENGINEERINGDEPT./TEXASA & M UNIV./COLLEGESTATIOTX 77843/(713) 845-5531
MIKE GREEN/ DATAPOINT CORPORATION/ 9725 DATAPOINT DRIVE/ SAN ANTONIO TX 78284/ (512) 699-7345
TOM KEEL/ COMPUTATION CENTER/ UNIV. OF TEXAS - AUSTIN/ AUSTIN TX 78712/ (512) 471-3242
DAVID W. HOGAN/ 4312 FAR WEST BLVD/ AUSTIN TX 78731/ (512) 258-7837

WILLIAM L. COHAGAN/ SUITE 211/ S/B/P & C ASSOCIATES/ 8705 SHOAL CREEK BLVD./ AUSTIN TX 78758/ (512) 458-2276

ATTN: COMPUTER CENTER/ TEXAS TEGH UNIV./ P.O. BOX 4519/ LUBBOCK TX 79409
LEONARD H. WEINER/ DEPT. OF MATH AND COMPo SCI./ TEXAS TECH. UNIV/ P.O. BOX 4319/ LUBBOCK TX 79409/ (806) 742-2571
JOHN TUCKER/ 628 E. N. 16TH ST./ ABILENE TX 79601/ (915) 698-1605
RAYNER K. ROSICH/ 7031 PIERSON ST./ ARVADA CO 80004/ (303) 499-1000 X3109 (WORK)/ (303) 421-0425 (HOME)
GERHARDT C. CLEMENTSON/ DEPT. OF COMPo AND MGMT SCIENCE/ METROPOLITAN STATE COLLEGE/ 1006 11TH STREET BOX 13/ DENVER CO 80204/ (303) 629-3009
P. K. GOVIND/ 850 WESTMOORHEAD CIRCLE - APT. 2-L/ BOULDER CO 80303

R. KEITH NICKEY/ 3580 EVERETT DRIVE/ BOULDER CO 80303/ (303) 494-2847
WILLIAM M. WAITE/ ELECTRICAL ENGINEERING DEPT./ SOFTWARE ENGINEERING GROUP/ UNIVERSITY OF COLORADO/ BOULDER CO 80309/ (303) 492-7204
GEORGE W. ANTHONY/ ANTHONY FARMS/ BOX 632/ BUHL ID 83316/ (208) 326-5703/ (208) 543-5233
JAY WOODS/ BOX 297/ MARSING ID 83639/ (208) 896-4462
ATTN: COMPUTER SCIENCE DEPARTMENT/ 3160 MEB/ UNIV OF UTAH/ SALT LAKE CITY UT 84112/ (801) 581-8224

MIKE LEMON/ COMPUTER SCIENCE DEPT./ 3160 MEB/ UNIVERSITY OF UTAH/ SALT LAKE CITY UT 84112/ (801) 581-8378
GARY LINDSTROM/ COMPUTER SCIENCE DEPT./ UNIV OF UTAH/ SALT LAKE CITY UT 84112/ (801) 581-8224

ED SHARP/ COMPUTER CENTER/ 3116 M.E.B./ U OF UTAH/ SALT LAKE CITY UT 84112/ (801) 581-6575
RICHARD M. WILSON/ BIOMEDICAL ELECTRONICS/ ST. JOSEPH'S HOSPITAL/ P.O. BOX 2071/ PHOENIX AZ 85001/ (602) 277-6611 X3257

ROBERT FOLKS/ SUITE 253/ OMNICOMP INC./ 5150 N. 16TH ST./ PHOENIX AZ 85016/ (602) 264-2475
KIRK D. THOMPSON/ 2321 EAST LOYOLA DRIVE/ TEMPE AZ 85282/ (602) 965-3716 (WORK)

DAVE PEERCY/ BDM CORP./ 2600 YALE BLVD. SE/ ALBUQUERQUE NM 87106
BOB WALSH/ 817 LAFAYETTE DR. NE/ ALBUQUERQUE NM 87106/ (505) 268-1654
BRUCE LINK/ DIVISION 1712/ SANDIA LABORATORIES/ ALBUQUERQUE NM 87115/ (505) 264-1281

en

.,
I"T1
tx::I
;;0
c::
:1>
;;0

-<

77043
77341
77801
77843
78284
78712
78731
78758
79409
79409
79601
80004
80204
80303
80303
80309
83316
83639
84112
84112
84112
84112
85001
85016
85282
87106
87106
87115

.......

c..o
.......
C;)

87115
88003
88047
89154
90007
90007
90020
90036
90066
90250
90266
90274
90278
90278
90278
90278
90402
90403
90405
90406
90501
90733
90801
90803
91101
91101
91104
91126
91203
91307
91330
91342
91360
91367
91405
91601
91604
91711
91775
92014
92093
92093
92110
92127
92152
92324
92335
92507
92626
92627
92634
92634
92644
92646
92669
92680
92680
92704
92704
92705
92713
92713
92714
92714
92714
92714

NANCY RUIZ/ ORG. 5166/ SANDIA LABS/ ALBUQUERQUE NM 87115/ (505) 264-3690
JOSEPH EINWECK/ COMPUTER CENTER/ NEW MEXICO STATE UNIVERSITY/ BOX 3AT/ LAS CRUCES NM 88003/ (505) 646-1443
JOHN TUCKER/ P.O. BOX 2122/ MESILLA PARK NM 88047/ (505) 526-5 544 X64
JOHN WERTH/ DEPT. OF MATH/ UNIV OF NEVADA - LAS VEGAS/ LAS VEGAS NV 89154/ (702) 739-3567

PER BRINCH HANSEN/ COMPUTER SCIENCE DEPT./ UNIV. OF SOUTHERN CALIFORNIA/ UNIVERSITY PARK/ LOS ANGELES CA 90007/ (213) 741-5501
JORGEN STAUNSTRUP/ COMPUTER SCIENCE DEPT./ UNIV. OF SOUTHERN CALIFORNIA/ UNIVERSITY PARK/ LOS ANGELES CA 90007/ (213) 741-5501
KENNETH YOUNG/3311 WEST 3RD ST. APT. 1-319/ LOS ANGELES CA 90020/ (213) 383-9666

WILLIAM MOSKOWITZ/ INSTRUCTIONAL SUPPORT GROUP/ CALIFORNIA STATE UNIVERSITY/ 5670 WILSHIRE BOULEVARD/ LOS ANGELES CA 90036/ (213) 852-5789
LEROY E. NELSON/ 11925 AVONWAY/LOS ANGELES CA 90066/ (213) 397-7390
CHARLES SISKA JR./ TRW DATA SYSTEMS/ 12911 SIMMS AVENUE/ HAWTHORNE CA 90250/ (213) 535-3777
HERBERTE. !tJRRISON/ 1257 2ND STREET/ MANHATTAN BEAC CA 90266
JIM HIGHTOWER/ 4947 BROWNDEER LANE/ RANCHO PALOS V CA 90274/ (213) 541-4662
JAMES L. AGIN/ 2178 BLD. 90/ TRW-DSSG/ ONE SPACE PARK/ REDONDO BEACH CA 90278/ (213) 535-0313

JOHN R. DEALY/ BLDG. R3/1072/ TRWDSSG/ ONE SPACE PARK/ REDONDO BEACH CA 90278/ (213) 535-0833
WILEY GREINER/ 90/2178/ TRW DSSG/ ONE SPACE PARK/ REDONDO BEACH CA 90278/ (213) 535-0313
ROGERA. VOSSLER/ BLDG. 90-2178/ TRW/DSSG/ ONE SPACE PARK/ REDONDO BEACH CA 90278/ (213) 535-0312
WILLIAMS. COOKE/ 503 22ND STREET/ SANTA MONICA CA 90402/ (223) 451-2615
MICHAEL TEENER/ TECHNOLOGY SERVICECORP./ 2811 WILSHIRE BLVD./ SANTA !tJNICA CA 90403/(213) 829-7411 X244
TERRY J. LAYMAN/2039 4TH ST. #106/ SANTA MONICA CA 90405/ (213) 357-2121 X279
ATTN: ELAINE DENTON (41-41)/ SOFTWARE INFORMATION SERVICES/ SY STEM DEVELOPMENT CORP./ 2500 COLORADO AVE./ SANTA MONICA CA 90406
WILLIAM E. FISHER/ 2074 SANTA FE AVENUE/ TORRANCE CA 90501/ (2 13) 328-7193
PAUL RUSSELL/ LOGICON INC./ 255 WEST 5TH ST. P.O. BOX 471/ SAN PEDRO CA 90733/ (213) 831-0611
DAVE SKINNER/ COMMUNICATION MFG. COMPANY/ P.O. BOX 2708/ LONG BEACH CA 90801/ (213) 426-8345
STEVEN L. BRECHER/ 5235 MARINA PACIFICA DR. NORTH KEY 19/ LONG BEACH CA 90803

GURUPREM SINGH KHALSA/ BYTE SHOP OF PASADENA/ 496 SOUTH LAKE A VENUE/ PASADENA CA 91101/ (213) 684-3311
E. E. SIMMONS/ 455 SOUTH OAKLAND AVE/ PASADENA CA 91101/ (213) 687-7047
MILAN KARSPECK/ 1149 NORTH MICHIGAN/ PASADENA CA 91104
LARRY SEILER/I-55 RUDDOCK/CALIFORNIAINST. OF TECHNOLOGY/ PA SADENA CA 91126/ (213) 449-9886
RICHARD DIEVENDORFF/ DEPARTMENT 84F/ IBM/ 620 NORTH BRAND BLVD ./ GLENDALE CA 91203

RHODA P. NOVAK/6736 RANDlWOOD LANE/ CANOGA PARK CA 91307/ (213) 346-1135
JOHNM. MOTIL/DEPT.OF COMPUTERSCIENCE/ CALIFORNIA STATE UNI V./ NORTHRIDGE 'CA 91330/ (213) 885-2193
STERLING WILSON/ 11621 RINCON AVE./ SYLMAR CA 91342
PAULO S. CASTILLO JR./ 385 QUEENSBURY ST./ THOUSAND OAKS CA 91360/ (213) 670-1515 X3100
GEORGE MASSAR/ 6225-102 SHOUP AVE./ WOODLAND HILLS CA 91367/ (213) 346-1883/ (213) 970-5021 (NORTHROP)
L. F. MELLINGER/ 13622 HART ST./ VAN NUYS CA 91405/ (213) 354-2505
LARRY ROBERTSON/ 5651 CASE AVE./ N. HOLLYWOOD CA 91601/ (213) 762-8068
JERRY POURNELLE/ 12051 LAUREL TERRACE DRIVE/ STUDIO CITY CA 91 604/ (213) 762-2256
STANLEY E. LUNDE/ 890 HOOD DRIVE/ CLAREMONT CA 91711/ (714) 62 6~9977
TOMGREER/ 224 N. ALABAMAST./ SAN GABRIEL CA 91775/ (213) 286-8226
JOEL MCCORMACK/ 507 CAMINO DEL MAR/ DEL MAR CA 92014/ (714) 755-8135
KEN BOWLES/ APIS DEPT./ C-021/ U OF CALIFORNIA - SAN DIEGO/ LA JOLLA CA 92093/ (714) 755-7288/ 452-4526
BOB HOFKIN/ APIS DEPT. C-014/ UNIV. OF CALIFORNIA-SAN DIEGO/ LA JOLLA CA 92093

BILL VELMAN/ SCHOOL OF LAW/ UNIV. OF SAN DIEGO/ ALCALA PARK/ S AN DIEGO CA 92110/ (714) 291-6480
WALT FEESER/ MS 401/ BURROUGHS CORP./ 16701 W. BERNARDO DR./ S AN DIEGO CA 92127
MICHAELS. BALL/CODE 632/ NAVAL OCEAN SYSTEMS CENTER/ SAN DIE GO CA 92152/ (714) 225-2365

DAVID H. WELCH/ P.O. BOX 721/ COLTON CA 92324
WALLY SCHNITGER/ C/O INSTRUMENT RESEARCH CO./ P.O. BOX 666/ FONTANA CA 92335/ (714) 546-4474
JOHN DE PILLIS/ 2931 WALDORF DRIVE/ RIVERSIDE CA 92507/ (714) 686-0534 (HOME)/ (714) 787-5002 (WORK)
ATTN: A. S. WILLIAMS

_ LIBRARIAN/ LIBRARY/ TECHNOLOGY MARKETING INC./ 3170 RED HILL AVE./ COSTA MESA CA 92626/ (714) 979-1100
TIM LOWERY/ 2653 SANTA ANA AVE./ COSTA MESA CA 92627
WALTER R. RYPER/ BLDG 604 M/S E212/ HUGHES - GSG/ P.O. BOX 3310/ FULLERTON CA 92634/ (714) 871-3232 X3318

SEYMOUR SINGER/ BLDG 606/M.S. Kl10/ HUGHES AIRCRAFT CO./ P.O. BOX 3310/ FULLERTON CA 92634/ (714) 871-3232 X1167
MARK JUNGWIRTH/ 13318 NEWLAND ST/ GARDEN GROVE CA 92644
BARCLAY R. KNERR/ 9061 CHRISTINE DRIVE/ HUNTINGTON BCH CA 9264 6
TED SHAPIN/5110 E. ELSINORE AV./ ORANGE CA 92669/ (714) 633-0922
ROBERT W. ANDERSON/ 345 W. FIRST APT 38/ TUSTIN CA 92680
GARY DUNCAN/ P.O. BOX 930/ TUSTIN CA 92680
DAVID C. FITZGERALD/ CONTROL DATA CORP./ 3519 W. WARNER AVE./ SANTA ANA CA 92704/ (714) 754-4244
JIM FONTANA/CONTROL DATA CORPORATION/ 3519 W. WARNERAVE./ SANTA ANA CA 92704/ (714) 754-4244
MARK M. SCHNEGG/ PERTEC COMPUTER CORP./ 17112 ARMSTRONG AVE./ IRVINE CA 92705/ (714) 540-8340

RUDY L. FOLDEN/ OPERATING SYSTEMS DEVELOPMENT/ P.O. BOX C-1950 4/ SPERRY UNIVAC/ 2722 MICHELSON DRIVE/ IRVINE CA 92713/ (714) 833-2400
BOB HUTCHINS/ COMPUTER AUTOMATION INC./ 18651 VON KARMAN/ IRVINE CA 92713/ (714) 833-8830 X335
ALEX BRADLEY/ STANDARD SOFTWARE SYSTEMS/ 17931 'J' SKY PARK/ IRVINE CA 92714

WILLIAM E. DROBISH/ ADVANCED DEVELOPMENT/ SILICON SYSTEMS INC. / 16692 HALE AVENUE/ IRVINE CA 92714/ (714) 979-0941
PAUL KELLY/ EDUCATIONAL DATA SYSTEMS/ 1682 LANGLEY AVENUE/ IRV INE CA 92714/ (714) 556-4242
JOHN S. CONERY/ PERTEC COMPUTER CORP./ 17112 ARMSTRONG AVE./ SANTA ANA CA 92714/ (714) 540-8340

--
(I)

-n
rTl
tT.1
;::0

c::

::>
;::0

-<

1-'
LO

"'-J
oc

N
\J1

92715
92803
92807
93017
93105
93111

93407
94010
94022
94025
94035
94086
94086
94086
94086
94088
94109
94112
94301
94303
94304
94304
94306
94404
94521
94546
94550
94563
94611
94701
94701
94702
94704
94707
94708
94709
94720
94720
94801
94804
94901
95005
95014
95014
95014
95030
95030
95035
95050
95050
95051
95051
95064
95120
95131
95133
95153

95404
95521
97077
97077
97077
97077
97077
97077
97201

WILLIAM J. EARL/ 10 BANYAN TREE LANE/ IRVINE CA 92715/ (714) 552-1543
C. L. HORNEY/ MICROELECTRONIC DEVICE DIV./ D/832-RC27/ ROCKWELL INTERNATIONAL/ P.O. BOX 3669/ ANAHEIM CA 92803
DAN MARCUS/ GTE INFORMATION SYSTEMS/ 5300 E. LA PALMAAVE./ ANAHEIMCA 92807/ (714) 524-3131
BILL DODSON/ BURROUGHS CORP./ 6300 HOLLISTER/ GOLETA CA 93017/ (805) 964-6881
DENNIS R. AU.STIN/26 WEST JUNIPERO STREET/ SANTA BARBARA CA 93105/ (805) 962-7320
ANDYHARRINGTON/72 SOUTH PATTERSON #207/ SANTA BARBARA CA 93111/ (805) 964-6881 (WORK)/ (805) 967-4235 (HOME)
NEIL W. WEBRE/ DEPT. OF COMPo SCI. AND STAT./ CALIF. POLY. STATE UNIV./ SAN LUIS OBISP CA 93407/ (805) 546-2986
D. B. ANDERSON/ 280 BELLA VISTA DRIVE/ HILLSBOROUGH CA 94010
ATTN: NEWBERRY MICROSYSTEMS/ 24225 SUMMERHILL AVE/ LOS ALTOS CA 94022/ (415) 948-8007
BOB ALBRECHT/ DYMAX/ P.O. BOX 310/ MENLO PARK CA 94025/ (415) 323-6117
CARL S. ROSENBERG/ AMES RESEARCH CENTER/ MAIL STOP 239-19/ MOFFETT FIELD CA 94035/ (415) 965-6436 (WORK)/ (415) 967-7000 (HOME)

GEORGE LEWIS/ R & D/ BASIC TIMESHARING INC./ 870 WEST MAUDE AVENUE/ SUNNYVALE CA 94086/ (408) 733-1122
FLEMINGM. OLIVER/213WEDDELL- APT. 12/ SUNNYVALE CA 94086/ (408) 734-8771

GERALD STEINBACK/ SYSTEMS PROGRAMMING/ SIGNETICS CORP./ 811 EAST ARQUES AVE./ SUNNYVALE CA 94086/ (408) 739-7700 X2055
ANDREW HARRIS ZIMMERMAN/ 550 NORTH FAIR OAKS AVE. APT. 14/ SUNNYVALE CA 94086/ (408) 732-8109
ROY E. BOLLINGER/ DEPT. 1965/ BLD 529/ LOCKHEED/ P.O. BOX 504/ SUNNYVALE CA 94088/ (408) 742-3182
ERIC SMALL/ ERIC SMALL AND ASSOCIATES/ 680 BEACH STREET/ SAN FRANCISCO CA 94109/ (415) 441-0666
TURNEY C. STEWARD/ 201 DRAKE ST./ SAN FRANCISCO CA 94112
JAN DEDEK/ 505 LOWELL AVE./ PALO ALTO CA 94301/ (415) 321-9298
C. E. DUNCAN/ 865 THORNWOOD DRIVE/ PALO ALTO CA 94303
LINDA E. CROLEY/ BNR INC./ 3174 PORTER DR./ PALO ALTO CA 94304/ (415) 494-3942 X40 OR 61

ROBERT A. FRALEY/ HEWLETTPACKARDLABS/ 3500DEER CREEKRD./pALO ALTO CA 94304/ (415) 494-1444
DAVID ELLIOT SHAWl SUITE 605/ STRUCTURED SYSTEMS CORPORATION/ 2600 EL CAMINO REAL/ PALO ALTO CA 94306/ (415) 321-8111
BRUCE BARRETT/ 930 LIDO LANE/ FOSTER CITY CA 94404/ (415) 349- 8724
PAUL GODFREY/ 5545 MARYLAND DR./ CONCORD CA 94521

DAVID F. FRICK/ 5964 HIGHWOOD RD./ CASTRO VALLEY CA 94546/ (415) 537-9536

S. T. HEIDELBERG/ DIVISION 8323/ SANDIA LABORATORIES/ LIVERMOR E CA 94550/ (415) 455-2179

DAVID CLINGERMAN/ 63 LOST VALLEY DRIVE/ ORINDA CA 94563/ (415) 834-3030
ROBERT C. NICKERSON/ 6966 COLTON BLVD/ OAKLAND CA 94611

JOSEPH N. JOHNSON/ P.O. BOX 92/ BERKELEY CA 94701

JOHN P. MCGINITIE/ P.O. BOX 655/ BERKELEY CA 94701

TIMOTHY DAVID MCCREERY/ P.O. BOX 2423/ BERKELEYCA 94702/ (415) 527-2774
MARK ZIMMER/ #10 2750 DWIGHT AVE/ BERKELEY CA 94704
DAVE BAASCH/lOll FOUNTAIN WALK/ BERKELEY CA 94707/ (415) 525- 3458
MAURICE MCEVOY/ 1212 QUEEN'S ROAD/ BERKELEY CA 94708/ (415) 843-8260
PETER LINHARDT/ 1890 ARCH STREET - APT. 202/ BERKELEY CA 94709/ (415) 841-6917

ATTN: LIBRARY/ LAWRENCE BERKELEYLAB/ 134 BLDG 50/ UNIV OF CAL IFORNIA/ BERKELEY CA 94720
WILLETT KEMPTON/ LANGUAGE BEHAVIOR RESEARCH LAB/ UNIVERSITY OF CALIFORNIA/ 2220 PIEDMONT AVE./ BERKELEY CA 94720
HARRY R. CHESLEY/ 400 WEST RICHMOND/ POINT RICHMOND CA 94801/ (415) 233-8220
CARROLL E. BUTTERFIELD/ ELECTRONICS DIVISION/ BADGER METER INC./ 150 EAST STANDARD AVENUE/ RICHMOND CA 94804/ (415) 233-8220
ERNEST W. JONES/59 BILLOU STREET/ SAN RAFAEL CA 94901
WARREN VAN CAMP/ 485 PARK DR./ BEN LOMOND CA 95005/ (408) 336- 5654
ATTN: ENGINEERING LIBRARY/ FOUR-PHASE SYSTEMS INC./ 10700 NORTH DE ANZA BLVD./ CUPERTINO CA 95014/ (408) 255-0900 X2694
ARDON R. CORDI DATREX CORP./ 21050 MCCLELLAN ROAD - SUITE 1/ CUPERTINO CA 95014/ (408) 996-2551
BOB PUETTE/ DATA SYSTEMS DIVISION/ HEWLETT-PACKARD CO./ 11000 WOLFE ROAD/ CUPERTINO CA 95014/ (408) 257-7000

STAN HEAD/ 19270 RAINERI LANE/ LOS GATOS CA 95030/ (408) 353-3055
TERRY THOMAS/ 24740 MILLER HILL RD./ LOS GATOS CA 95030/ (415) 965-6436
ROB MEANS/ 1421 YELLOWSTONE/ MILPITAS CA 95035/ (408) 262-0420

JOHN DENNIS COUCH/ GSD/ HEWLETT-PACKARD/ 5303 STEVENS CREEK BLVD./ SANTA CLARA CA 95050/ (408) 249-7020 X2949
E. HAROLDWILLIAMS/SYSCOM/3058-B SCOTTBLVD./SANTACLARACA 95050/ (408) 246-2437
JOHN DOERR/ INTEL CORPORATION MCD/ 3065 BOWERS AVENUE/ SANTA CLARA CA 95051/ (408) 987-7351
R. STEVEN GLANVILLE/ 100 BUCKINGHAM DR. APT 238/ SANTA CLARA CA 95051/ (408) 241-6294

MICHAEL FAY/ INFORMATION SCI. DEPT./ UNIV. OF CALIFORNIA - SANTA CRUZ/ SANTA CRUZ CA 95064/ (408) 429-4043
THOMAS A. ROLANDER/ 21950 MCKEAN ROAD/ SAN JOSE CA 95120/ (408) 378-2014

D. H. SPRINGER/ COMPUTER SYSTEMS DIVISION/ ANDERSON JACOBSON INC./ 521 CHARCOT AVENUE/ SAN JOSE CA 95131/ (408) 263-8520
JOHN H. SPANTON/ 2351 RAVINE DRIVE/ SAN JOSE CA 95133/ (408) 734-7145

TOM PITTMAN/ ITTY BITTY COMPUTERS/ P.O. BOX 23189/ SAN JOSE CA 95153
GARY LOWELL/ 2625 HIDDEN VALLEY/ SANTA ROSA CA 95404/ (707)\ 544-6373

ATTN: DIRECTOR / INST. RESEARCH/ ADP/ HUMBOLDT STATE UNIVERSITY/ ARCATA CA 95521

ATTN: MANUFACTURING COMPUTER GROUP/ DS 60-171/ TEKTRONIX INC./ P.O. BOX 500/ BEAVERTON OR 97077/ (503) 638-3411 X2710
TERRY HAMM/M.S. 60-456/ TEKTRONIX INC./ P.O. BOX 500/ BEAVERTON OR 97077/ (503) 638-3411 X2579
RANDY HODNETT/ MS 39-007/ TEKTRONIX INC./ P.O. BOX 500/ BEAVERTON OR 97077/ (503) 644-0161

GREG JOHNS/ MS 39-007/ TEKTRONIX INC./ P.O. BOX 500/ BEAVERTON OR 97077/ (503) 644-0161
LYNN SAUNDERS/ MS 39-135/ TEKTRONIX INC./ P.O. BOX 500/ BEAVERTON OR 97077/ (503) 644-0161 X6640

WAYNE VYROSTEK/ MS 74-329/ TEKTRONIX INC./ P.O. BOX 500/ BEAVERTON OR 97077/ (503) 644-0161
ROBERT D. PERRY JR./ 255 SW HARRISON ST. APT. 5-D/ PORTLAND OR 97201/ (503) 222-6654

C/)

,-

f~

LD

'J
CO

N
CT1

97213
97221
97229
97330
97330
97401
97440
98008
98033
98040
98043
98109
98195
98225
98401
98632
98926
99210
99258

2006 AUSTRALIA
2006 AUSTRAL IA
2006 AUSTRALIA
2308 AUSTRALIA
2308 AUSTRALIA
2308 AUSTRALIA
2600 AUSTRALIA
3000 AUSTRALIA

3052 AUSTRALIA
3052 AUSTRALIA

3072 AUSTRALIA
3165 AUSTRALIA
4001 AUSTRALIA
4067 AUSTRALIA
5001 AUSTRALIA
5063 AUSTRALIA
5098 AUSTRALIA
6102 AUSTRALIA
7001 AUSTRALIA

A-1040 AUSTRIA
A-1150 AUSTRIA
B-1050 BELGIUM
B-1170 BELGIUM
B-1180 BELGIUM

H3C 3J7 CANADA
H3S 1J6 CANADA

K1 S 5B6 CANADA
K2A 1T2 CANADA
L4W 1TO CANADA
L5N 1KT CANADA
L5N 1KT CANADA
L5N 1K7 CANADA
M4B 2E5 CANADA
M4N 1A4 CANADA
M4Y 1P9 CANADA
M5P 2C3 CANADA
M5S 1A4 CANADA
M9W 5R8 CANADA
N2J 4H2 CANADA

N2L 3G1 CANADA
N2L 3G1 CANADA
N6A 4N5 CANADA

QUEBEC CANADA

V6T 1W5 CANADA
V6X 2Z9 CANADA

BRIAN HANSEN! 2426 N.E. 57TH AVE. APT #3! PORTLAND OR 97213! (503) 284-3537
ATTN: OREGON MINI-COMPUTER SOFTWARE IN! 4015 SW CANYON ROAD! PORTLAND OR 97221! (503) 226-7760
DAVID ROWLAND! ELECTRO SCIENTIFIC INDUSTRIES! 13900 N.W. SCIEN CE PARK DRIVE! PORTLAND OR 97229! (503) 641-4141
DAVID F. CAUTLEY! DEPT. OF COMPUTER SCIENCE! GENERAL INFORMATION SYSTEMS INC.! 983 N.W. SPRUCE ST.! CORVALLIS OR 97330! (503) 754-1171
GARY OLIVER! P.O. BOX 826! CORVALLIS OR 97330! (503) 753-1770
H. MARC LEWIS! REGIONAL INFORMATION SYSTEMS! 125 E 8TH! EUGENE OR 97401! (503) 687-4559
KENT LOOBEY! FARWEST STEEL CORP.! P.O. BOX 889! EUGENE OR 9744 O! (503) 686-2000
KEITH MITCHELL! 16213 SE 28 PL! BELLEVUE WA 98008
KENNETHE. CHARLTON!12929 111TH PLACE N.E.! KIRKLAND WA 98033! (206) 822-9348
DONNAFAYE FINGER! 4108 78TH AVE SEt MERCER ISLAND WA 98040! (2 06) 232-2428

GARY S. ANDERSON! JOHN FLUKE MFG. CO. INC.! P.O. BOX 43210
-
M.S. 29! MOUNTLAKE TERR WA 98043! (206) 774-2296

PETER A. ARMSTRONG!DIGITAL DATA SYSTEMS! 1113 DEXTER AVE. N.! SEATTLE WA 98109! (206) 282-2323
HELLMUT GOLDE! DEPT. OF COMPo SCI.! FR-35! U OF WASHINGTON! SEATTLE WA 98195! (206) 543-9264
ROBERT B. FINCH! 910 N. LAKE SAMlSH DR.-APT. 30! BELLINGHAM WA 98225! (206) 734-0781
ATTN: ENGINEERING LIBRARY! PT 1-14! WEYERHAUSER CO.! TACOMA WA 98401! (206) 572-9000 X495
BUZZ HILL! EYEDENTIFY INC.! P.O. BOX 2006! LONGVIEW WA 98632! (206) 423-3281
F. STANLEY!COMPUTER SERVICES! CENTRAL WASHINGTON UNIV.! ELLEN BURG WA 98926
FRED J. MILLER! BUSINESS COMPUTER SYSTEMS! DATACOMP! P.O. BOX 1087! SPOKANE WA 99210! (509) 456-6908
HOUSTON P. LOWRY! GONZAGA UNIVERSITY! STUDENT BOX 816! SPOKANE WA 99258

TONY J. GERBER! BASSER DEPT. OF COMPUTER SCIENCE! UNIVERSITY OF SYDNEY! SYDNEY N.S.W. 2006! AUSTRALIA! 692 3216
CARROLLMORGAN!BASSERDEPT.OF COMPUTERSCIENCE! UNIV. OF SYDNEY! SYDNEYN.S.W. 2006! AUSTRALIA! 692 3216
BRIANG. ROWSWELL!UNIVERSITYCOMPUTINGCENTREH08!UNIVERSITYOF SYDNEY!SYDNEYN.S.W.2006!AUSTRALIA! (02) 692-3491
ATTN: SERIALS DEPARTMENT!AUCHMUTYLIBRARY! UNIVERSITY OF NEWCASTLE! NEWCASTLEN.S.W. 2308! AUSTRALIA! 685391
J. A. CAMPBELL!MATHEMATICSDEPT.! UNIVERSITY OF NEWCASTLE!NE WCASTLEN.S .W. 2308! AUSTRALIA! 685 657
P. SIMON! DEPT OF MATHEMATICS!UNIV. OF NEWCASTLE!NEWCASTLEN .S.W. 2308! AUSTRALIA
N. D. H. HAlMJND!FLEETMAINTENANCE!NAVYOFFICEOF UNDERWATERWEAPONS!CANBERHAA.C.T.2600!AUSTRALIA
Q. VAN ABBE! COMPUTER CENTRE! ROYAL MELBOURNE INSTITUTE OF TECHNOLOG! 124 LATROBE STREET! MELBOURNE VICTORIA 3000! AUSTRALIA! (03) 341-2467

(03) 341-2292
ATTN: LIBRARIAN! SCHOOL OF MATHEMATICAL SCIENCES! RICHARD BERRy BUILDING! UNIVERSITY OF MELBOURNE! PARKVILLE VICTORIA 3052! AUSTRALIA
PETERRICHARDSON!COMPUTERSCIENCEDEPT.!UNIV.OF MELBOURNE!PARKVILLEVICTORIA3052!AUSTRALIA!(03)3415225
M.RAHILLY! 2 RITASTREET! EAST PRESTON VICTORIA 3072! AUSTRALIA
GEOFFREYA. CLEAVE! 18 NEIL COURT! E. BENTLEIGH VICTORIA 3165! AUSTRALIA
w. J. G. FISHER! QUEENSLAND INST. OF TECHNOLOGY! G.P.O. BOX 24 34! BRISBANE QUEENSLAND 4001! AUSTRALIA! 221-2411 X423
D. B. JOHNSTON!DEPT. OF COMPUTER SCIENCE! UNIV. OF QUEENSLAND! ST. LUCIA QUEENSLAND 4067! AUSTRALIA! 07!3706930
B. KIDMAN! DEPT OF COMPUTER SCIENCE! UNIVERSITY OF ADELAIDE! G PO BOX 498! ADELAIDE S.A. 5001! AUSTRALIA! 223 4333
I. N. BLAVINS! 40 WOODFIELDAVENUE! FULLARTONS.A. 5063! AUSTRALIA
CHRIS A. RUSBRIDGE! SAENET! SOUTH AUSTRALIA INSTITUTE OF TECHNOLOG! P.O. BOX I! INGLE FARM S.A. 5098! AUSTRALIA! AUSTRALIA 08-260-2055
D. P. HODGSON!DEPT. OF MATHEMATICSAND COMPUTER STUD! WESTERN AUSTRALIAN INSTITUTE OF TECHNO! HAYMAN ROAD! SOUTH BENTLEY W.A. 6102! AUSTRALIA
A. H. J. SALE! DEPT. OF INFORMATION SCIENCE! UNIVERSITY OF TASMANIA! BOX 252C! HOBART TASMANIA 7001! AUSTRALIA! (002) 23 0561

ATTN: INST. FUER INFOIDIATIONSSYSTEME! TECHNISCHE UNIVERSITAT W IEN! WIEN A-1040! AUSTRIA
KONHAD MAYER! REICHSAPFELG 13!8! VIENNA A-1150! AUSTRIA! (02254) 201 781
o. BEAUFAYS! MATHEMATIQUES APPLIQUEES! C P I 165! UNIVERSITE L IBRE DE BRUXELLES! AVENUE F.-D. ROOSEVELT50! BRUXELLES B-1050! BELGIUM

ALAIN PIROTTE! MBLE!RESEARCH LABORATORY! AVENUEEM. VAN BECELAERE 2! BRUSSELS B-1170! BELGIUM! 673.41.90! 673.41.99
MARTINE DE GERLACHE! CENTRE DE CALUL! INSTITUTE ROYAL METEOROL OGIQUE! 3 AVENUE CIRCULAIRE! BRUXELLES B-1180! BELGIUM
PATRICK WARD! CENTRE DE CALCULI UNIVERSITE DE MONTREAL! C.P. 6 128! MONTREAL QUEBEC H3C 3J7! CANADA! (514) 343-6866
FRANCOIS PINARD! 2780 BARCLAY - APPARTEMENT I! MONTREAL QUEBEC H3S lJ6! CANADA! (514) 342-3450
DAVID A. THOMAS! COMPUTINGSERVICES! 401 ADMIN. BLDG.! CARLETON UNIV.! OTTAWA ONTARIO K1S 5B6! CANADA! (613) 231-6770
F. S. WINTERSPRING! P.O. BOX 6115 STATION J! OTTAWA ONTARIO K2 A 1T2! CANADA
CARLO LOCICERO! 3501 GLEN ERIN DRIVE #401! HISSISSAUGA ONTARIO L4W 1TO! CANADA! (416) 826-8640
PETER HAYNES! CONTROL DATA CANADA LTD.! 1855 MINNESOTA COURT-STREETSVILLE! MISSISSAUGA ONTARIO L5N 1KT! CANADA! (416) 826-8640 X238
DAVID JONES! CONTROL DATA CANADA LTD.! 1855 MINNESOTA COURT-STREETSVILLE! MISSISSAUGA ONTARIO L5N 1KT! CANADA! (416) 826-8640 X262
HENRY MCGILTON! CONTROL DATA CANADA! 1855 MINNESOTA COURT! MISSISSAUGA ONTARIO L5N 1K7! CANADA! (416) 826-8640 X295
MARK GREEN!#1001 - 390 DAWES ROAD! TORONTO ONTARIO M4B 2E5! CANADA! (416) 755-8607
NORMAN A. JULL! 56A BLYTHWOOD ROAD! TORONTO ONTARIO M4N 1A4! CANADA
RON BAECKER! HUMAN COMPUTING RESOURCES! 10 ST. MARY STREET SUITE 401! TORONTO ONTARIO M4Y 1P9! CANADA! (416) 922-1937
ROBERIO DIAS! 134 COLIN AVE.! TORONTO ONTARIO M5P 2C3! CANADA
LEONARD VANEK! COMPUTER SYSTEMS RESEARCH GROUP! SANFORD FLEMIN G BLDG! UNIV. OF TORONTO! TORONTO ONTARIO M5S 1A4! CANADA! (416) 978-6219
RON MCKERRON! COMSHARE LTD.! 230 GALAXY ROAD! REXDALE ONTARIO M9W 5R8! CANADA
CHARLESH. FORSYTH! APT. 2-304! 300 REGINA ST. N.! WATERLOO ONTARIO N2J 4H2! CANADA! (519) 884-7531! (519) 885-1211 X3055
JOHNC. BEATTY! DEPT. OF COMPoSCIENCE! UNIV OF WATERLOO! WATERLOO ONTARIO N2L 3G1! CANADA! (519) 885-1211 X2241
W. MORVEN GENTLEMAN! MATHEMATICS COMPUTING FACILITY! UNIVERSITy OF WATERLOO! WATERLOO ONTARIO N2L 3G1! CANADA! (519) 578-8866! (519) 885-1211
R. A. ALLAN! DIESEL DIVISION! GENERAL MOTORS OF CANADA LTD.! P.O. BOX 5160! LONDON ONTARIO N6A 4N5! CANADA
DANIEL THALMANN! DEPARTEMENT D'INFORMATIQUE ET RECHERCH! UNIVE RSITE DE MONTREAL! CASE POSTALE 6128 - SUCC A! MONTREAL H3C 3J7 QUEBEC! CANADA

(514) 343-7477

BARYW. POLLACK! DEPT OF COMPo SCI.! UNIV. OF BRITISH COLUMBIA! 2075 WESBROOK PLACE! VANCOUVER B.C. V6T 1W5! CANADA! (604) 228-6794
I. GANAPATHY!NOOTKA BUILDING! !{ACDONALD DETTWlLER & ASSOCIATES! 10280 SHELLBRIDGE WAY! RICHMOND B.C. V6X 2Z9! CANADA! (604) 278-3411 X32

DK-I051 DENMARK
DK-2200 DENMARK

DK-2650 DENMARK

DK-2800 DENMARK

DK-9220 DENMARK

SF-OO 100 FINLAND

SF-20500 FINLAND

SF-33101 FINLAND

SF-33101 FINLAND

SF-33101 FINLAND
SF-33200 FINLAND
SF-33340 FINLAND
SF-33410 FINLAND
3F-33720 FINLAND
F-31077 FRANCE
F-31077 FRANCE
F-34075 FRANCE

F-38000 FRANCE
F-54042 FRANCE
F-75230 FRANCE
D-I000 GERMANY
D-2000 GERMANY
D-2000 GERMANY
D-2000 GERMANY
D-3000 GERMANY
D-3000 GERMANY
D-4400 GERMANY
D-5000 GERMANY
D-6236 GERMANY
D-6300 GERMANY
D-6750 GERMANY
D-7000 GERMANY
D-7408 GERMANY
D-7500 GERMANY

D-7500 GERMANY
D-7500 GERMANY

D-7900 GERMANY
D-8000 GERMANY
D-8000 GERMANY
D-8000 GERMANY
D-8000 GERMANY
D-8012 GERMANY
D-8031 GERMANY
500762 INDIA

IRELAND
IRELAND

2 IRELAND
ISRAEL
ISRAEL
ISRAEL

1-40033 ITALY
1-40122 ITALY
1-40122 ITALY

JAPAN
113 JAPAN
151 JAPAN
182 JAPAN
560 JAPAN

NEW ZEALAND
NORWAY

0001 SOUTH AFRICA
14 SPAIN
34 SPAIN

MOGENS LINDHARO/ NYHAVN 20/ KOBENHAVN K DK-I051/ DENMARK/ (01) 11 12 04
ATTN: BIBLIOTEKET/ DATALOGISK INSTlTUT./ KOBENHAVN UNIVERSITEI/ SIGURDSGADE 41/ KOBENHAVN N DK-2200/ DENMARK
NIELS WINTHER/ REBAEK SOPARK 5-544/ HVIDOVRE DK-2650/ DENMARK
GUNNAR JOHANSEN/ DEPT. OF CHEMISTRY AND CHEM. ENG./ DANISH ENGINEERING ACADEMY/ BYGNING 375/ LYNGBY DK-2800/ DENMARK
UFFE MOLLER/ DATANOMUDDANNELSEN/ LANGAGERVEJ 16/ AALBORG OST DK-9220/ DENMARK/ (08) 15 81 00
ATTN: DEPT. OF COMPUTER SCIENCE/ UNIVERSITY OF HELSINKI/ TOOLCNKATU 11/ HELSINKI 10 SF-00I00/ FINLAND
MARKKU SUNIl COMPUTER CENTRE/ UNIVERSITY OF TURKU/ TURKU 50 SF-20500/ FINLAND/ 921-335599 X280
MATTI KARINEN/ COMPUTING CENTRE/LPR-PROJECT/TAMPERE UNIV. OF TECHNOLOGY/ PL 527/ TAMPERE 10 SF-33101/ FINLAND/ 931-652802(HOME)/ 931-162125 (WORK)
JUKKA KESO/ COMPUTING CENTRE/LPR-PROJECT/ TAMPERE UNIV. OF TECHNOLOGY/ PL 527/ TAMPERE 10 SF-33101/ FINLAND/ 931-33727 (HOME)/ 931-162125 (WORK)
JYRKI TUOMI/ COMPUTING CENTRE/LPR-PROJECT/TAMPERE UNIV. OF TECHNOLOGY/ PL 527/ TAMPERE 10 SF-33101/ FINLAND/ 931-50000/570 (HOME)/ 931-162125 (WORK)
JORMA SINNAMO/ PYYNIKINT. 3/ TAMPERE 20 SF-33200/ FINLAND
VEIKKO VISALA/ KUOKKIJANTIE 10/ TAMPERE 34 SF-33340/ FINLAND/ 917-712338
TIMO HAMMAR/ JANISLAHDENKATU 3 A 7/ TAMPERE 41 SF-33410/ FINLAND
ERKKI LEHTlMAKI/ OPISKELIJANK. 4A 20/ TAMPERE 72 SF-33720/ FINLAND/ 963-37141 (HOME)
MICHEL GALINIER/ INFORMATIQUE/ UNIVERSITE P. SABATIER/ 118 ROUTE DE NARBONNE/ TOULOUSE CEDEX F-31077/ FRANCE/ 16-61-53 11 20
PIERRE MAURICE/ INFORMATIQUE/ UNIVERSITE PAUL SABATIER/ 118 ROUTE DE NARBONNE/ TOULOUSE CEDEX F-31077/ FRANCE/ (61) 53 11 20 X300
ATTN: CENTRE DE RECHERCHE/ INFORMATIQUE ET GESTRON/ UNIV. DES SCIENCES ET TECH. DU LANCUED/ AVENUE D'OCCIREINE/ MONTPELLIER CEDEX F-34075/ FRANCE

633886
ATTN: A. D. R./ CHAMBRE DE COMMERCE ET D'INDUSTRIE/ 6 BOULEVARD GAMBETTA/ GRENOBLE F-38000/ FRANCE
ALAIN TISSERANT/ DEPARTEMENT INFORMATIQUE/ ECOLE DES MINES/ PARC DE SAURUPT/ NANCY CEDEX F-54042/ FRANCE/ (28) 51 42 32
JACQUES FARRE/ INSTlTUT DE PROGRAMMATION/ T 55.65/ UNIVERSITE P. ET M. CORIE/ 4 PLACE JUSSlEU/ PARIS CEDEX 05 F-75230/ FRANCE/ 336 25 25 X58 77
ATTN: NIXDORF COMPUTER GMBH/ BEREICH ENTWICKLUNG/ ABT DOKUMENTATION/ KAISERIN-AUGUSTA-ALLEE21/ BERLIN 21 D-I000/ GERMANY
H.-H. NAGEL/ INSTlTUT FUER INFORMATIK/ UNIVERSITAT HAMBURG/ SCHLUTERSTRASSE 66-72/ HAMBURG 13 D-2000/ GERMANY/ 040-4123-4151
BERNHARD NEBEL/ CLASINGSTRASSE 8/ HAMBURG 19 D-2000/ GERMANY/ 040/4913613
ATTN: INSTlTUT FUER INFORMATIK/ UNIVERSITAT HAMBURG/ SCHLUETERSTRASSE 13/ HAMBURG 70 D-2000/ GERMANY
ROLF SONNTAG/ RICHARD WAGNER STR. 27/ HANNOVER 1 D-3000/ GERMANY
G. MARQUARDT/ REGIONALES RECHENZENTRUM/ WUNSTORFER STR. 14/ HANNOVER 91 D-3000/ GERMANY
HORST STENZEL/ RECHENZENTRUM/ UNIVERSITAT MUNSTER/ ROXELER STRASSE 60/ MUNSTER D-4400/ GERMANY
HENK JANSEN/ DIGITAL EQUIPMENT GMBH/ STOBERGER STR. 90/ KOLN 4 1 D-5000/ GERMANY/ (0221) 5486-1
GERHARD BLANKE/ POSTBOX 5107/ ESCHBORN D-6236/ GERMANY/ (06196) 403267
A. GEUBE/ ABTEILUNG BIOMATHEMATIK/ UNIVERSITAT GIESSEN/ FRANKFURTER STRASSE 100/ GIESSEN D-6300/ GERMANY/ 06 41-702/4855/56/57
HANS-WILM WIPPERMANN/ INFORMATIK/ F13/ UNIV. OF KAISERSLAUTERN/ PFAFFENBERGSTR. 95/ KAISERSLAUTERN D-6750/ GERMANY/ (0631) 8542635
KLAUS LAGALLY/ INSTlTUT FUR INFORMATIK/ UNIVERSITAT STUTTGART/ AZENBERGSTRASSE 12/ STUTTGART 1 D-7000/ GERMANY/ (0711) 2078-373/329
ASHOK N. ULLAL/ GOETHESTR. 10/ KUSTERDINGEN D-7408/ GERMANY/ 07121/271446
KARLHEINZ KAPP/ ANGEW. INFORMATIK/ UNIVERSITAET KARLSRUHE/ TRANSPORT-U. VERKEHRSSYSTEME/ KARLSRUHE D-7500/ GERMANY/ (0721) 608-3170/3898

(07247) 823 928
GERHARD T. GODS/ INSTlTUT FUER INFORMATIK 11/ UNIVERSITAT KARLSRUHE/ POSTFACH 6380/ KARLSRUHE 1 D-7500/ GERMANY/ (0721) 751-176

ULRICH KULISCH/ INSTlTUT FUR ANGEWANDTE MATHEMATIK/ UNIVERSITAT KARLSRUHE (TH)/ KAISERSTR. 12 - POSTFACH 6380/ KARLSRUHE 1 D-7500/ GERMANY
(0721) 608-2680

AXEL T. SCHREINER/ SEKTION INFORMATIK/ UNIVERSITAET ULLU/ ULLU D-7900/ GERMANY/ 0711/176 2523
ATTN: BIBLIOTHEK/ LEIBNIZ - RECHENZENTRUM/ BARERSTRASSE 21/ MUENCHEN 2 D-8000/ GERMANY/ (089) 2105-8489
MANFRED LUCKMANN/ ALEMANNENSTR. 24/ MUENCHEN 90 D-8000/ GERMANY/ (089) 2105-8276
PETER RAUSCHMAYER/ HERZOG-GARIBALD-STRASSE 15/ MUENCHEN 90 D-8000/ GERMANY/ 647504
JAN WITT/ ZFE FL SAR/ SIEMENS AG/ POSTFACH 832729/ MUNCHEN 83 D-8000/ GERMANY/ (089) 722-22651
BERNHARD H. BEITINGER/ INDUSTRIEANLAGEN-BETRIEBSGESELLSCHAFT/EINSTEINSTRASSE/ OTTOBRUN D-8012/ GERMANY/ 089/60082363
RAINER R. LATKA/ AN DER GRUNDBREITE 1/ WESSLING D-8031/ GERMANY/ 08153-1063
ATTENTION: N. V. KOTESWARA RAO/ COMPUTER TRG. UNIT/ ELECTRONICS CORPORATION OF INDIA/ HYDERABAD (AP) 500762/ INDIA/ 71611
DIARMUID MCCARTHY/ KILMACUD/ 7 ST. KEVIN'S PARK/ BLACKROCK CO.DUBLIN/ IRELAND
JOHN W. FINNEGAN/ SCHOOL OF ENGINEERING/ UNIVERSITY COLLEGE/ GALWAY/ IRELAND
DAVID M. ABRAHAMSON/ DEPT. OF COMPUTER SCIENCE/ TRINITY COLLEGE/ 200 PEARSE ST./ DUBLIN 2/ IRELAND/ 772941 X1716 X1765
ATTN: THE LIBRARY/ MINISTRY OF DEFENCE/ P.O.BOX 962/ HAIFA/ ISRAEL
ATTN: PERIODICALS DEPT./ JEWISH NATIONAL AND UNIV. LIBRARY/ P. O. BOX 503/ JERUSALEM/ ISRAEL

GIDEON YUVAL/ COMPUTER SCIENCE/ THE HEBREW UNIVERSITY/ JERUSALEM/ ISRAEL
M. E. RONCHI/ CENTRO DI CALCOLO/INTERUNIVERSITARIO/ VIA MAGNANELLI 6/3/ LECCHIO DIRENO BOLOGNA 1-40033/ ITALY/ 576541/ 576542

MAURO MONTESI/ TEMA S.P.A./ VIA MARCONI 29/1/ BOLOGNA 1-40122/ ITALY/ 051-267285
GUISEPPE SELVA/ TEMA S.P.A./ VIA MARCONI 29/1/ BOLOGNA 1-40122/ ITALY/ 051-267285
NOBUO WAKABAYASHI/ DEPT. OF MANAGEMENT SCIENCE/ OTARU UNIVERSITY OF COMMERCE/ 3-5-21 MIDORI/ OTARU HOKKAIDO/ JAPAN/ 0134-33-7227 (HOME)
HARUHISA ISHIDA/ COMPUTER CENTRE/ UNIVERSITY OF TOKYO/ 2-11-16 YAYOI/ BUNKYOKU TOKYO 113/ JAPAN/ 03-812-2111 X2871
KOHEI NOSHITA/ 1-52-4 YOYOGI/ KHIBUYA-KU TOKYO 151/ JAPAN/ 03-370-8031
MASATO TAKEICHI/ DEPT. OF COMPUTER SCIENCE/ THE UNIV. OF ELECTRO-COMMUNICATIONS/ 1-5-1 CHOFUGAOKA/ CHOFU-SHI TOKYO 182/ JAPAN/ JAPAN 0424-83-2161 X525
NOBUKI TOKURA/ DEPT. OF INFORMATION AND COMPo SCIENCE/ OSAKA UNIV./l-l MACHlKANEYAMA/ TOYONAKA 560/ JAPAN/ 06 (856) 1151 X3245
G. A. VIGNAUX/ DEPARTMENT OF INFORMATION SCIENCE/ VICTORIA UNIVERSITY OF WELLINGTON/ PRIVATE BAG/ WELLINGTON/ NEW ZEALAND/ 721-000

HARALD EIDE/ NORSK DATA A.S./ LORENVN. 57/ OSLO 5/ NORWAY/ 47 2 21 73 71/ 47 2 22 80 90

ATTENTION: E. N. VAN DEVENTER/ COMPUTING CENTRE/ NATIONAL RESEARCH INST FOR MATH SCIENC/ POBOX 395/ PRETORIA 0001/ SOUTH AFRICA/ 74-9111
MARTIN VERGES TRIAS/ CENTRO DE CALCULO UPB/ AV. DR. GREGORIO MARANON S/N/ BARCELONA 14/ SPAIN/ (93) 334.35.00
LUIS A. GARCIA-RAMOS/ E.S.A.D.E./ AV. VICTORIA 60/ BARCELONA 34/ SPAIN/ (93) 203 7800

N
00

SWEDEN JOHN TIMOTHY FRANKLIN/ KRUKMAKERGATTAN //6/ STOCKHOLM S-OOO 00/ SWEDEN
SWEDEN STAFFAN ROMBERGER/ COMPUTER SCIENCE/ ROYAL INSTITUTE OF TECHNO LOGY/ STOCKHOLM S-100 44/ SWEDEN/ 08-787 7194
SWEDEN LARS-ERIK THORELLI/ DEPT. OF COMPUTER SYSTEMS/ THE ROYAL INSTI TUTE OF TECHNOLOGY/ STOCKHOLM 70 S-100 44/ SWEDEN/ SWEDEN-08-236520

SWEDEN CLAES RICKEBY/ HEDEBYVAGEN 5/ BROMMA S-161 54/ SWEDEN/ 08/37 65 37
SWEDEN NEIL T. KEANE/SYSTEM DEVELOPMENT/ STANSAAB ELEKTRONIK AB/ VEDDESTAVAAGEN 13/ JAARFAALLA S-175 62/ SWEDEN/ 08/36 28 00
SWEDEN LENNERT BENSRYD/ LUNDS DATACENTRAL/ LUND UNIVERSITY/ BOX 783/ LUND S-220 07/ SWEDEN/ 046/12 46 20
SWEDEN AKE WIKSTROM/ DEPT. OF COMPUTER SCIENCES/ CRALMERS UNIV. OF TE CHNOLOGY/ FACK/ GOTHENBURG 5 S-402 20/ SWEDEN
SWEDEN KURT FREDRIKSSON/ RINGLEKEN 7/ MOLNDAL S-431 39/SWEDEN/ 4631- 41-04-15 (HOME)/ 4631-27 5000-491 (OFFICE)
SWEDEN LARS G. MOSSBERG/ VOLVO FLYGMOTOR AB/ BOX 136/ TROLLHATTAN S-461 01/ SWEDEN/ (0520) 30900-287
SWEDEN OLLE OLSSON/ DEPT. OF COMPUTER SCIENCE:ADP/ UPPSALA UNIVERSITY / STUREGATAN 4B 1 TR/ UPPSALA S-752 23/ SWEDEN/ 018-138650
SWEDEN HANS WALLBERG/ UMDAL/ UMEA S-901 87/ SWEDEN/ 46-90 12 56 00
SWEDEN LARS LYSEN/ HAVSORINGSGRAND 11/ LULEA S-951 45/ SWEDEN/ (0920) 65515
SWEDEN JOHNNY WIDEN/ UNIV. OF LULEA/ FACK/ LULEA S-951 87/ SWEDEN/ (0920) 98000
SWEDEN HANS-KURT JOHANSEN/ UNIV. OF LULEAA/ LULEAA S-951 87/ SWEDEN/ (0920) 98000 X386
SWITZERLAND DAVID BATES/ 12 CHEMIN DE TAVERNAY/ 1218 GRAND SACONNEX/ GENEV A CH-1200/ SWITZERLAND/ 98-55-44/ 41-98-11
SWITZERLAND RAFAEL E. EGLOFF/ HONEYWELL BULL/SCHWEIZ AG/ HARDTURMSTRASSE 253/ ZURICH CH-8005/ SWITZERLAND/ (01) 44 49 40
SWITZERLAND URS R WYSS/ BLEULERSTRASSE 2/ ZURICH CH-8008/ SWITZERLAND/ 0041-22-28.79.61
SWITZERLAND NIKLAUS WIRTH/ INSTITUT FUER INFORMATIK/ ETH - ZENTRUM/ ZUERIC H CH-8092/ SWITZERLAND
SWITZERLAND HELMUT SANDMAYR/ NEU-TECHNIKUM BUCHS/ BUCHS CH-9470/ SWITZERLAND/ CH-085/6 45 24
THE NETHERLANDS D. GOSMAN/ ZEEMAN LABORATORIUM/ UNIVERSITEIT VAN AMSTERDAM/ PLANTAGE MUIDERGRACHT 4/ AMSTERDAM/ THE NETHERLANDS/ 020-5222177
THE NETHERLANDS H. S. M. KRUYER/ DEPT. MSE/ KONINKLYKE/SHELL-LABORATORIUM/ BAD HUiSWEG 3/ AMSTERDAM/ THE NETHERLANDS
THE NETHERLANDS ATTN: I.W.I.S.-TNO/ POSTBUS 297/ KON. MARIALAAN 21/ DEN HAAG/ THE NETHERLANDS
THE NETHERLANDS ATTN: DSM/ CENTRAL BIBLIOTHEEK 4213.001/ CENTRAL LABORATORIUM/ P.O. BOX 18/ GELEEN/ THE NETHERLANDS
THE NETHERLANDS H. PAAS/ DEPT. OF SPACE RESEARCH/ UNIV. OF GRONINGEN/ P.O. BOX 800/ GRONINGEN/ THE NETHERLANDS/ 050-116662
THE NETHERLANDS J. D. ALANEN/ FREDERIK HENDRIKSTRAAT 112/ UTRECHT/ THE NETHERL ANDS/ 030 + 520548
UNITED KINGDOM MAURICE O'FLAHERTY/ ANTRIM/ 444 MEVILLE GARDEN VILLAGE/ N.EWIOWNABBEY N. IRELAND/ UNITED KINGDOM
UNITED KINGDOM B. L. MARKS/ U.K. LABORATORIES/ IBM/ HURSLEY/ N.WINCHESTER ENGLAND/ UNITED KINGDOM
UNITED KINGDOM STEPHEN L. BREIBART/ EASTCOTE/ 12 ELM AVENUE/ PINNER MIDDLESEX / UNITED KINGDOM
UNITED KINGDOM PETER J. BURNS DE BONO/ NEWFOUNDLAND HOUSE/ HUGH PUSHMAN COMPILERS/ THE QUAY/ POOLE ENGLAND/ UNITED KINGDOM/ (02013) 70510

2UB UNITED KINGDOM DENIS M. WILSON/ DEPARTMENT OF COMPUTING SCIENCE/ UNIVERSITY 0 F ABERDEEN/ KING'S COLLEGE/ OLD ABERDEEN SCOTLAND AB9 2UB/ UNITED KINGDOM
0224 40241 X6418

JOHN w. LEWIS/ SCHOOL OF INFORMATION SCIENCES/ HATFIELD POLYTECHNIC/ P.O. BOX 109/ HATFIELD HERTS AL10 9AB/ UNITED KINGDOM/ 68100 X237
J. N. HARRISON/ MOSNA COTTAGE/ NEWBY - RIMINGTON/ N. CLITHEROE LANCS BB7 4DZ/ UNITED KINGDOM/ GISBURN 329
STEVEN PEMBERTON/ DEPT. OF COMPUTING AND CYBERNETICS/ BRIGHTON POLYTECHNIC/ MOULSECOOMB/ BRIGHTON ENGLAND BN1 2GJ/ UNITED KINGDOM/ 693655 X2273
J. R. w. HUNTER/ SCHOOL OF ENGR. AND APPL. SCI./ UNIV. OF SUSS EX/ BRIGHTON SUSSEX BN1 9QT/ UNITED KINGDOM/ (0273) 66755 X146
JIM WELSH/ DEPARTMENT OF COMPUTER SCIENCE/ QUEEN'S UNIVERSITY/ BELFAST N.IRELAND BT7 1NN/ UNITED KINGDOM/ (0232) 45133 X3221
DAVID FLOOD PAGE/ STANDARD TELECOMMUNICATIONS LABORATORI/ LOND ON ROAD/ HARLOW ESSEX CM17 9NA/ UNITED KINGDOM/. 0279 29531 X345
RUTH RAYMOND/ COMPUTER UNIT/ UNIV. OF WARWICK/ COVENTRY ENGLAN D CV4 7AL/ UNITED KINGDOM
DAVID A. COOPER/ FAIRMILEHEAD/ 52 SWAN SPRING AVENUE/ EDINBURG H SCOTLAND EH10 6NH/ UNITED KINGDOM
T. M. SPENCE/ SYSTEMSHARE LTD/ PILTON DRIVE/ EDINBURGH SCOTLAND EH5 2XT/ UNITED KINGDOM
D. R. ALLIDI/ DEPT. OF PHYSICS/ UNIVERSITY OF EXETER/ EXETER ROAD/ EXETER ENGLAND EX4 4Q6/ UNITED KINGDOM
ISAMU HASEGAWA/ LUKE HOUSE/ 7 CANTON STREET/ LONDON ENGLAND E1 4 6JG/ UNITED KINGDOM/ 01/987-4612
ROBERT KIRKBY/ RUISLIP MANOR/ 44 WHITBY ROAD/ MIDDLESEX ENGLAN D HA4 9DP/ UNITED KINGDOM
CHI-KEUNG YIP/ DEPT. OF COMPUTER STUDIES/ GILLOW HOUSE/ UNIVERSITY OF LANCASTER/ LANCASTER ENGLAND LA1 1BA/ UNITED KINGDOM/ (0524) 65201 EXT.4123
BOB E. BERRY/ DEPT. OF COMPUTER STUDIES/ UNIVERSITY OF LANCAST ER/ BAILRIGG/ LANCASTER ENGLAND LA1 4YN/ UNITED KINGDOtI/ (0524) 65201 X4134
ATTN: USER SERVICES MANAGER/ COMPUTER SERVICES/ UNIV OF LANCAS TER/ LANCASTER ENGLAND LA1 4YW/ UNITED KINGDOM

BRIAN A. E. MEEKINGS/ DEPT. OF COMPUTER STUDIES/ UNIVERSITY OF LANCASTER/ BAILRIGG/ LANCASTER ENGLAND LA1 4YX/ UNITED KINGDOM/ (0524) 65201
K. C. MANDER/ DEPT. OF COMPo AND STAT. SCIENCE/ VICTORIA BUILD ING/ UNIV. OF LIVERPOOL/ BROWNLOW HILL/ LIVERPOOL ENGLAND L69 3BX/ UNITED KINGDOM

051-709-6022 X2022
SRISAK WATHANASIN/ DEPT. OF COMPUTER SCIENCE/ THE UNIVERSITY/ MANCHESTER ENGLAND M13 9PL/ UNITED KINGDOM

ATTN: THE LIBRARIAN/ DEPT. OF COI~UTATION/ UMIST/ P.O. BOX 88/ MANCHESTER ENGLAND M60 1QD/ UNITED KINGDOM/ 061-2363311 X2178

DEREK COLEMAN/ DEPT. OF COMPUTATION/ UNIV. OF MANCH. INST. OFSCI. & TECH/ P.O. BOX 88/ MANCHESTER ENGLAND M60 1QD/ UNITED KINGDOM/ 061-236-3311 X2341
H. J. ZELL/ 14 KEMP LAY ROAD/ LONDON ENGLAND NW3/ UNITED KINGDOM/ (01) 435-9396

G. J. FREEMAN/ 125 WIGRAM WAY/ STEVENAGE HERTS SG2 9UT/ UNITED KINGDOM/ (0442) 42291 X330

J. E. AHERN/ MATHS DEPT/ THE UNIVERSITY/ SOUTHAMPTON ENGLAND S09 5NH/ UNITED KINGDOM
M. EL-NAHAS/ MATHS. DEPT/ UNIV. OF SOUTHAMPTON/ SOUTHAMPTON EN GLAND S09 5NH/ UNITED KINGDOM
ATTN: COMPUTING AND CONTROL COLLECTION/ LYON PLAYFAIR LIBRARY/ IMPERIAL COLLEGE/ 180 QUEENSGATE/ LONDON ENGLAND SW7 2AZ/ UNITED KINGDOM

(01) 589-5111 X2115
DAVID SLATER/ DEPT OF COMPUTING AND CONTROL/ IMPERIAL COLLEGE/ 180 QUEENSGATE/ LONDON ENGLAND SW7 2AZ/ UNITED KINGDOM/ 589-5111 X2722

I. D. GRAHAM/ INSTITUTE OF ARCHAEOLOGY/ 31-34 GUROON SQUARE/ LONDON ENGLAND WC1H OPY/ UNITED KINGDOM
D. G. BURNETT-HALL/ DEPARTMENT OF COMPUTER SCIENCE/ UNIVERSITY'OF YORK/ HESLINGTON/ YORK ENGLAND Y01 5DD/ UNITED KINGDOM/ (0904) 59861 EXT.5641
S. POKROVSKY/ COMPUTING CENTRE/ USSR ACADEMY OF SCIENCES/ NOVOSIBIRSK 630 090/ USSR
BOSTJAN VILFAN/ FAKULTETA ZA ELEKTROTEHNIKO/ UNIVERZA V LJUBLJANI/ TRZASKA 25/ LJUBLJANA YU-61000/ YUGOSLAVIA

ROBERT REINHARDT/ INSTlTUT JOZEF STEFAN/ UNIV. V LJUBLJANI/ JAMOVA 39/ LJUBLJANA 61001/ YUGOSLAVIA/ 63-261

5-000 00
5-100 44
3-100 44
5-161 54
3-175 62
5-220 07
5-402 20
$-431 39
S-461 01
5-752 23
5-901 87
S-951 45
5-951 87
5-951 87

CH-1200
CH-8005
CH-8008
CH-8092
CH-9470

AB9

AL10 9AB UNITED KINGDOM
BB7 4DZ UNITED KINGDOM

BN1 2GJ UNITED KINGDOM

BN1 9QT UNITED KINGDOM

BT7 INN UNITED KINGDOM

CM17 9NA UNITED KINGDOM

CV4 7AL UNITED KINGDOM

~H10 6NH UNITED KINGDOM

EH5 2XT UNITED KINGDOM

EX4 4Q6 UNITED KINGDOM

E14 6JG UNITED KINGDOM

HA4 9DP UNITED KINGDOM

LA1 1BA UNITED KINGDOM

LA1 4YN UNITED KINGDOM

LA1 4YW UNITED KINGDOM

LA1 4YX UNITED KINGDOM

L69 3BX UNITED KINGDOM

M13 9PL UNITED KINGDOM

M60 1QD UNITED KINGDOM

M60 1QD UNITED KINGDOM

NW3 UNITED KINGDOM

SG2 9UT UNITED KINGDOM

S09 5NH UNITED KINGDOM
S09 5NH UNITED KINGDOM
SW7 2AZ UNITED KINGDOM

SW7 2AZ UNITED

WC1H OPY UNITED

Y01 5DD UNITED

630 090 USSR

YU-61000 YUGOSLAVIA

61001 YUGOSLAVIA

KINGDOM
KINGDOM
KINGDOM

=

..,.,
rr1
~
:::0

=:x>
:::0
-<

N
<.D

DAVID M. ABRAHAMSON 2 IRELAND MARGERY AUSTIN 20036 DAVID A. COOPER EH10 6NH UNITED KINGDOM
DAVID M. ADAMS 19301 DAVE BAASCH 94707 ARDON R. CORD 95014 -0

JAMES L. AGIN 90278 RON BAECKER M4Y 1P9 CANADA JOHN DENNIS COUCH 95050 J>
J. E. AHERN S09 5NH UNITED KINGDOM SAMUEL T. BAKER 37130 JAMES C. COZZIE 52402 C/)

J. D. ALANEN THE NETHERLANDS MICHAEL S. BALL 92152 LAWRENCE F. CRAM 02159 n
BOB ALBRECHT 94025 CHARLES J. BANGERT 66045 JOHN EARL CRIDER 77043 J>

R. A. ALLAN N6A 4N5 CANADA PAUL BARR 01778 LINDA E. CROLEY 94304 r
D. R. ALLUM EX4 4Q6 UNITED KINGDOM BRUCE BARRETT 94404 DONALD B. CROUCH 35486

STEPHEN R. ALPERT 01609 ROGER R. BATE 75023 ARTHUR C. DARTT 44115
'""'-JOHN ALSTRUP 55420 DAVID BATES CH-1200 SWI TZERLAND HENRY DAVIS 22090 m

DAVID B. ANDERSON 18015 FRANK J. BATES JR. 43403 LEO DAVIS 20770 ===
D. B. ANDERSON 94010 JOHN C. BEATTY N2L 3G1 CANADA ITINE DE GERLACHE B-1180 BELGlm1

C/)

GARY S. ANDERSON 98043 O. BEAUFAYS B-1050 BELGIUM JOHN DE PILLIS 92507 :r;"
ROBERT W. ANDERSON 92680 E. R. BEAUR&;ARD 17019 JOHN DE ROSA JR. 01545

I-'RICHARD V. ANDREE 73019 MICHAEL A. BEAVER 53149 JOHN R. DEALY 90278
I-'GEORGE I~. ANTHONY 83316 MICHAEL BEHAR 06477 JAN DEDEK 94301

ROBERT L. ARGUS 47805 BERNHARD H. BEITINGER D-8012 GERMANY ROBERT I. DEMROW 01810
PETER A. ARMSTRONG 98109 LENNERT BENSRYD S-220 07 SWEDEN PETER DEWOLF 61820

JIM ARNOLD 66045 PAUL C. BERGI1AN 21793 GEORGE B. DIAM:JND 08826
LARRY ARONSON 10027 BOB E. BERRY LA1 4YN UNITED KINGDOM ROBERIO DIAS M5P 2C3 CANADA

ATTENTION: BOB JARVIS 55455 EASTON BEYMER 77341 RICHARD DIEVENDORFF 91203
ATTENTION: CHARLES PFLEEGER 37916 GERRARD BLANKE D- 62 36 GERMANY JOHN G. DOBNICK 53219

ATTENTION: E. N. VAN DEVENTER 0001 SOUTH AFRICA I. N. BLAVINS 5063 AUSTRALIA BILL DODSON 93017
ATTENTION: J. M. KNOCK 60439 ROY E. BOLLINGER 94088 JOHN DOERR 95051

ATTENTION: MARJORIE HEINE 17837 JOHN H. BOLSTAD 32306 MICHAEL K. DON&;AN 23185
ATTENTION: MIKE WILDE - CONSULTING OFF. 61801 KEN BOWLES 92093 G. KEVIN DOREN 19101

ATTENTION: N. V. KOTESWARA RAO 500762 INDIA ALEX BRADLEY 92714 KENNETH R. DRIESSEL 74102
ATTN: A. D. R. F-38000 FRANCE STEVEN L. BRECHER 90803 WILLIAM E. DROBISH 92714

ATTN: A. S. WILLIAMS
-

LIBRARIAN 92626 DAVID E. BREEDING 75229 KENNETH R. DUCKWORTH 71201

"ATTN: BETTE BOLLING-LIBRARIAN 45036 STEPHEN L. BREIBART UNITED KINGDOM C. E. DUNCAN 94303 m
ATTN: BIBLIOTEKET DK-2200 DENMARK C. E. BRIDGE 19898 GARY DUNCAN 92680 tJ:I

ATTN: BIBLIOTHEK D-8000 GERMANY PER BRINCH HANSEN 90007 FRANK DUNN 75081 ::::0
ATTN: CCIS LIBRARY HILL CENTER 08854 CHARLES L. BROOKS 02139 WILLIAM J. EARL 92715 c::

ATTN: CENTRE DE RECHERCHE F-34075 FRANCE PAUL H. BROOME 21010 RAFAEL E. EGLOFF CH-8005 SWITZERLAND J>
ATTN: COMPUTER CENTER 79409 WARREN R. BROWN 02035 HARALD EIDE NORWAY ;;0

ATTN: COMPUTER SCIENCE DEPARTMENT 84112 ANNA BUCKLEY 47401 FRED EILENSTEIN 02172
-<

ATTN: COMPUTING AND CONTROL COLLECTION SW7 2AZ UNITED KINGDOM A. CHARLES BUCKLEY 40205 JOSEPH EINWECK 88003
ATTN: COMPUTING SERVICES 55105 D. G. BURNETT-HALL Y01 5DD UNITED KINGDOM JOHN D. EISENBERG 19711

ATTN: DEPT. OF COMPUTER SCIENCE SF-00100 FINLAND PETER J. BURNS DE BONO UNITED KINGDOM M. EL-NAHAS S09 5NH UNITED KINGDOM I-'
ATTN: DIRECTOR I INST. RESEARCH 95521 JAMES W. BUTLER 62901 RANDY ENGER 01776 <.D

ATTN: DSM THE NETHERLANDS CARROLL E. BUTTERFIELD 94804 DONALD L. EPLEY 52242 '-I
/InN: EARL L. MOUNTS-COMP. SCl. LIBRARIAN 15213 BETTY BUXTON 03060 HOWARD D. ESKIN 10025 0.')

ATTN: ELAINE DENTON (41-41) 90406 JOHNNIE BUZEK JR. 77005 JOHN B. EULENBERG 48824
ATTN: ENGINEERING LIBRARY 98401 J. A. CAMPBELL 2308 AUSTRALIA JACQUES FARRE F-75230 FRANCE
ATTN: ENGINEERING LIBRARY 95014 SAM CARPENTER 01960 MI CHAEL FAY 95064

ATTN: INSTITUT FUER INFORMATIK D-2000 GERMANY PAULO S. CASTILLO JR. 91360 WALT FEESER 92127
ATTN: INST. FUER INFORMATIONSSYSTEME A-1040 AUSTRIA DAVID F. CAUTLEY 97330

ROBERT B. FINCH 98225
ATTN: I.W.I.S.-TNO THE NETHERLANDS JOE CELKO 30310

DONNAFAYE FINGER 98040
ATTN: J. F. MCINTYRE - LIBRARIAN 22903 W. B. CHAPIN 55112 JOHN W. FINNEGAN IRELAND

ATTN: KHK 55414 KENNETH E. CHARLTON 98033 WILLIAM E. FISHER 90501
ATTN: LIBRARIAN 3052 AUSTRALIA ROBERT L. CHEEZEM JR. 32935 W. J. G. FISHER 4001 AUSTRALIA

ATTN: LIBRARY 94720 HARRY R. CHESLEY 94801 DAVID C. FITZGERALD 92704
ATTN: L. LAWRIE 61820 BILL CHESWICK 18938 JOHN PI TZSIMMONS 55436

ATTN: L.A.M.B.D.A. 02912 STEPHEN W. CHING 19085 KEVIN FJELSTED 55455
ATTN: MANUFACTURING COMPUTER GROUP 97077 TONY CHMIEL 60652 READ T. FLEMING 02912

ATTN: NEWBERRY MICROSYSTEMS 94022 LEO CHRZANOWSKI 14072 RUDY L. FOLDEN 92713
ATTN: NIXDORF COMPUTER GMBH D-1000 GERMANY JOHN CLARSON 23669 JIM FONTANA 92704

f\'fTN: OREGON MINI-COMPUTER SOFTWARE INC. 97221 GEOFFREY A. CLEAVE 3165 AUSTRALIA DOUG FORSTER 09098 -0
ATTN: PERIODICALS DEPT. ISRAEL GERRARDT C. CLEMENTSON 80204 CHARLES H. FORSYTH N2J 4H2 CANADA J>

ATTN: SERIALS DEPARTMENT 2308 AUSTRALIA DAVID CLINGERMAN 94563 ROBERT A. FRALEY 94304 G")

ATTN: THE LIBRARIAN M60 1QD UNITED KINGDOM WILLIAM L. COHAGAN 78758 JOHN TIMOTHY FRANKLIN S-OOO 00 SWEDEN m

ATTN: THE LIBRARY ISRAEL ROBERT COLE 18017 KURT FREDRIKSSON S-431 39 SWEDEN
ATTN: USER SERVICES MANAGER LA1 4YW UNITED KINGDOM DEREK COLEMAN M60 1QD UNITED KINGDOM G. J. FREEMAN SG2 9UT UNITED KINGDOM W

THOMAS M. ATWOOD 02165 GRANT COLVIN 75062 DAVID F. FRICK 94546
C>DAVID AULT 20041 JOHN S. CONERY 92714 EDWARD R. FRIEDMAN 10012

DENNIS R. AUSTIN 93105 WILLIAM S. COOKE 90402 JOHN FRINK 21045

ROBERT FULKS 85016 BOB HOFKIN 92093 RAINER R. LATKA D-8031 GERMANY

MICHEL GALINIER F-31077 FRANCE DAVID W. HOGAN 78731 ARNOLD LAU 60201

I. GANAPATHY MARGARETTA HOMMEL 01701
-C

V6X 2Z9 CANADA ROBERT A. LAWLER 55165

LUIS A. GARCIA-RAMOS 34 SPAIN BRYAN HOPKINS 02154 90405
J>

TERRY J. LAYMAN

EDWARD F. GEHRINGER 47907 C. L. HORNEY 92803 HENRY F. LEDGARD
(/)

01002

PAULETTE D. GENES
ROSS F. HOUSHOLDER 76012

('""')
55455 K. P. LEE 70803

W. MORVEN GENTLEMAN N2L 3G1 CANADA CAROL B. HOWELL 20770 ERKKI LEHTlMAKI SF-33720
J>

FINLAND

TONY J. GERBER 2006 AUSTRALIA J. R. W. HUNTER BN1 9QT UNITED KINGDOM MIKE LEMON 84112
r-

DANIEL E. GERMANN 55435 BOB HUTCHINS 92713 GEORGE LEWIS 94086 Z

J. DANIEL GERSTEN 13201 WILLIAM G. HUTCHISON JR. 08512 H. MARC LEWIS 97401 rr1

A. GEUBE D-6300 GERMANY STEVEN L. HUYSER 48824 JOHN W. LEWIS AL10 9AB UNITED KINGDOM ::E:

ROBERT A. GIBSON 22901 JOHN W. IOBST 18049 BOB LIDRAL 61801 (/)

R. STEVEN GLANVILLE 95051 HARUHISA ISHIDA 113 JAPAN GEORGE LIGLER 75081

PAUL GODFREY 94521 KENNETH R. JACOBS 20006 MOGENS LINDHARD DK-1051 DENMARK
=It:

HELLMUT GOLDE 98195 ROBERT C. JANKU 22003 LEN LINDSAY 53719 I-'

RALPH S. GOODELL 01451 HENK JANSEN D-5000 GERMANY GARY LINDSTROM 84112 I-'

GERRARD T. GOOS D-7500 GERMANY
GUNNAR JOHANSEN DK-2800 DENMARK PETER LINHARDT 94709

KEITH E. GORLEN 20014 HANS-KURT JOHANSEN S-951 87 SWEDEN BRUCE LINK 87115

D. GOSMAN THE NETHERLANDS GREG JOHNS 97077 RICHARD LLEWELLYN 21045

P. K. GOVIND 80303 JOSEPH N. JOHNSON 94701 CARLO LOCICERO L4W 1TO CANADA

SARA K. GRAFFUNDER 55455 JOSEPH P. JOHNSON 20016 KENT LOOBEY 97440

I. D. GRAHAM WC1H OPY UNITED KINGDOM R. WARREN JOHNSON 56301 ANDY LOPEZ 56267

DOUGLAS M. GHANT 06901 ANN C. JOHNSTON 44691 GARY LOWELL 95404

MARK GREEN M4B 2E5 CANADA D. B. JOHNSTON 4067 AUSTRALIA TIM LOWERY 92627

MIKE GREEN 78284 DAVID JONES L5N 1KT CANADA HOUSTON P. LOWRY 99258

TOM GREER 91775 ERNEST W. JONES 94901 MANFRED LUCKMANN D~8000 GERMANY

WILEY GREINER 90278 NORMAN A. JULL M4N 1A4 CANADA FRED LUHMANN 02138

DAVID B. GROUSE 15213 MARK JUNGWIRTH 92644 STANLEY E. LUNDE 91711

RONA GURKEWITZ 06810 KARLHEINZ KAPP D-7500 GERMANY JOHN LUSHBOUGH 57069

ROBERT D. GUSTAFSON 60657 MATTI KARINEN SF-33101 FINLAND WILLIAM LYCZKO "14850

STEVEN B. HALL 44107 MILAN KARSPECK 91104 LARS LYSEN S-951 45 SWEDEN
rr1

TERRY HAMM 97077 AHMED KASSEM 50011 ROBERT N. MACDONALD 30303
t;tI

TIMO HAMMAR SF-33410 FINLAND ROBERT KAST 07054 RON MAHON 15461
:;;x:J

N. D. H. HAMMOND 2600 AUSTRALIA ED KATZ 55112 K. C. MANDER L69 3BX UNITED KINGDOM =
BRIAN HANSEN 97213 NEIL T. KEANE S-175 62 SWEDEN DOUGLAS MANN 30339 J>

ANDY HARRINGTON 93111 TOM KEEL 78712 DAN MARCUS 92807
::c

WILLIAM J. K. HARRINGTON 08618 DONALD A. KEFFER 19438 RICK L. MARCUS 55404 -<

MIKE HARRIS 62704 PAUL KELLY 92714 BARRY F. MARGOLIUS 01701

J. N. HARRISON BB7 4DZ UNITED KINGDOM TOM KELLY 19335 B. L. MARKS UNITED KINGDOM I-'

ISAMU HASEGAWA E14 6JG UNITED KINGDOM GREG KEMNITZ 55391 G. MARQUARDT D-3000 GERMANY lD

S. HAYES 33313 WILLETT KEMPTON 94720 LYNN S. MARTIN 11439

GEORGE E. HAYNAM 32901 DENIS KERMICLE 32905 GEORGE MASSAR 91367 00

PETER HAYNES L5N 1KT CANADA JUKKA KESO SF-33101 FINLAND CHARLES MATTAIR 77801

STAN HEAD 95030 GURUPREM SINGH KHALSA 91101 STEVE MATUS 33313

HARRY G. HEDGES 48824 B. KIDMAN 5001 AUSTRALIA PIERRE MAURICE F-31077 FRANCE

CHARLES HEDRICK 08903 RICHARD B KIEBURTZ 11794 KONRAD MAYER A-1l50 AUSTRIA

S. T. HEIDELBERG 94550 DANIEL B. KILLEEN 70118 JOHN K. MCCANDLISS 63188

JOHN M. HEMPHILL 43403 ROBERT KIRKBY HA4 9DP UNITED KINGDOM D IARMUID MCCARTHY IRELAND

CHRISTOPHER J. HENRICH 07724 PAUL S. KLARREICH 11210 JOEL MCCORMACK 92014

CARL HENRY 55057 JON G. KLASEN 55404 RAINER F. MCCOWN 21045

WILLIAM HENRY 10003 DONALD B. KLEIN 19010 TIMOTHY DAVID MCCREERY 94702

MARK HERSEY 48100 STEPHEN KLEIN 01741 MAURICE MCEVOY 94708

H. F. HESSION 22101 BARCLAY R. KNERR 92646 HENRY MCGILTON L5N 1K7 CANADA

CHARLES L. HETHCOAT III 77027 JOHN C. KNIGHT 23665 JOHN P. MCGINITIE 94701

JI!1 HIGHTOWER 90274 PAUL KOHLBRENNER 06437 JAMES P. MCILVAINE IV 19044

BUZZ HILL 98632 DIANE L. KRAMER 65201 MICHAEL MCKENNA 03755

KEARNEY HILL 67401 RICHARD KRASIN 01886 RON MCKERRON M9W 5R8 CANADA

CATHLINE S. HILLEY 58201 JAMES KREILICH 55108 JACK R. MEAGHER 49008 -c

MARK HIPPE 19087 H. S. M. KRUYER THE NETHERLANDS ROB MEANS 95035 J>

G. STEPHEN HIRST 52240 ULRICH KULISCH D- 7500 GERMANY TERRY P. MEDLIN 20014 U>

PHILIP T. HODGE 46375 KLAUS LAGALLY D-7000 GERMANY BRIAN A. E. MEEKINGS LA1 4YX UNITED KINGDOM rr1

THEA D. HODGE 55455 R. B. LAKE 44106 HUGO MEISSER 55427

D. P. HODGSON 6102AUSTRALIA DAN LALIBERTE 55455 L. F. MELLINGER 91405

RANDY HODNETT 97077 LARRY D. LANDIS 64108 STEPHEN F. MERSHON 22901
\.N

TIMOTHY W. HOEL 55057 DAVID LANDSKOV 70504 W. J. MEYERS 27709 I-'

ANTHONY E. HOFFMAN 14454 ROBERT G. LANGE 55343 M. D. MICKUNAS 61801

FRED J. MILLER 99210 DARRELLPREBLE 30303 BILL SHANNON 44116
JAMES S. MILLER 02138 MICHAELPRIETULA 55455 TED SHAPIN 92669

JOHN C. MILLER 02165 BOB PUETTE 95014 -0
ED SHARP 84112

ROBERTO MINIO 10010 HOWARD D. PYRON 65401
):>

98008 M. RAHILLY 3072 AUSTRALIA
ROBERT LEE SHARP 22042 en

KEITH MITCHELL DAVID ELLIOT SHAW 94306 TOM TYSON 27409

JESSE D. MIXON 75961 EARL RALEY 19122 ASHOK N. ULLAL D-7408 GERMANY
n

DENMARK TIM RAND 06268
JOHN M. SHAW 20014):>

UFFE MOLLER DK-9220 BELLE P. SHENOY 55413 ANDREW P. VALENTI 10012

MAURO MONTESI 1-40122 ITALY V. LALITA RAD 19440 THOMAS E. SHIELDS Q. VAN ABBE 3000 AUSTRALIA r
77005

RODERICK MONTGOMERY 08876 PETER RAUSCHMAYER D-8000 GERMANY E. E. SIMMONS 91101 WARREN VAN CAMP 95005 ::2

CHARLES G. MOORE 48106 JERRY L. RAY 68154 P. SIMON 2308 AUSTRALIA FRANCES L. VAN SCOY 23508 rr1

JAMES K. MJORE 22091 RUTH RAYMOND CV4 7AL UNITED KINGDOM JON SINGER 60660
LEONARD VANEK M5S 1A4 CANADA ::E:

TOM MJRAN 45036 JEFFERY M. RA2AFSKY 64108 SEYMOUR SINGER 92634
WILLIAM J. VASILIOU JR. 03824 en

CARROLL MORGAN 2006 AUSTRALIA EDWARD K. REMI 53705 JORMA SINNAMJ SF-33200 FINLAND BILL VELMAN 92110

R. A. MORRIS 73019 DAN REED 72554 CHARLES SISKA JR.
STEVEN A. VERE 60181 'It:

90250
HERBERT E. MORRISON 90266 C. EDWARD REID 32303 G. A. VIGNAUX NEW ZEALAND I-'

ALAN E. SKIDMORE 66506
DAN MORTON 19046 ROBERT REINHARDT 61001 YUGOSLAVIA BOSTJAN VILFAN YU-61000 YUGOSLAVIA I-'

DAVE SKINNER 90801
WILLIAM MOSKOWITZ 90036 STEVEN A. REISMAN 55455 DAVID SLATER SW7 2AZ UNITED KINGDOM

VEIKKO VISALA SF-33340 FINLAND

LARS G. !lOSSBERG S-461 01 SWEDEN PETER RICHARDSON 3052 AUSTRALIA ERIC SMALL 94109
ROGER A. VOSSLER 90278

JOHN M. MOTIL 91330 PETER RICHETTA 16057 LARRY W. SMITH 55337
WAYNE VYROSTEK 97077

STEVEN S. MUCHNICK 66045 CLAES RICKEBY S-161 54 SWEDEN JON A. SOLWORTH 10011
M. WAITE 11740

DENNIS J. MURPHY 02138 PETER A. RIGSBEE 20375 ROLF SONNTAG D-3000 GERMANY
WILLIAM M. WAITE 80309

TERRY MYHRER 55066 MARK RIORDAN 48824 BILL SOUTHWORTH 02132
NOBUO WAKABAYASHI JAPAN

H.-H. NAGEL D-2000 GERMANY MORRIS W. ROBERTS 30303 JOHN H. SPANTON 95133
HANS WALLBERG S-901 87 SWEDEN

BERNHARD NEBEL D-2000 GERMANY TIMOTHY P. ROBERTS 10573 T. M. SPENCE EH5 2XT UNITED KINGDOM
BOB WALSH 87106

LEROY E. NELSON 90066 LARRY ROBERTSON 91601 PAUL SPRECHER 10024 PATRICK WARD H3C 3J7 CANADA

RICHARD E. NEUBAUER 53201 F. DOUGLAS ROBINSON 14127 D. H. SPRINGER 95131 DONALD WARREN 10024

ROBERT C. NICKERSON 94611 MICHAEL P. ROBINSON 40217 TOM SPURRIER 32901 MARK S. WATERBURY 22152

R. KEITH NICKEY 80303 BOB ROGERS 20855 MARK STAHLMAN 10019 STEPHEN B. WATERS 13440

DENNIS NICKOLAI 55437 THOMAS A. ROLANDER 95120 F. STANLEY 98926 SRISAK WATHANASIN M13 9PL UNITED KINGDOM

KOHEI NOSHITA 151 JAPAN ROGER D. ROLES 01730 JORGEN STAUNSTRUP JOHN A. WEAVER 18042 -n
90007

RHODA P. NOVAK 91307 GENE ROLLINGS 11794 ROBERTL. STEELE II NEIL W. WEBRE 93407 rr1
22101

ROBERT E. NOVAK 60148 STAFFAN ROMBERGER S-100 44 SWEDEN EDWARD STEEN 01852 KEVIN WEILER 15213 tC

TOM NUTE 44106 M. E. RON CHI 1-40033 ITALY GERALD STEINBACK LEONARD H. WEINER 79409 ::0
94086

ROBERT J. OBERG 01701 J. B. ROSEN 55455 JAMES STEINBERG DAVID H. WELCH 92324 c:::
02142

FLEMING M. OLIVER 94086 SAUL ROSEN 47907 HORST STEN ZEL D-4400 ROBERT E. WELLS 02138
):>

GERMANY
GARY OLIVER 97330 CARL S. ROSENBERG 94035 TURNEY C. STEWARD JIM WELSH BT7 INN UNITED KINGDOM ::0

94112
OLLE OLSSON S-752 23 SWEDEN RAYNER K. ROSICH 80004 JOHN WERTH 89154 -<

JIM STEWART 08854
DICK OSGOOD 06520 EDWARD D. ROTHE 20784 JOHNNY STOVALL 01581 GREGORY F. WETZEL 66045

MAURICE O'FLAHERTY UNITED KINGDOM DAVID ROWLAND 97229 JEFFREY D. STROOMER 19341
TERRY E. WEYMOUTH 60532 I-'

STEVE O'KEEFE 20229 STUART W. ROWLAND 14226 CONRAD SUECHTING 74145 NORMAN D. WHALAND 10009 lD

GARYO 0' SCHENECTADY 12210 BRIAN G. ROWSWELL 2006 AUSTRALIA JERRY S. SULLIVAN 10510 WILLIAM A. WHITAKER 22209

H. PAAS THE NETHERLANDS NANCYRUIZ 87115 MARKKU SUNI SF-20500 FINLAND JAMES D. WHITE 73019 00
HAL PACE 07470 CHRIS A. RUSBRIDGE 5098 AUSTRALIA DENNIS SUTHERLAND 52302 JOHNNY WIDEN S-951 87 SWEDEN

DAVID FLOOD PAGE CM17 9NA UNITED KINGDOM PAUL RUSSELL 90733 DAVID TAFFS 02840 AKE WIKSTROM S-402 20 SWEDEN

WILLIAM S. PAGE 19711 MARK RUSTAD 55112 MASATO TAKEICHI 182 JAPAN
E. HAROLD WILLIAMS 95050

DONALD L. PARCE 27607 WALTER R. RYPER 92634 RAMON TAN 10016 DENIS M. WILSON AB9 2UB UNITED KINGDOM

CRAIG PAYNE 18015 LESTER SACHS 21235 JANET TAYLOR 75275
RICHARD M. WILSON 85001

DAVE PEERCY 87106 A. H. J. SALE 7001 AUSTRALIA MICHAEL TEENER 90403
STERLING WILSON 91342

STEVEN PEMBERTON BN1 2GJ UNITED KINGDOM TIMOTHY J SALO 55455 ROBERT R. TEl SBERG 64108 GREG WINTERHALTER 48104

WAL T PERKO 55414 E. J. SAMMJNS 75080 DANIEL THALMANN QUEBEC CANADA F. S. WINTERSPRING K2A 1T2 CANADA

DAVID PERLMAN 55427 HELMUT SANDMAYR CH-9470 SWITZERLAND DAVID A. THOMAS K1S 5B6 CANADA NIELS WINTHER DK-2650 DENMARK

ROBERT D. PERRY JR. 97201 A. E. SAPEGA 06106 RICHARD T. THOMAS 43403 HANS-WILM WIPPERMANN D-6750 GERMANY

W. J. PERVIN 75235 LYNN SAUNDERS 97077 TERRY THOMAS 95030 NIKLAUS WIRTH CH-8092 SWITZERLAND

DAVID PESEC 44119 ANTHONY J. SCHAEFFER 47401 KIRK D. THOMPSON 85282 JAN WITT D-8000 GERMANY

MIKE D. PESSONEY 35805 ROSS D. SCHMIDT 55343 LARS-ERIK THORELLI S-100 44 SWEDEN JAY WOODS 83639
BOB PETERSON 55418 MARK MO. SCHNEGG 92705 CLIFTON CHANG-CHAO TING 19151 PAUL J. WOZNIAR 56569

DAVID L. PETERSON 55429 G. MICHAEL SCHNEIDER 55455 ALAIN TISSERANT F-54042 FRANCE URS R WYSS CH-8008 SWITZERLAND

TRUMAN C. PEWITT 22180 WALLY SCHNITGER 92335 NOBUKI TOKURA 560 JAPAN CHI-KEUNG YIP LA1 1BA UNITED KINGDOM -0
FRANCOIS PINARD H3S 1 J6 CANADA AXEL T. SCHREINER D-7900 GERMANY HOWARD E. TOMPKINS 15701 KENNETH YOUNG 90020):>

ALAIN PIROTTE B-1170 BELGIUM ROBERT SCHUTZ 11756 JOE TORZEWSKI 46530 GIDEON YUVAL ISRAEL U>
RICHARD PITKIN 02114 CARL W. SCHWARCZ 01752 LARRY E. TRAVIS 53706 H. J. ZELL NW3 UNITED KINGDOM rr1

TOM PITTMAN 95153 STEPHEN C. SCHWARM 19898 MARTIN VERGES TRIAS 14 SPAIN
PAUL ZILBER 11797

S. POKROVSKY 630 090 USSR ALLAN M. SCHWARTZ 47907 ROBERT TROCCHI 01754
MARK ZIMMER 94704

BARY W. POLLACK V6T 1W5 CANADA LARRY SEILER 91126 JOHN TUCKER ANDREW HARRIS ZIMMElUlAN 94086 vi
79601

UDO POOCH 77843 GUISEPPE SELVA 1-40122 ITALY KARL L. ZINN 48104 N
JOHN TUCKER 88047

JERRY POURNELLE 91604 FOREST VAN SISE SHAFER 08077 JYRKI TUOMI SF-33101 FINLAND

TYPE COMPATIBILITY CHECKING IN PASCAL COMPILERS SRTCCO have alreadybeen stated4:two variables
to (being of) tht.same type if and only if they
named type,

The conditions that satisfy
are considered as belonging

are declared using the same

Introduction
b: iUypud

It is imperative we clearly set down the semantics ef type compatibi-
lity for structured variables in the programming language Pascal. The
matter in urgent since the lack of an explicit set of rules in that sen-

se ha.sa~reaJy given rise to some incompatibilities result:ingfrom the
use of different Pascal compilers.

or their associated identifiers both appear in the same list.

On tileother hand, what we know of SRTCCI was picked up in the source text
of tf,ecompiler itself since we could not find such information elsewhere.
In general, the conditions that sa ,isfy Sf:TCCIare based on the principIe
that: two variables are considered as bclonging to the same type if and
only if the data structure(s) implementing their respective type are

"identical". To know ~'hat I'identical" really means, one has to refer to
the source text of the compiler (as we did) and understand how the Boolean

function CO~!PTYPES works.

On the basis of how a compiler implements type compatibility checking,
we can currently distinguish two major classes of Pascal compilers,
representatives of which will react differently tQ particular Cases 1n-
volving operations on structured variables. It is of course clear that
such a conflict must not be allowed to conti~ue, and in that senso I wi11
try to explain how the two classes of compilers came into being and alse

present the reader with a few examples to display the consequences.

We purposely omitted to display the source text of that function here for
two reasons: we wanted the reader to be in the same frame of mind as any
Pascal programmer (who usually has no such information) when we confront
him with a few revealing examples; we also could not guarantee the inva-
riabilityof the algorithm from compiler to compiler since the se:nantics
it implements have not been clearly stated as yet.

Wilen you declare? variable in Pascal, its associated type can be speci-
fied by USe of a t}pe identifier (named type) as in

or by use of an explicit (anonymous) type as in Some examples

Vall l>: (one, two, :thJLee J The first example demonstrates that enforcing SRTCCI takes away
programmer a valuable tool,by reducing the power of named types
of a short hand notation for anonymous types.
Consider the following type definitions:

po.f.M... :!,g.c,oNf. tpolar coordinate s\(stem}
~~, a.ngie.: fLrJ1.f..

y~

from the
to that

Distinguishing the use ,)fa named type from that of an anor:ymoustype is
necessary here in order :0 clearly express the natureand implicationsof
a given "set of rules governing type compatibility checking" (SRTCC)
implemented in a given compiler.

When the first Pascal compilerl ",adeits apfearance, it enforced a given
SRTCC (lets call it SRTCCO). All succeedin&Fompilers modeled after it
consequently inherited the sume set of rules. The reason being that the
part of the compiler responsible for type analysis and checking can be
transported to other computers usually without any change. In fact,SRTCCO
was a set of ru]e~~nfoTced by th~ CDC 6000 cowryilersw~i~~ inclcded tr.~
implementation of fa restriction (particular to~ Pas~al 6COO) on type cOiilpa-
tibility conditions of variables. With the advent of a totally n£w compi-
ler2, thc~E" resulted a (drastic) change in the handling or type compaU-
bility checking, mostly ~fiecting structured types. As iJ: the first case
all compilers modeled alound this one auto~~tically inherited a new set
of rules (lets call thi~. one SRTCCI).

fLeJ1..t2:;:!.eco,~d treal coordinate system}
x, if: fLeaX

Vtd

Now letting the variablesvr.JofuJt and "tr_eat~e of 1:v,.,e ')of(Vt 8.1'.d hrc~lZ
respectively ;';Ot~ld you consider the foll()',./~ng ass.ii;nni~nt statement :lS
meaningful ?

Vpo_/J:t.~
'"

l'tr.caX2

The whole happening went by almost unnoticed because no one had mentioned

the change in policy. Even in the recent Pascal User's Manual3, which more

or less coincides with the advent of the new compiler, one cannot find a

clear statement of the conditions that must be satisfied in order for two
structured variables to be type compatible.

Most Pascal programmers, I think, would expect the compiler to signal the
statement as errorneous. Others of course relish at the possibility of being
able to override the basic usefullness of n&med types. In a case such as this

one howcver,Pas~al compilers will react differently if they enfoTce different
sets of rules for t}~e compatibility checking. A conpiler ueing SrTCCOwill
reject the st.:!.tem(:!1t on a type-check error, \'ihile alJ.other e:aforcing SIlTCCI
~il~ let it go by whitout uttering a lztter, sinc} both naDed t~~es are imple-
mentedus:.ng the same data structure; a ~e.c.oJtdstructure ha.vi.ng two fieldsof
t),l'ereal. --

The problem now, is that in the area of type compatibility checking,

representatives of both classes of compilers are not fully compatible. That

means that In particular situations, a compiler enforcing SRTCCO will reject
a statement on a type-check error while another compiler enforcing SRTCCI
\~.ill accept it..

Cur second example shows how enforcing SRTCCI can sometimes lead to side
effects \vhich can be disastroiJs.Even if the example below is !:I~sed on.the
particular behavior of a given com~iler, it should be easy for the readey to
imagine the various related pitfalls lli: can accidentally stumble _cnto.. Con-
sider the following decla.rations:Articles

"rr:
t:>::1
:::0
c:::
:I>
:::0
-<

Articles

!JiE!:. JU. Ilec.otu!.
x, y: Ile.a.l

end;
112_ ile.eoJr.d

~e.a.l; If: ileAl.
end;

Vall ~.' Ill; b: Jr.2

In the lattest release of the Pascal compiler for COC machines, memory cells
corresponding to record fields declared in the same list, are allocated in
the reverse order of appearance of the field identifiers. Whether it be an
involuntary omission or a volunta.ry simplification of compiler code, the
underlying assumption that a user does not care about how the memory cells
are allocated to his record components, is certainly debatable. All of this
however should have no ill-effects on program execution; but because of the
fact that the considered compiler enforces SRTCCI, things do not come out
that way. To start with, the assignment statement "a.:: b" is accepted as
legal. Furthermore, because of the peculiar allocation scheme described
above, the execution of the assignment statement turns out to correspond
to the following assignments "a.. x:: b.lf; a..If:: b.x"!

As a starting point for our last example, we quote from Wirth & Jensen's
Pascal user manual~ "Semantically, a subrange type is an appropriate sub-
stitutio~or the associated scalar type in all definitions. Furthermore, it
~s the. assoc~~ted scalar type ."'hich "de~ermines~ t~e. va;id~t~ o:"a:; ~~peratlOns
l.nvolvJ.ng vaJ.l&es of subrar.ge ...ypes. .I..t 1$ au.. In...en...l0.. ...0

'-'na somz

of th~ con.sequences ..Jf the first part of the quot.e, '::"ilrelatioD. tv th~ type
compatibility of structured variables.

Vall \group 11
- a.: alLlla.1f(1..10]

~
.i.ntegeJr.;

b: alLlla.1f[1..10) 0 0..511;
c.: aJiJlalf [1..10] 0 0..255;

{group 2}
d: pae~e~ alLMlj [J. .5] Ei
e:~ e alLMlf [J .. 51 £.4.
6: paCliiiI alLMlf (1 .. 5] £.A.

0..5Jj;
0..255;
-128..127

According to SRTCCO, all the variables declared above are pairwise type in-
compatible. Under SRTCCI however, variahles of group 1 are all pairwise com-
patible while in group 2, only the pair e-6 is compatible (as obtained when
compiled by a COC Pascal 2 compiler). The incompatibilities in group 2 stem
only from differing sizes in storage occupancy (which in turn depends on the
packing strategy employed). It sheuld not be necessary to compile a program

in order to find out if a given pair of variables are type compatible; lan-

guage semantics should take care of that.

For the sake of discussion, let us suppose that the Pascal language
implemented on a computer providing instructions for efficient byte
The implementor might choose to compile some arrays (those with the
priate type of element) as implicit byte (packed) arrays. In such a
pairs a-c.and b-c.would no longer be compatible. Type compatibility
not be implementation dependent.

is to be

access.
appro-
case, the
should

Conclusion

It was our intention to make every "pascaler" a.'areof the importance that
lies in precisely stati.ng '~he semantic~ oi type compatibility for stT\Jctured
variables. It is our hope that other opinions make themselves be heard.

In any event, bear the following thought in mind: making a programming lan-
guage a better tool to work with, can sometimes be acheived by lowering its
level of permissiveness.

REFERENCES

Pascal 6000, distribution version: IS Feb. 1972.

Pascal ~ (i.e. Pascal 6000-3.4), distribution version: May 1974.

Jensen K., Wirth N., uPascal User Manual and Report", Lecture Notes in
Computer Science, No. 18, Springer-Verlag, 1974.

"Restrictions of Pascal 6000", distribution document, IS Feb. 1972.

Pierre Desjardins
Oepartement d'lnformatique et de
Recherche Operationnelle
Universite de Montreal
Quebec

(* Received 77/10/18 *)

A Novel Approach to Compiler Design
By James Q. Arnold

Computer Science Department
Kansas University

The ideas presented in this paper reflect those
no support for them was either requested or received
University of Kansas Computer Center, the Department
at KU, or the University of Waterloo.

of the author, and
from Honeywell, the
of Computer Science

During the last several months, we have had the extreme pleasure of
using a Pascal compiler produced at the University of Waterloo. The
compiler's five versions have given us new insights into the area of
compiler design, and we would like to highlight a few of them in this

paper. In the interest of brevity, we shall not delve into all areas
possible, but we hope the mention of some important items will stimulate
the interested reader to reflect upon the further application of these
ide as..

Our discussion ,dll center upon the following topics:
1. Program Portabil ity
2. Program Correctness
3. User Inter face.

Although each of the areas interacts to SOlne degree with the others, we
feel these are the natural categories exemplified by the Waterloo
compiler.. Thus we shall strive to present them in a manner commensurate
with the clarity and elegance in which they present themselves to the
user..

A. "Use machine instructions in the compiler support package which
(liffer frorn processor to processor."

Both KU and Waterloo have Honeywell 66/60 computers; KU has a
processor :r..,and \\!aterloo has a processor B. t-lhen implementing a
proyral1\ designed for portability, it is of the utmost importance to
utilize instructions which behave differently from machine to machine..
The Waterloo compiler does just that; but they have taken this principle
to it s logical conclusion. Not only should programs behave
differently, but it is even more desirable if one can arrange for an
operation faul t as well.

One very important consequence is providing the inplementation team
with the chance to practice patching core-image load modules (the
compiler is only provided in load module form). This.is becoming a lost
art, and the necessary steps are being taken by l'iaterloo to keep it
alive. We certainly applaud them for this.

B.. "Change the language definition~ II

Many Pascal implementations provide extensions; Waterloo has

transcended the lowly extension and introduced the new concept of
outright [:1odification~ This extraordinary achievement was surprisingly
easy to rnake. Convert the Q.f2.9.~~ heading into ".Qf..Q.s:.~.q.~£.~ main ;

~"
Notice how mnemonic it is now, and how the first 1 ine immediately tells

t he reader what the program was written for~ Notice tilsa that the messy
parameters have been eliminated~ This will obviously prevent any confu-
s ion about the me an ing 0 f the undecl ared va riable 5 in the J2.f~_~~~
heading. Additionally, the IIcurious" period terminator has been
dropped.

It amazes us even now how such Silrtple modifications could add so
much to the clarity and portability of programs. l'iewonder why Niklaus

Wirth didn't think of these things himself. Naturally, the compiler
rejects Standard Pascal, but this is a blessing in disguise. As soon as
we have reached the sar:\e level of insight as the desi<Jners at 'iiaterloo,
we shall certainly let the reader know what the blessing is.

A. "Distribute compilers which are not debugged~ II

Once aCJain, the compiler is used as an educational tool. Since
most progralnmers can not be assumed to know Pascal, any compiler for the
language should encourage the user to study the user manual ~ This can
be done in several ways, but some of' the techniques lIs(~d by ~'laterloo
s truck us as being particularly noteworthy.

(1) liThe canpiler should abort on some simple syntax errors."

One example follows which aborts the compiler:
tYQg sex: (female, male) ; { : should be = }.

We relay-;;;dour initial reaction of concern to Waterl,?o, but they
reassured us with an explanation [Pascal Release Bullet1n, September,
1977], "The compiler is based on an LALR parser, and LALR parsers are
faQous for this behaviour."

Naturally, we were grateful to receive this lesson. in parsi':'9
theory. It also illuminated a new attitude which should be 1nst111ed 1n
all compiler writers of the future. If there are syntax errors 1n the
p rog ram, the prog rammer must not know the langua~e 1n the f1rst pIa ~e.
Encourage hin to read the manual; furthermore, don t waste comp~ter t1.me
by looking at the rest of the program if the error was one wh1ch could
only have been made by a complete dolt. A compiler abort is the
quickest and cheapest way to quit scanning.

(i i) "The compiler should abort on some syntactically
crJnstructs. "

correct

We believe this is a truly ingenious device to educate the
experienced programmer. While aborts on syntactic error~ are directed
at people who still make mistakes, this kind of abort 1S a1med r1ght at
the knowledgeable one. Furthermore, this will help the programmer
expand his Pascal vocabulary by forcing him to use different language
features than the ones he really wants to use. Surely no further
explanation of the power of this device is needed.

(iii) "The compiler should generate incorrect code, which still
executes."

This must be considered the successor of both (i) and (ii). Once

t he program has sifted through the compiler, and a load module is
obtained, it wi 11 surel y hel p the pr og rammer unde rstand the pr ogram
better if it runs incorrectly. Hand traces are illuminating, and they
are essential in the development process of a program~ Waterloo has
extended their application even further to include post-runtime~ Once
again, we are amazed at the insight and courage needed to make this
intellectual leap.

At this point it should be noted that these principles combine to
help unify the user community. At KU a "bug list" has been compiled (by
hand), and all users are invited to contribute. It is a marvelous tool
for bringing people together. Furthermore, we have actually discovered
that some of those people prefer entomology to computer science. They
are indebted to Waterloo for providing the initial motivation to explore
t he field. The compiler seems to serve as a limited, occupational
counselor~

B. "Give brief error messages without referring to program text."

This will obviously make the user study the whole line (or
procedure, or program) ~ Our favorite message of this kind is "Syntax
error near "identifier". The runner-up is "Syntax error near
.. program" ~" It should be apparent how exemplary the latter is, espe-
cially for beginning programmers who are trying to write their first
Pascal program using Wirth's definition. (The second message actually
refers to a use of the defunct keyword, Eroqram, which is not allowed to
be us ed a t all.)

~~ .lnterfag

A. "Make the compiler options a dynamic set."

One
All prog ramme rs
way to foste r

like to feel they are in control of their machine.
this feeling is to provide an interface to the

The reason for this is to prevent confusion in the user by
providing too many things at one time which all work.

c. .'Create files for the us er, without checking the names of the
f i1es alrei'ldy in existence. ..

language processor which keeps changing. This is superbly executed by
t he time sharing command scanner for the compiler. To allow the use of
upper cr:tse keywords, we have used l1-dualcase," "-uppercase," and
"-singlecase" with different vetsions of the cOjnpiler. Inexplicably,
t hey neglected to r.ecognize those options only when typed in lower case,
to completely rule out the use of an upper case terminal. Perhaps that
will be provided in a future version.

In addition, it is also advisable to maintain
requirements for. the placement of the options on
relation to the filenaIlI(~s.Particularly useful here

a dy namic se t
the command-l ine in
is requiring one

option to follow the name of the source file, while .=ill others must
precede it. As new versions evolve, however, this restriction may be
loasened. Once again, Waterloo seems to have misBed the chance to
change ~b.:.t~b..option must follow the filenames.

B. "DO not implement all of the options documented at one time."

\'e must admit that this is the best feature of all, and the
compiler performs with characteristic aplomb. We were also delighted to
discover that the filenames used depend upon the options given in the
command-line. This is necessary to prevent standardization. One
exalnple will open the door for future implementations to follow.

If the user simply wants to compile the progr"''' and get a
relocatable object deck, the compiler creates a file for that by
appenuing II

.0" to the name of the source file (it can not be specified
by the user, a nice extra). The Honeywell time sharinl] fi1e system
limits filenames to eight characters; what should the compiler do if the
ndme of the source file is eight characters long? Perhaps the reader has
a lready guessed. The only logical thin<J to do is write the object deck
right over the source. Nothing could be more clever. Source files are
useless when one has the object deck. Why waste file space maintaining
both?! This will also prevent the user from making wasteful and costly
listings of the program. We are continu"lly impressed by the resource-
fulness displayed with this unique feature. An important thing in it's
implementation is the requisite lack of system documentation. The best
system features are ..21~i!Y~ the ones which are left undocumented.

We have given new standards for compiler construction, and we have
shown how the Waterloo compiler exemplifies them. There are still many
things which we have not explained- features we have not discussed.
Readers <ire invited to write the author for more information; perhaps
those with access to a Honeywell installation can arrange to get their
own version of the compiler. We are sure it will be a rewarding
experience.

(* Received 77/10/21 *)

UNIVERSITY OF CALIFORNIA. SAN DIEGO

BERJ:ELEY .DAVIS .IRVINE .LOS ANGELES .RIVERSIDE . SAN DIEGO . SAN FRANCISCO

INSTITUTE FOR INFORMATION SYSTEMS MAIL CODE C-021
UCSD
LA JOLLA, CALIFORNIA 92091

of

Status of UCSD PASCAL Project

Kenneth L. Bowles
Director, lIS
27 November, 1977
(714)452-4526

This is a brief report on the current status of the UCSD PASCAL project
intended to answer the questions of the hundreds of people who have
been writing to us or calling by telephone. It is our intention
eventually to reach a steady state in which we can afford to have full
time help capa?le of responding to such inquiries. For the present, we
have to apologize once again to those who may have been kept too long
waiting for replies.

1. Nature of the Project

The project is one of the principal activities of the Institute for
Information Systems (lIS). Like other "Organized Research Units" lIS
is operated primarily to provide resources and activities within ~hich
s~ud7nts and faculty can conduct research and development projects.
Within the range of such activities, projects may support instruction
and other public services, though the more usual activities of an ORU
involve only basic research.

Under lIS we have developed a major software system for stand-alone
microcomputers based on the PASCAL language. The initial r~a.on for
developing the system was to support instruction activities at UCSD.
However, the system is designed for general purpose use, particularly
for the development of interactive software, and for software
development in general. The system has matured sufficiently that we
are distributing copies to outside users at a $200 fee which pays for
some of the stud'~nt part-time assistants who provide support to users
and maintain the software. Under prevailing University policies we
are not attempting to recover capital costs from the fees paid by users
of our software package. However, a number of interested industrial
firms have provided assistance to further the project through
unrestricted grants to the Regents of the University of California
marked for use by our project. These grants are our principal source
of operating funds at the present time.

Since the PASCAL based software system was developed with the intent to
support long term instructional projects, we have placed very high
emphasis on machine independence. We expect the repertoire of
Instructional software developed to use the underlying system to grow
very large. The development costs for the instructional software will
eventually dwarf the costs of the hardware on which it operates. Since
the industry is introducing new microcomputer designs at a rapid rate,
we wanted to be able to move the entire software repertoire to new
machines with a minimum of effort. As will be detailed in later
sections of this note, our system is now running on 5 dis-similar
processors, with more planned in the relatively near future. We are
uSing the Digital Equipment LSI-11 for teaching. Versions for the 8080
and Z80 microprocessors are operational and will be ready to distribute
on or about 1 January, 1978.

.......
lD

,
00

We intend to continue promoting the use of our PASCAL-based system on
as many popular microprocessors as practical for two reasons. First,
this should provide lIS with a source of continuing income to pay for
student projects. Second, PASCAL with extensions is a superior
language for system programming, and we believe that it is in the

public interest to assist in the current effort of many people and

institutions to promote wider use of PASCAL in place of some of the
earlier high level languages. Though PASCAL may have some shortcomings

for specific applications, when compared to specific proprietary
languages, we regard it as by far the best general purpose language now

in the public domain.

Our current Research and Development interests include:

a. Methods of making large software systems like ours more readily
transportable to new processor architectures.

b. The use of microcomputers as intelligent communications devices to
assist humans to work together even when located thousands of miles
apart. This interest will eventually involve us in a variety of
complex software issues. In the near term it will provide us with an

efficient method of supporting users of our software system who are
remote from UCSD.

c. Joint use of microcomputers and Keller's Personalized System of
Instruction (PSI) as a means of offering high quality college level
mass education at lower costs per enrolled student than associated
with conventional methods. A published introductory textbook on
problem solving using PASCAL, and a library of automated quizzes and

record keeping software to go with the textbook, are available to

others as a first step in this direction.

d. Exploration of possibilities and software problems associated with
new hardware devices or architecture~ adaptable to the purposes
already described. Examples include video disks, low cost X-Y input
devices, and low cost strategies for interconnecting many

semi-independent microcomputers.

Partly as a matter of self preservation, we have become interested in.

the problem of standards for the PASCAL language. The United States

Defense Department and many large industrial corporations have recently
decided to use PASCAL as a base language which they would extend, and
possibly alter, to create system implementation languages. Although

almost every organization has chosen to extend or alter in slightly

different ways, we have found that the intent portrayed in most
instances is very similar. In our own implementation, we too found it
necessary to extend PASCAL, and in very minor ways to alter the base
language as described in Niklaus Wirth's widely read "Report" on the
language (see Jensen,K. and N. Wirth, "PASCAL User Manual and Report,

Springer Verlag, 1975). We, and many others in the PASCAL User Group,

are very much concerned that all this extension and alteration activity

will result in PASCAL going the way of BASIC for which hundreds of
dialects are in common use. We believe that a chance still exists to
gain consensus on a substantial family of PASCAL extensions for system
programming, provided that this can be brought about within the next 6

to 12 months. Unless someone does so before us, we intend to convene a
summer workshop for representatives of some of the major using
organizations in the hope that such a consensus can be reached.

Another ancillary activity of the project has been continuing search
for low cost microcomputer hardware of high quality for use in
educatiqnalinstitutions- particularly ours. We have been advising
and collaborating with EDUCOM regarding establishment of quantity
purchase discounts for stand-alone microcomputers. The first
microcomputer to be included in the EDUCOM discount program is the

Terak Corporation 8510A, which is based on the Digital Equipment

LSI-11. For the current market, the Terak unit's price of $5500 to
EDUCOM member institutions is highly competitive. Nevertheless, the
rate of new announcements from the industry continues very high, and we

believe that it is all but impossible to predict what hardware will
provide the best cost/performance tradeoff for as long as even one year

in advance. Of necessity-, our search has concentrated on stand-alone
microcomputers with graphic display capabilities, and with enough main
memory and secondary storage to handle the extensive software and
course materials with which we are working. We welcome inputs on this
subject from other institutions, or from any vendor, and endeavor to
keep EDUCOM informed of opportunities that seem advantageous. In
addition to educational and communications applications, we are
interested in word processing and business applications of the same
machines.

The following sections of this status report contain brief detailed

summaries covering most of the topics just enumerated. If we haven't
answered your questions yet, please try again with a phone call or
letter. For those who already have our software system in use, we will
soon be providing an automatic Tele-Mail facility on a dial-in basis.

This should improve dramatically our ability to keep you informed and
to respond when software difficulties arise.

2. The PASCAL based Software System

Thus far, users who have received our first released system have copies

of version 1.3, which was completed in mid August this year. We have
ourselves been using version I.3c since early October. By the end of
the December academic break, we hope to have a version 1.4 available
for distribution. The most significant generally useful addition since
the 1.3 release has been the screen-oriented editor. A major package

for preparation of CAI programs, following the general philosophy of
the University of California Irvine Physics Computer Development
Project (PCDP), has been placed in operation on the Terak 8510A
microcomputer. Except for some graphics materials within this package,

it can be used on a wide variety of CRT screen display devices.

Software more specifically oriented to the Terak machine is also
available, and includes a character set editor (for the soft character
generator), and a bookkeeping package for keeping track of student
progress in a large Keller Plan (PSI) class.

The software system is currently executed in a pseudo machine
interpreter, which emulates a hypothetical real machine designed to

handle PASCAL constructs efficiently. Our pseudo machine is similar in
concept to the P-machine distributed by Wirth's group at Zurich, but we

have made extensive changes to compress the PASCAL object code into a
much smaller space than possible with the Zurich interpreter. The
interpreter, and run-time support routines, currently occupy about 8K
bytes of main memory. The interpreter is in the native machine

language of the host machine, and thus far has been coded by hand using

the host's assembly language. All other code in the system is written

in extended PASCAL.

While the interpreted object code runs roughly five times slower than
native code for the host machine, several factors allow our large
system programs to run substantially faster than this would indicate.

The strategy of code compression makes it possible to run relatively
large programs without time consuming overlays. For example, the
complete compiler occupies 20K bytes in a single overlay. Since the
system is designed for frequent compile/go cycles associated with

instruction, we have added several built-in procedures and functions to

handle low level operations needed frequently by the compiler. .As a
result, the compiler translates PASCAL source code at about 650 lines

per minute on an LSI-11 with its clock set to 2.2 MHz. On a 4 MHz Z80,
the compile speed will be slightly faster than this.

Interpreter based versions of our system are now running on 5 distinct
processors, and two others are close to completion. Those operating
include DEC PDP-11's ranging from the LSI-11 to the 11/45, using either
floppy disks or RK05 disks for secondary storage. Versions for the
8080 and Z80 are operating in our laboratory, but more of that later.
Sperry Univac Minicomputer Operations at Irvine is using the system on
the V-75 and related machines. Another group at UCSD has the system
running on the Nanodata QM-1. With support from General Automation, a
version is close to completed on the GA-440 family of machines.
National Semiconductor has an implementation nearly completed on the
PACE microcomputer.

The principal modules of the system as it will be distributed in the
1.4 release include the following:

PASCAL compiler
File manager (capabilities similar to DEC's PIP)
Screen oriented editor (cursor positioning, immediate updates)
Line oriented editor (similar to DEC's RT-11 Editor)
Debugger (single line execution, reference to variable contents)
SETUP program (adapt system. to most ASCII terminals)
BASIC compiler (ANSI standard plus strings)
Operating System and user command interpreter
PASCAL pseudo machine interpreter
Linker program (for linking independently compiled program segments)
Desk Calculator utility program

Users of the Terak 8510A may, on request, also receive copies of the
CAI package, and automated quizzes for the introductory textbook, as
well as the bookkeeping package.

Documents describing all of the above are available, and part of the
release, but not all documents can be considered complete at this time.
We distribute source and object code files on separate floppy disks
formatted to be compatible with the IBM 3740 standard, with 512 byte
blocks laid out in alternate 128byte sectors according to DEC's
standard. We have occasionally sent copies recorded directly on disk
packs for the RK05 drives. All other media are painful or impossible
for us to handle, and no promises are made to use them. Those who
order the full $200 release package will be sent both the documents,
and printed listings of the source programs. Copies of the descriptive
documents, amounting to approximately 150 pages, may be ordered at $10
each (checks payable to the "Regents of the University of California")
to cover printing and handling costs.

3. Minimum Configuration

In order to use the compiler, you need a total of at least 48K bytes of
main memory, including the 8K bytes assigned to the interpreter. We
use 56K bytes. Ideally, the interpreter should be completed re-entrant
and thus it should be possible to operate the interpreter from Read
Only Memory. To date, the ideal has not quite been achieved, as none
of our sponsors has yet insisted on that feature.

At present, the system we use with students contains several built-in
functions not needed for system development. The aggregate size of
these functions is large enough to prevent compiling the compiler
itself, or the operating system, even on a 56K byte system.
Accordingly, we currently have two versions of the system, one for
students, and one for system development. Within the next few months,
we plan to add a means of configuring general purpose libraries for the

system, and by that means expect to be able to return to a single
version for all purposes. That single version should be practical to
use in less than 48K bytes for some purposes.

If you intend to compile on one microcomputer, and to executed object
routines on others, the others can get by with as little as 16K bytes
of main memory if the operating system is not used. The resident
portion of the operating system occupies about 8K bytes itself. This
will undoubtedly be reduced as part of the libraries project.

The system is designed to be used with standard IBM compatible floppy
disks. Clearly it can be used with other varieties of floppy disks, or
with other secondary storage media, with appropriate I/O drivers. The
I/O drivers have proven to be one of our principal bottlenecks, and we
make no promises in advance about supporting other devices. For DEC
PDP-11 machines the floppy disk drivers are assumed to be compatible
with the RX-11, 'or with the Terak 8510A drives. Hard disks are assumed
to be compatible with the RK05.

The system is normally supplied with the assumption that the user has a
simple line-oriented ASCII terminal. The SETUP program can be used to
configure control codes for more appropriateuse of most CRT terminals.
Copies of the system supplied to users of the Terak 8510A make fa1rly

extensive use of the special graphics and character generator
facilities of that machine.

4. 8080 and Z80 versions

The Z80 version is now running on the Tektronix 8002 Microprocessor
Development Aid system, for which Tektronix has supplied substantial
support to the project. The 8080 version uses virtually the same
source code as is used on the Z80, with conditional assembly altering
certain passages in the source to substitute for a few of the extended
Z80 instructions that proved useful.

Release of the 8080/Z80 version of the system for other machines has
been held up primarily because of the awkwardness of handling I/O. We
currently have a Zilog Development System, a Processor Technology SOL
system, and a Computer Power and Light COMP~L-80 system. The floppy
disk provisions for each of these machines 1S non-standard. As a
result we have been forced to down-load programs via serial interfaces
to get'from the LSI-11 host machines used for development over to the
new 8080 or Z80 based host. This has proven to be a very time
consuming process, and a serious bottleneck in our work. Moreover, we
are somewhat amazed to find that the Assembly of large programs on
these machines runs almost a factor of ten slower than compilation of
PASCAL programs that carry out similar tasksl Clearly, someth1ng has to
give if we are to reach the objective of distributingPASCAL systems
for more than a few 8080 and Z80 based machines.

The solutionto this problemthat we now plan to use is based on th~
extensivemarket penetrationof an operatingsystem cal~ed CP/M, Wh1Ch
is a product of Digital Research Inc. We have talked w1th many OEM and
hobbyist users of the 8080 and Z80 who wanted to know when we would
have the PASCAL system operating under CP/M. We then learned that CP/M
is distributed in a package which assumes that most users will write
their own I/O drivers. In effect, CP/M establishes a quasi standard
for the interface between an 8080/Z80 operating system and its I/O
drivers. With thousands of copies working in the field, CP/M seem~ to
be far ahead of the field in this area. Accordingly, we have dec1ded
to release the UCSD PASCAL System for 8080 and Z80 users in a form t~at
will work with I/O drivers and bootstrap loaders developed for use w1th
CP/M. This does not mean that our package will run under CP/M.
However, if CP/M runs on your machine it should be relatively easy to

fT1

en

\oN
00

install the PASCAL system on that machine. We have been in contact
with Digital Research on this concept, and they have offered to
cooperate. If you do not have CP/M for your machine, the
implementation package may be obtained from Digital Research Inc., Box
579, Pacific Grove, CA 93950 for $70. Since CP/M has been implemented
on a very wide variety of 8080 andZ80 based machines, there is a high
probability that CP/M I/O drivers are already available from Digital
Research or someone else for your machine.

Alteration of our present interpreter to match the CP/M I/O calling
conventions has proven to be very simple, at least on paper. We expect
that some implementors of CP/M will have installed standard console
input routines which automatically echo to the standard console printer
or display device. This will necessitate a change, since our system
uses both echoing and non-echoing console input. At this writing, the
exact method to be used is under discussion. Barring some unforeseen
calamity, copies of our system designed to run with CP/M I/O drivers
should be ready for distribution by early January, 1978. The
distribution medium will be IBM compatible floppy disks formatted in a
manner yet to be finally speQified. We will undertake to transform the
system for other media and other formats, in general, only if a copy of
the necessary hardware is available in our laboratory, and only if
funds are available to pay for the extra conversion work.

For many of the 8080 based machines we have seen, the most practical
way to install our system will be to use 48K bytes of RAM augmented
with 8K bytes of ROM for the interpreter. Any additional RAM or ROM
required by the host processor system will also be needed.

5. PASCAL Extensions and Alterations

We have attempted to implement faithfully as much as possible of PASCAL
as defined in Jensen & Wirth's User Manual and Report. The principal
extensions to PASCAL embodied in our system are related to STRING
variables, Turtle Graphics, handling of disk files, Segment (overlay)
Procedures, and several functions for support of the system itself.
Alterations include a prohibition against passing procedure or function
identifiers as parameters, restriction against GOTO out of a procedure,
the addition of EXIT«procedurename» to effect a normal exit from the
procedure named in the parameter, and a change in READ applying to the
interactive INPUT and KEYBOARD files. Further details than given in
this section are given in our system release documents.

Type STRING is a pre-declared record containing a character count
followed by a packed array of characters. Built-in procedures and
functions include LENGTH, POS(ition), INSERT, DELETE, COPY (i.e.
extract), CONCATenate, SCAN, FILLCHAR, MOVE RIGHT , and MOVELEFT. The
last four of these also operate on conventional packed arrays of
characters.

Turtle Graphics describes a technique originated by Seymour Papert of
MIT in which one can either MOVE a cursor (called the "turtle") an
arbitrary number of screen units in the current pointing direction, or
TURN an arbitrary number of degrees at the current position. A
PENCOLOk procedure allows the line drawn by a MOVE to be either WHITE,
BLACK, or NONE.

The disk file extensions allow working with fixed length logical
records corresponding to any legal <type>, which might typically be a
RECORD data structure. GET and PUT operate normally through a window
variable of the same <type>. OPENNEW creates a new file, OPENOLD opens
a pre-existing file, and CLOSE allows saving or purging a file. SEEK
(which will be distributed with the 1.4 system for the first time)
allows random access to logical records within a file.

SEGMENT Procedures are separately compiled and then linked into the
ho~t program using the LINKER. A Segment procedure is only loaded into
~aln memory when it is entered for the first time, and its memory space
lS deal located upon exit from the first invocation.

HEAD(INPUT,X) is defined by Wirth as X:=INPUTf; GET(INPUT)' which we
find to be extremely awkward for interactive use. Our solution is to
place the implied GET before the implied assignment in the case of
interactive files of type TEXT. READ operates as defined in Wirth's
Report for other TEXT files.

PACKED records on our system which fit within 16 bit fieldsare
automatically packed and unpacked without explicit action by the
programmer.

6. Introductory PASCAL Course and Textbook

Many of those inquiring about our system have heard about it through
havlng seen the tex~book "Microc~mputer Problem Solving Using PASCAL"
by the aU;hor of thls note, publlshed this fall by Springer Verlag. If
you haven t seen a copy, they may be obtained from Springer at 175
Fifth Ave., New York City, NY 10010.

The book is the basis for teaching the large attendance introductory
computer science course at UCSD. This course comes close to matching
the specifications for course CS1 in the recently published curriculum
recommendations from ACM's SIGCSE. The approach is non-numerical as
far as practical, as a tactic to reach the many students who come to us
with.inadequate prep~ration in high school mathematics. The problem
solvlng and programmlng approach taught is the same as we would teach
even if all the problem sets were mathematics oriented. Because many
proble~ examples and illustrations use our string and graphics
e~tenslons to PASCAL, the textbook currently assumes that the student
wlll.have access to a computer which runs under the UCSD PASCAL system.
We wlll be glad to discuss the possibility of conversion to other
softwar7 systems, but have very limited resources to apply to such
converSlons. There are several stand-alone microcomputers now being
sold in.large quantities on which our system would run, given a small
convers~on effort, and we would welcome support funds to pay.for such
converSlons.

Software in the form of automated quizzes is available with our system
release for those who may wish to teach uSing the textbook. Each
chapter in the book has a list of study goals for the students to
achieve. Wherever,appropriate, the quizzes test for mastery of the
tOplCS enumera~ed In the goals lists. The quiz programs have been
lmplemented uSlng a set of CAI primitive routines patterned after the

w711 known DIALOG CAI system developed at U.C.Irvine by Alfred Bork and
hlS colleagues.

The introductory course is taught using Keller's Personalized System of
Instruction (PSI). PSI has been found to be a more successful method
of instruction than any other method commonly used in universities and
colleges. This success is achieved, almost completely without

con~entional lectures, by using experienced students as Learning
Asslstants called "proctors". The characteristics of this method make
us believe that it is possible to offer this course, or others

constructed along the same lines, on a packaged basis for use at other
institutions. A separate paper describing this possibility in detail
called "Microcomputer Based Mass Education" is available from the

writer of this status report.

--rr.

(I)

7. Tele-Mail User Support Facility

We have reached the point where it will be possible for us to begin
operating a dial-in computer "mailbox" by early in the winter quarter.
We have been using the Terak 8510A machines occasionally as intelligent
terminals for exchanging messages via the large B6700 computer operated
by the campus computer center. Our own Tele-Mail facility will use its

own single telephone number reachable directly from the national dialed
telephone network, or internally via the California state government
telephone network. Paid subscribers to our software release will be

notified when this mailbox facility is ready to be used.

The mailbox will be operated primarily to serve users of our software

system. It will provide notices of recent bug corrections,

down-loading of program files (either source or object) where
appropriate, notices on new additions to the software and new machines

on which implementations have been completed, and other useful

information from us to the users. It will also serve as a means for us
to collect messages from specific users, and to answer them

expeditiously, without the hassle of both parties having to be at their
telephones at the same time.

Through the use of block transfer software, the mailbox will make
relatively efficient use of the dialed telephone network. We would
like to begin immediately by offering a dial-in port at 1200 bits per
second. However, the present state of confusion in the industry at that
speed (which is the fastest one can use with acoustic couplers) leads

us to move cautiously. We can and will install a port at 300 bits per

second using the standard Bell 103A equivalent conventions. The system

will answer an incoming call from an ordinary terminal by providing a
brief summary of recent developments. It will otherwise expect a

"handshake" from a special file transfer program that we will provide
to users of our software package. This program will be the means of
interchange based on efficient transfer of messages in the form of
complete files. If you wish to send an ordinary text message to us,
you will prepare the message using either of the editors built into the

system. Only after the message is complete will you need to make the

telephone connection.

8. Forthcoming Improvements

As mentioned earlier, our next significant improvement in the software
will be a more flexible system allowing libraries of programs. One of
the main reasons for doing this will be to allow the software to be
configured to make efficient use of main memory in cases where the user
does not need all of the built-in facilities. For example, we have no
need for turtle graphics when compiling large system programs.

One of the long awaited features of the new library system will be an

arrangement allowing mixture of PASCAL procedures with Assembly
language routines and/or procedures compiled directly to the native

code of the host machine. The necessary assemblers and code generation

will come somewhat after the library system is operational. If all
goes well, the library system should be ready to distribute during the

winter quarter of 1978. The assemblers and native code versions of the
compiler will come somewhat later as time for the necessary work
permits.

Many people have asked whether we have in mind extensions to support

Concurrent PASCAL, or similar facilities to allow independent processes
running concurrently. This is something we would like to do
eventually, but our current resources do not allow making definite
plans in this area.

(* Received 78/01/03 *)

UNIVERSITY OF CALIFORNIA, BERKELEY

SANTA BARBARA. SANTA CRUZBERKELEY' DAVIS' IRVINE' LOS ANGELES' RIVERSIDE' SAN DIEGO' SAN FRANCISCO

PROGRAM IN QUANTITATIVE ANTHROPOLOGY

DEPARTMENT OF ANTfIROPOlOGY
2220 PIEDMONT AVENUE

BERKELEY, CALIFORNIA 94720

21 December 1977

SUGGESTIONS FOR PASCAL IMPLEMENTATIONS

These suggestions are not based on implementation experience (I have none), but
on using, teaching, and arguing about the language and on maintaining and trans-
porting Pascal programs across several machines. Items 1 through 7a below concern
implementation and have no bearing on the Pascal language. Items 7b through 10
would affect portability if implemented on only some machines, and thus seem worth
considering as "conventional extentions."

1) A very nice feature offered by some Fortran compilers is a special comment
construction which is treated as a comment under one compiler option (the default),
while such comments are compiled if the appropriate option is specified. This
feature allows debugging code to be inserted in withthe rest of the program at
no cost to the size or execution time of the final production object code (since
the debugging code is treated as comments in the final compilation). In addition
to debugging, this feature can be used to produce two slightly different object
versions from a single source program, or for insertion of machine-dependent extra
features in an otherwise transportable program. This could be implemented in a
Pascal compiler in two ways:
a) The most analogous implementation would use a $ comment option which would
cause the preceeding open and the following close comment symbols to be ignored
under "debug" mode, while otherwise these $ comments would be treated as comments.
This means of implementation has the advantage that it can be used for declarations
or for actions. It has the disadvantage that no comments can appear within the
"debug" code since few (if any) compilers allow nesting of comments (some allow
pseudo-nesting through different comment symbols).
b) A different implementation would use Pascal language structure rather than
special connnents:"debug" code would appear within an if statement which has as
its Boolean expression only a single constant identifier. The following (compound)
statement is compiled if and only if the constant has the value TRUE. The code
for the if statement itself is not generated in either case. Means of implement-
ation b) has two advantages over a). First, the programmer can provied as many
different "constant switches" as desired: one actually for debugging, another
if certain features are available on the host machine, etc. The second advantage
is that any Pascal compiler will generate correct code from programs using these
constant switches, in fact, I used them frequently to move programs back and forth
between machines (Texas-AustinCDC and DEC 10). Of course, such programs will
run less efficiently if the special use of the Boolean constant is not recognized
at compile time. For the specific purpose of debugging, it would be convenient
to have a predefined Boolean constant identifier DEBUG global to the main program.
This would be FALSE unless set by the job control command invoking the compiler,
and could as usual be overriden by a local same-named constant.

2) Large programs would be easier .to read and debug if the compiler source
listing included, at the end of each procedure or function, the names of global
variables referenced in that routine, and the routine in which they were defined.

3) A compiler option to flag non-standard constructs is quite useful. At some
future time it may be desirable to expand this to flag only constructs which are
both non-standard Pascal and non-lIconventionalextentions".

4) If the reserved word PACKED is ignored by the compiler, the procedures PACK
and UNPACK should be implemented as the appropriate FOR assignment loops.

5) If LINELIMIT (not a part of Standard Pascal) is not called for a file, the
default should be no line limit at all, rather than a small positive limit. A
small default limit is undesirable for two reasons: a) programs writing to several
files may run correctly during testing and then fail on a large production run
(Pascal 6000 enforces a limit on every output file, not just printer files), and
b) portability of programs written on machines not implementing this extention
is impared.

6) The syntax which makes one-pass compilation possible also makes possible a
compiler for interactive program entry, with syntax checking after each line of
code is entered by the user. Actually, program entry could be done by a syntax
scanner which copies good input to a file but does not generate code (thus would
be transportable). If the user was given some simple editing facilities, such
a system would compare favorable with many of the selling points of a good
Basic interpretor.

7) The following two comments on numeric input apply to either free-field or
formatted input:
a) The standard language definition of <unsigned real) (Jensen and Wirth, pIll,
p 138) requires digits to precede and follow the decimal point. This restriction
on the source language should not carryover to input performed by user programs,
but unfortunately the "read real" routine in many run-time libraries does not
accept input such as 5. and.5 Since the user/programmer has no control over the
form of input in many applications, this restriction can be a considerable incon-
venience ('~e would want to write a Fortran pre-processor anyway, so why not just
do the whole thing in Fortran...").
b) The suggestion by Peter Grogono allowing recovery from input errors (PN #9-10,
p 51) is excellent. The solution to the "123J5" problem he mentions is simply

that such matters are the programmer's responsibility: she/he would have to check
ITEM. FOUND = TRUE AND INPUT,!, = "" if this is an appropriate expectation of

the input data.

8) File buffer emptying is an important operation in interactive environments.
Agreement on a "conventional extention" for this would reduce the current name
proliferation: SENDTTY«filename» on Texas CDC: BREAK on Nagel DEC 10 (no
argument): FLUSH«filename» on UCB UNIX PDP 11. Help!

9) Compilers should pad short strings with blanks. This may be considered a
departure from the strict typing of Pascal, but counting of characters is very
undesirable in a high-level language. (It is interesting to compare Pascal in
Wirth's A+DS=P examples p 319 with 241 and 17).

10) In addition to the predefined constant MAXINT, the following constants would
be useful: MININT, MAXCHAR, MlNCHAR, MAXSETINT, MINSETINT, MAXSETCHAR, MINSETCHAR.
These allow the USer to define types such as INTSETTYPE = SET OF [MINSETINT..
MAXSETINT]: and even write statements such as IF CH IN [MINSETCHAR..MAXSETCHAR]THEN
independently of the machine environment. The SETINT and SETCHAR constants could
probably be derived from each other with CHR and ORD, except that if only one were
provided the other could not be used in declarations.

That's all. . . . Willett Kempton

(* Received 77/12/23 *)

Suggested Extensions to- Pascal

Pax:t I

11. A. Fx:a ley

Univex:sity of Bx:itish Columbia
August 25, 1977

A numbex: of extensions and modifications to Pascal ax:e
suggested below. It is the author's belief that Pascal, as it
stands, cannot compete successfully with more complete languages
~n production envix:onments and ovex: wide x:anges of applications.
Some of these suggestions would significantly change the
language, but they would hopefully px:esex:ve its clarity and
simplicity. Some of these extensions ax:e optionally available
~n the Pascal/URC compilex: fox: the IBM 370 fPUGN #81:

Dynamic Ax:x:ays and Pax:ametex:ized Types

The inability to write px:ocedux:es which can be applied to
ax:x:ays of different sizes is probably the greatest weakness of

~ascal. Thp ability to compute ax:x:ay sizes at run time is also

aesirable. Pax:ameterized types px:ovide a mechanism fox:
supplying these capabilities f2,3,41.

J:oxample:

TYPE
VAR

STRING (LEN: INTEGER)
S: STRING (10);
T: STRING (N+3);

ARRAY f1..LEN] OF CHAR;

s is an ax:x:ay of 10 chax:acters, while T has N+3 charactex:s.
Type pax:ametex:s may only appeax: a~ ax:x:ay bounds ox: pax:ametex:s to

component types. Assuminq the example above, the following

notations can be used:

S
Sf 2]
S.LEN

x:efers to the entix:e stx:inq.
x:efex:sto the second element.
x:efex:sto the length pax:ametex:.

whenevex: the type name STRING is used, the parametex: must be
supplied. Thex:e ax:e two exceptions to this x:ule:

TYPE SP = t STRING:
PROCEDURE P (VAR STR: STRING);

when a pax:ametex:ized type is the sub;ect of a pointex:, or used
as a VAR paramet~x:, type pax:ametex:s cannot he px:ovided.

Wirth has suqgest~d that dynamic
allowed within stx:uctux:esfPUGN #8]. with
the weakex: condition below will still
~fficient implementation.

arx:ays should not be

pax:ametex:ized t,pes,
pex:mit a simple and

When a pax:ameterized type is a component of a
stx:uctux:ed type, its pax:ametex:s may only be constants
ox: parameters of the containing type.

The followinq implementation may be used:

1. The fix:st field is the size of the entire data item.

.,.,
fT1
0::;

::c

=.J:>
::c
-<

This allows
compares.

simple implementation of moves and

2. The parameter. are stored next. These fields may be
interrogated or used for type compatibility checks.

3. The data area for variable sized fields is placed at
the end of the record structure. This allows direct
access to all fields without the need for computinq
displacements at run time.

4. Each field of variable size is replaced in the
structure by a pointer to the appropriate data area.
Unlike other pointers in Pascal, the field pointer is
relative: it is the displacement of the data area from
the pointer field. This allows record items to be
moved without changing the pointers.

5. When an array has a component of variable size, the
length and index origin are stored in a dope vector.

One additional restriction is that parameterized typeS are
not compatible with simple types. For example, if we have the
declarations

VAR V: STRING (12);
Ii: ARRAY[1..121 OF CHAR;

PROCEDURE Q (VAR STR: STRING);

the call Q(V) is legal, but the call Q(W) is not.

!lodules

One of the strengths of Fortran is the ability to have
library packages. Some Pascal compilers allow separate
compilation, so that libraries can contain individual
procedures. But for a package of procedures, there must be a
shared data area for retaining values and communicatinq from one
procedure to another. The Fortran mechanism for this process is
"named common". Pascal has no such mechanism. Its qlobal data
area serves as a structured form of "blank common", but there
should be a structured form of named common.

!lodules in the language Modula [51 provide such a
structure. Selected constants, types, variables, and procedures
of a module are known to the outside world; all others are the
private property of the module.

Pascal should allow separate compilation of modules. Later
compilations could reference the "ob;ect module", which would
contain definitions of all external names. The compiler could
include the module's ob;ect code with the current compilation,
or could insert the appropriate loader coutrol lines for
fetching the module. Some provision should be made for alerting
users when the external specifications of library modules are
modified.

Files

A number of complaints have been made about pascal's I/O

\

l:acilities rPUGN #5 (Eisenberg), #6 (Hagerty, Cichelli), #8
(Sale)). The suqgestions in this section and the two that
tallow address these complaints and related topics.

What is a file? A file is a record, one of whose
components is a system ob;ect. The system ob;ect contains a
sequence of typed components. Pascal over-simplifies this
~ituation by ignoring the system ob;ect. When a user first
~earns about files, he must learn the system conventions quite
early. Hiding them in Pascal does not shorten the learninq time
significantly.

Files in Pascal contain the one important property which
makes them variables: they vary. The assignment operator is not
defined for this data type. Euclid even has a method for
~ssignment to be illeagal for selected user types. But
assignment of files in Pascal could be qiven a meaning. Just as

"Ft" suggests a dereference which does not necessarily occur,
the assignment "F1:= F2" could assign the system ob;ect from
one file variable to another. After this assignment, F1 and F2
would access the same system ob;ect. (The coordination between
these files, the contents of their buffers and fla~s, and ether
issues would need to be decided if this interpretation is made.
These issue must be pursued anyway since two external files may
dccess the same system ob;ect.)

Here dre some suggested operations on files. Some of these
would be meaningless for the current Pascal definition of files.

DEFINED (file)
Returns TRUE if there is a system obiect associated
with this file variable.

OPENED (file)
Returns TRUE if the file has been used. If

RESET or REWRITE should be performed rather
or PUT.

FALSE, a
than a GET

RESET (file, name); REWRITE (file, name)
Changes the system obiect associdted with the file to
the namEd ob;ect. This allows the proqram to
reference cataloqged files without the user supplyinq
the name each time the proqram is run. Conventions
for names would need to be established for
portability.

EXTEND (file); EXTEND (file, name)
These work like REWRITE, but can be used to extend an
existing file without reading it first. (Example: A

compiler might wish to keep a statistics file of all
error messages issued to users. The second form of
EXTEND could be used, since the user would not know
about this file.)

ENDFILE (file)
Assuming EOF(file) is TRUE, this procedure ends the
currentfile. If EOF (file)is FALSE, skip past the
end of the file. This is useful if the actual file is
a tape.

Random access facilities may be added to the existing file
facilities with little cost. Unlike the "slow array" proposals,
the technique below does not permit inteqer indexes into the
file. While this may be inconvenient, it can be easily

C/)

m
fTl
b:j
::0
c::
:t>
::0
-<

~mplement€d on most machines. In addition, if a file element is
aeleted in an integer indexing scheme, there would be a guestion
dS to whether the subseguent elements should be renumbered.

POSITION (file)
This function returns

"filepos". indicating
window in the file.

a value of an internal data type
the current position of the

DELETE (file, pos)
Deletes an element of a file. "pos" must have type

"filepos" .

REPOSITION (file. pos)
Repositions the file window to the parameter position.
Following this position, a GET or a PUT is permitted,
regardless of the current value of BOf(file). If the
component at the indicated position has been deleted,

a GBT will set BOF(file) TRUE.

NEXTPOS (file, pos)
This procedure differs from REPOSITION in two ways:

1. If the component has been deleted. a GET will
access the next component which has not been

deleted.

2. A PUT will place the current buffer into the
file position immediately following the
indicated position.

FIRSTPOS (file): LASTPOS (file)

These functions return the first and last positions of
a file, respectively.

Ihese functions should be easy to implement for files having a
rixed comFonent si2e. A clarification of the effects of these
~rocedures would be needed for text files. (O~r system does
aeletions and rewriting of entire lines, rather than individual
cha racters.

)

As to the usefulness of this scheme, most random accesses
reguire the use of a directory. links in fields, or remembering
d location. The special pointers can be stored as easily as
rntegers. Hashing to a file isn't possible, but a procedure for
mapping integers into file locations might be specified.

Formatting

Toe Pascal Report [11 does not specify the effects of the
formatting procedures READ and WRITE in sufficient detail. The
suggestions below clarify a few points, and present some
extensions and changes which seem more consistent and flexible
than the current conventions.

1. What is the effect of WRITE (1234:3)7 To avoid
erroneous printing of numbers, the full value "1234"
should be printed. This has the desirable side effect
that WRITE (1:0) produces free-form output. No extra
spaces are placed around the number, so it will appear
naturally in the text.

2. What is the effect of WRITE ('ABCO':3) 7
says that the output should be "ABCD".

consistency

We avoided

losing significant information in the integer case. so

we should avoid it in the character case. The
statement WRITE (' ABCD ':3) could be defined to
produce ABCD" instead of "ABCD ". This would
allow the form WRITE (A:O) to be used inside of
messages without leaving irrelevant spaces.

3. There are certain applications where the progcammer
may wish to truncate integers or strings on output.
The statement

WRITE (1234:3:TRUNC. 'ABCD' :3:TRUNC)

could produce the output "234ABC".

4. Real number formatting in Pascal is currently
inadequate. When the decimal digits aren't specified.
the format ("E" or "F") should be chosen by the output
routine to maximize the number of significant digits
which can be contained in the field. The call
WRITE (r:w:d) causes "F" format output with "d"
decimal digits, unless significant digits would be
lost on the left. The field could be expanded, but a
switch to "E" format would be appropriate. (The field
would be widened to allow for a value having the
specified numner of decimal places and the exponent as
well.) The statement ~RITE (r:w:d:E) could force "E"
format with the specified number of digits.

For consistency with the
WRITE (r:O) could output

conventions could be those
trailing zeros are eliminated

previous cases. the call

in free-format. The
found in APL, in which

when possible.

For consistency with the source language.
least one digit must be printed to the left of
decimal point. If no digits are reguested to
right of the decimal. "." is not printed.
additional convention may be that exact zeros
printed

"0" with no decimal part and no exponent.

at
the
the
An

are

5. Formatted out put of scalars and cha racters should be
provided, and should be identical to string output.

6. Input of character strings should be allowed. READ(s)
would start at the current input position and fill s
with characters. If the end of line is reached before
s is full. the remainder of s is filled with blanks.
and the window remains at the end of line. If EOLM is
TRUE when the read is started, the read begins on the
next line. (Note that if zero length lines are
permitted, a null line could pass unnoticed. Our
system returns one space with EOLN false even if the
original line was empty.)

1. It should be possible to associate cead and
formatting routines with each user-defined type.
would allow all variables to be used in READ and
statements.

vrite
This
~RITE

Inpu t forma tting, while not discussed above. should be
provided. People won't use Pascal if they can't read their
existing data. whether or not it is archaic. Sometimes data is
generated DY laboratory eguipment as strings of digits;
modifications to the hardware should not be forced on the user.
Ln addition, most users don't have the time to write their ovn

en

~umber conversion routines for reading the data a character at a

time.
Conclusions

The use of Fortran carriage control is archaic, and doesn't
LnterfacE well with some operating systems. (i.e.: Pascal
would need to know whether the first character is carriaqe
control in order to generate the proper file format.) The
tollowing format qenerators could be included as arquments to
I(EAD and WRITE:

Part I has presented three aaior areas of Pascal which
would benefit from change. while the nature and basic structure
of the language would be preserved, it would no longer be
compatible with the current language. If these suqqestions were
Lncorporated into a languaqe, perhaps we would need to call it
"Pascal II": a new language based on Pascal. Part II of this
paper presents additional changes, dealinq lIore with syntactic
and semantic details.

EOL
SKIP (n)
SPACE (n)
TAB (n)
PAGE
CONTROL (x)

Start a new line.

Perform EOL n tim~s.
Leave n spaces (skip n columns).
Skip to coluan n.

Start a new paqe (WRITE only).
Implementation defined control. suggested Extensions to Pascal

Part II

The function LINELENGTH (fil~ could return the lenqth of
the current line. For input on text (and arra y of char) f Hes,
this can be useful if the number of trailinq blanks is
oignificant. For output on text files, the result is the
current column.

R. A. Fraley
University of British Columbia

August 25, 1977

The current handling of end of file conditions leads to
errors. A user who is readinq pairs of numbers miqht write
IiEAD (I, J), and then check for end of file. Since this is
~guivalent to READ{I); READ(J), and EaR condition in the first
read would cause a run time error in the second, before the user
could test for the condition. An EOF within'a sinqle READ
statement should cause an exit from the entire statement.

This part sugqests saaller chanqes than those suqgested in
Part I. In many cases, ainillal chanqes would be needed to
existing compilers; a nuaber of extensions would also be needed.

Typed Values

Interactive I/O
Values of arbitrary types should be constructable. CHR

currently constructs values of type CHAR from integers; such a
runction is needed for other types. Scalar types could be
produced from inteqers by usinq the type name as a generator.

Usinq Pascal in an interactive settinq can be quite
Lrritatinq. Since INPUTt is the first character of the input, a
read must have been performed before a prompt messaqe could be
printed. The user should be reguired to write RESET (INPUT)
iust as he does for other files. (But correct performance on
the first GE1 or PUT could be implemented if the RESET or
IiEWRITEis omitted.) The initial status of INPUT should be:
INPIJTt = ,

" FOLN = TRUE, and EOY = FALSE.

Example

TIPE COLOR = (RED, ORANGE, YELLOW);

COLOR (1) = ORANGE
CHAR (OHD ('A'») = 'A'

A similar construction could be used for arrays.
For interactive users, HEADLN is useless. It encourages

proqrammers to read the next line before issuinq the p£ompt

Qessage. If "EOL" is allowed as an arqument to READ, it should
oe explicitly coded and RUDLN should be discarded. It then
"ecomes obvious whether the line is read before or after the
data. With the EOF convention mentioned above, READ (EOL, I)
would allow the user to test for EOF without causinq an end of
£ile error.

TYPE VEC
VAR V

ARRAY f1..101 OF INTEGER;
VEC;

V := VEC (1, 12, N, 7 HEP 0);

lhe operator REP replicates its riqht operand the number of
times indicated by its constant left operand.

A user should be able to detect whether the program is
communicatinq with a terminal or a data file. The function

TERMINAL (file) could return a Boolean value indicatinq whether
a specific file is a terminal. This would be more useful than a
function indicatinq whether the run was started from a terminal,

4S a terminal user may wish to run the proqram with stored data.
(The other function has its uses as well.)

A similar notation should replace the current
constructor. Consider the type declaration and set below:

set

TIPE SS = SET OF 1..10;

r3, N, TRUNC (EXP (R))1

uoes the set belonq to the type SS? There is no way to
determine whether this was the programmer's intent. If an
~mplementation uses different representations for different
~izes of sets, it would need to use its maximal representation

"'T1
I"T1
t>:I

:::c

=J>
:::c
-<

......
<.D
""-J
00

for the set shown. Chanqinq the notation to
.:>Sf 3. H, TRUHC(EXP(R» 1 would enable the compiler to select the
appropriate set size.

A similar constructor could be offered for records.
decause such a constructor depends on the field orderinq, it
could be "dangerous". Listing the field nalles could be tedious.
uther suqqestions are welcomed.

Initialization of Variables

A variable initialization facility for Pascal would be
useful. A nUllber of implementations already have a "VALUE"
section. The utility of this facility is reduced bv the
presence of typed value constructors, but salle sort of
Lnitialization should be made available.

A lIodule facility was suqqested in Part I. Each lIodule
effectively has a static area of shared data. While a mcdule
specification could require a call to an initialization routine,
Detter reliability could be obtained bv either initial value
Qeclarations, or by generatinq an initialization call when the
module is included.

The mechanism below could serve as an alternative to th~
value section.

TYPE IRT
PTR

INTEGER INIT 0:
tNODE IRIT NIL:

Automatic variable initialization, when declared as part of the
type, could be extremely useful in buildinq special purpose
~ackaqes. Where failure to initialize a variable could lead to
~rbitrary results, predictable results will occur with
initialized values. The overhead for initialization is only
incurred when specifically requested.

Value References

Pascal's data referencinq facilities
to the syntax of the value description.

~~ (constant, variable, or expression)

referencing operator should be independent

are tied too closelY
One could distinguish
frail 1YB~' A data
of form.

Here are some examples. Given CONST C='ABC', Pascal does
not allow reference to Cf11. even though C is an array of
characters. Let PF be a function which returns a pointer value.
Pascal does not allow the notation PFt. It lIay De useful to
refer to this function on the left of an assiqnment:
PFt. DATA := 17.

A function should be
of data. There should
~mplellentation: a pointer

the routines.

able to return any (assiqnable) type
be no difficulty in makinq such an
to the result could be passed between

The
clumsy.

technigue for
AS the function

specifvinq function results is quite
name is used on the left of the

assignment to receive the result value, a new USer is tempter to

refer to it on the right as well. This is interpreted as a
recursive call. An alternative might be to use a reserved word,
~ike RESnLT, to specify the function result. This could also be
used on the right to reference that value. Another approach
would allow the proqrammer to specify the result name:

FUNCTION F (X: INTEGER) Y: REAL;

Record Variants

Record variants are unsafe. It is difficult to determine
.hether a field reference is valid r61. without such an
ability, qarbage collection cannot be implemented safely, and
range checking cannot assume that the field contains the
ueclared ranqe.

Simula f7] provides a safe variant method usinq class
prefixes. Translatinq into Pascal terminoloqy, a prefixed
record defines a new variant for an existinq record.
~ffectively, the new record is a variant to the prefix record.
fhe advantaqe is that a type detined within a library packaqe
could be extended by the user's program. A collection of
library routines could provide tunctions over a structured type
without knowing the format of data being stored within that
type. For example, a library procedure miqht define a routine
fRAVERSE over a data type TNODE. The user proqram could use
TNODE as a record prefix, adding its own data to the nodes of
the tree. The disadvantaqe of simula prefixes is that new names
must be provided for each variant: variants cannot be indexed.

Another safe method is type unions, as defined in Alqol 68
t8]. These have additional uses as well.

No matter what method is used to define variants, a
statement resemblinq Simula's INSPECT should be provided. This
statement examines the tag, and only allows a reference to a
variant field when the taq contains the proper value.

A type escape mechanism is appropriate to replace
obscure use (or abuse) of record variants. For example.

this

I:='AECD' TYPE INTRGER

Gould assign the representation of
Such a statement is useful for
statement is clearly implementation

used with restraint.

'ABCD' to the inteqer
computinq hash values.
dependent, and should

I.
The
be

Packing

The restrictions on the use of packed data are a blemish on
Pascal. They are not obvious to the user who is iqnorant of
Lmplementation problems. consider the seqment below:

TYPE
VAR

T = 1..10;
V1 T:
V2 : PACKED RECORD

F1, F2, FJ: T
END;

m

I'T1
t:>:I
:::0

=:1>
:::0
-<

I--'
I.D
'-I
00

~
Ul

TIPE T1 1..10 ;
T2 PACKED 1. . 10;

VAR V1 T1 ;
V2 RECORD

F1, F2: T2; F3: T1
END;

CASE I
IiHEN1,2 DO X .- I; Y .- Z
IiHEN3 DO X .- Z; I .- X
END

V1 and F1 are declared to bave the same type, yet
used interchangably. In particular, they may not
as VAR parameters. Here is a modified notaticn
packing.

some compilers might try to generate a branch table havinq 10000
entries! (Pascal/UBc generates a table search.)

they cannot be
both be used
for specifying

A default case is sorely needed for writing fail-soft
programs. Such programs need to intercept errors due to
unexpected data values. Pascal/UBC uses the following syntax:

CASE C OF

"

t I_.,
/I"

<>, '; t:

END

PROCESS (C):

ERROR (C)

Internal representation differences reguire that the proqrammer
code a different type. It is now obvious that his data items
are not interchangeable. Because packing is not associated with
the environment, not all fields need be packed. UnfortunatelY,
this notation would be more verbose than the current notation.

Ihis has an advantage over the "OTHEWISE" notation fPUGN 18, pq
.16 (Steensgaard-Madsen) 1 because specific error values can be
Listed along with the default symbol "C)".

Control Structures

Wirth has re;ected the use of a CASE default fPUGN #8, pg.
.13]. This author feels that it is no worse than the unqualified
ELSE in an IF statement. It is an absolute requirement if the
~ASE is to be useful in real programs. Consider Wirth's example
of a CASE being used with a character field. A proqram which
will receive wide distribution may use a restricted character
set. All characters cannot be listed, because implementation
character sets may differ. On certain machines, some characters
nave no external representation, and could not be entered as
case labels. Sometimes the internal, printer, and terminal
character sets differ, adding to the confusion.

To hasten the learninq process, there should be a uniform
structure for compound statements. The "closed" format used by
Algol 68, Modula, and Euclid is most desirable. This format
uses a closing word for each statement, rather than reguiring
bEGIN...END brackets to build compound statements.

";xample: To restrict the temptation to misuse the case default, a
range of values (such as 1..10) should be allowed as a case
rabel. For characters, the ASCII ordering could be assumed to
permit portanility. (' I..

'w'
means "all characters from' ·

to 'ii)'in the ASCII sequence". It does BQ! imply that the
~nternal representation is ASCII. compilers for non-ASCII
~mplementations would need a table to select the appropriate
character values for the case label.)

IF B THEN X := Y; Y := Z END_IF

(Other formulations use "FI", "END IP", or "END" in place of
"END_IF".) The advantage to this form is that the proqrammer
Deed not decide whether a BEGIN is needed or not when writinq
ois code. A line may be inserted without needinq to add BEGIN
BID brackets. The "dangling ELSE" problem disappears: it is
always obvious which IP an ELSE is associated with.

80st of Pascal's compound statements may easily be qiven a
closed form: a suitable closing word is selected for the end.
For convenience, "ELIF" (a contraction of ELSE and IF) is
added to the IF statement, allowing multiple tests with only one
closing END_IF. The REPEAT statement already has a closed
tormat. The CASE statement requires the most modification to
meet this suggestion. The format below might be used:

"Loop Statements

The existing loop statements are not applicable in all
situations. The author suggests an infinite loop, together with
an exit statement.

LOOP
EXIT
I .

END

IF F(I) < 10:
I + 1:

A semantics check could guarantee that each loop contains an
";XIT. The EXIT can te embedded in an IF or CASE, but not
another loop. The condition following EXIT is optional.
(Compilers should generate a table of all exits from a loop, or
flag exit statements in the margin.) A FOR clause could
1ntroduce a loop:

The word "CASE" might be replaced by "TEST" for readability.

The CASE Statement

FOR I .- 1 TO 10 LOOP... END
The CASE statement, as specified by the report, has a

number of weaknesses. The legality of the statement below is
not specified by the report.

CASE I OF

1: X:= I;
10000: I .- X

.END

For loops would be more useful if a set value could control
the i tera tion.

FOR I IN [1, 7, 9.. N1 ...

en

.......
LO
""'-J
00

)

wo specific o~de~ of value seiection should be assumed. Another
~mp~oveme~t ~o FOR loops (as moditied above) would be a code
reg~on wh~ch ~s executed only when the ite~ation te~minates
no~mally, but not when an EXIT is used to leave the loop.

FCR I := 1 TO LIMIT LOOP
n KEY = TABLE [11 THEN

BEGIN RESULT.- I; EXIT END
AFTERWARDS

LIMIT := LIMIT + 1; TABLE(LIIIIT]. KEY;
RESULT .- LIMIT

END

decla~ations. Require a ":" if the tag name is omitted.

Allow "PROCEDURE" in place of "FUNCTION".

Specify a maximum source line length. 100 is a reasonable
value. (This allows some extra formatting space on a 132
cha~acter print line, and allows for line expansion when
80 character lines are edited.)

Provide procedure variables. A representation of
procedure pointers is available for procedure parameters.
Only top-level procedu~es (within a module) ma, be
assigned to variables, thus avoiding the "vanishing
environment" problem.

The value of the controlled variahle should be defined on exit.
dan, machines cannot trap references to undefined values, so
~mplementation dependent programs could be developed which relY
on the specific values left by that implementation. The
variable should have the value of the last time through the
loop, or be unchanged if the loop was not executed.

Use parentheses for array references (A(I) instead of
A[I). An array is a method for implementing a function
of integer arguments. Why should implementation decisions
affect the technique for writing the function reference?
A library package might change its implementation, without
changing its external specifications; users would then
need to change their programs. (Note: there is currently
no distinction between a variable reference and the
invocation of a parameterless function.)

Miscellaneous Points

Allcw
"_"

in identifiers. P~ovide a compiler option format, instead of examining
comments for compiler options. "$" brackets could
surround option specifications. Each option name may
optionally be follewed by "+", "-", or ":=<constant>".
options are separated by"." or ";".

Allew ";" before ELSE (optionally). Programmers could
then use ";" as a ~tatement terminato~ if they wish.

Allew strings to be extended with blanks en the right. Do

!!21 automatically truncate characters from strings. Allow
single characters to be extended to strings.

Com.iler options should be standardized. An
implementation need not provide an option, but if it does,
the name is chosen from the standard list. Options not on
the list may be provided as well. Compilers not
recognizing an option name should ignore it.

Provide a substring function.
number range as a subscript.

Alternatively, allow a

Explicitly prohibit character
continued on a new line.

Compiler options which affect the generated code

options for range and index checks, non-standard
optimization, or debug facilities) should follow
nesting rules. Option changes made within a

should not affect outer procedures.

(such as

features,
standard

proced ure

constants from beinq

Allow sub~anges instead of type
parameter lists.

identifiers in formal

Change ";" to "," in procedure parameter declarations. Semantic Ambiguities

Require parameter
pdrameters.

for procedures passed astypes
The validity and interpretation of each construct below

~hould be made explicit in any forthcominq standard.

PROCEDURE Q (PROCEDURE P (VAR RBAL; 3 REP INTEGE~)
1. Consider the program segment below.

Procedure argument lists a~e a specialized form of record.
The variant mechanism should be available for parameter
lists.

PROCEDURE P;
TYPE T = txx;

XX = RECORD ... END;

END;

Allow arbitrarY
declara tions.

specifications
T obviously points to a record ob;ect of type XX. But
what if the debugged procedure P is placed in a
surrounding program which also contains a type XX. Using
IDa?y ~ompilers, T is now a pointer to the QYter XX. Is
th~s ~nterpretation proper?

in pointertype

TYPE PTR = t RECORD ... END

(Also allow prR to be referenced within the ~ecord.)

Allow arbitrary scalar
2. Our compiler will process the declaration below without

any error messages.intypes case tag field

n

.......

c.D

........

00

TYPE COMPLEX Language Euclid". ~IGg1AM Notic~§. J1:2. Peb

1977.
RECORD

REAL:
IMAG;

END:

REAL:
REAL

I31 wirth. N.. "An assessment of the Proqraaminq Lanquaqe

Pascal". SIGPLAN l!Q!i£,§§. July 1975.

Should it produce an error message? Maybe two?
f41 Fraley. R.. "Paraaeterized Types". Unpublished Paper.

April 1975.3. Exact rules for type compatibility should he stated. We
recently received a program which passed a 0..100 variable
as a VAR INTEGER parameter. Should this be leqal? If so.
how can valiJ ranqe checks be performed? How about two
record declarations havinq identical field structures (and
names)?

r 51 Wirth. n.. "/IODULA:
Multiproqramm

for lIodula.rA Lan quaqe

f61 Fischer. C. N. and R. J. LeBlanc. "Efficient
Implementation and Optimization of Run-Time
Checking in Pascal". F.£Q,g. !£!1 !,;Q.!!f. Q.!! 1t.!!.!!.!1

n'§§'!gJ! lQ[EeliaRl'§ ~oftwa£.§. Raleiqh. N.C..
/larch 1977.

4. Our compiler useJ to loop when it encountered the proqram
below.

TYPE A = 'A; B = 'B;
VAF X: A; Y: B;
BEGIN X;= Y END.

f71 Dahl. O.
Compo

et al.. £~Q'!! ~.!!§,§La~~g.§. Norweqian
Ctr.. Oslo. 1970.

Are these types leqal? Does your compiler qenerate the
error messaqe properly?

I81 vanWiinqaarden. A. et al.. "Revised Report on the
Alqorithmic Lanquaqe Alqol 68". ~12R1!! ~§.
J1:5. 1977.

Conclusions
(* Received 77/09/13 *)

Extensive changes to Pascal have been suqqested in this
paper. The author feels that chanqes of this maqnitude are
required if Pascal is to be useable for proqram development in a
professional settinq. Quite a number of additional features
Gould be recommended; the chanqes above have the hiqhest
priority.

If Pascal was modified as described. we may need to call it
something else. for it would no lonqer be Pascal. Perhaps it is
Pascal II? Or Pascal 77? A standard languaqe resemblinq Pascal
~s surely needed. but why should hundreds of proqrammers be
~nvolv€d in writinq a standard. new processors. and textbooks if
the standardized lanquage has a limited life or cannot be used
tor larqe systems?

WHAT TO DO AFTER A WHILE

D. W. Barron

Do not condemn fortran without understandinq it. It nas
changed over the years to provide improved facilities for
program dev~lopment. even if its basic structure has remained
static. Each feature. as used in program writinq. should have
an equivalent in Pascal. or qood reason should be qiven as to
whv it is not. Fortran owes its long life partlv to its
standard. even though it has not bEen strictly implemented. But
~t also owes its life to its usefulness in solvinq many of the
evpry-day tasks of proqramming. such as communication with the
operatinq system and referencing library packaqes. Pascal would
Denefit from expansion in some of these practical directions.

& J. M. Mullins

Computer Studies Group,

University of Southampton.

The Problem

Bibliograpny
The problem is simple. If one writes while p and

q do..., will q. be evaluated if p is false? The "boolean
operator" approach says yes, the "sequential conjunction" approach
says no. The Revised Report leaves the question open (though the

UserManual says "yes"), and A.H.J. Sale (1) has argued strongly
that the boolean operator approach should be uniformly enforced.
We take the opposite view.

r 11 Jensen. K. and N. Wirth. Pas£gl Q§g£ ~.!!nual i!.!!g
R~Bor!, springer-Verlaq New York (1976).

121 Lampson. B. W. et al.. "Report on the Proqramminq

OJ

I"T1
O;:j

:;0

=
»
:;0
-<

.......
c..c
'-I
00

.l::"
CO

if (p and q) then Sl else S2

as

ifp ~begin

ifq then Sl else S2

end

else S2 ;

but this is not perspicuous, and is not in the spirit of PASCAL.

A Proposal This is a natural way of expressing the operation to be carried out;
what follows the while is a sequence of guards* which determine
whether or not the body of the loop is to be executed. If we specify
that the guards are inspected in strict left-to-right order until
one of them "triggers" there are no problems: this corresponds to
evaluating the while condition by sequential conjunction. However,
if the boolean operator approach is used we are in trouble (array
bounds) if the item sought is not in the table. OK, there are lots
of ways round this, (e.g. put the item sought at the end of the
table, use a boolean variable, or even use a goto), but as we
illustrate in the appendix, these are distortions: the program no
longer bears a simple and obvious relationship to the problem, and
this is bad style. Our contention is that the need to distort the
program to satisfy the boolean operator interpretation is contrary
to the spirit of Pascal. Study the examples in the appendix to see
the truth of this assertion.

We propose that in the forthcoming revision of the Revised
Report the operators and and ~ should be defined as

p and q _ (if p ~ q else false)

p or q _ (if p then true else q)
*

The reasons i;-£avour~f this proposition are summarised

the convenience of readers who may not wish to study the

argument in the remainder of this paper.

here for
detailed

i) Sequential conjunction permits a programming style that
is more in the spirit of PASCAL.

ii) If.se~uential conjunction is adopted as the standard,
eX1.st1.ngprograms that assume the "boolean operator"
interpretationwill continue to work. The converse is
not true. (This argument does not hold for programs that
rely on side-effects of functions, but we have no sympathy
whatever for those who perpetrate such monstrosities.)

Uniformity and Regularity

Our argument has concentrated on while statements (and
similar arguments could be applied to repeat..until constructions).
This is because these are the only constructions where the sequential
conjunction interpretation is required and cannot be fabricated by
other means. The question arises whether all occurrences of and and
or should be treated the same way. Sequential conjunction should
certainly be used for conditional statements. If the boolean operator

approach is used, we can fabricate the effect of sequential
conjunction by writing

Hi) conjunction is adopted as the standard the
boolean operator interpretation can be
user-defined functions: the converse is

If sequential
effect of the
fabricated by
not true.

Programming style and the "spirit of PASCAL"

The argument in favour of sequential conjunction hinges
on programming style. Efficiency is sometimes raised as a
consideration but it is a red herring. For some architectures
(e.g. pipelines) sequential conjunct~on is inefficient: for other
architectures it is more efficient. But in the Pascal community
we should.have gotte~ beyon~ ~udging language features solely in
te:ms of l.mplementat1.oneff1.c1.ency.What matters is being able to
wr1.tecorrect programs that are easily comprehensible.

One of the classic illustrations of the two approaches
is the problem of searching a table:

var table: array [l..maxsize]of whatever;

index :-= 1;

What should happen to boolean expressions in other contexts
e.g. expressions? If we were starting the language design again, there
would be quite strong arguments for allowing the boolean operator
interpretation in these other contexts. It is a good principle of
language design to separate clearly the data objects and the permitted
operations on them from the mechanisms for achieving flow of control.
Sale's paper distinguishes between boolean expressions in a jump
context and in a value context. He is recognising (unconsciously
perhaps), that whilst boolean variables are data objects, and can be
combined into boolean expressions, the condition following an if or
a while is something different. To emphasise the difference, we
might give it a different name; taking a term from English grmmmar(3)
(an obscure subject, rarely studied these days), we could call it a
protasis. Because it is a different kind of object it is possible for
it to obey different evaluation rules, and sequential conjunction is
the right approach. Equally, because it is a different kind of animal
we wouldneed a new notation e.g.~, ~ for sequential conjunction,

while (index <= maxsize) ~ (table [index] <> item)

do index: = index + 1 ;

(*condition for item not found is "index> maxsize"*)

*
first of these relations defines sequential conjunction.
second defines sequential disjunction, but we shall use
term "sequential conjunction" to include both.

The
The
the

*
Compare Dijkstra's if and do constructions expounded in "A Discipline
of Programming".(2)- -

\
\

-n
fT1
t:ct
;:0
c::
:P
;:0

-<

~
<.0

'I
00

booland, boolor for boolean operator. This is the solution adopted
by some other languages e.g. POP-2(4), RTL/2(S). But given that we
have a fairly well defined language already that we don't want to change,
it seems better to make sequential conjunction uniformly the method
to be used for evaluation of and and or in all cases. This has the
supreme advantage that existing-programs (and particularly compilers)
continue to work, and don't have to be changed to conform to a new
standard. It also happens to be the rule adopted by MODULA and EUCLID.

Appendix

Searching a list without sequential conjunction

1. INSERT A DUMMY ITEM

Before leaving this topic it is worth remarking that the
dangers of confusing a protasis with a boolean expression are well
illustrated in Algol 68. The pursuit of regularity, orthogonality,
etc. allows us to write

var table: array [1..maxsizeplusone] of whatever;

index := 1;

while Sl; B do S2;
table [maxsizeplusone] . - item;

meaning while (table [index] <>item)

L: Sl; if B then S2; goto L;
do index := index + 1;

which is thoroughly confusing.
(*condition for item not found is "index=maxsizeplusone"*)

Getting the best of both worlds

Adopting the sequential conjunction interpretation allows
a more natural style of programming. (Compare Welsh's compiler with
Amman's to see this illustrated vividly.). If anyone really wants to
enforce the boolean operator interpretation of and he has only to
define ---

2. USE A BOOLEAN VARIABLE

Y!E. table: array [1..maxsizel of whatever;

notfound : boolean;

var pl,ql : boolean; notfound true;

-n
rrl
t:d
;:0
c::
:J:>
;;0

-<

function andop (p,q : boolean) boolean; index .- 1;

begin

pl := p; ql :=
q; (*ensures both arguments evaluated*)

while not found and (index <= maxsize)

~ if table[index] = item

andop := pI and ql
then not found false

end; else index := index + 1;

then he can replace while(p and q) by while(andop(p,q» and be

be assured that p,q will bo~be evaluated.
(*condition for item not found is "notfound"*)

3. USE A GOTO

References label 9;

1. Sale, A.H.J. Compiling Boolean Expressions - the case for a
"boolean operator" interpretation. PUG Newsletter No. II,
1977.

var table array [1. .maxsize] of whatever;

index := 1;

2. Dijkstra, E.J. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, 1976. while(index <= maxsize)

do if table [index] = item then goto 93. Onions, C.T. Modern English Syntax. Routledge and Kegan Paul
London 1971.

~ index := index + 1;

4. Burstall, R.M., Collins, J.S. and Popplestone, R.J. Programming
in POP-2. Edinburgh University Press 1971. 9: (*condition for item not found is "index> maxsize"*)

5. Barnes, J.P. RTL/2 Design and Implementation. Hayden and
Son, London 1977.

U1

C>

(* Received 77/09/21 *)

ADAPTING PASCAL FOR THE PDP 11/45

D. D. Miller
GTE Sylvania, Inc

Mountain View, California

ABSTRACT

This paper describes our adaptation of the University of
illinois' PASCAL student compiler for a PDP 11/20, to a
production compiler on an 11/45. We will discuss, a) the
extensions to the language which were necessary to commu-
nicate between PASCAL programs, data and MACRO-II
code, b) support routines such as a routine debug and source
update and reformatting, and c) how we introduced PASCAL
into an existing software system and to MACRO
programmers.

INTRODUCTION

Historically GTE Sylvania has delivered turnkey
systems with software written in machine language.
For all the usual reasons management decided to
investigate the possibility of developing software
based on a higher level language. The target pro-
ject was a system which was already in the field,
but under contract for a major revision. The sys-
tem controls a real time experiment. It has sever-
al special purpose I/O devices and doesn't use any
DEC software. It is about 25,000 lines of macro-ll
code and runs On a PDP 11/45 with 64K of memory.

In March1975 we attempted to locate compilers other
than FORTRAN which were running on a ll-series
machine. Candidate compilers had to be able to
handle complex data structures with ease and would
have to generate LINKable code so we could build
our own system. The only compiler we could find
to meet these criteria was PASCAL at the Univer-
sity of Illinois. It was running on an 11/20 under a
version of DOS-4.

We began in-house training for PASCAL using the
Jensen and Wirth User's Manuall in April. The
legal aspects of acquisition were completed in the
meantime and the Compiler was ready for use in
May.

We then wrote some toy problems to get a better
feeling for PASCAL and to test its non-standard
features. In June we identified the changes we
would have to make and those we would like to make,
and then laid out a schedule.

The production compiler was released to the pro-
gramming staff in November so that they could be-
gin compilation. It. was completed in December
according to our requirements. But we continued
to modify it as we saw the need.

We will discuss the specific change s we had to
make to the compiler, a description of the support-
ing software and the non-technical problems we en-
countered introducing the compiler to the staff.

CHANGES TO PASCAL

The changes outlined in this section were made be-
cause the several programmers are all working on
a single system. The system as originally de-
signed, had a large common data base which was
acce ssed by all programs. And the system con-
tained several utility programs. Furthermore,
from a practical level, the routine s in the system
are better developed and maintained in smaller
units. A fifty page PROGRAM is more difficult to
develop and maintain than five ten page PROGRAMS.
A fifty page PROGRAM may also exceed the com-
pilers table limits.

Program Cross Linkage

PASCAL does not allow linkage to data outside the
PROGRAM and only allows linkage to predefine ex-
ternal utility programs. This was unacceptable as
we expected to make use of existing MACRO code
and data. Therefore the major change to the com-
piler was to implement the following syntax:

<program>
<prog>

=<prog,>.! <module>.
: = <program heading>

<program block>

=proRram < identifier>;

=<module heading>
<module block>

: =module <identifier>;

= <declaration part>

=<declaration part>

< statement part>

<program heading> :
<module>

< module heading>
< module block>
<program block>

A program is an executable entry, i. e., it contains
outer block code and has a start point. A ~

is a non-executable entity, i. e., it does not contain
outer block code.

A module is composed of data and procedure decla-
rations only. Modules allow for portions of the
system to be separately programmed and compiled.
Selected data elements and/or procedures and func-
tions can be accessed from other modules or from

t~e program via the external and entry declara-
hons. Data spaces consist of the following types:

normal
external

~

Normal data space is the same as Jensendescribed.
Normal data space is allocated on the "stack" upon
entry to a procedure and is de allocated (erased,
lost) upon exit from the procedure. Each entry to
a procedure which declares normal data structures
causes space to be reallocated to those data struc-
tures. Consequently, no memory of previous val-
ues is retained, and the same stack space may be
shared among procedures.

external data space consists of those data struc-
tures that are used locally but are allocated in an-
other module or MACRO program and have been
declared as either entry points or global. The
usual declarations are used to describe these data
structures, but no space is allocated for them.

~ data space consists of those variables that are
allocated in a program or a module but are not put
on the "stack." own data structures retain their
values from procedure entry to procedure entry.

~ data structures may be initialized and/or may
be designated as entry points. Entry points are
used by LINK to resolve references created by use
of EXTERNAL data spaces in other modules.

\

:z

Example:

program LISTEN;

external

~ TALK: CHAR;

procedure SPIT (ANSWER: CHAR);

procedure ASK;

end external;

begin

while TALK = 'do ASK;

SPIT (TALK):

end.

module SAYSO;

own

TALK: CHAR;

~ TALK: = ';

procedure ASK;

begin READ (TALK) end;

procedure SPIT (X:CHAR);

begin WRITE (X) end;

entry TALK, ASK, SPIT.

In this example the main, or controlling program is
program LISTEN. Within LISTEN the procedures
SPIT and ASK are declared external, indicating that
these two procedures may be invoked but are not de-
fined within this program. The assumption is that
some other body of source code define s the se two
procedures appropriately. The variable TALK is
also defined as external to the program.

The module SAYSO satisfies all of the external ref-
erences made by LISTEN. Note that the variable
TALK is declared in ~ space (a necessity for
entry points) and is initialized to ". TALK, ASK,
and SPIT are declared as entry points, i. e., they
may be referenced from other modules or programs
as externals.

Packed Records

The Illinois PASCAL didn't allow packed record or
array declarations. But our existing system con-
tained a lot of packed data, which naturally .fell into
the packed ~ syntax. Since Wirth leaves the
semantics of packed ~ to be defined at im-

plementation time, we chose the following scheme
for storage allocation:

Storage is allocated in one of two modes, normal
and packed. For normal storage allocation (i. e. ,
the variable has not been declared as packed, it is
not a packed type, and is not part of a packed
variable) each unstructured variable is allocated
either a byte or word. A byte is allocated for scal-
ars with less than 128 elements, for subranges
within -128, +127, and for char. A full word is al-
located for all other unstructured types. If the next
element to be allocated is a full word and the next
available byte is an old address, then that byte will
be skipped and the full word will be allocated on the
next higher even address. Arrays and records are
allocated as a set of contiguous elements.

packed records are allocated in a slightly different
manner. Each element is allocated only the num-
ber of bits necessary to contain the element. If the
next such element to be allocated will fit within the
current word then it will be allocated there. If the
element doe s not fit, then it will be allocated start-
ing at the next even byte. Allocation of elements
starts at bit 0 of a word and proceeds to bit 15
(i. e., from right to left).

Examples of PACKED record:

Channel

lIS

Status Unit

STATUSWORD = packed ~
UNIT: 0..15;

STATUS: array [0.. 8J of boolean;

CHANNEL: 0.. 7

end;

Variant Record

We changed the syntax of variant record descrip-
tions slightly to ease the job for the compiler and to
make the presence or absence of a tag field in the
record more consistent. The semantics of this
syntax means that the record mayor may not con-
tain space for the tag field. The variant record is
similar to FORTRAN's equivalence state~The
syntax is

<variant>:= ~ <tagfield>: <type>of

f < variant subfield>} end
<tagfield>:= <identifier> I empty -
etc.

Examples:

1. With tagfield in record

~ X:(A, B, C) ~
A:();

B:();

C:(

end

2. Without tagfield in record

~ :boolean of

true:);

false:

end

Additional Functions

We found that we needed several functions added to
the compiler

Procedure MACRO (CODE:INT;X:INT); This pro-
cedure reference signals to the compiler to gener-
ate an inline word of instruction. This is the mech-
anism to be used if special instructions must be
executed in the middle of PASCAL code. CODE
must be -1, and X may be either a constant or the
name of a variable. IF X is a constant then that
value is the value used. IF X is a vari~ble the P-
relative address of the variable is used. '

Example:

MACRO (-1, 016746B);

MACRO (-1, X);

Procedure TRAP (TRAPNO:INT;var SPECBLK;tbd:
var LINKBLK:tbd) This procedure fir at place s the
addresses of SPECBLK and LINKBLK on the stack
then executes a trap instruction. The trap number
is indicated by the parameter TRAPNO. The code
generated by the compiler for this procedure call
is:

mov #SPECBLK, -(SP)

mov #LINKBLK, -(SP)

trap #TRAPNO

Function FIRST (X:INT):INT; This procedure ref-
erence signals the compiler to use the lowe st value
defined for the parameter X. X may be of type
integer, scalar or subrange. See below for exam-
ple of usage.

-n
I"T1
t>;:j
:::c

=::I>
;<:I
-<

~
<0
......
00

V1
N

\

-0
»
U'>
n
»
r-
:z
rr1

~U'>

"It:
I--'
I--'

Function LAST (X:lNT):INT: This function refer-
ence signals the compiler to use the last, or
highest, value defined for parameter X. X may be
of type integer, scalar, or subrange.

of PASCAL is seven core loads, linked together
with disk files. There are two routines the com-
piler writer has to debug PASCAL. One prints all
the intercommunication files and the other prints
the resultant code in MACRO format. This second
routine was originally the last pass of the compiler,
and generated input to the MACRO assembler. How-
ever that final pass had to be modified to print out
its table of PASCAL labels and statement numbers
versus relocatable address. This was required to
relate console debugging to compiler listings.

Example:

~ X: 13..21;

Y : (A, B, C, D):

begin X : = FIRST (X):

~ (X:=X+1) <= LAST(X) do;

for Y:=FIRST(Y) ~LAST(Y) ~ The compiler included a cross reference pass.
This pass sorts all the routine variables and prints
all reference s to that variable along with its defini-
tion. This feature is found on very few compilers
but is a valuable aid to debugging and maintaining
any block structured language routine.

Function ADDR (X:TYPE): TYPE; This function.
generates a pointer (i. e., the address) to the varI-
able given as a parameter.

var Z:lnteger:

::t integer:
The University of Illinois included a source deck
reformatting routine. This routine is used to en-
force a consistent statement indention scheme
throughout a progra.m and across all programs.
This permits all programs to be more portable be-
tween programmers. To assure that it is used reg-
ularly, we added a line editor to the front end, and
embedded the whole thing as the first pass to the
compiler.

begin Y:=ADDR(Z) ~

Function POINTER (X:int):t: This function causes
the integer parameter to become a universal .
pointer. This allows the programmers to do pOInt-
er arithmetic:

Given the following declarations:
NON-TECHNICAL PROBLEMS

~ DIGITS =array [0..9 J of integer:

~ X:DIGITS:

W:DIGITS:

At the outset, the project staff was composed of
six programmers: five had just completed deliv-
ery of the predecessor system. The author had
been hired to complete the staff. The five had little
recent contact with high level languages. Most had
spent their career at the machine language level.
And so when it became known that management was
considering a high level language for the project up-
date their reaction ranged ootwe...n-disbeliei and
re bellion.

Z:integer;
then we may write the following statements:

W:=addr(X): "W points to X"

Z:=addr(X[2J):

Z:=addr(W[3J):

Z:=pointer(ord(W)+6): "Z points to X [3J or
W[3J"

X [lJ:=ord(Z)-ord(W); "# of bytes"

1!..pointer (ord(addr(X»=addr(X) "true"

then. . .,

Of course management was quick to point out that a
high level language was only being considered and
that the language decision would be made in the
future, based on availability and economic factors.
And of course, the basic design of the project

wasn't affected by the language. So design could
continue independently from the language.

When the Illinois version of PASCAL was chosen as
the candidate compiler, in-house classes were
held, and the basics of the language explored. When
the compiler actually became available, a few five
line programs were attempted by the staff.

The first relevant PASCAL introduction for the five
was a compilation of the system's data areas in
June. This sparked some discussions (out of

SUPPORT ROUTINES

The University of Illinois supplied us with several
debug and support routines, which we have en-
hanced. We have written others to support the user.
The compiler writer must.have access to interme-
diate results in order to find errors. This version

curiosity) concerning some practical applications of
the language to the problem that they were familiar
with. Occasionally, some suggestions were made
to improve the data definitions. And thus a gradual
acceptance of PASCAL was beginning to be seen.

The modification of the target system included first,
documenting the existing system and then upgrading
it according to customer requirements. Necessarily
the documentation was carried out at a high level,
i. e., higher than machine language flow charts.
And as the system was modified, the same high
level documentation technique was used. It would be
ideal to conclude at this point by saying that the doc-
umenta.tion style closely resembled PASCAL, but
that simply isn't true. Each designer developed his
own style. What did take place is that they learned
how to express their ideas in a language above that
of the machine while still precise enough to be
short of arm waving.

As the language decision date approached, the
lines-of-code estimates for the two language alter-
natives were made. Based on those estimates
alone, PASCAL was clearly the choice. However,
some of the designers, looking forward to coding,
were appalled by the suggestion the machine lan-
guage was still being considered.

When PASCAL was finally declared to be the lan-
guage, real programs began to appear. And conse-
quently the designers' imagination crashed the
compiler on a regular schedule. Syntax was added
and in one case (the variant CASE) changed at the
suggestions of the designer turned programmer.
So finally we realized not only acceptance of
PASCAL, but an effort to improve it to better des-
cribe the problem at hand.

Acknowledgments

We wish to acknowledge Professor Don B. Gillies
(deceased), Ian Stocks, and Jaynt Krishmasamy of
the University of Illinois for their assistance in
transferring the PASCAL compiler from the
PDP 11/20 to GTE Sylvania's PDP 11/45. In addi-
tion we wish to acknowledge the National Science
Foundation for making the Illinois PASCAL com-
piler available to GTE Sylvania. Especially we
must thank Larry Drews and David Shaw, whose
foresight and diligent work modified this version
of PASCAL.

(1)
(* Received 77/09/13 *)

Jensen, Kathleen: and Wirth, Niklaus
"PASCAL User Manual and Report,

"Lecture Notes in Computer Science,
Volume 18, Springer-Verlag, 1974

U1
\Ai

PASCAL: Standards and Extensions

A. General

In this article I would like to make same comments on the current standards/extensions
argument, and to suggest some specific modifications to the standard and some useful
extensions.

In my opinion the following points are relevant to the standards argument:-

(l) Any implementationof PASCALshouldconformto someminimumnstandard11. This
is the basic requirement for portability, which is so necessary if PASCAL is ever to
supplant FORTRAN. If any implementation does not meet this standard it should not be
called PASCAL.

(2) The standard should be based on the revised Report. However, there are areas
in which the Report needs tidying up before the standard can be specified (see the
contributions by Niklaus Wirth [pp. 22-24, PUGN #8].Andy Mickel [pp 28-30, op.cit.] and
below) .

(3) Extensions should be allowed, but they should be "conventionalised"as
suggested by Andy Mickel [loc.cit.]. By conventionalised I understand that any extension
to provide a specific function should be consistently supplied in only one standardised
form. Possibly, only extensions that can be expressed in standard PASCAL (albeit in a
possibly lengthy or inefficient manner) should be allowed (?).

(4) Any compiler that implements extensions should also be capable of processing
only the standard language. This would enable any program to be checked against the
standard. This could be controlled by a compiler option indicating whether the
standard or the extended language was to be processed.

(5) The standard should be specified as soon as possible to restrict the current
proliferation of incompatible implementations. The standard should hopefully be agreed
upon by some form of concensus of the PASCAL user/implementor community. There should
also be same recognised means of conventionalising any extensions.

B. On the Standard Language

I would like to briefly discuss some of the points that Andy Mickel [loc.cit] has placed
in categories of standards and extensions.

(1) I think that variable extent arrays as formal parameters should be allowed
as part of the standard. For many general purpose applications programs these are
virtually indispensible unless the source code is to be modified each time for each
specific application. (See also the discussion on varying arrays below)

(2) Some decision must be made on a standard character set upon which the
type char is based.

(3) While the suggested otherwise part in a case statement would be useful I
don't think it is essential. However, I do think that the standard should specify the
action to be taken when a missing value is encountered, i.e. error or null operation.

(4) I would like to keep well away from formatted read statements (see below
as well) .

Taking into account the above consideration, I agree basically with the classification
of the various points discussed by Andy Mickel. However, I do have some additional
points which I would like to see discussed. These are dealt with below.

2

(C) Modification to the Standard for Repeat and Case Statements

Currently, mUltiple statements under control
begin ... end pair, those under control of a
repeat and the corresponding until and those
by the ~ and end.

of a while statemp.ntare bracketed by a
repeat statement are bracketed by the
controlled by a ~ statement

While admitting that these forms are reasonably strightforward, I think they are
inconsistent. I consider that programming style can be much improved with little or
any extra compilation cost by treating all statements controlled by a control state-
ment in a consistent manner, i.e. by grouping with a begin ... end pair in the form of
a compound statement.

To my mind the greatest advantage of this is that related statements are always grouped
in the same manner and that when reading a program each end matches with a corres-
ponding begin.

I therefore suggest that the standard syntax for the repeat staement be modified to:

repeat -+<statement> -+until -+<expression>-. and that the syntax for
the case statement be: ~ -+<expression> -+af-+begin --- etc.

Admittedly the repeat statement can already be used in the
suggested manner, however I don't think it would be a bad thing to forceprogrammers to
use ~t in this way!

(D) Varying Size Arrays as an Extension

This extension to the language is prompted by a foreseen need for varying length
character strings (they make the manipulation of non-numeric data so much simpler t).
However in as much as a character string can be considered to be an array of char
or a packed array of char, the idea can obviously be extended to any array, with the
added advantage that the treatment of many problems involving the use of varying
quantities of data might be simplifed.

I therefore suggest the following extension to the declaration of array types:-

L rL
r>~~->etc.

> packed~ > varying

The declared size of the array would be treated as a maximum only, the initial size
being zero.

As an example, a variable declared 50:-

var S: packed varying array [10..19] of char

would be a string of maximum length 10, the first element being S[lO] and the initial
length being zero.

I think that such an extension would minimally require the following extensions in
addition:-

(1) A concatenation operator to allow appending of one string or array on
the end of another.

(2) An additional form of selector to allow the equivalent of the PL/I substring
function.

For example give S above, the reference:- S[12..15] would be equivalent to a
reference to a variable of type

packed array [12..15] of char.

en

-3

This form of selector need not apply only to varying arrays but could apply to any arrays.

(A relevant aside: This idea would be even more useful if variables were considered
to be of the same type if they had the same structure, not just if they had the same
type identifier.)

(3) A size function. This would be used to return the size of any array,
varying or otherwise.

(E) A General Inverse to the Ord Function

Very briefly, I think that some function comparable to the char function but acting on
any scalar type (exceptreal) as an inverse to ord would be very useful. At the
moment I can't think what to call it! ---

(F) A Different Approach to the Treatment of File Variables

There has been much discussion on the meaning of statements such as:-

f1:=f2

where fl and f2 are both file variables.

I think much of the discussion has arisen through some conceptual confusion between
a file and the file variable used in PASCAL to reference a file.

I would like to suggest an approach to the whole subject which I think is different
to those that have been put forward before, but which is both'natural to PASCAL and
consistent with the normal usage of file variables in PASCAL.

The notation ft (where f is a file variable) for an item in a file is identical to the
notation pt for the variable referenced by the pointer variable p. Thus file variable
f could be considered to be a pointer variable tied to the set of items in the file
which it references. (It should be noted that this argument does not assume that an
item in a file need be transferred to a file buffer before it may be used even
though it may be transparently implemented in such a manner.)

Then,just as pl:=p2 (where pI and p2 are pointer variables based on the same type)
assigns to pI a reference to the same variable as it referenced by p2, so fl:=f2
(where fl and £2 are file variables) assigns to £1 a reference to the same item in the
same file as is referenced by f2.

Consequently, the expression fl=f2 would have the value true if and only if fl and f2
referenced the same item in the same file.

The use of file variables as formal var or value parameters is also obvious by analogy
with the similar use of pointer variables.

The use of file variables in any other expressions (except as parameters to I/O
procedures or when qualified by t as in ft) would be meaningless and should be treated
as syntax errors.

Naturally enough, the usage of file variables in the above statements and expressions
would only be legal if the base types of the relevant files were the same.

AS has been mentioned by others, filescan have four basically different kinds of
temporal existence:-

(a) Existence before and during program execution, but not after (e.g. file
removal in a archiving system).

.

(b) Existence during program execution only (i.e. a scratch work file).

(c) Existence during and after program execution but not before (i.e. file

creation).

- 4

(d) Exist~nce before, during and after program execution (e.g. permanent data-
base file).

Clearly, in case (a), (c) and (d) the files have some existence separate from the
program and the file variables used to reference them. There must be some way of
associating a file variable with such a "permanent" file in such cases. This is
currently done by effectively passing the files as parameters to the program and
associating the file with the file variable by the file variable identifier. This
seems to me to be O.K. as a start particularly if the operating system provides some
method for associating external and internal file names (e.g. B6700 label equation).
However, I think this method has two disadvantages. Firstly, it seems to imply that
the files must exist for program execution to be successful, there is no reason why
this should be so. Secondly, it lacks flexibility in that a file variable must always
be associated with one particular file during program execution.

I would like to suggest that a file variable only bcome associated with a file when
the file variable is referenced by a file reference functon or procedure, e.g.:

or

eof (f),
get(f),
put (f),
reset (f),
rewrite (f).

Until a file variable is associated
an undefined value (is there/should
be disassociated from a file either
such as

with a file, it should have the value nil or an
there be a difference?). A file variable could
by setting it to nil, or by using a procedure

close(f).

It may be considered useful to have a corresponding procedure, the only action of which
is to associate a file variable with a file, e.g.

open(f)

Of the four types of file discussed above, for (a) and (b) we need to be able to

indicatethat the file is to be expunged from the system and that the file variable is
to be disassociated from the file. For cases (c) and (d) we need to be able to
disassociate the file variable but leave the file known to the system. May be a
procedure

delete (f)

or something similar, could be used'to perform the first of these functions and let
the suggested procedure close perform the second. (What should thedefault action be?)

When performing output to a file we need to be able to distinguish between creating
a new file (case (c) above) or outputting to an existing file (case (d». When
creating a new file it is possible that we may be creating a new version of an already
existing file. I would suggest that by default, output to a file should append to a
file if the file already exists, or to a new one if not. If it is wished to replace
an existing file, this can be done by preceding the first output to it by a rewrite
(or possibly a delete). -

So far it has been assumed that a file variable is associated with an actual file by
correspondence of names, i.e. the file variable ~ would reference a file known

to the system as ~, unless over-ridden by some operating system control. If a
file variable is to be able to be associated with files at will then there ought to
be some method of associating a file name with a file variable. To make things
simpler this could be restricted to being legal only when the file variable is not
associated with a file. A possible way of allowing this would be to introduce
(yet another!) standard procedure, e.g. name (f, s)

where f is a file variable
s is packed array of char and contains the name of the file.

"

-n
rr1

t<'
;::0

=;J:>o
;::0
-<

Ul
\.T1

- 5 -
Finally, I would like to put in a plea for random access of files. While accepting
that a file should be considered as a sequential data structure, I think that the
term sequential should only be considered to imply that there is some positional
ordering of the items in the file and not that the items may only be accessed sequent-
ially. Thus, I think it should be possible to access any item of a file at random
using a procedure such as

seek(f,n)

where n (of type integer) is the ordinal number of the item to be referenced. If the
n'th item does not exist the eof (f) would become true.

If the action required by the seek was not possible on the particular file, then a
run-time error condition should be indicated.

Notes:

1. This scheme assumes that ~ and ~ may be mixed on the same file.

2. Seek(f,l) is equivalent to reset(f).

3. Failing anything more efficient, seek(f,n) could be implemented by:

reset(f);
i:=0;
while not eOf(f) and i<>n do
begin get(f); i:=i+l end;

4. An alternative to using seek would be to extend ~ so that

get(f,n)

would assign to f, a reference tothen'th item in the file. get (f) would still assign
to f a reference to the next item in the file. Similarly for

put(f,n)

5. While the file variable can be conceptualised as a pointer to an
it would probably best be implemented still as a pointer to a buffer
the various file manipulation procedures be responsible for the data
the buffer and the file.

item in a file,
area and let
transfer between

G. I/O on Text Files

I think there is a great need to rationalise the methods of I/O on text files,
particularly with reference to the read statement. Present suggestions are for
formatted read statements, this I do not like.

In my opinion, execution of a read statement should be considered to be equivalent
to the assignment to the relevant variables of some (unknown) constant values. The
values should be represented in the text file in the same way that the same constants
would be re~resented in the program. For example, given:

type colour = (red, green, blue);
var i: integer;

b: boolean;
r: real;
c: colour;
s: packed array [0..4] of char;
v: array (1.3] of integer;

the effect of
real (input,i,b,r,c,s,v)

should be to assign
an integer value to i,
one of true or false to b,
a real value to r,
one of red, green or blue to c,
a character string of length 5 to 5,

and an integer value to each of V[1],V[2] and V[3].

- 6 -

The actual values assigned would be the
textfile, each constant being separated
i.e. with the textfile input containing

12 TRUE -1.342 GREEN 'A8CDE' -5

constants represented by the characters in the
by one or more blanks, or possible a comma.
the following characters:-

2 15

the effect of

read (input, i,b,r,c,s,v) would be identical to

i:=12;
D:=TRUE;
r:= -1.342;
c:=GREEN
s:='ABCDE';

The occurrence in the textfile of a constant of the wrong type for the variable should
cause an error.

Output to a textfile using the write statement should produce the characters represent-
ing the relevant constant value, preceded by a blank so that any output produced by
a write statement could be input by a read statement. The current simple formatting
in the write statement, using a field width specification, could be retained provided
there is some predefined action (non-fatal error, or default output) if the value
will not fit in the given field width.

H. Addition of Exponentiation Operator

If PASCAL is to ever supplant FORTRAN then I think an exponentiation operator
(e.g. **) should be included at least as a conventionalised extension, if not in the
standard itself.

I. In Conclusion

I suspect that some of my suggestions (if not all) will not meet with the general
approval of PASCAL implementors and users. However, they do cover my main
dissatisfactions with the language (or at least the ones that I don't think.are being
adequately dealt with by others) and I hope they will be food for thought. In
writing all the above, I have tried to bear in mind that there are basically three
areas of application for PASCAL with possibly conflicting requirements:-

i. A simple teaching language
ii. A satisfactory replacement for FORTRAN
iii. A useful and powerful systems programming language.

I think that PASCAL can (but doesn't at present) fulfill all of these, without straying
from its basic principles, but it is necessary to take care that in suggesting
modifications one doesn't push one use at the expense of the others.

Above all, I would like to see some consistent standard (and soon!) that implementors
would feel morally obliged to adhere to if they wish to call their language PASCAL.

Chris Bishop,
Computing Centre,
University of Otago,
P.O. Box 56,
Dunedin,
NEW ZEALAND.

(* Received 77/12/27 *)

"rr1
to
:;:0

=»
:;:0
-<

......
lC
"-J
00

""'C
»

=rr1

,

-0
;po

c.n
n
;po

r

:z
rn
:e:
c.n

==\1::

i-'
i-'

LEIBNIZ-RECHENZENTRUM

DER BAYERISCHEN AKADEMIE DER WISSENSCHAFTEN

BARER STRASSE 21 D-8000 MUNCHEN 2

Pascal User's Group

c/o Andy Mickel
UCC: 227 EXp. Enr.

University of Minne~ota

Minneapolis, MN 5545~
(612) 376-7290

Milnmen, den 9.11. 1977
Telefon(OB9J ;:~:;84U HW/br
Telex: 05124634

Dear Mr. Mickel,
thank you very much for
so promptly. Sorry that
thanks.

sending me PASCAL Newsletters

I am not equally prompt with my

On my PUG Membership certificate you ask wether I am the

"EULER" Weber; sorry, I am not. My interest in PASCAL has
begun only half a year ago when we received the ZUrich-

Compiler for our CYBER 175 (with Operating System NOS 1.1).

At the PASCAL-meeting of the German Chapter of the ACM
Urs Ammann who told me that you could probably help me

information about interactive PASCAL-Systems for CYBER
NOS 1.1.

I met
with
175/

From PASCAL Newsletters I learned that the maintenance of the
ZUrich System is now in your hands. Did you get from ZUrich
a list of all installations of their system? Anyway we are
very interested to be on your mailing list for future

corrections, extensions (?I) and releases. From Urs Ammann
I heard that in early 1978 there will be Release 3 including
dynamic arrays. Since I am interested in procedures for

mathematical algorithms) I will be very glad about this
extension~

Also in PN, it was announced that a PASCAL-Software pool will
be created and will be handled by the respective compiler
distributer.. Can you, please, inform me what libraries ~a~~
available for CYBER 175 on what conditions.

I enclose an American Express Cheque to the amount of US $ 7.00.
Please send me another set of backissues and two issues of

each PN for my membership year. Beside the set for our

official library I should like to have one for my own.

I am very expecting PN 9. The other ones I like very much.

Yours sincerely,

WL--l \tJ~
Helmut Weber

Direktorium: o. Prof. Dr. G. Seegmiiller (Vorsitzender), o. Prof. Dr. F. L. Bauer, Q. Prof. Dr. G. Hiimmerlin, o. Prof. Dr. K. Samelson

Open Forum for Members

Department of Computing Science,
university of Adelaide,

North Terrace,
Adelaide,
South Australia 5039

28th October, 1977.

Dear Andy,

I am writing to correct an impression which may have been given
by Arthur Sale's letter in Pascal News, September 1977.

At the University of Adelaide, we were fortunate to have accesS to
Pascal several years ago because the University computer was a
CDC6400 - I personally first taught Pascal to students in 1974.
After two years experience with earlier versions of the language,
in 1976 the department adopted Pascal as its main teaching language.

We have nCMcompleted two years of teaching wi..thPascal as the main
language in first year, second year and third year: In detail, some
500 students in our courses are programming in Pascal in anyone
year - writing programs from prime number generators to compilers.

The number of enthusiasts is growing~

Yours sincerely,

Barbara Kidman.
Copy to: Professor A.H.J. Sale,

University of Tasmania.

Thomas J. Kelly Jr
58-B Meadowlake Drive
Downingtown. Pa. 19335

Dear Andy 3 Nov 1977

Just a short note to tell you:

I've .oved. new address is above.
I've changed jobs: I now work for Burroughs Corp. I exerted some

effort and we are now using the UCSD i.ple.entation of PASCAL on our
87700. for any other 87700 users who need a compiler. ~ou can get one
fro. UCSD. I suppose. It's okay. but we have discovered several bugs.

There i$ also a fix that needs to be installed to allow the generated
code to r~n properly on a 87730 (as opposed to 867VY). I will send that
fix on to UCSD. I don't know if the~'ll put it in. If anyone wants to.

they can get one directly fro. me (at the above address).

We are currently beginning work on adapting Brinch Hansen's Sequential

Pascal for one of our internal projects. Interest in PASCAL and its

derivatives (especially MODULA) is increasing here at Burroughs. which

I consider to be a very good sign. I can't say that it is all my
doing. but I like to believe I've helped.

Take care.

-n
rn
td
:::0

=;po
:::0
-<

IJ1
'-I

Open Forum for Members

wce Memorial Hall W.
Indiana University
Bloomington, Indiana 47401
October 12, 1977

Mr. Andy Mickel
Editor, Pascal Newsletter
Computer Center

University of Minnesota
Minneapolis, Min ~54~~

Dear Andy:

I would like to add my two cents worth to the animated discussions
concerning Pascal.

I believe that the difficulties that arise while using interactive
input files would be resolved if a GET was required before the file
variable was defined. This would allow a programmer to state explicitly
when (s)he wanted the first read from the file. This modification could
be made to Pascal, and currently running programs would compile and run
correctly by simply adding a GET at the beginning of the program.

I think that the discussion of standards is missing historical
observatons of natural languages. Well standardized languages are dead
languages! One only has to look at Latin or ANS Fortran. I believe that
the following proposal would allow Pascal to evolve, but at the same time
allow portability of programs. The laguage processed by a translator can
be called a dialect of Pascal if:

1. It includes "Standard" Pascal as a subset.

2. The implementor has provided a mechanical translator (written in
"Standard" Pascal) of the dialect into "Standard" Pascal.

I would be willing to accept a dialect that satisfied both of these
conditions as "being consistent with the design of Pascal." Of course,
when a program in the dialect was shipped to another installation, the
dialect version and either the "Standard" version or the translator would
also be sent. I would suspect that it might be reasonable for the
"Standard" version that is appropriate in this context to be be
"sub-Standard" in compar ison to the present idea of "Standard" Pascal.

two
the

I would like to obtain copies of the back issues of PUGN, but I have
sheets that conflict in the listed prices. How much would it be for

issues that you have.

'Tm1Y Y7~
Ant~ Schaeffer

THE UNIVERSITY OF BRITISH COLUMBIA
2075 WESBROOK MALL

VANCOUVER, B.C, CANADA

V6T lW5

DEPARTMENT OF COMPUTER SCIENCE
25 August 1977

Andy Mickel
University of Computing Center
227 Exp. Engr.
Univ. of Minnesota
Minneapolis, Minn.
U.S.A. 55455

Dear Andy,

I have finally found the time to rewrite the paper which I sent last spring.
I'm afraid it was sent without proofreading. It is much longer now so I've divided
it in two parts in case you want to print it in installments.

I disagree with your statement about not changing Pascal [PUGN #8, pg. 29J.
You may have guessedthisby the natureof the accompanyingpaper. Pascalcan,
and should,be changednow, beforea standard is created.

You state that documentation, implementations, and software exist, so the
language should remain static. But minor changes will be needed to all of them
when a standard is created, 80 it is a good time to make other needed changes.

A change from Pascal to a revised Pascal ("Pascal II") can be compared to the
change from Fortran II to Fortran IV which occurred in 1964. A mechanical translator
aided in the translation, but many long hours were spent re-writing programs. A
Pascal to Pascal II conversion should allow a more effective mechanical translation
to occur; but machine-dependent features and under-the-counter type conversions
would hinder this effort.

The point is this: a change now will affect a relatively small number of
people. If you wait until a standard is made and then try to change the language,
the amount of pain and agony will be increased by an order of magnitude or more.

I don't pretend that every change suggested in my paper would produce a
superior product. Some have not been tried; none have been subjected to a large
user community. I am describing problems which I have found with proposed solutions
so thatreactionscan be gathered.Above all, I do not suggest that changebe made
for its own sake, but that change remain an open possibility.

While committee action is not good for a language design effort, it can be
effective for the task at hand. Designers in the committee can independently create
language versions which combine the present language with the suggestions
presented in the newsletter. Committee critics can force a justification of each
change, and can compare different solutions to problems. A group from varied
backgrounds can provide a degree of universality which a single designer cannot
hope for.

Sin

.

~~

.

r~lY'
...

~
(

.

-----I
.

L
/---, ,/"

~(. (/(('./'

Robert A. Fraley .~

"Tl
IT1
o:J
;;0

=;t>
;;0

-<

i--'
LO

'I00

-0
;t>

=IT1

Vl
00

//

This
the -0

::t:>
(/)

n
::t:>
r

-
rn
:E:
(/)

:;t,

I-'
I-'

HEWLETT kJPACKARD

3500 Deer Cr-eek ROIJd. P~lo Alto. California 94.304. Telephone 415494 -/444, TWX 9/0 373 /267

November 7, 1977

Professor Arthur Sale
Department of Information Science
University of Tasmania
Box 252C
Hobart, Tasmania 7001
Australia

Dear Professor Sale:

I read with interest your contributions to PUGN#g. Here are a number
of reactions.

While I am strongly in favor of an "ELSE" clause in the CASEstatement,
I do not like your choice of keyword. In my recent work at the University of
British Columbia I found that a commonerror, committed both by students and
faculty members, is to place a ";" before the word ELSE in an IF sta tement.
It was so commonthat (in our extended compiler) we allow an optional semicolon
in the IF statement. This has several effects:

a. Programming errors and resulting frustrations were reduced.

b. 2-token look-ahead is required. (In a recursive descent parser,
a Boolean flag can be added to indicate whether a ";" was swallowed
by the IF statement procedure before discovering that no ELSE
exists.)

c. Combined with your syntax, 3-token look-ahead is needed.

Without this addition, however, an IF statement in the preceding case clause which
contains an erroneous semicolon will probably get an obscure error message.

Our choice for the default clause designator was the token "<>". We thought
that it looks nice, and it suggests that values not equal to the other labels
should use this clause.

Sets of characters are a problem, but I think you missed the heart of the
issue, at least in this discussion. The Pascal standard does not define the
meaning of sets, so implementations differ. Sets behave in many ways like

PACKED ARRAY [type] OF BOOLEAN

except that "type" must start at 0 and has a fixed upper bound (in some imple-
mentations). If such a restriction were placed on arbitrary arrays, with the
upper bound being implementation defined, the users would scream loudly. So
why make such restrictions on sets?

Sets of characters aren't the only problem. I am implementing an inter-
preter which has 150 instructions, defined as a scalar type. Will I be able
to transport my program if I use sets of these instructions?

The one language "feature" which prevents a general definition of sets is
the set constructor.

[3, I, TRUNC(EXP(R))]

,

Is the set above of type SET OF 0..10? Type SET OF 0..59? I can't tell.
is one situation where the strong typing of the "pure" language fails, and
resulting type is therefore left to the implementor.

I would make three proposals:

1 . When S is a set type,

S[A,B,C]

denotes a set of type S. This allows explicit control
of the subrange.

2. When the elements of a set constructor are a scalar type T
other than INTEGER, the current set constructor produces type

SET OF T

rather than a subset of this type.

3. The current set constructor is illegal with non-constant INTEGER
operands. The notation in pOint 1 above must be used.

One other point which you raised was the character set question. I am
sick and tired of this problem, due to the variety of character codes which
I've encountered. (1401 BCD, 7090 BCD,1620 code, Univac 1108 code, CDC code,
EBCDIC, ASCII, and occasional others.) The ASCII code was agreed upon ten
years ago by representatives from across the industry, and closely resembles
the international standard code. While its purpose is information interchange,
we could contort its original purpose and say that programs are indeed informa-
tion, and their algorithms (to be transportable) must be expressed in terms of
ASCI1.

If Pascal were to impose an ASCII rule today, it may alienate a number
of supporters. But if users don't push for some sort of standard, we will never
free ourselves of this problem. Pascal currently requires that 'O'..'g' be
contiguous. Perhaps it could also require that sets such as

['!'..'@']

be interpreted as containing those ASCII characters between 'I' and '@'. This
requires a conversion table at compile time to compute the set. In those
relatively rare occurrences where the limits are variable, a runtime conversion
table is required.

An eventual goal of ASCII in all aspects of the language within (say)
five years might be nice. It might encourage Pascal implementers to prod the
hardware companies into supporting ASCII files and allowing an override of
the ASCII to internal conversion for terminal input. (Univac provided such
facilities several years ago for the 1108 series.)

I am enclosing some of my own suggestions for Pascal changes, which will
appear in PUGN#11. I am looking forward to hearing your reactions to these
suggestions.

Sincerely, ~(~~It(Z:L
~

Robert A. Fraley
Hewlett-Packard Laborato ies
Electronics Research La oratory

RAF/hma
cc: Andy Mickel

V1
to

"OMSI Computing" is a product and service name of Oregon Minicomputer Software, Inc.

December 26, 1977

Dear Andy,

It seems that we owe you and the Pascal User's Group a good
deal of information about our work with Pascal, so perhaps
this letter can serve as an informal introduction.

'We' are a small group of computer freaks who have been
working and playing together for about 7 years. The group

is an outgrowth of the Student Research Center of the Oregon
Museum of Science and Industry (OMSI), a not-for-profit
private science education center in Portland, Oregon.

To make a long history short, we began in 1970 with a very
small DEC PDP-8 system and over the years grew to a large

PDP-8 and a large PDP-ll/45 computer facility. This
expansion was mostly financed by swapping software written

at OMSI with the manufacturer (DEC) for additional hardware.
Several past and present DEC software products were first
developed at OMSI (the PDP-ll APL is the latest example).

The group members (John Ankcorn, Don Baccus, Wayne Davison,
Steve Poulsen, Barry Smith, Rusty Whitney, Dave Vann) grew
up as assembly language programmers. Our interest in Pascal

began when Wayne noticed the Acta Informatica report - our

continued interest is probably because Pascal has the
structuring tools we found necessary (and available!) in

assembler. Pascal is also "small enough" for practical
implementation, efficient for real-world programs, and (if
used carefully) really machine independent. (I should note
that we're not Pascal fanatics - we use several other
languages, and follow wirth's Modula with much interest.)

Our Pascal history shifted in 1974 to Electro-Scientific
Industries (ESI) in Beaverton, Oregon. ESI manufactures
precision electronic equipment, including computer

controlled systems for on-line laser trimming of hybrid
integrated circuits. The first laser systems were

controlled by DEC PDP-8's with a special-purpose language.
When ESI switched to PDP-ll's and was faced with the task of
rewriting the control software, we (somewhat hesitantly)
suggested Pascal for the implementation. ESI's enlightened

management (Don Cutler, Bob Conway) agreed, and ESI
sponsored the development of. a PDP-ll Pascal compiler (ESI

Pascal). The compiler (initially patterned after an early

version from the University of Illinois) was written by John
Ankcorn and Don Baccus with assistance from David Rowland,

and became largely stable in early 1975.

Significant features of ESI Pascal include:
single pass compiler coded in PDP-ll assembler

translates to assembler code (not interpretive)

full standard Pascal
extensions for process control
stable, reliable production compiler

Expe:ience with ESI Pascal at ESI and OMSI has certainly
conv~nc7d us of the practical utilty of the language - if
anyone ~n the PUG needs a showcase example of "Pascal in the

non-aca~emic world", contact ESI. However, ESI's design
constra~nts resulted in a compiler which is not as

gene:al-purpose as one might wish. Specifically, the
requ~r7ment of a 16K word operating environment led to a
very t~ghtly coded bare-bones compiler (both Wirth and Tony

Hoare exp:essed surprise at the 11K word (22KB) compiler,
and I bel~eve we have a reasonable claim to the smallest

standard compiler in existence). The ESI compiler is not
well suited to the "naive user", and of course an assembler
coded compiler is hardly portable.

Agreeing with Arthur Sale's comment that Pascal must have
very robust compilers and support software if it is to be

taken seriously, we began in late 1975 the development of a

to~ally new Pascal programming system. The compiler for

t~~s system was written in standard Pascal and was designed
w~th several coequal goals: efficiency of compiled code.

portabil~t¥ of the compiler and support system; robustn~ss,
and usab71~ty o~ ~he entire system. We attempted to see
each des~gn dec~s~on from the user's viewpoint rather than
the compiler writer's. Our view of the 'typical user' is
the professional Pascal programmer

- one who expects system
software w~thout gli~ches or rough edges, one who works in a

P~scal e~v~ronment w~th high-level support tools (excellent

d~a~n?s~~cs at compile and runtime, Pascal debug and library
fac~l~t~es, measurement facilities for practical
engineering) .

-n
IT!
to
:::c
c:::
:I>
:::c
-<

The comp~ler for this system (written almost entirely by Don
Baccus) ~s,currentl¥ producing code for some members of the

PDP-~l fam~ly. ,It ~s certainly larger than the ESI Pascal
comp~ler ~runs ~n 2-4 pha~es, depending on optimization and

other ?pt~?ns), but the t~me from compilation to program

e~ecut~on ~s roughly the same (the compiler produces
d~re7tly executable object files, whereas ESI Pascal
requ~res use of the assembler and object linker - both much
slower than the compiler!).

Recently (October ~977~ we formalized our relationship and
created a corporat~on ~ndependent from the science museum -
Oregon Minicomputer Software, Inc. (known simply as Oregon

Software to our friends). "Out of the frying pan, ..."

We've arranged with ESI for Oregon Software to distribute
and support ESI Pascal (we call it OMS I Pascal-l). The
updated implementation notes should read: Implementors,

John Ankcorn, Don Baccus, David Rowland; Distributor and

M~intai~er, Oregon Software; Machine, any model PDP-ll
(~nclud~ng LSI-ll); Configuration, 16K memory RTll
RSTS/E, or,RSX,ope:ating systems (all the DEC ~ystem~ at

last!~; D~~tr~but~on, 9 track 800 bpi magtape, DEC

car~r~~g7 d~sk, $1500 ($995 for educational use);
Rel~ab~l~ty, excellent - currently about 60 installations
and growing steadily.

We've also been talking with Ken Bowles at the University of
California, San Diego, and are pleased to announce that the
UCSD Pascal system is available now for RSTS/E timesharing
systems - an excellent system for introducing programmers to
Pascal. Price is not yet fixed, but should be established
by the time this is published.

en
C)

//

Our new Pascal programming system (known as OMSI Pascal-2)
is not yet available - we'll keep you informed as to our
progress with the PDP-ll and other machines.

One last note - we have a limited supply of Pascal T-shirts
with a portrait of Blaise Pascal from a woodcut frontispiece
for a bi~graphy published in 1891 - see enclosed copy.
These sh~rts are 100% cotton, hand silk-screened, available
in sizes S, M, L, XL price is five dollars postpaid from
Oregon Software.

Merry Christmas, and a happy New Year!

Barry Smith
Oregon Software

4015 SW Canyon Road
Portland, Oregon 97221
(503) 226-7760

4015 SW Canyon Road Portland, Oregon 97221 (503) 226-7760

DearAndy,

Just a short note to describe an application of Pascal here at I.C. over the last couple
of months.

All university computer installations must be plagued by their share of Startrek games,
mostly written in the most hideous basic or horrendous pl/i (sorry Ploughskeepie).
Naturally most of these installations suffer because of it, both in terms of machine time
wasted and the constant staff overhead of having to spend hours looking for and destroying
incarnations of the game only to have a Physics undergraduate restore it the same evening.

Our own case was slightly different. The Department runs VMon a 370/135 with 384k of
store. Mercifully, our basic compiler wouldn't handle the Startrek program run on our
College Computer Centre's CDCs: but even had it compiled, it could have been debatable
whether the kind of response that would have been achieved could have justified the tag
'interactive'. Thus we set about writing our own Startrek, in Pascal, which we hoped
would be more elegant and efficient than the versi_ons we had access to.

The user interface was designed and implemented by Greg Pugh (the guy who implemented our
P4 compiler). It maintains a full screen display on Lynwood VDUs, showing the status of
the Enterprise, short and long range scans, damage control etc.. The Lynwood features
blinking, cursor positioning, protected mode etc. and Startrek uses them to the full.
Using the cursor positioning, only the fields that change between moves are updated.
This leads to a faster (and more exciting) game. Because everything is continuously
displayed on the screen, we have been able to remove all the commands controlling the-
display (like damagecontrol report), so the user only has to rememberabout 10 commands.
These are entered as English words, like 'WARP' :no more lost games 'cos you typed 3 hoping
to fire photon torpedoes and actually warped into a Nova:

We produced our first version in June '77, which ran quite successfully (and efficiently)
despite the abuses received during our department's open day.

However (and this is the interesting bit, I hope:) we have since extended the Startrek
system to run up to 16 users simultaneously, without modifying one line of the source code.
This was possible because of the natural re-entrancy of Pascal code. All that was needed
was a small interrupt handler (1000 lines of Assembler) to interface Pascal and the
terminals. As each user 'dials' into Startrek, the interface routines find some store for
his (her) stack/heap, and enter the Pascal bit of Startrek at the beginning. The program
runs until it initiates I/O, at which point it is suspended and other users run until it
completes. Because Startrek is thoroug~ly I/O bound, we have experienced no problems
with its being totally interrupt driven (indeed on VMthe level of I/O activity is a boon;
it stops you from getting dropped from the "fast response" queue:).

We have run 8 simultaneous users on the same Startrek program, with no noti~ble degradation
in the response of the system generally or of Startrek itself.

Since Startrek has paved the way (boldly going where no man etc...),we have really "gotten
into" multi-user Pascal programs here at IC. lain Stinson has written a filing/archiving
system which services 16 users simultaneously. A multi-user context editor is on the way.

I think the thing that surprised us was the ease with which all these were implemented. In
all cases, the actual low-level interface needed was surprisingly small and took very little
time to write. The Pascal programs, because they do not need to know that they are multi-
threaded, are equally easy (and of course are easily tested with a more conventional,
single user interface).

Anyway, if anyone is interested, send us a tape (preferably containing some goodies of your
own) and we'll return a copy of the system (including our Pascal compiler). Please specify
800 or 1600 BPI. The game itself has a "user manual" in the form of a Starfleet technical
directive, but unfortunately only sketchy implementation notes exist.

Keep Blaising the way.
Live long and Prosper. Department of Computing and Control,

Imperi a 1 Co11ege
180 Queensgate
London SW7

London 589-5111

[I

/.- -~

Dave Thomas.

\

THE UNIVERSITY OF NEW SOUTH WALES

P.O. BOX 1 . KENSINGTON . N.S.W. . AUSTRALIA . 2033

TELEPHONE 6630351

EXTN.I'tu ,:;.
a

~

STATE OF MINNESOTA
Crime Control Planning Board

6th Floor, 444 Lafayette Road
ST. PAUL 55101

PLEASE QUOTE

Department of Computer Scjence,

School of Electrical Engineering.

December 30, 1977.
November 7, 1977

Dear Andy,

Andy Mickel
227 ExperimentalEngineering
University Computer Center
University of Minnesota
Minneapolis, Minnesota 55455

First let me congratulate you and your colleaques for the excellent job you have
been doing on the Pascal News (letter) .

Dear Andy:

The new Australasian distribution arrangemnents will certainly be welcome to people
down in this part of the world and I am grateful to Arthur Sale for offering to
print and distribute Pascal News but I too am confu3ed over the Australasjan sub-

scription rate of $lO~ This makeSPascal News the most (relatively) expensive
journal/newsletter to which I now subscribe. You can take it as considerable proof

of the quality of your publication that/if members continue to subscribe. The
price disparity between the Australasian on one hand and the USA ana UK subscription

rates on the 'JLher is such that.:Australasian subsc-.:ibers are surely owed a publ.ic
explanation (~hrough Pascal News) .

In the September 1977 issue of Pascal News I was quoted regarding LEAA
(Law Enforcement Assistance Administration) regulations vis-a-vis pro-
gramming languages for use in criminal justice information systems.
While the thrust of that quotation was essentially correct, it may be
useful to publish the actual guideline referred to: I feel I must correct Arthur Salo's misl~ading claim to "a first for reactionary

Australia" fOI his proposed switch to Pascal in his first year course in the next
academic year. That Australia is reactionary is beyond doubt but surely Arthur is
letting his newfound enthusiasm for Pascal blur his perspective of what is happen-
ing in the rest of Australia. Simply to set the record straiqht and without any

pretension to claiming a "first", I would like to point out that the Comvuter

Science Department at this University has been teaching Pascal as a first and
principal programminq language for the past three years.

From: U.S. Department of Justice
Law Enforcement Assistance Administration
National Criminal Justice Information

and Statistics Service
Comprehensive Data Systems Pro~ram Guideline
Manual (M6640.l, April 27, 1976)

Chapter 3/Paragraph 37d:

Whenever possible, all application programs
will be written in ANS COBOL in order that
they may be transferred readily to another
authorized user. Where the nature of the
task requires a scientific programming lan-
guage,ANS FORTRANshouldbe used. Request
for waivers shall be justified in writing
first to the appropriate Regional Office
and then to NCJISS/SDD for review.

I enclose a collection of sundry comments on various ascpects of Pascal.

Best wishes.

Yours sincerely,

Ken Robinson

The most recent Direction of Automated Criminal Justice Information~-
ternsshows virtually all existing Criminal Justice software (whether de-
veloped under the federal guideline above, or by a local agency without
benefit of such paternalistic guidance) to be written in COBOL or FORTRAN.

Sincerely,

-:'i~:;{.;t~
Community Crime Prevention

Sundry comments on Pascal

standardization: I fully support the current moves for standardization of Pascal,
however I beleive a number of minor changes should be made to Pascal before such
standardization takes effect. I disagree with Prof. Wirth's sentiment (PUGN #8)
that changes should not be made to "Standard Pascal" as "it would seem unfair to
suddenly declare that what once was a Pascal compiler now suddenly isn't any longer."
Standard revision must be prepared to add or even change features to a language if
there are compelling reasons for doing so, and as a result it has to be accepted
that compilers will be obsoleted and require change. Pascal should be kept alive
as a language; standardization could sound the death knell of Pascal somewhat
earlier than necessary. FORTRAN standardization provides an example which should
not be followed - FORTRAN is of course dead; many people do not realize it.

MRJ/amc

".,

en
N

/

Exponentiation: The exponentiation operator should be part of Standard Pascal.
The look of disbelief when a Pascal programmer first discovers that it doesn't
exist:

Complex: 'Complex' should be added as a predefined type. Have you ever tried to
convince a group of Electrical Engineers to use Pascal? They work most of the
time in the complex domain and when you explain how you do complex arithmetic in
Pascal '

Pascal is surely not only for compiler writers. We cannot ignore programmers
who work with real and complex numbers.

Semantics, Axioms and Undefinedness: The comment is frequently made that Pascal
"leaves undefined the action of a CASE where the expression evaluates to a value
not matched by a case label" (PUGN #6 p60),or some such similar comment. usually
implying that the action is left to the whim of the implementor.

Nonsense: The observation above is quite precise: the action is undefined not
arbitrary. Just as the action of multiplying two boolean expressions is undefined.
We seem to have become accustomed, due to our experiences with badly implemented
software or even hardware, to confuse "undefined" with "arbitrary". Surely if an
action is undefined we expect good software to detect such an infringement of the
semantics and to signal an error? Incidentally there is no analogy between a case
statement with no label for a particular value of the case-expression and a if-then
statement in which the boolean expression; the semantics of the latter are quite
well defined.

On the above question and many others the axiomatic definition of Pascal by
Hoare and Wirth [lJ is very clear and I am surprised that this paper is not
referenced more frequently within discussions of the semantics of Pascal.

The case-statement: I fundamentally lean towards Wirth's position that the case
statement should not have an exception case (else label) but one particular
exercise has fairly well convinced me that such a facility is necessary.
The exercise: write a reasonably portable lexical analyzer in Pascal.

solution 1: Use a case-statement to classify the next character. Then all characters
will have to appear as case labels, but many/most of the characters in ASCII/EBCDIC
are unprintable (at the least) which certainly does not aid documentation. Some
characters may even be all but impossible to include in the program, for example
chr(O) in the CDC character set does not always have a character representation;
the ETH compiler gets around this one by predefining a constant (undocumented)
COL

=
chr (0) ~

solution 2: Guard the case statement using a set as follows:
if nextcharacter in set of characters of interest
then case nextcharacter of-- -

end
else

Useless: due to the severe constraints on set of char in most implementations
(see below).

solution 3: Guard the case statement by selecting a subrange as follows:

if (nextcharacter>= first character of interest)
and(nextcharacter <= last character of interest)
then ~ nextcharacter of

end
else

OK for ASCII but not of much help for EBCDIC. In general the problems encountered
in solution 1 remain.

Solution 4: In desperation you might aba~don the case statement and use a mapping
vector to map from char to an enumerated scalar type. This solution eases the
portability problems but at some cost: the mapping vector is neither easily nor
efficiently ~nitialized in Pascal:

Conclusion: the case statement remains attractive, but an exception case label
appears to be necessary when disciminating on an expression of type char. I
beleive the exception case is not necessary for expressions of another type.

Note: the lexical analyzer in the ETH compiler is not a good solution to the problem,
being solution 1 above. Unfortunately (or fortunately) the CDC character set is
small enough to mask most of the problems which arise with larger character sets.

Set of char: I am inclined to go further than Arthur Sale (PUGN #9,10 p66) in
relation to minimum set size. Rather than picking an arbitrary number such as 32
I feel it would be better to insist that every Pascal compiler should support
set of char for its particular character set(s). There is nothing to stop the
compiler optimizing in the case of smaller sets of course.

Without the above requirement sets containing characters must be banned from
programs which are required to be portable, and surely many if not most large
programs should be portable.

For statement: While agreeing with Arthur Sale's comments on the semantics of the
for-statement (PUGN #9,10 p66) I disagree with his suggestion of describing the
semantics in the form of an equivalent Pascal sequence. A similar scheme was used
in an earlier Pascal Report and was rejected in the axiomatic definition of Pascal
[1] for reasons of over specification. The definition of the for-statement given
in the axiomatic definition is not open to the same ambiguity as that discussed
by Arthur Sale since the concept of "assignment to the control variable" does not
enter the axiom. Nor does the axiom say anything about the final value of the
control variable, i.e. it is "undefinedII(see above).

All of the problems associated with the control variable are removed if the for-
statement is implemented in such a way that the control variable is local to the
statement (as does AlgolW and dare I say Algo16B): the value of the control variable
after executing the statement is beyond discussion since the variable no longer
exists: I strongly urge that the Pascal for-statement be implemented in this way
and note that it is only an implementation change - the semantics as defined in the
axiomatic definition are not changed at all.

Files: I must disagree strongly with many of Arthur Sale's numerous criticisms of
Pascal's file type. A file is definitely a valid data structure and it is one of
Pascal's strengths that file is but another predefined structure and not some
strange special object. ~e: Pascal, at the moment, only supports sequential files
and there are other file structures which are ignored, amongst which direct access
could be singled out as a file organization which should be supported. I would
disagree with Wirth's second thoughts (PUGN #8 p23) of sUbstituting "sequence"
for "file"; perhaps the qualified "sequential iile" instead of simply "fileIIis
preferablebut I feelthat the wOl'd"file"is requiredas a reminderto the
programmer that this structure will in general reside on secondary storage.

Why is an array of files an absurdity? Done any merge sorting lately?
As for file lifetime and scope being bound; doesn't this give you the perfect
realization of a temporary file associated with a particular process? The anomaly
of the lifetime of external files and their apparently different scope is removed
by my suggested change to the program statement below.

The program statement: Pascal's program statement has been frequently picked on
as "an importation from CDC FORTRAN" and as some kludge to allow external files
to be specified. There seems to me that there is a lot of truth in these observ-
ations but the real problem is that the program statement should have the same
form and function as the procedure statement. After all a program is really only
a distinguished procedure which is called from an outer block (level 0) which
represents the external environment.

l

I would like to see the syntax of Pascal changed (as shown in the syntax diagram
below) to allow declarations to be placed at level 0 and for the program statement
to have the same syntax as the procedure statement except for the replacement of
procedure by program. I assume a number of restrictions will be required, for
example a program may be declared at level a only and there must be only one program

- but maybe you could have more than one program?

The effects of this change are manyfold:

external file parameters would now be declared as ~ parameters;

the files input and output would be declared implicitly at level 0 and thus simple
programs could reference input and output without specifying any file parameters
in the program statement;

external procedures and functions could,be declared in their correct environment
and,assuming the compiler compiles an object of class "module", external procedures
and functions could be compiled separately without awkwardly (and usually errone-
ously) imbedding them in a dummy program environment;

a program may now possess formal parameters other files.

blockhead

unsiqned inteqer

li.9£ntj.f~ cnnst?nt

list fD~

block

module

Example:

Old syntax:
program foo(input,output,myfile);

var
myfile: text;

New syntax:
program foo(var input,output,myfile: text);

Reference:

1. C.A.R. Hoare and N. Wirth: An Auoma.;tlc. VeMn..Lt.<.onon :the PJtogJtamrn.Wg
Language Pa6C.al Acta Informatica ~, 335-355 (1973)

SPECIAL TOPIC: PASCAL STANDARDS (* AndyMickel and Jim Miner *)

We (Jim and Andy) feel that it is a good time to review what is happening with Pascal

standardization and bring new PUG members up to date.

We believe it is essential to have a tight, officially standardized base language especially
on which to develop conventionalized extensions.

ISO STANDARDPascal
In general,events are going very well in the effort to obtain an official standard. In a
very short time (less than a year) the effort is more than half done. For those of you
who haven't read PUGN #8, Tony Addyman is obtaining an official ISO (International
Standards Organization - th.epeople entrusted with, for example, the metric systemof
measurements) Pascal standard. Tony began to organize a British Standards Institute (BSI)
working group after the University of Southampton Pascal Symposium. It is passing on a
standards document consisting of the Revised Report with the semantics "tightened up." In
no case were new language features to be considered.

Tony is a member of the programming language committee at BSI, and his working group has met
several times (in June, September, and this January). Jim Welsh and R. Tennent have
supposedly written papers for the group which we at PUG central have not seen. So far
Tony has attended an ISO language subcommittee meeting in the Netherlands in November at
which he requested consideration of an ISO Pascal standard for the first time. A Swedish
technical committee also had representatives there to request the same thing. The French
and German representatives were also keen on the idea (the Americans were COBOL people who
"were not interested at this time."). A superior committee of ISO had to decide the
question, and after the necessary applications are made it should be on the ISO agenda by
late March (Ken Bowles' letter quoting 3-5 years notwithstanding).

One problem has been that up until now, all programming language standards have been
American (ANSI) standards and that ANSI has cooperated with the rest of the world. For
example the ISO COBOL standard is simply a couple of sentences which says to refer to the

ANSI standard. In other words, precedents do not exist for an ISO standard starting from
scratch. Apparently a group recently pushing for ISO ALGOL-50 standardization was helping
do the work to set precedents on procedure. The ALGOL-50 effort has been stymied, and ISO
is now considering mechanisms for advancing a language standard. As Tony puts it, the

UK has the conscience of Pascal "in its pocket because the UK proposed first."

Weat PUGcentral have stated before our reluctance to go through a lengthy ANSI process
for a standard. COBOL, BASIC, and FORTRANANSIstandards were long in coming. Noone that
we know of has proposed going through the American National Bureau of Standards (NBS).
This may perhaps be an easier route. But we endo~se the current.E~ropean effort to
standardize Pascal - after all it is a language wlth European orlglns!

The Swedish technical committee announced their existence to PUGwith a letter from B~ngt
Nordstrom (in this section), and sent "Yet Another Attention List.'.' .We really appre~late
that and we're glad to see contact with the British. Further, Ollvler Lecarme has ln the
past'told us of the Pascal sub-group he coordinates in AFCET (the French counterpart of
ACM). Weunderstand that the Germansare also organizing as a result of the successful
Pascal Conference in October held by the GermanACM (see Here and There).
CONVENTIONALIZEDEXTENSIONS
Pierre Desjardins wrote us on 77/10/13: "Have you given any thought as to how to proceed
once you (we, "the pascalers") decide to conventionize an extension of Standard Pascal?"

Good question. Going back to last year in PU~Nan~ at the University of Southampton
Pascal Symposium, we developed a consensus whlch dlrected the standards.effo~t t~ do
precisely what Tony is doing. Further, areas exist (such as those outllned ln Nlklaus
Wirth's letter in PUGN#8) in which there is no point in having different implementations
add similar constructs in different ways. So, if an implem~ntor chooses.to ~xtend Pa~cal
in a certain direction, he or she should stick to an establlshed conventlon lf one eXlsts.

Ken Bowles' letter (in this section) proposes a workshop for the purpose of getting
together a set of conventionaliz~d extensions: We ~eel t~is ~s a good first start.
Because there is a lack of practlce and experlence ln havlng lmplemented a number of
extens ions (such as vari ab1e extent array parameters), the results of the workshop s-hould
not be interpreted as a final act.

LAUNDRYLISTSOF ADDITIONALfEATURES
Pascal is often mistaken as a SIL (systems implementation language). Although it may be
good for writing compilers, Pascal without extensions cannot be used to write operating
systems, for example. We think more support should be given to making Pascal available for
general user use where there will be widespread benefit.

It is sad to see more people calling for more and more and more redundant and even whimsical
features in Pascal. Pascal's virtue is its small size (limit on the total number of
features) which has enabled its quick spread to other machines; implementation effort is
small. That's a significant fact. If you ever want to push your own language or large
software system someday, perhaps you can write it in Pascal for portability purposes instead
of straitjacket FORTRAN. So Pascal is paving the way.
With regard to these laundry lists of changes, people still seem to be forgetting things we
learned last year from discussions in PUGN: Niklaus Wirth wrote in a letter in PUGN#5, "we
must clearly distinguish between the language and the implementation...the language is
defined by the Report alone, and intentionally leaves many details unspecified that an
implementation inhe.rently must define in one way or another."

We think that dissatisfaction (leading to suggestions of new features/changes) may be the
result of problems in the implementation and could be solved in th~ implementation and not
by changing the language. Niklaus Wirth also wrote in a letter in PUGN#8: "...most...
other extensions...belong to a different category which, I believe, has nothing to do with
the goal of obtaining a commonlanguage. Rather their primary objective is to introduce
some favourite facility suggested by either a particular application or, more frequently, an
existing operating system. Whereas I have no objection to such extensions in principle,
they do not belong in the core language, whose facilities must be understood without
reference to any particular implementation. If at all possible they should be incorporated
in the form of predefined procedures, functions, types, and variables and in the
documentation they must be clearly marked as facilities pertaining to a given system..."

And what about the design goals of Pascal (which appear on the inside back cover of PUGN)?
Remember that the combination of these goals has to be considered. Some of the articles
we print in PUGNmay unfortunately give the impression that there is a lot wrong with
Pascal because they are full of suggested changes. We are growing weary of such articles
which too often don't explain their suggested changes in the light of the design goals in
proper proportion.

To quote Richard Cichelli, one of the world's foremost practition~r~ ~f Pascal in indust~y,
"the problem in the United States is not the lack of language facl1ltles, b'Jt rather makl~g
programs understandable and to communicate them to average and below-average programmers!

We say that changes to Pascal are basically irrelevant. It is so far ahead of the
competition! It's strange that the phenomenon of real people using Pascal as it i~ for.so
many real things can be overlooked. People who need to get real work done now can t walt
for aeadem ics to come up with Utopia 84. So-called "improved" languages such as EUCLID
were announced before being implemented (shame, shame!) and are not tempered by good ole
practice and experience.

Let's examine as an example, the case for adding an exponentiation operator to Pascal. One
of the design principles of Pascal is not to hide time and space efficiency costs from t~e
user. An exponentiation operator makes it easy to be wasteful because we dare say that ln
FORTRAN, its most frequent use is to square a number. (Pascal provides a square fun~tion
(SQR) which can be compiled in-line for efficiency.) The addition of an exponentiatlon
operator confuses the evaluation of arithmetic expressions. Is -2**3**2 = -512 or -64 or
64? Of course parentheses can be used, but exponentiation like subtraction and division
(but not multiplication and addition) is not associative (or commutative ~or that matter).
Also exponentiation is hard to axiomatize (like real arithmetic) so that lS probably another
reason why it was left out of the base language.

But by using the principle of extending the language through predifined identifiers, simply
predefine a function called power (as suggested by section 11 of the Revised Report:

function power (x, y: real): real;
We knowof implementations which have easily done this.
As a last thought, we don't think people should look at Modula, a language developed by.
Wirth for time-dependent ("real-time") programming, to find features which can necessarlly
be viewed as improvements. Modula's design goals are different. For one thing it is a much
smaller language than Pascal, and its syntax is stripped down, too. Modula is another
experiment, and we think it is an interesting one, but Modula will not replace Pascal in the
forseeable future.

Pascal COMPATIBILITYREPORT
To end on a bright note, on 77/12/19 we received an excellent report by Arthur Sale:

Sale, A.H.J. (1977): "Pascal Compatibility Report", Department of Information
Science Report R77-5, University of Tasmania.

which should be of interest to the standards working groups and we hope they obtain a copy.

The abstract reads: "This report collects implementation variations between significant
Pascal compilers for the edification of users, the education of compatible software writers,
and the influencing of implementors. In most cases, the behaviour cited is a result of
(a) an explicit loophole allowed by the User Manual or the Revised Report, or (b) ~n
undefined loophole left by these documents. An attempt has been made to document lmportant
differences only, not local extensions, nor areas where great deviations are to be expected."

A special note reads: "The information contained in this report is dated at November, 1977.
Since compilers change with time, and the ones on which the tests were made cannot always be
certified in mint condition by the author, caution is to be used in relying on.any
information found here. A future edition of this compatibility report may be lssued as more
information is available."

The main report consists of a series of two-page sections containing a test program.and the
responses made by compilers to it and the questions posed. The responses are sometlmes
abbreviated to cut down verbiage at the expense of accuracy.

Test programs include: boolean expressions~ const declaractio~s, identif~ers, for loops
1, 2, 3, and 4, pointer types, set types, wlth statements, varlables, varlant storage.

Compilers used in the preparation of the report were the Burroughs B6700 (Tasmania),
CDC6000/Cyber 70 (Zurich), ICL 1900 (Belfast), ICL 2900 (Southampton), Univac 1100
(Copenhagen), and the DECsystem 10 (Hamburg).

-0
:J>
G>
[T1

cr>
V1

Department of

COMPUTER SCIENCES
GOTEBORG

December 9, 1977 Technical Committe on Pasca}

Dear Andy, S.402 7(' GOTEBI)F1S
'i

There is a growing interest of Pascal in Sweden,
both in industry, universities and other governmental
inGtitutinn~. There ar~ h~]f-~-~nzc'n 1rou?~ working
with implementations of Pascal of some variety.

This interest has lead to a couple of meetings with
implementors, users and possible users. These meetings

have resulted in the creation of a technical committee
for Pascal in Sweden.

The goals for this committee are to:

critically analyze current definitions and implementations

of Pascal in order to discover problematic spots.

suggest a standard for implementation of Pascal which

solves most of these problems.

work for getting an international standard for Pascal.

in a second phase develop

a programming standard for Pascal

a standard for extensions of Pascal

a "very" portable subset of Pascal.

We have been in touch with the Brittish standardization
group. We find it very important that an international

standard group will be created. Otherwise there will
be several national variants of Pascal, which probably

will be hard to follow since the computer market is
very international.

We would like to get in touch with any group working
with some sort of standard and also with implementors
and their lists of problems in the definition of Pascal.

Yours sincerely,

The members of the committee are:

Per-Olaf Lundberg, L M Eriksson, Kft, Fack
S-431 20 Molndal

Hans Lunell, Informatics lab, Linkoping University,

S-581 83 Linkoping

Lars Mossberg, Volvo Flygmotor, Box 136,

S-461 01 Trollhattan

Bengt Nordstrom, Dep:t of Computer Sciences, CTH, Fack,

S-402 20 Goteborg

Staffan Romberger, Dep:t of Computer Sciences, KTH,

S-lOO 44 Stockholm

Ake Wikstrom, Dep:t of Computer Sciences, CTH, Fack,

S-402 20 Goteborg

3.

4.

6.

6.1.1.

1977-11-30

Yet another attention list

Swedish Technical Committee on Pascal
Department of Computer Science

Fack, CTH

S-402 20 Goteborg, Sweden

Terminology: This section should cover all relevant terms

and expressions used in the definition of the lan~uage

(associate, identical, correspond, denote, undefined,

scope...). These should be defined, explained and/or listed

for easy reference.

Special symbols:

nil is here listed as a reserved word.

It is however conceptually a predefined constant

to "true" and !lfalse".. The ETH-cornpilers view in

as a predefined constant and you may redefine it.

comparable

fact nil

Comments m~y not always be removed: They should be

considered as equivalent to space instead.

Identifiers: Add "programs", "fields and tagfields in record",

"values of scalar types" to first sentence (cf. Burnett-Hall).

The phrase: "Their association..." is neither clear nor

sufficient. What type of association? What about record

definitions and with-statements?

Terminology: The terminology for description and

classification of types and their properties is obscure

to say the least (cf. below).

... associates an identifier with the type. array A of B is

a type. What is the associated identifier?

Scalar types: This term is in the subsequent usee to denote

at least three different things:

all simple types;

all simple types except real;

the types that are described in this section.

UM-5A (p 34) states that they are given the values 0,1 etc.

Real: Is real a scalar type? Note that scalar types are

"ordered set(s) of values by enumeration"!

"rr1
t1;j
::0
c:::
::>
::0

-<

6.1.2.

6.2.2.

6.2.4.

8.

8.1. 2.

8.1. 3.

8.1. 4.

8.2.

9.1. 3.

Standard types: Are they predefined scalar types or

predefined simple types?

Char: UM-2D (p 14

are shared by all

Definition) .

f) also describes some properties that

implementation (cf. also Axiomatic

~ <tag field><type identifier>: Certainly not every

typeidentifier.

file of <type>: Restrictions on type should be clearly--
stated.

Can a file be a part of other structured types?

Can new be applied to a file?

Sequences of operators: The expression a+b+c may be

evaluated (b+a)+c, but not as a+(c+b). What about a*b+c*d?

Is type-checking of a subrange done only in assignments

or in arithmetic too? Is pred(succ(i» always legal, where

var i: 1..10?(See also the axiomatic definition: §1.3-1.4)

The syntax for <simple expression> is erroneous. The

possibility <adding operator><term> allows you to write

(for a Boolean b): or b.

Pointers:

here.

and <> on pointer variables should be listed

Sets: and <> defined in UM-App B (p 108).

Function application: There are several things left

undefined here. For example, in what order is the actual

parameters (evaluated and) bound? Especially in connection

with functions one has to consider side-effects, global

variables etc.

What is the significance of leading zeroes in a label?

10.1,

11.1.

9.2.2.2. Why not change the syntax to:

<case list element>::;<case label list>:<unlabeled statement>

It is not good prograrroning practice to jump between case

list elements.

9.2.3.3. The manual and the report is not in agreement about the

semantics.

9.2.4. It can be argued that the with-statement evaluates its

<record variable list> only once. This is part of a more

general problem: The philosophy of Pascal is to leave

certain things undefined so that a program which relies

on these undefined constructs is not portable. It is

assumed that such a program is poorly written. But is this

the right way to prevent people from making bad programs?

It is usually not the same person who writes a program and

who transports it. The wrong person is punished.

Should passing of predefined procedures and functions

as parameters be prohibited?

10.1.1. (l)What happens to eoln at reset of a text file?

11.1.

ll.3.

ll.3.

11.1.4.

(2)It has been suggested that reset should not assign the

value of the first element of the file to the buffer

variable.

Whenever possible, define typerules by a corresponding

<function heading> or several in the case of generic

functions.

What are the types of the result of trunc and round?

How is ordinal number defined? With

type colour; (blue,red,yellow);

warmcolour ; red..yellow;

var c:colour; w:warmcolour;

begin co; red; w:; red;

what is ord(c) and ord(w) and what is ord(-l)?

Should succ of the last and pred of the first value

of a scalar type be explicitly illegal?

l

C/)

f-'
<.D
'.J
00

UNIVERSITY OF CALIFORNIA, SAN DIEGO

BERKELEY. DAVIS. IRVINE. LOS ANGELES' RIVERSIDE' SAN DIEGO' SAN FRANCISCO SANTA BARBARA' SANTA CRUZ

INSTITUTE FOR INFORMATION SYSTEMS MAIL CODE C-021
UCSD
LA JOLLA, CALIFORNIA 92091

30 Dec, 1977
To Andy Mickel
PASCAL User's Group

Subject: Standardized PASCAL Extensions

As discussions in PUGN have made clear, many people in the
PASCAL user community feel it mandatory that PASCAL be extended in
various ways, either for specific applications, or to make the
language easier to work with in general. A large subset of the same
people are also very much concerned because all the extension

activity seems to be leading PASCAL into the same multi-dialect state

that characterizes BASIC.

You and others have ventured the opinion that the evolution of

PASCAL has already progressed beyond the stage where there is much
hope of obtaining formalized standards, via ANSI or ISO, for more

than the language described in Wirth's revised "Report". One U.S.
representative to the ISO language standards activity told me

recently that it is not unusual for an item to take 3 to 5 years just
to be put on the agenda for ISO consideration. Those who cite the
short (two years) time it took to standardize MUMPS should recognize
that MUMPS is used primarily by a close knit user community concerned
with a fairly small range of applications.

My feeling, shared by many others, is that PASCAL is now being
accepted so rapidly as the base language for practical system
programming that there is no time for formal standardization to be

completed before extended versions of the language come into very
widespread use. In that environment, defacto standards are likely to
prevail, and there may be many defacto standards as is the case with

BASIC.

As an alternative to formal standardization, you have already
proposed that there might be formed sev.eral quasi-standard extensions

to PASCAL covering specific application areas. At a small PUG
meeting, held in Seattle during the recent ACM Convention, it became
apparent that numerous large industrial firms are preparing to use

PASCAL as the base language for serious system programming. The point
made repeatedly is that these firms find it necessary to extend

PASCAL to make this practical. The nature of the extensions generally

falls into several familiar areas which have been mentioned already
in the pages of PUGN - particularly random access facilities for disk
files. In general, each firm is making its own extensions since there
has been no evidence that anyone would come forward to coordinate the
extensions in this field of applications. The industrial people said
repeatedly that their firms would be making sufficiently large
investments in system programs using the extended dialects of PASCAL

(typically in units of Millions of Dollars) that they would find it

effectively impossible to retrofit to a standardized set of
extensions starting more than 6 months to a year from now.

I am aware that there is a subset of the current PUG membership
which feels that PASCAL should be retained by the academic community

as a basis from which to study better future languages. They feel
that extensive practical applications of PASCAL would prevent this

from happening, and argue that PUG should not assist in the effort to
make PASCAL a practical alternative to BASIC, FORTRAN or COBOL in the
world of computing at large. Judging from the rapid growth of PUG
membership among those who wish to use PASCAL for practical purposes,

I would guess that the great majority of the membership would (very
soon if not now) favor pressing on with the promotion of PASCAL as
the next major language. I would also guess that, lacking leadership
from PUG or someone else, there will be a wide divergence of opinion

on what constitutes PASCAL in this sense.

The PUG membership should also be made aware of another large
scale activity that is sure to have a big impact on the PASCAL
community, like it or not. This is the project at the United States

Defense Department currently known as "Ironman". The ambitious goal
of this project is to force all development of so-called "embedded"
system programs to be done in a common programming language that we

can refer to as "DoD-1". The range of programming activities
currently excludes the major business applications, which tend to use

COBOL, and scientific applications, which tend to use FORTRAN.
Embedded system programming is reputed to cost DoD more than $3
Billion per year, much of it redundant or inefficient. The
expectation is that common use of the new language will make this
activity more efficient by a significant amount. At present the
Ironman project is waiting for delivery, expected in February 1978,
of reports on preliminary language designs from four contractors all
of whom are working from an overall specification published by DoD

last year. All four are reported to be using PASCAL as their base
language. The overall specification makes it appear very likely that

DoD-1 will differ slightly from PASCAL within the range of the base
language, and it will contain many important extensions very similar

to those already being discussed for industrial and commercial system
programming. If all goes well, DoD expects t.o start implementing

early in 1979, after a round of additional refinements based on the
reports due this year.

"ITl
t:>:1
::0

=:I:>
::0

-<

.......

LC

""-.j

00

It is probable that any possible quasi-standard extended PASCAL,
as discussed in this note (I'll call it PASCAL-X from here on), will
differ in some respects from DoD-1. If the Ironman 1977 specification
is held in the final DoD-1 product, there will be no subset or
super set languages. If our experience with code compression is a

valid guide, this will probably rule out the use of DoD-1 for

interactive program development on small microcomputers such as those

we use at UCSD. On the other hand PASCAL-X might amount to a large
subset of DoD-1 and still be implemented on the micro's. A visit to

m
00

DoD in December convinced me that they too are very much interested

in using stand alone micro's for interactive program development.
Apart from the size issue, the major differences that will probably

make DoD-1 incompatible with the PASCAL base language have to do with
tightened rules to help prevent side effects committed within
functions and FOR loops. A persistent rumor that I have not yet been
able to check is that Niklaus Wirth himself has had a hand in
recommending that these rules be included in DoD-1, and/or in at
least one industrial firm's version of extended PASCAL.

At the Seattle ACM meeting, and on several occasions since then,

I have asked representatives of large industrial firms interested in
using PASCAL for serious system programming whether their companies

might be willing to participate in a 'workshop' convened to seek a

consensus on PASCAL extensions among such firms. The implication
would be that the influence of such a group of firms would be great
enough to make the consensus language, PASCAL-X, a de facto standard

for those interested in PASCAL for practical system programming. The
verbal responses I have received so far have been enthusiastic and

affirmative.

Lacking an alternate invitation, we propose to convene such a

workshop here at UCSD during the forthcoming summer, probably for
several weeks during July. In order to have a reasonable expectation
that the workshop will indeed emerge with consensus on a substantial
range of extensions, it will be necessary to limit the attendance to

a maximum of about 30 people. Attendance will be by invitation only.
Those attending from industrial firms, and from government agencies,

will be asked to pay a registration fee of several hundred dollars to
help pay the expenses for running the workshop. In addition to paying

the fee, these organizations will be asked to give credible

assurances that the participant(s) they send will be able to
influence their employers to use the resulting consensus language.
Approximately three quarters of those attending should be from

organizations which will have made investments in practical system
programming uses of extended PASCAL exceeding 10 person-years by the

end of 1978. We would hope to attract a small number of academic
experts who enjoy the widespread confidence of large subsets of the
remaining PASCAL user community. The aforementioned fee will cover
the expenses of these experts, and of a small UCSDgroup (mainly
students) who will serve as the staff of the workshop.

As a plan of action for the workshop, we propose that those who
expect to participate should begin circulating position papers and
proposals regarding features they wish to see included in the

expected consensus language PASCAL-X. Though we have no formal

commitment from them, it appears likely that the Defense Department
group will allow us to use the language descriptions resulting from

the Ironman project as part of the set of position papers. We assume

that the Ironman papers will allow a moderately accurate projection
to be made regarding the description of the expected DoD-1 language.
Assuming that our conjecture is correct, that DoD-1 will amount to an

extended version of the PASCAL base language with few
incompatibilities, we will urge the workshop group to make PASCAL-X
as compatible as possible with DoD-1. Naturally, we will insist that
PASCAL-X remain faithful to the overall philosophy embodied in
Niklaus Wirth's original design. Wherever incompatibilities with the
base PASCAL language seem frivolous they will be strongly
discouraged.

The workshop will probably consist of relatively short plenary
meetings on most days in the weeks when it is in session, plus

smaller working group meetings on specific topics. I plan to chair
the plenary meetings, as convener, in the hope that I may be able to
keep the attending group focussed on the objective to reach consensus

on as large a set of extensions as seems important to most of the
group. To assure reasonable acceptance of the results of the
workshop, most decisions will have to be reached by consensus - i.e.

with the acquiescence of virtually all of those attending. Except for
our own extensions associated with the pre-declared type STRING, and
with the READ statement for interactive implementations of the INPUT
file, we at UCSD still have relatively small investments in the
specific syntax of most other changes or extensions to PASCAL. We

will circulate position papers regarding these matters.

Copies of this note will be going directly, with invitations, to

representatives of the firms that we already know are likely to be

interested in participating in the workshop. Since we may not know
about others, readers of this note in PUGN should feel free to
contact us. Please bear in mind that we are a small group, and
currently close to saturated for communications with others due to

the high interest in our software package. For a reader who thinks that
his/her firm should be on our invitation list for the workshop, a brief
letter explaining why would probably be the most effective way to get
started.

Kenneth L. Bowles

~i"O'O'
JIS

l.

en

--n
f"Tl
t:>::!
:::0

=:J:>
:::0
-<

en
<.0

Implementation Notes

G ENE R A L I N FOR MAT ION

A number of short comments are in order about this issue and our editorial policies in
general:

- INDEX: The index near the end of this issue covers the Imple~entation Notes from last
~ (#9-10) and this issue. Earlier issues are not referenced because: (1) they are
out of print, and (2) the information in them was summarized and updated in #9-10.
Corrections: Unless otherwise stated, the information in this issue supercedes the
information in #9-10. We received several corrections (and complaints) about incorrect
information in #9-10. As ~~, we print the information that we have available to
us. Although this sometimes leads to confusion, we have found that printing incorrect
information causes people to send corrected material when they might not have done 50
otherwise.
Software Tools, and Applications: At the suggestion of Rich Cichelli we start with the
next issue to print the source code of programs which are known to be useful in the
practice of writing software. Rich will be editing this section, and programs may be
submitted to him for consideration. We also encourage criticism and comments on these
programs. Rich's address is: 901 Whittier Drive, Allentown, PA 18103, USA. Also, Tom
Tyson (DECUS SIG)has offered to distribute software at cost. Details are not yet clear
to us, but Tom's offer is quite encouraging. ------
~ Variants: We have decided as a ~ to print notices of machine-dependent

implementations of Concurrent Pascal, Madula, etc., in the "Machine Dependent
Implementations" section. Also, the "Index" willnot discriminatebetween the variants
of Pascal. Notices of general interestwill continue to appear in the IIpascal Variants"
sect ion.
Checklist: When ~ubmitting implementation notes please use the Checklist (/19-10, page
60), and send dark camera-ready copy (see Policy, page 21). As we begin to concentrate
more on appl~ions, standards, and software tools, we will be less willing to rekey
material which is not properly prepared.

- Jim Miner (78/1/5)

A P P LIe A T ION S

HELP WANTED!

If PASCAL is to makeany inroadsintoserious
exclusive preserve of FORTRAN) it must have
which means, as far as the U.K. is concerned,
NAG (Numerical Algorithms Group) library.

scientific computing (currently the almost
a decent library of scientific subroutines -
that there must be a PASCAL version of the

It should be possible to make
machine-dependent features being
method of production of the
ALGOl 60 versions, together with
range of machines.

a PASCAL NAG library largely machine-independent with all
collected into the "X" routines. Probably the easiest
library would pe a straight transcription of the existing
the writing of the set of "X"

routines for each different

Please send your views on this matter, and offers of help, to:

Professor D.W. Barron,
Computer Studies Group,
Department of Mathematics,
The University,
Southampton, Hants, S09 5NH, United Kingdom,

who is coordinating this project and negotiating with NAG.

PORTABLE

Pascal P4 -- How (Non-) Standard is it?

Some of us at Pascal News have seen a disturbing trend recently to label P4-based
implementations-a8"Standard Pascal" simply because they are based on P4. In fact, P4
differs from the standard in a number of significant ways. We have compiled the following
list of deviations, based on a list sent to us by Ted Park (Director, Systems Development;
Medical Data Consultants;Suite302: 1894 CommercenterWest;SanBernardino,CA 92408),
and alsobasedon our own experiencewith P4. In no way do we intend this list as a
criticism of the authors of P4; rather we hope to raise the awareness of implementors
using P4.

-Jim Miner

1. P4 implements nil as a predeclared constant, and forward as a reserved word. The
standard indicate;--that nil is a reserved word, and forward is not listed as a reserved
word. - -

2. P4 does not support the standard comment delimiters { and }.

3. P4 does not provide the standard predeclared identifiers maxint, text, round, ~, or
dispose. Further, the following standard predeclared identifiers are recognized, but are
flagged as errors: reset, rewrite, pack, and unpack.

4. P4 does not require a program heading. Further, where a program heading is included,
P4 does not require it to contain a parameter list.

5. P4 does not allow "non-discriminated variant record types"; i.e., every variant record
must have a tagfield. The standard does not require a tagfield.

6. P4 does not allow a ";" before the "end" in a record type. (See the P4 Bug list, item
3.)

7. P4 does not implement any of the following file-related features: ~
Declarationsof file types, variables, and parameters. ~
The standard predeclared type text, and the standard predeclared procedures~, ~
~, and~. 00
The requirement that standard files input and output must appear in the program
header if they are used.
Accessto non-textfilesvia the standardproceduresreadand write.
Output of Boolean expreSsions, or output of real expressions in the fixed-point form
(r:ex1:ex2)via the procedure write.

8. P4 does not support formal procedure or function parameters.

9. P4 does not allow set constructors containing the subrange
['0'. .'9')).

(e.g. ,notation

10. P4 does not support goto statements which jump out of the procedure or function in
which they occur. (In fact, P4 has a bug wherein it fails to diagnose such goto's, and
treatsthemlike"local"jumps-- see the P4 Bug list,item6.)

Pascal P4 -- Bug Reports.

We have receivedseveralreportsof bugs in P4, in additionto Updates1 and 2 whichwere
printed in Pascal News #8. Since Zurich has not promised support on P4 we intend to print
such reports here:-r,ncludingfixes when possible. Also, to make sure that they are widely
known, we are reprinting Updates 1 and 2 from Chris Jacobi. These should already be
included in the P4 distribution tapes.

C/")

"rr1
to
;:0
c:::
:x>
;:0

-<

-0
"po
C/)

n
:t>
,

~[T1

~on the C/)

"".......
.......

The following
University of
O.W. van Wijk
News).

list is based on bug reports from: Juha Heinanen (Computer Center;
Tampere; P.O.Box 607; SF-33101 Tamp ere 10; Finland; (931-156111)),

(TNo-IBBC; P.O.Box 49; Delft, Holland; (015-138222)), and Jim Miner (Pascal

P4 bugs not affecting portability.

1. Disallow zero-length string constants.
Insert after PASCP.461:

IF LGTH = 0 THEN ERROR(205)
ELSE

2. Assure non-compatibility of different length strings.

Insert after P.145:
AND (FSP1-.SIZE = FSP2-.SIZE)

3. Allow";" betWeen field
On line PASCP.l079

change:
to:

list and "end" in record type_

IN [IDENT,CASESY]
IN FSYS + [IDENT,CASESY]

4. Correct comment.
On line P.307

change:
to:

(*LOD*)
(*LDO*)

5. Correct generation of set constants.
On line PASCP.1772

change:
to:

.- 0 TO 58 DO

.- SETLOW TO SETHIGH DO

Correct failure to disallow non-local gato's.

Insert after PASCP.2893:

WHILE DISPLAY [TTOP] .OCCUR <> BLCK DO TTOP .-
TTOPl := TTOP;

Replace PASCP.2895 and PASCP.2896 with:
LLP :- DISPLAY[TTOP].FLABEL;

TTOP - 1;

7. Correct comment.

On line P.500
change:
to:

(*up*)
(*UJP*)

8. Allow label definition inside of a with statement.
On PASCP.3153

change:

to:
DISPLAY [TOP]
DISPLAY [LEVEL]

9. Avoid spurious lIundefined forward type" diagnosis.
Replace PASCP.1368 and PASCP.1369 with:

END
ELSE LCP2 := LCP1;
LCPl := LCP1-.NEXT

10. "read(f)".Correctly diagnose
On P.347

change:
to:

8 THEN
5 THEN

Implementation Notes

ll. ''write(f)''.Correctly diagnose
On P.380

change:
t'O:

10 THEN
6 THEN

12. Correct error numbers.
On PASCP.2277 and on PASCP.2285

change: ERROR(l25)
to: ERROR(116)

13. Write end of line on last line of listing, and also flag errors in all cases
last line.
Replace P.555 with:

IF LIST THEN WRITELN(OUTPUT);
IF ERRINX > a THEN

BEGIN LIST := FALSE; ENDOFLINE END

l

14. P4 does not diagnose forward-declared procedures and functions which are not actually
defined. No fix has been submitted for this bug.

P4 portability-relatedbugs.

The items listed here involve implementation dependencies.

15. Correct declaration
On PASCP.85

change:
to:

of set values.

SET OF 0..58
SET OF SETLOW. .SETHIGH

16. Diagnose set declarations exceeding implementation defined limits.

Replace PASCP.1275 to PASCP.1278 (inclusive) with:

IF LSPl <> REALPTR THEN
IF LSPl <> INTPTR THEN

BEGIN GETBOUNDS(LS~l,LMIN,LMAX);
IF (LMIN < SETLOW) OR (LMAX > SETHIGH) THEN

ERROR(l69) ;
NEW(LSP ,POWER) ;
WITH LSr DO

BEGIN FORM:= POWER; SIZE SETSIZE;
ELSET .- LSPl

END
END

ELSE ERROR(169)
ELSE ERROR(l14)

;::c

-<

17. On some implementations it is not safe to allow tests of (in-) equality on arrays and
records. This is because P4 does not guarantee that all storage units within an array
or record type are accessible to the programmer, due to alignment considerations.The
following changes disallow such comparisons, except for strings.
Replace PASCP.2826 and also replace PASCP.2831 with:

ERROR(134);

PASCAL - P4 Installation Parameters

intsize,realsize,charsize,boolsize,setsize,ptrsize:
Number of addressable storage units to be reserved for variables of type integer,
real, character, boolean, set, pointer. As to 'setsize', remember that a set must
be able to hold at least 48 elements if you intend to use the system to bootstrap
the compiler.

intal,realal,charal,boolal,setal,ptral:
Variables of the corresponding types will be given an address which is a multiple
of these alignment constants.

stackelsize:
Minimumsize for a value on the expression stack. The expression stack is that
portion of the stack which is used for the evaluation of expressions.
'Stackelsize' has to be equal to or a multiple of 'stackal'.

stackal:
Alignment constant for a value on the expression stack. 'Stackal' must be a
multiple of all other alignment constants and must be less or equal to
'stackelsize' .

strglgth:
Maximumlength of a string. (In fact all strings will be of length 'strglgth').
A string must be able to hold the character representation of a number (real or
integer) with its sign. The minimum length for a bootstrap is 12.

intbits:
Number of bits used for representing an integer without the sign. So the largest
integer is: intbits

2 - I

sethigh,setlow:
Maximumand minimum ordinal values for the element of a set.

ordmaxchar,ordminchar:
Maximum and minimum ordinal values of the character set.

Depending on the alignment conditions there may be two possibilities for the assignment
of store on top of the expression stack:

Each stack element requires the same amount .of store. In this case 'stackelsize'
has to be greater than or equal to the maximumof the other size constants.
(Remember: 'stackelsize' is a multiple of 'stackal ').
No waste of store: A new element on the expression stack has to be placed at the
next position allowed by the alignment constant 'stackal'. In this case
'stackelsize' has to be less than or equal to the maximumof the other size
constants.

Thanks to George Richmond for sending us revised Pascal-P ordering information.

Pascal-P may be ordered from:

In Europe, Asia, and Africa: Chris Jacobi, Institut fuer Inforrnatik,ETH-Zentrum,
CH-8092 Zuerich, Switzerland.
(*last published cost was SFr 160 for
configured compiler - do not prepay*)

Carroll Morgan, Basser Dept. of Computer Science,
Univ. of Sydney, NSW 2006 Australia.
(*last published cost was $A30 *)

George Richmond, Computing Center: 3645 Marine, Boulder,
CO 80309 USA. (*new prices: $60 for tape,
documentation, and overhead, please prepay,

and $30 additional for configured
compiler. ,',)

In Australasia:

In North and South America:

PAS C A L V A R I ANT S

pascal-S

(* See the Checklist and letter from Rich Cichelli under CDC 6000 in the Machine Dependent
Implementations section. *)

Concurrent Pascal

COMPUTER SCIENCE DEPARTMENT 22 September 1977
LLvuoa.r CoMPUTU SciENCE CENTU

UNIVERSITY OF SOUTHERN CAUFORNIA, UNIVERSITY PARK, LOS Al'I'GELES, CAUFORNJA 90007

Dear Colleague:

I am pleasedto announce that the distribution of Concurrent Pascal tapes
has been resumed. The two tapes contain copies of the Solo Operating
System and the Sequential and Concurrent Pascal c08pilers. The system
is ready to run on a PDP 11/45 system and can (with some effort) be moved
to other minicomputers.

To obtain the system tapes, please contact

Mr. George H. Richmond
Computing Center
University of Colorado
3645 Marine Street
Boulder, Colorado 80309

Concurrent Pascal and three model operating systems written in the language
are described in

P. Brinch Hansen, The Architecture of Concurrent Programs.
Prentice-Hall, Englewood Cliffs, New Jersey, July 1977.

The compiler is described in

A.C. Hartmann, A Concurrent Pascal Compiler for Minicomputers.
Lecture Notes in Computer Science 50, Springer-Verlag, New York,
N.Y., 1977.

I am interested in hearing about any experience you may have had in using
Concurrent Pascal.

CONCURRENT PASCAL OISTRIBUTlON Geol"ge H. R; chmond September 1977

Concurrent PASCAL is a val'" i an t of PASCA L delle loped by Per 81"inch
Hansen while he 'Was at the Ca1ifol"nia Institute of Technology. This
system is implemented fol"' the POP 11/45. It includes the Solo Operating
System. the Sequential PASCAL Comp'i Jer', and the Concul"roent PASCAL
CompileI"'. The software supplied is ready to run fol'" 8 suitably
configuI"'ed PDP 11/45 system. It cou1d be transported to other
minicomputers as the bulk of the code is written in PASCAl.

The University of Colorado is distributing Concurrent PASC4L in
cooperation with Per BrinCh Hansen following the publication of his most
rec~nt book "The Ar'chitecture of Concul"'l"'ent Pl"'ogl"ams" by Prentice-Hall
in July 1977. This book descl"'ibes the Concul"'l"'ent Pascal system. It is
not included in the documentation distl"ibuted by the Univel"sity of
Co 1oradO.

The materia1s available include two magnetic tapes containing.
complete copy of the Solo Operating system for loading onto a RK05 disk
pack on 8 PDP 11/45 computer" and a sOUr'ce and vi I"'tual code copy of the
5010 pl"'ogl"'ams fol'" listing on any computer'. Documentation inc1udes two
repol'" ts not i ne Juded in II The Arch i tee t ul"'e of Concul"'!"ent Pl"'og/"'sms II and
other' items or suitable I"'eplacements as f0110\ll5:

Each fi le consists of one or more blocks of 512 8-bit bytes each. A
f i 1e ;S termi nated by a single end of fi le mark.

[] ,.. [J [J .. . [] [] .., [J

< Fi 1e , > < Fi le < Fi le n >

Each fi 1e contains e 1ther ASCII text or virtual code.

Literature abou t the Programm i ng Language Pasca 1 (5 pages)
A Note on the Concurrent Pasca1 Tapes (2 pages)
Concurrent pasca1 Implementation Notes (28 pages)
Sequent i a 1 Pasca 1 Report (46 pages)

TExT FILES (ASCII)

text file consists of one or more 1ines. Each 1ine consists of
zero or more characters terminated by a LF character (decimal value 10).
(There are no CR characters.) A tex't f i lei s termi nated by an EM
character (decima1 value 25).

The cost may be paid in advance by check (payable to the UniversHy
of Colorado) or a more forma1 purChase order and invoice mechanism can
be used. Concurrent PASCAL can be mai led from the University of
Colorado to outside of North Amertca for the addttional cost of air-mail
postage. . < 1i ne > LF

The Solo system consists of a single-user operating system written in
Concurrent Pascal and a set of uttltty programs written in a variant of
Sequential Pascal. It includes two multi-pass compi lel"5 for Sequential
and Concurrent Pascal (see: P. Br inch Hansen, The Programmi ng Language
Concurrent Pascal, IEEE Transacttons on Software Engineertng 1, 2t ..June
1975).

< 1i ne > LF
EM

The text is packed into blocks of 512 characters. So a line may
begin in the middle of one b10ck and end some'lOhere in tne next bloCk.
The cnaract.;r's (if any) hich follow the EM character" in the last block
of the file are ir"re1evant. A text file is a1so terminated by an end of
fi le mar"k on the tape (just as any other fi 1e).The Solo system was bui 1t

deve 1opment of Concurrent Pasca 1 .
programming (but can be made
following machine configuration:

to support Per Brtnch Hansenls
t 5 not conven i ent for casua 1

The Solo system require. the

onlY
It

80).

PCP 11/45 computer with floating-point arithmetic
Memory management and 48K wOrds of core storage
Line frequency clock KW11-L
Disk cartridge drive RK11-Q
Teletype ter"minal LT33

VI RTUAL CODE FILES

A cOde file consists of 16-bit binary integer"s. Each integer is
output as two 8-bit bytes. The 10"icr order 8 bits are output first,
foll0,~ed by the hignel" ON~ei' 8 bits (this is due to the byte addressing
of the PDP 11/45 computer).

This configuration a110'Ws editing and recorr:pilation of bOth
compi lars. The system also supports the fOllowing peripherals: When a tap.a is reproduced on another maChine, the bytes snould

therefor~ b~ output in exactly the same order in which they are input
from the tape.

- Magnetic tape unit TM11 (9 tracks, 800 bpi)

- Punched card readerCD11-A (80 columns, 1000 cards/min)
- Line printer LP (Data Printer Corp., 132 columns, 600 lines/mtn)

The Pascal compi lers generate code for a vi rtual machine that can be
simulated on 8 variety of 16-bit minicomputers. (The Sequential Pascal
campi ler was moved to another mi nicomputer in one man-month.)

The virtual code is packed into blocks of 512 B-bit bytes each. A
Code fi 1e is terminated by an end of fi le mark (just 1 ike any otnel""
file) .

To get a copy of the system, please reture the enclosed order form.
Please notice that neither Ca1teCh, the University of COlorado, or the
University of Sourthern Cal ifornia make a warranty of any kind, and do
not guarantee correctness or maintenance of the Solo system.

SO LO Copy TAPE

This tape contains 2 files. The first file (of 1 block) is an
autoload prcgram that can copy the second fi1e onto a disk pack on a PDP
11/45 cor.-,puter. The second file (Of 4800 bloCkS) is 8 complete copy of
the Solo disk pack.Distribution Tapes

The SOLO COPY tape is 21 magnetic tape (9 tracks, 800 bpi, 600 feet)
containing a complete copy of the S010 system. It also contains an
autoload program that can copy the system onto an RK05 di sk pack on a
POP 11/45 computer.

SDLO FILES TAPE

Tnis tape contains 116 files. The first file is a text file that
1ists a11 the other fi les. The other 115 fi les are copies of the text
and code fi les of the Solo operating system.

This tape can only be used on a PCP 11/45 computer with double-length
floating-point arithmetic, memorymanagement, 48K wordsof core storage,
line frequency cla..;k KW11-L, disk cartridge drive RK11-D, teletype
terminal LT33 (or an equivalent terminal), and maQnetic tape unit TM1t.

Cost
ConCurrent PASCAL Order Form

1. Documentat Ion for Concurrent PASCAL $10.00The SOLO FILES tape is a magnetic tape (9 tracks, 800 bpi, 600 feet)
containin;,j copies of a11 Solo programs in a1phabetic order, Each
program is stored both 8S Pascal text (ASCII code) and virtual coda (16-
bi t integers). 2. Distribution Tapes for Concurrent PASCAL $50.00

This tape can be used to list the programs on any computer.

The system can be moved to another computer by reiNriting an assembly
language program, called the system kernel, that simulates 21 virtual
maChine and its periperals. The tape contains a copy of the kern.l for
the PDP "/45 computer (4K words).

3. Overseas Postage

4. Total Cost of Order

8i 11 ing Address: Sh i
pp

ing Address:
CONCURRENT PASCAL TAPES Per Br inch Hansen July '977

TAPE FORMAT

Each magnetic tape (9 tracks, 800 bpi, 600 feet) contains several

files. There are no 1abels on a tape. It begins with the first bloCk
of the first file. Each tape contains a fixed number of fi1es. There
is no end of tape label.

I understand that the distribution costs entitle me to use the
Concurrent PascaJ .system on a non-exclusive basis on1y, and that the
se~lers.(Californla Institute of Technology, University of Colorado, and
Un1vers1ty of Southern California) ,make no warranty of any kind, and do
not guarantee correctness or maintenance of the system. I wi 11
aCknowledge tne authorship of the system and retain the names
"Concurrent Pascal" and .S010" in a11 uses of it.

Signature: Date:

(/)

I-'
<D

'-I
00

TP\-i DSS(i
One Space Park
90/2178
Redondo Beach, CA 90278
(213) 535-C'312
19 October 1977

The Multi-Minicomputer Architecture IR&D Group at TRW, headed by ~oger A.
Vossler, is using Per Brinch Hansen's Concurrent Pascal, to write spec'a'-Dur.
pose operating systems for distributed computing research. Although Hansen's
Concurrent and Sequential Pascal compilers generate virtual code for an idea1
machine which is implemented by an interpreter, we find that for some applica.
tions this approach can compete successfully with real machine code running
under a general purpose operating system. One of the advantages of Concurrent
Pascal is that its compile time enforcement of access rights eliminates many
potential time-dependent run time errors,

TRW
Dear Andy:

We have developed a number of utility programs to supplement ~hose avail-
able on the SOLO distribution tape. Other work has involved writing device
drivers for additional 10 devices, improvements to the cOMpilers, and an ex-
perimental kernel with all 10 drivers removed and rewritten in Pascal. Future
plans include moving the interpreter and parts of the kernel to microcode on
machines with WCS, such as the PDP-ll/60.

Although we are unable to serve as a distribution center, we are interested
in exchanging ideas and programs with other users of Concurrent Pascal. An
Implementation Checklist for our implementation is attached.

Sincerely,

JBH:nc J.B. Heidebrecht

(* The Checklist mentioned is listed under DEC PDP-ll (Redondo Beach) in the Machine
Dependent Implementations section. *)

UNIVERSITY OF YORK
Modula

HESLINGTON. YORK, YO! SDD
TELEPHONE 0904 59861

DEPARTMENT OF COMPUTER SCIENCE

Professor of Computer Science: I. C. Pyle

Dear Mr Mickel,

13 September 1977

A MODULA Compiler for the PDP-ll computer

A recent copy of the Pascal Newsletter asked for details of any
compilerfor theprogramminglanguageMODULA. We are writingthis
letter to inform you and the readers of the Newsletter about the
existence of a compiler written at the University of York and
completed in the spring of 1977.

The York MODULA compiler is written in BCPL and is structured in
four passes using a sequential binary stream for communication
between the passes. The present version of the compiler runs
under RSX-IID and requires a 16k partition for the compilation of
a program of about 1000 lines. The compiler output is MACRO-II.

All of the MODULA language as defined by Wirth has been implemented
with the following exceptions.

(i) All names must be declared before use, thus mutually
recursive procedures are not possible,

(H) The VALUE statement for presetting global variables has
not been implemented,

The procedures "off" and "among" have not been implemented.
Their effect can be obtained by other means within the
language.

(Hi)

The following run-time systems are available.

(i) A nucleusto allowIDDULAprogramsto be run on a base
PDP-ll/40. Including a "loaderIIto overwrite the operating
system, the nucleus requires about 150 words of code,

A similar nucleus for the PDP-ll/05, including the out-of-
line routines for division and multiplication, requiring about
200 words, and

A simple system for running "sequential" IDDULA programs under
RSX-llD.

C/)

(H)

(iH)

The compiler and its run-time system have been tested using:

(i) A structured test set of about 100 programs to test the
sequential parts of the language, and

(ii) Many device driving MODULA programs (including those given
by Wirth) for testing the full language. We have device
drivers written in MODULA for the DL-lI, KW-IIL, RK-II,
AR-Il, GT40, CA-IIF and many other DEC devices.

So far the compiler has not been distributed to any other institution.
At the present time our efforts are directed towards providing full
external and internal documentation of the compiler (we hope to produce
a docume~ similar in style to Hartman's description of the
Concurrent PASCAL compiler) and putting the present RSX-llD system into
a presentable package. Our present development work is:

(i) Providing a cross compiler for the INTEL 8080 that runs on the
PDP-lI/40. An initial version of the code generator and run-
time system is now complete. Our initial conclusion after
development of this version is that the 8080 is unsuitable for
an efficient version of MODULA, and

(ii) Making the compiler run W1der UNIX.

We have just applied to the Science Research COW1cil of Great Britain
for fundsto supporta programmerwho wouldlookafterthe MODULA
compiler maintenance and distribution. Until we know the result of
this application we will,not know what distribution scheme we will
adopt. In the meantime, we would like to hear from any PASCAL
Newsletter reader who would be interested in receiving the compiler so
that we may gauge the interest in this work. We would also be
interested in knowing what areas of application potential users have
in mind.

Our initial conclusions on MODULA, together with further details on the
compiler, are given in

J. HOLDEN & I. C. WAND: 'Experience with the programming language
MODULA' .

A paper presented to the 1977 IFAC/IFIP Real Time Programming Workshop
held at Eindhoven, Netherlands, on 20-22 June 1977. To be published
by Pergamon Press.

We have a very limited number of preprints of this paper available.

Yours sincerely,
/:1

)/,;£>.-

'1rt'
J. Holden I. C. Wand

(I) Passing pointer values as addresses, even in-stack.

Seen in PN #9/10, page 40. The following program is allowed to execute, storing

the (stack) address of x in p:

FEATURE IMP L E MEN TAT ION NOTES

UNIMPLEMENTABLE FEATURES - WARNING

This noteaddressessomefeaturesI have notedothersaddingto theirPASCAL

compilers which I condemn as particularly nasty because they are not implementable

on the Burroughs B6700 system and possibly on other computers. One of PASCAL's

great potential features is that of portability. make a plea to everyone

not to introduce features that are not implementableon all computers, and to

remove any that presently exist.

program P;

~p

x

t integer;

integer;

begin

x:=I;

p:=tx; {the horrod

end.

Since the concept 'address' does not exist in some computers, and notably not

in the Burroughs B6700 in the sense used here, this is virtually unimplementable.

Stack-addresses are generally not computable segment addresses have two compon-

ents; and any contortion made to try to implement this feature will cause either

serious security risks, or explode all pointers into requiring two words of

48-bits for storage (with a time penalty too), or destroy the structure of B6700

programs making them CDC-like. Pointers are not necessarily addresses; a point

which seems not to be widely realised.

The restriction in the PASCAL report was there for a reason: Zeave it there.

The feature should not exist, or should only be available when specifically

enabled by a computer directive.

(2) Returning function values of all kinds except files

The Report allows one to define functions which return values which may be:

-
scalars of all types,

.. reals, and

-
pointers.

It has been proposed to extend this permission to all types except file-type.

(PN 9/10, page 48). The omissionof file-typesisa blessing,but theothers

were also omitted for a definite purpose. Apart from the invention of array

and recordtemporarieson the PASCAL run-timestack (whichdo nototherwise

occur), and the greater difficulty of distinguishing recursive calls from com-

ponent accesses if regularity is attempted, this feature, too. is virtually un-

implementableon machines which use descriptor-based memory organization, and

in particularon the BurroughsB6700.

Arrays and records in this machine are not stored on-stack, wt are allocated

memory On demand, this memory being described by an on-stack descriptor word.

In the B6700, this descriptor is memory protected by its tag-field (an extra

3-bitmemoryfield),and the "RETURN FROM FUNCTION" instruction (RETN) doesnot

recognise a descriptor as a legal value to return: it expects an operand value

as represented by an integer, real, etc (with tag-field = 0). Consequently

attemptsto returnsuchvalueswill alwayscrashdue to the "INVALID OPERAND"

interrupt.

The ~ way around this problem that does not totally destroy the architectural

features of the B6700 (thereby slowing it manyfold), is to:

(a) turn interrupts off,

(b) shift the local PASCAL stackup by one word,
(c) adjust the dynamic and static stack activation record pointers to

correspond to the shift,

(d) implant the return descriptor into the caller's stack in the free

word created under the make-stack word, and

(e) turn interrupts back on.

have omitted some important features which maybe could be resolved, like how

the returned memory get de-allocated, but this should suffice to show that this

is really impossible.

(3) Allowing pointers to file-types and the use of new(file)

Observed in correspondance, on Univac PASCAL. The following will compile:

program P;

var p t file of char;

c char;

begin

new(p);

reset(pt);

read(pt,c)

end.

And it will execute. In the Burroughs B6700, file-descriptor-blocks (the oper-

ating system's status area for a real file) must reside in the task's s~ack.

They cannot reside in some other area such as the heap as they will not then be

closed and de-allocated by the operating system's block-exit procedure, and the

ensuing mess will be horrible to contemplate. Moral: beware what you do with

files.

en

-n
rrl
tC
;;0

=:J>
;;0

-<

"-.j
\J1

CO~IP I LI NG BOOLEArI EXPRESS IONS -
THE CASE FOR A "BOOLEAN OPERATOR" INTERPRETATiON

in some recent correspondence, I became aware that there might be

some argument about the corYect way to implement boolean expressions

in PASCAL. This argument arises partially because the "standard"

documents of PASCAL do not say the same things, and partially since

the consensus area is perce ived by some to be "restr ic t ive". I wi sh

here to argue two points:

*
that the consensus area outlined in the "standard" documents

should be preserved, and

*
that a "boolean operator" interpretation be regarded as the

generally preferred implementation method for evaluating boolean

expressions.

The problem area

The essential problem is related to complex boolean expressions, for

example:

(a < 0)
£!:.

(b
>

c)

Are both relational expressions evaluated, followed by a logical or-ing

of the result (the boolean op~o~ interpretation), or is the first

factor evaluated and only if it gives false is the second factor

evaluated (the ~equentLat eonjunetion interpretation)? In the example

I give, if a,b & c are all simple variables, the two evaluations give

identical results. If however there could be side-effects, whether

intentional ones due to function evaluations, or unintentional ones

due to undefinition of values, then the two possible implementations

may give different execution results. Which is an implementor to

choose?

The "standard"documentsof PASCAL

The Revised Report does not specify the semantics of an expression, except

by a rather remote implication. It simply states the syntactic rules for

expressions, prefaced by an introduction which says:

"Expressions are constructs denoting rules of computation for

obtaining values of variables and generating new values by the

application of operators.

Sequences of operators of the same precedence are executed

from leftto right.
" (Revised Report #8)

There is little semantic guidance here, except to imply that all operators

are intended to be applied.

The User t1anuaJ, our second "standard" documenr is thankfully more

explicit. It says:

"Boolean expressions have the property that their value may be

known before the entire expression has been evaluated. Assume

for e:rxunplethat x=O. Then

(x > 0) and (x < 10)

is already known to be false after computation of the first

factor, and the second need not be evalun.ted. The rules of PASCAL

neither require nor forbid the evaluation of the second part in

such cases. This means that the programmer must assure that the

second factor is "-'ell-defined, independent of the value of the

value of the first factor. Henee if one assumes that the array

a has an index ranging from 1 to 10, then the folwJJing program

is in error!

x:=O;

repeat x:=+l until (x > 10) or (a[x] = 0)

(UserManual, pp 20-21)

While this comment only covers some of the possibilities, it is quite

exp Ii ci t as far as it goes. I f you accept the author i ty of the User

Manual, implementations are at liberty to choose the boolean op~aZo~

or the ~eque~x;~ eoniunetion approach. (Perhaps this freedom is

regrettable, but that is a question of language or standard criticism.)

This would seem to dispose of my first question: the consensus area

reserved for implementors in the standards. Now, which is preferable?

This is a quite difficult question (impossible to resolve in abstract),

and hinges around three points:

.. regularity,

.. efficien~y, and

,', portability.

Regularity

One of the guiding principles of PASCAL is parsimony of concepts. In

general, one expects expressions to be evaluated as they are written, and

this is the practice for all expressions in existing PASCAL compilers,

apart from the cases we are now considering. Regularity therefore

suggests that treating boolean operators just like all other operators

(both left and right side operands are evaluated) is the more regular

approach. Certainly a naive student learning how to program is likely

to assume this \vhen tracking down an elusive bug, though a programner
conditioned by exposure to other languages might not. Particularly

is this the case if the boolean expressions become even more complex than

the ones I or Wirth give.

C/)

"rrT
boJ
::0
c:::
::&>
;:0

-<

boolean sequential

operator conjunction

- -

regularity better -

speed

I

? better for complex

expressions

space ? ?

portability better -
_..

Time-efficiency

The evaluation of a complex boolean expression might be quite

time-consuming. Obviously, minimizing the number of things to be

evaluated will always payoff for sufficiently complex expressions,

more especially if function evaluations are involved. Just where the

break-even point comeS (if it exists) depends upon whether the boolean

expression is in a jump c.on.te.x;t as in ii, while or repeat, or in a

value.c.on.te.x;twhere it ~ deliver a boolean value. It also depends on

the machine architecture of the target computer.

For example the sample expression I gave first is faster to evaluate

on a Burroughs 66700 in toto, than by sequential conjunction. This arises

because conditional branches flush the instruction buffers (lookahead), and

delete the top-of-stack value. On a DEC POP-II, this would be reversed.

On the other hand, involving a function evaluation in the second

factor as in

(gtyptr = realptr) ~
compatible(gtyptr,ltyptr)

would always be faster evaluated by the sequential conjunction method.

Space-efficiency

Unlike speed, which tends to be dominated by the properties of a small

proportion of a program, space occupied by code depends upon the properties

of all the code. Since typical PASCAL programs have a fair number of

boolean expressions, compactness is also a desirable property of a compiled

boolean expression evaluation. Here the decision could go either way,

depending on the machine architecture, or could exhibit a cross-over

(as with the 6urroghs 66700's time-efficiency). Again to give examples,

the 06700 always requires less code space for the boolean operator

interpretation (the most extreme case "a:=b and c" requires 8 bytes

or 18 bytes for the two approaches), and the reverse situation holds

in the DEC PDP-ll.

Port_db i I i ty

Any implementor must be cognizant of the effects of a compiler On the

likely portability of the programs written under its umbrella. Is there

a preference here? The answer is fortunately relatively clear: a compiler

that implements boolean expressions just 1ike all other expressions is

likelyto lead to the detectionof more illegalPASCAL constructs(like

that instanced by Wirth) by run-time errors before they leave the system

supposedly debugged. Since part of the role of a compiler is detecting

illegal constructs (as well as compiling legal ones), the 6e.qUe.~~

c.onjunet£oninterpretation can be seen to reduce the portability of

PASCAL programs.

Existing compilers

I cannot speak for all compilers, because I don't have access to them

all. Of those I know, we have:

boolean operator sequential conjunction

CDC 6000 ser ies

PASCAL-P (allof them)

Burroughs 66700/7700

ICL 1900

Other factors

I have said before that PASCAL does not have a good standard, and this

can be illustrated here too. Nowhere in the "standard" documents is

it required that a compiler which implements sequential conjunction

evaluate the leftmost factor first. I don't think any existing compiler

is that clever (they are largely one-pass) but an optimizing compiler

might quite easily decide to evaluate a simpler second (or third)

factor before the leftmost one. It seems reasonably certain that

some PASCAL compilerwill attemptit if the languagehas a reasonable

future to go.

Summary

As happens so often, we end up comparing incomparables: efficiency vs

desirable properties. Fortunately for me, the Burroughs B6700 architecture

uniformly favours the method with the best properties, and there was no

conflict. Thiswill not be so in other computerswhere a comparison

does not give a boolean result, but sets condition codes or some such

hardv,'are fudge.

La me. MY, -thaJ:.if, a c.ompileJt .i6 .in;te.nde.d f,olL -teac.h.ing pUILp06 e.6 (6O-thaJ:

1Le.gu1a.Jr..Uy .i6 hnpoJr.-tan.t and e.f,Mue.nc.y no-t), olL.if, -the. plLomo-t.ion

of, plLOglLMI .in;teJtc.hange. .i6 lLe.galLde.d M hnpoJr.-tan-t, -then :the. c.ho.ic.e.fle.em6

qu.i-te. cle.aJr.-to me.: boolean opeJtaJ:olL6 6hou.ld be. hnple.me.n.te.d M 6u.c.h,

and e.veJty f,a.c.-tOIL e.va1.uaJ:e.d.

Only ,[n a c.omp.U'.VL WMc.h .u, al.me.d a;t pJtoduung opWn-tze.d c.ode. 011 lugh

quo..Uty would .u 6e.em du-i.Jtab.f.e. to employ 6e.que.n;Ual c.onjul1c.;Uon. I ;(;funk

hVLe. 011 c.omp.U'.e.M tha;t a.:U:emp-t 6-tJteng;(;ft Jte.dud,(.oI16, oJt opUm,(.ze. loop<!

and 6ub- e.X.pJtU6-t0ru,. AU 6uc.h Jte.aM.angeme.nv. have. thw dJtawbac.k6 and

nM-t,(.nu6U. I:t may hOWe.vVL be. ne.c.uMJty oJt du-i.Jtable. to Me. 6e.qUe.~

c.onjunwon ,[n a non-op~ul!g c.ompilVL 6,tmply be.c.aMe. 011 the. c..f.tm16-tnU6

011 ;the. mac.Mne. MC.h.ue.c.;(;uJte.. Th.i.4 6hould be. Jte.gJte.-t-te.d and Jte.gMde.d a.6

an Ul!1IoJt;tu~~e. oc.c.uJtJte.nc.e. c.aU,(.ng ooJt a c.om~Lt ;to ;(;fle. c.ompatelt

Mc.h.ue.c.;t!

Professor A.H.J.Sale

Department of Information Science

University of Tasmania

IMPLEMENTATION FEATURE - LONG IDENTIFIERS

PR08LEM

The definition of PASCAL allows identifiers to be of any length, provided

they meet the compactness criterion, and are composed of an alphabetic and

alphanumeric characters. It is natural therefore for the full identifier

to be taken as uniquely identifying some object or concept, and this would

normallycall for the full identifierto be enteredintoa PASCAL compiler's

symbol table.

Two features spoil this picture. One is the unfortunate implementation in

PASCAL-6000 (CDC) of treating only the first ten characters of an identifier

as significant, and the propagation effect this decision has had on PASCAL-P

and other PASCAL compilers. The second is the statement in the portability

note of the User Manual to the effect that identifiers should be chosen to

be unique over their first eight characters. These have given rise to a

common presumption in the PASCAL community that this regrett~ble handling

is a standardpartof PASCAL; I havebeenexhortedto reducesignificant

charactersin the 8urroughs86700 PASCAL compilerto eightcharacters!

The problem arises as long as there exist commonly available compilers which

treat different parts of an identifier as significant: some PASCAL programs

may compile on system A but not on system 8, or worse, some may execute

differently on system A from system 8. These arise from the combination

of the Algoi scope rules in PASCAL, and the significance conventions alluded

to above.

THE 8EST SOLUTION

The best solution is quite clear: all existing PASCAL compilers should be

modified so that they retain all characters of identifiers in the symbol

table. In the 86700 compiler this is done, and since the compactness criterion

limits an identifier to a single input record, no identifier can exceed 72

characters (the size of the input record).

There are few va1id reasons for the retention uf the common practices used

in current compilers. Probably the most significant argument is one of space,

especially in mini- or micro-computer implementations. This is indisputable,

but such implementations are often restricted in other ways as well. An

oft-met argument is that PASCAL lends itself to fixed-length-strings (due

to the typeconstraints)and thatfull significance",ouldbe verydifficult

to program.

Piffle~ Any competent programmer can get around this with only a fractional

increase in complexity, and that confined to threeor four smal I routines

(NEXTSYM80L, ENTERINTOTA8LE, SEARCHTA8LE, and SEARCHLEVEL). An obvious

idea that occurs to me is to chain overflow text in special records in

the heap. The loss of speed is likely to be small if the base size of the

names is large enough to cover most occurrences.

RECOMMENDATION 1 (-to c.ompilelt Vnp.f.eme.n-toJt6

Ple.a.oe. -tJte.a-t aU c.haJtac.;te.M 011 -tde.ilin-<-e.M

you have. 6e.velte. J.>pac.e.C.OM;(;Jta-i.rz.tJ.,.

and ma-i.n;(;a-i.ne.M)

M J.>-i.gn-i.n-<-c.an-t, un.f.U6

A PRAGMATIC PATCH

Though the 86700 compiler does implement full significance, there never-

theless remains the problem of how to enable (i) 86700 programmers to

modify their programs to achieve the same execution on other systems, and

(ii) 86700 programmers who receive software from elsewhere to detect

masquerade errors that might be persistent in that software. This difficulty

has been tackied by making a change in the procedure that enters identifiers

into the symbol table, and making the additional checking conditional on

the setting of a compiler option 'STANDARD'.

Under normal circumstances, STANDARD is reset, and the compiler behaves

similarly to other PASCAL compilers. If STANDARD is set by the user, the

compiler issues warning messages for non-standard features (for example

special pre-defined procedures, or ELSE in CASE), and it enables the

identifier check.

This check operates as follows: before the identifier is entered into the

'-J
00

Top Beneath

Yes Clash Redefinition

No Sib 1 ing Masquerade

be consciously ignored. (Those of a legal istic turn of mi nd may ponder

on whether the portab i 1 ity note in the User Manual prohibits redef i nit ion;

an example of how careless wording can be interpreted.)

symbol table it is truncated to eight characters (if necessary), and the

table is searched for a truncated match with this fragment. If no match

is found, the entry is made in the normal way. If a match is found, one

of a variety of nasty situations has arisen, and additional checks are

necessary to identify the reason. The case depends on whether the match

has occurred at the current topmost lexical level or not. and on whether

a full-significance match of entry and identifier also succeeds or not:

Lexica l level

Does", fuZZ

significance

match succeed?

Let me examine each of these cases:

Clash:

This is a blatant direct name clash: every compiler should object to it.

The B6700 compiler does nothing at this point as the error will be reported

during the subsequent entry of the name into the table.

Red ef i nit ion:

No error,simplythe AlgolscoperulesembeddedintoPASCAL causingan

outer identifier to become inaccessible. Few compilers would even comment

but the B6700compilerwill issuea 'NOTE' messageas this is sometimes

the cause of mysterious errors. Redefinition of 1-s and J-s will have to

S i bl ing:

This is a distinct name which is so treated on the B6700, but will result

in a compiler error message ('CLASH') on an 8-character PASCAL. A 'WARNING'

is issued at this point.

Masquerade:

The most important case to detect: this may successfully compile on both

the B6700 and on an 8-character PASCAL (depending on the objects identified)

but would possibly execute with quite different effects. On a full-

significancecompilerthe two namesare quite distinct,but on an 8-character

compilerthe innerone re-definestheouterone in its scope.A 'WARNING'

is issued.

In all cases, the normal entry of the full name into the table is then performed.

CAUSES OF PORTABILITY LOSS

There are two basic ways that portability of PASCAL programs can be affected

by this naming problem. One is commOn to all compilers that regard more than

eight characters as significant (e.g. PASCAL-6000), and arises out of the

natural tendency to miss possible naming problems on more restricted compilers.

The B6700 compiler can detect these for its own offspring before they leave

its protection, but it can also serve to detect these flaws in programs that

are writtenunderdifferentPASCAL systems.

The second arises from an obnoxious practice that I have seen encouraged by

the limited-significanceconvention. I recall one installation where it was

the installation-standardto use the ignored text of an identifier in an

Algol system as a heaven-sent opportunity for commentary! The only sure-fire

cure for this is to do away with limited significance. Exhortation will do

for those who listen, but the industry-at-large needs more definite and obvious

constraints.

Rec.ommenda.-Uon 2 l:to c.ompLteJt .imp.temen:tolL6 a.nd m<Li.n:tiUnelLl>J

r 6 YOM PASCAL c.ompLteJt :tJr.e.a.t6 mOlte :than ugh:t c.hcvr.a.c.:telLl> a.6 l>.{.grU.6.<.c.a.n:t,

ma~e :the l>a.me c.hec.M a.6 del>CJUbed above on .{.denli6.{.eILI>_

Rec.ommenda.Uon 3 l:to MelLI> 06 PASCAL)

Be601te you fte.tea.6e a l>Uppol>ed.ty poft:tab.te pftogfta.m, c.ompLte il on a l>Yl>.tem

:tha..t c.hec.M 60ft .{.denli6.{.eJt pftob.teml> le.g_ BuJtftOugM B6700 PASCAL), a.nd

exeft:t pltel>l>Me on .imp.temen:tolL6 and m<Li.n:t<Li.nelLl>.to e.Um.<.na..te :tw l>ema.nlic.

Mag.

INTERIM REPORT - IMPLEMENTATION OF FOR-STATEMENT - 2

This note adds details for the ICL1900 compiler to the set already detailed in

Report 1.

ICL 1900 Pascal (test site: University of Southampton)

The implementation is equivalent to:

in i t
j
a 1 : =e 1

;

f i na I : =e2;

v:=initial;

if (final - initial)
>-

0 then begin

.......

.......

-u
:I>

=rr1

repeat begin

s;

v:=v+l

end unt i 1 v > f i na 1;

end;

The consequencesare
(i) the order of execution is el, e2, assign to v. Identical to PASCAL-6000

and 86700.

(i i) the exit value of v if the loop is never entered is e1.

(iii) the exit value of v if the loop is entered is (e2 + 1).

Additionaily, the controlled variable can be altered from within the loop, and

this alteration affects the progress of counting.

It is interesting, and sad, to note that all three compilers reported so far

have different answers to my questions (ii) and (iii). The uniform answer to

question (i) is perhaps a sign for the future...

Professor A.H.J. Sale,
Department of Information Science,
University of Tasmania.

FORStatement - Robert A. Fraley

IBM370 (UBC Version)
HP 3000 (Forthcoming)

The program behavior matches that of the COC6000 version,

as printed in PUGN#9. There are no limits except for word size.

(231 on IBM. Currently 215 on the HP, but double word integers

may eventually be supported.)

For the IBM version, optimizations are made in several cases:

a. If the limit is a constant, it is not stored in temp 2.

b. In order of decreasing efficiency, the loop forms are:

downto 1

downto constant

to constant < 224 (with initial value ~ 0)

to constant

variilb1e limit

MAC H I NED E PEN D E ~ T IMP L E MEN TAT ION S

Alpha Micro Systems AM-ll

See DEC LSI-ll (San Diego).

Andromeda Systems ll/B

ANi:Ji=lDMei:J~
sys,eMS.

November 21, 1977

Mr. Timothy M. Bonham
D605/1630 S. Sixth St.
Minnea201is, MN 55454

Dear Timothy:

Thank you for your inquiry about our ll/B System. You will find our
standard product literature enclosed.

In regard to your specific questions:

1. We are considering offering Pascal with the II/B. No
final decision has b2en made yet.

2. We have been in communication wi ti1 Ken Bowles and his
assistant ~ark Overgaard. Based on our discussions,

we nave no reason to believe the UCSD Pascal won't work
on the II/B. (If we were to offer Pascal directly, it
would be UCSD Pascal.)

3. I'm not familiar witn the systems mentioned so I can not
comment on them.

If you should have any further questions, please don't hesitate to contact
me.

Regards,

,~ldjd0--

14701 ARMINTA STREET.J PANORAMA CITY, CALIFORNIA 91402 (213) 781-6000

m
rr1
b:I
:::0
c::
::t:>
:::0
-<

C?
o

Burroughs B5700 (Edinburgh)

Department of Computer
Science

Heriot-Watt University 37.39 Grassmarket. Edinburgh EH1 2HW
Tel 031.225 8432 031.2265601 Ext

Mr. A. Mickel,
PASCAL Users' Group,
277 Experimental Engineering Building,
208 Southeast Union Street,
University of Minnesota,
Minneapolis,
Minnesota, 55455,
U.S.A.

Head of Department

Professor A BalfoUl, MA, FIMA, FBes

YOllr ref

our ref AB/KM

date 30th November 1977.

Dear Mr. Mickel,

I thought it was about time that I let the PASCAL Users'
Group know about the implementation of PASCAL that we are
running at Heriot-Watt University on our Burroughs B5700. We
have a PASCAL translator that produces a Burroughs XALGOL
program. It is based on the CDC 6600 compiler written by
U. Amman & R. Schild, and conforms as closely as possible to
the definition by Jensen & Wirth. We have been using it
for almost 2 years now very successfully. Indeed, one
colleague. has. almost completed writing a MODULA compiler in
~ASCAL uSlng It. ~he only major extension to the compiler
1S a cross-referenc1ng option.

We also have a frequency analyser that can be run in
conjunction with the compiler. This is still being worked

on to tidy it up, but works very well.

The PASCAL compiler was produced for us by an M.Sc.
student from.Oslo, Norway called Dag Langmyhr, to whom we
are extremely grateful as he continues to maintain it for

us. The frequency analyser was written by another M.Sc.
student Mike Staker.

Recently we obtained a PASCAL compiler for our Burroughs

B1726 from Paul Schultess of the University of Zurich. This
has so far proved very successful with no problems. I have
extended it slightly to allow the slightly odd character set

from our B5700 PASCAL programs to be acceptable to it. We
look forward to the implementation of real arithmetic by
Herr Schultess.

Anybody wishing any information about our efforts with

PASCAL can contact me at the above address. I will be

on~y to~ ~lease~ to help if I can. We already have several
unl~ersltles uSlng our compiler in the USA, Japan and South
Afr1ca.

Yours sincerely,

v~A~
~A: Cooper.

Burroughs B6700/7700 (Tasmania)

Arthur Sale sent us a very impressive (about 170 pages) manual for his B6700/7700
implementation: B6700/7700 ~ Reference Manual (R77-3; July, 1977). Arthur also sent

~n interesting report entitled "The Use of Tag Six in a Pascal Compiler" (R77-4), which
discusses the use of words with tags of six in the PASCAL implementation for the

Burroughs B6700 developed at the University of Tasmania. It involves questions of language
definition, undefined values of variables, and machine design." (From the abstract.) Both
of these reports are published by the Department of Information Science The University of
Tasmania, G.P.O. Box 252C Hobart, Tasmania 7001. (* Thanks Arthur! *)

,

Burroughs B6700/7700 (San Diego).

In a letter dated 3 November 1977, Thomas J. Kelly, 58-B Meadow1ake Drive, Downingtown,
PA 19335, wrote:

"I've changed jobs:I now workforBurroughsCorp.I exertedsome effort and we are
now using the UCSD implementation of PASCAL on our B7700. For any other B7700 users
who need a compiler, you can get one from UCSD, I suppose. It's okay, but we have
discovered several bugs. There is also a fix that needs to be installed to allow the
generated code to run properly on a B7700 (as opposed to B6700). I will send that fix
on to UCSD. I don't know if they'll put it in. If anyone wants to, they can get one
directly from me (at the above address)."

Also see Tom Shields in the Here and There section.

CDC Cyber 18 and 2550 (Santa Ana)

Jim Fontana reports that the Implementor/Maintainerof this implementation is Gordon Wood,
CDC, La Jolla, California, and that the Distributor is Control Data Corporation,
Professional Services Division, Sunnyvale, California.

CDC Cyber 18 (Berlin)

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER.Implementors: Lutz Christoph (Kernel) and Thomas
Wagner (Interpreter); Technische Universitaet Berlin; DV-Grundausbildung; Institut fuer
angewandte Informatik; VSH 5; Otto-Suhr-Allee 18/20; D-1000 Berlin - 10; Germany. Phone:

secretariate 30-314-4893 from 8 to 13 MEZ except Tuesday.

2. MACHINE. CDC Cyber 18, Models OS, 10, and 20. Model 17 is not supported due to use of
the Enhanced Instruction Set, and Model 30 because it is a dual processor machine.
Floating point firmware and software will both be supported.

3. SYSTEM CONFIGURATION. In interpretive form will need less than 48KW for self
compilation. Requires a disk (cartridge or SMD).

4. DISTRIBUTION. Not yet. Later will be distributed by CDC. (Agreement with the German
branch.)

5. DOCUMENTATION. A supplement to the Brinch Hansen articles is planned.

6. MAINTENANCE POLICY. Not determined yet.

7. STANDARD. Brinch Hansen Pascal. Some extensions are to be discussed.

8. MEASUREMENTS. Will be provided when system is operative.

9. REL lABILITY .

-

U'>

00
I-'

10. DEVELOPMENT METHOD. Kernel/Interpreter rewritten and cross-assembled on CDC 6500.
Compiler: Development not started.

11. LIBRARY SUPPORT. As with all Concurrent Pascal implementations. (poor)

CDC 3200 (Minneapolis)

Unfortunately, the rumor printed in Pascal News #9-10 regarding John Urbanski (West Bank
Computer Center, 90 Blegen Hall, University of Minnesota, 269 19th Ave. South,
Minneapolis, MN 55455) and the CDC 3200 implementation is no longer viable. John's 3200 is
being replaced by a different machine.

CDC 6000, Cyber 70, Cyber 170 (Zurich)

George Richmond has announced: (1) that Release 2 of Pascal-6000 will be distributed for
$60, and (2) that buyers may no longer send their own tapes to receive Pascal. Also, John
Strait and Andy Mickel sadly announce a six month delay in the long awaited Release 3.

CDC 6000, Cyber 70, Cyber 170 (Bethlehem)

PASCA~I Interactive, Conversational PASCA~S

PASCA~I is a version of the Wirth PASCA~S (PASCAL subset) system
designed to interact with a terminal user. The system compiles and
interactively interprets PASCA~S programs. It automatically formats
source text on compilation and allows the user to edit his program.

Text editing functions include GET and SAVE a file. All other editing
operations follow PASCAL scope rules (i.e. the command LIST defaults
to listing only the procedure being edited). Statements can be inserted,
erased, replaced, moved, and printed. Strings can be searched for and
changed. The REPEAT command reapplies the last edit command. There are
no line numbers; the editing scope is alw~ys very local, and none seem
needed or desired. The edit pointer can be moved from procedure to
procedure, up and down within a procedure, and to the top and bottom of
a procedure. Entire procedures can be moved or deleted. Their levels
can be easily changed. A tree structured listing of procedure
relationships is produced by the STRUCTURE command.

The HELP command gives detailed instructions and examples for each
command. The MESSAGE command gives a full descriptive statement of
the cause of a syntax error and sometimes includes recommendations for
possible fixes. "LIST,E,M" will list only the erroneous lines of a
procedure with the full descriptive messages for each error.

The compiler automatically formats the user program on input and
re-compilation. Statements are placed on single lines and properly
indented. Data structures are neatly laid out. Comments are well
handled, and inter symbol spacing is rationally done.

The internal text is efficiently stored as linked, variable length,
blank suppressed lines. After program changes, the compiler recompiles
only the minimal set of affected procedures. The internal code is a
dynamically managed, linked group of variable length code blocks. This
internal code resembles PASCA~S code, is position independent, highly
compressed, and exceptionally efficient for interpretive execution; the
linked data structures allow the system to perform efficient automatic
dynamic garbage collection. Code and text for statements are mutually
linked so that the run time system displays user program statuses with
actual text line references.

A user may EXECUTE or CONTINUE his program. Single statement stepping
is available. Statements or procedures may be traced. Fifteen -0
breakpoints may be set, unset, or ignored. Limits on output lines, ~
statements or PASCA~S instructions to be executed can be set to halt V0
execution. The system also recovers from user aborts and system timeouts. r>
On time out, the system saves the user program to a file. A user abort »
behaves as an instantaneous breakpoint invocation. The system stops r-
interpreting the user's program at a statement boundary and allows him
to execute commands and later to restart his program. ~

A user may request a PMD (post mortem dump) of his variables. He gets
a complete statement of his I/O buffers, simple variable names and
values, and recent execution history. The system accepts PASCAL code
for immediate execution. Code for immeaIate execution is delimited by
dollar signs ($) and can be anything from a statement to an entire

procedure body (i.e. declarations and code but no procedure or function
declarations). The user has complete access at the source level to his
current dynamic program environment. One block of immediate code can
be saved with each procedure and can be reinvoked by typing $$.

User program I/O is fully integrated into the system. The user can
signal EOF on his program's input file; PASCA~I passes this status to
his program and accepts more input. Recovery of any user I/O error
is automatically performed. The system gives the user three tries to
pass valid data to his program. Detailed error messages with an
annotated display of the offending input are presented. Anyone who
thinks PASCAL doeGn't have adequate facilities for interactive I/O
should see PASCAL-I in action.

This system has the interactiveness of APL, BASIC, and the PL/I Checkout
Compiler and does it for PASCAL.

1. IMPLEMENTOR/DISTRIBUTO~MAINTAINER.
Richard J. Cichelli, Department of
Bldg. # 14, Christmas-Saucon Hall
Lehigh University, Bethlehem, PA
(and ANPA/RI, P.O. Box 598, Easton,
J Curtis Loughin, Lehigh University
John P. McGrath, Lehigh University

MACHINE. Written entirely in PASCAL using som~
6000 (segmented files fer terminal I/O to flush
past EOF on terminal input). Operational under
CDC segmented loader.

features of PASCAL
buffers and read
SCOPE 3.4 using the

Mathematics

PA 18042 215-253-6155)
and ANPA

2.

3. SYSTEM CONFIGURATION. SCOPE 3.4 with INTERCOM.

4. DISTRIBUTION. Magnetic tape. SCOPE format, 7 track, 800 bpi. $100.
Other media by special arrangement.

5. DOCUMENTATION.
System level:

- User level

6.

Very readable code (guaranteed)
System explains itself in response to the HELP

command (full details - oriented towards novice
programmers)

MAINTENANCE. Accepting bug reports. (Concise, fully documented,
unreported bugs from Lehigh users are rewarded at $1 each.)

7. STANDARD. Supports PASCA~S. Differences from standard PASCAL
files - only INPUT and OUTPUT, no set~user defined scaler types,
pointer variables, case variants, labels, goto's, or with statements.
Any PASCA~S/PASCA~I program is a valid PASCAL program.

8. MEASUREMENTS. Interpreter and overlayed. Beats CDC BASIC hands down
in cpu efficiency (size and time), features, etc. It is the fastest
compiler on campus (because of partial compilation it outperforms
PASCAL-S), and it does very well at run time. The compiler forms
the largest overlay segment and runs at 358K The editor 3egment
runs in about 24RK. PASCAL-I will compile and interpret PASCAL-S
programs of up to about 500 lines as the system is currently
cunfigured.

9. RELIABILITY. Runs jus t great.

10. DEVELOPMENT METHOD. Started with PASCAL-S and Wirth-Jensen I/O
routines. Built suitable data structures for storage of compressed
program source and interpreter code. Modified PCSYSTM to fully
recover from user aborts and system timeouts. Also added file
access primitives and moved stack and heap to low core to enable
the segmented loader to vary field length. Development took place
during April, 1977 to October, 1977 and was a very part-time effort.
The system is about 7000 lines of tightly formatted PASCAL.

Implementor responsibilities:
Curt Loughin

Editor
Formatter

PASCAL-S compiler rewrite
PASCAL-S interpreter rewrite
Immediate code routines

John McGrath

I/O routines rewrite

HELP command
PCSYSTM mods

Richard Cichelli (project leader)
Post mortem dump
and other run-time control and status routines

CDC 7600 (Manchester)

Peter Hayes (UMRCC; Oxford Road; Manchester M13 9PL; England; 061-2738252) reported on 22
November 1977 several corrections to the Checklist printed in Pascal News #9-10:

Price: 30 pounds sterling (instead of 50). ----------
Core requirements (octal): 42402 SCIf, or 36045 if segment loaded (using a simple
segment structure. Self-compiles in less than 60000.

First released in July 1976. Now used at four sites, running under Scope 2.1.4.

Data General Nova (Lancaster)

University of Lancaster

Department of Computer Studies
Bailrigg, Lancaster
Telephone Lancaster 65201 (STD 0524)

Head of Department: J. A. Llewellyn B.Sc., M.Phil., F.B.C.S, 1'.l.M.A.
27th October 1977.

Dear Andy,

Here at Lancaster we are just about
secondreleaseof Nova PASCALCompiler.
on or about 25th November 1977. We have
Dr.Maqnuski and Jim Hebert. They should
nev,' compiler shortly.

ready to distribute the
We are aiming to do this
already sent details to
also have copies of the

We now have a fairly complete checklist for you, which I
enclose, and some details of timings, both execution and compilation,
which Bob Berry put together. I think PUG readers might find them
interesting.

Thanks,

Arthur Foster.

1. Distributors/Implementors R.E.BERRY and A.FOSTER
Computer Studies Department
University of Lancaster
Bailrigg
Lancaster

<. Data General Nova

3. Developed with RDO$ 4.02, we also use it under RDOS 5.00, and one user
tells us he uses it under RDOS 6.10 without any trouble. We assume at
least 32K words of core, disc backing store. The present system assumes
no hardware Multiply/Divide or flGating point.

4. Distribution: from Lancaster 2.5 Mbyte cartridge disk
Data General Cassette

in U.S.A. two people who have Lancaster Pascal have offered to Qst as
distributors thus increasing the range of distribution media.

Dr.H.S. Magnuski
G~~ma Technology
BOO Welch Road
Palo Alto
California 94304.
(9 trac~ BOO BPI mag tape)

Jim Hebert,
51 Thomas Road
Swampscott
Mass. G1907.
(9 track 800 BPI mag tape)

5. User manual provided, Pascal User Manual and Report assumed.

6. Maintenance pol<.cy: No formal commitment to provide support can be given,
however, bug reports welcome. To date all kno~~ bugs have been fixed and
this policy will continue for as long as is practicable.

7. Pascal P4 subset accepted.

B. Measurements : P-code is generated, assembled and then interpreted

Compiler core requirements (n.b. compiler uses overlays)

Release 1 Release

Compiler t~ (decimal) 15,505 (words)14,055

Additional fixed table space 1,092 1,197 (words)

The workspace remaining depends upon size of the ROOS system usee.
Th~ size of program which can be compiled depends upon the number of user
defined symbols (dynomic area used) and the depth of nesting of procedur~s/
statements. Thus it is difficult to make any general statement acout the
sizeof progra.'11 which can be compiled, bowever, we observe that the
assembler for the system is of some 1,100 lines of Pascal source g2ner~ting
7,400 Pcode instructions and we can compile this on our 32K system. We
cannot compile the compiler but would expect to do so with more than 32K
of core.

Algol Pascal

Program ,tI' Compile ~Compile

~m:s m:s m:~ m:s

1. 0:55 0:06 1:21 0:07

2. 1:15 1:54 1:39 2:35

3. 1:16 14:32 1:40 11:59

4. 1:10 2:06 1:38 5:56

5. 1:09 2:52 1:37 1:55

E. 1:06 3:18 1:35 1:11

7. 1:08 1:28 1:36 1:03

8. 1:36 1:56 1:57 3:13

9. 4:46 4:30

Timing See attached sheet.

9. Reliability: Release 1 was made available to our own departme~t user~ in
January 1977 and at the time of writing has been distributed to eight known
sjtes. No significant bugs have been reported from ext~rnal users. ReleasE
is at present available to our own users and will be availnble to>others by
the time this appears in PUG newsletter.

10. Develo}Cment: Originally cross-compiled from a COC 7600. The P-code
ass€r,bler \>.'as writtenfromscratchin Pascal;the P-code interpreterwas
implemented in Nova Assembly language.

11. Libraries : no library support in Release 1. Under Release 2 user procedures
may be separately compiled enablinq the user to set up his own libraries. It
is not possible to link into any other libraries.

Timing information for Nova Pascal Release 2

We have not as yet compiled the compiler with our system so
cannot give figures for that. Instead to provide the basis for
our statement that the performance of our Pascal "compares faV'ourably"
with DG Algol a list of times obtained by running some well known
small, and often uninteresting programs are given. The timings are
takenfroma Nova 2/10 runningunder RiJOS 4.02with 32Kof core
and no hardware multiply divide and no floating point unit. They
were (rather crudely) obtained by using the GTOD command to prefix
and postfix the CLI con~and necessary to load the appropriate program.
"Compile" should be taken to mean 'he production of a save file (.SV)
from the appropriate sour.ceprogram.

More about the test programs

1.

2.

3.

4.

A program consisting simply of BEGIN END

Matrix multiply of two 50'50 matrices of integers.No I/O

Matrix multiply of 50'50 matrices of reals. No I/O

Sort an array of 1,000 integers into descending order of magnitude from
ascending ord~r of masnitude. No I/O

Ackomans function (3,6). No I/O

Write 10,001 integers into a file.

Read 10,001 integers from a file.

Generate 5,000 random integers (printing only the last).

Generace 5,000 random integers and write to a file.

5.

6.

7.

8.

9.

TImings ",uchas these offer much scope for debate. It is safer
to let others draw what conclusions they will from these figures (and
any other figures that may be produced). I simply wish to observe that
interpretive Pascal "comparE'>favourably" with the code produced by DG
Algol. J.1the progr&~s used above the Algol and the Pascal looks very
much the same. No attempt is made to exploit one feature of a particular
language or implementation, and no tuning has been done. If anyone has
other examples to contribute to such timing comparisons I would be
pleased to hear ?DoUt them.

R.E.Berry.

~ - A.Fester celieves that~ programs both compile and execute
more efficiently in PASCAL than Algol, due to the nature of the lan~age.
He has experience writing large programs in Nova PASCAL and Nova ALGOL
over the last year and believes that the real advantages of PPSCAL are
that Nova PASCAL programs are considerably easier to develop than Nova
Algol programs, in his view.

GAMMA TECHNOLOGY

October 6, 1977

Dear Andy:

Thanks for the pre-release of the DG notes. Here's some new information for you.

I have made an agreement with R.E. Berry of the University of Lancaster to be a
secondary distribution point for his NOVA PASCAL. We will supply the program on
9-track BOO-bpi magnetic tape in RDOS dump format, and the manuals. The distribution
charge is $70 for the binaries of Release 1. We will collect trouble reports and
ship them to England, but all corrections will have to come from U.L. Also, we
cannot supply the program on any other media, on disks, on floppies, on cassettes, in
bottles or cans. California residents must add the appropriate sales tax.

co
-l-,-

1. Total integration into the RDOS environment

2. The exclusive use of double precision (32-bit) integers

3. The exclusive and fast use of double precision (54-bit)
reals

During September I had a chance to run a comparision of the Lancaster PASCAL against
the PASCAL written by Ted Park now with Medical Data Consultants (formerlyLoma Linda
University). First, I must compliment both authors on the ease of use of both of
these compilers. For both systems I had compiled and run a program in less than an
hour after loading the tape, and there were no mysterious system crashes or wipeouts
as one would expect with the first release of a new softWare package. The system
used (courtesy of ROLM Corp.) was a top-of-the-line ECLIPSE C330 with DG's ZEBRA
disk. The Lancaster PASCAL Was also run on my 32KW NOVA 2/10 with a Diablo 30 disk
drive. Five short PASCAL programs were compiled (a total of 5319 characters), and
three of the programs were executed. These are the results:

Compile time (seconds)
Run time (seconds)

Lancaster
NOVA 2/10

515
86

Loma Linda
C330
582
299

Lancaster
C330
242
47

After these tests I called Ted to ask him what his program was doing with all that
CPU time, and he described to me a long list of problem areas where performance could
be improved (changes in his macro facility, use of variable size data structures,
more efficient use of the RDOS I/O structure, revision of his paging algorithm, less
runtime error checking in the compiler's P-code interpreter, etc.). He has implemented
a virtual memory scheme and makes heavy use of the ECLIPSE instruction set, so with a
little tuning up of his software I predict he'll be able to run larger programs faster
than the Lancaster group.

The Lancaster PASCAL has a few quirks of its own, primarily related to problems of
the compiler and run-time system knowing about their environment: a subdirectory is
difficult to use, long filenames cause errors, and it doesn't work at all in the
foreground partition.

Nevertheless, my conclusion is that we have two good implementationsnow available
on DG equipment.

Yours sincerely,

)~

H.S. Magnuski, President
Gamma Technology, Inc.

100 ...1011 . Polo Alto . Collfornlo84304. 415.328.1881 . TWX: 910.373.1288

Data General Eclipse (San Bernardino) (previously Loma Linda)

MEDICAL DATA CONSULTANTS (714] 825-2683

October 19, 1977

Dear Andy,

I received your pre-release of the D.G. notes for #9 and #10 --
thanks. I have some updated information for you concerning my
ECLIPSE PASCALsystem:

You have received a letter from Hank Magnuski comparing my
system with the Lancaster system. He pointed out several
problem areas (speed-wise, we still have found no bugs:) I
mentioned to him. Since his letter to you I have cleaned up
all these problems and am putting together a 'final' version.
I am obtaining a copy of the Lancaster compiler to do my own
internal benchmarks; I want to make detailed comparisons of
the two systems. The Lancaster version will always compile
a little faster than mine and maybe run character-oriented or
integer-oriented programs faster. I feel the strong points
of my compiler are:

4. Ease of modification and extension.

will share my benchmark results with you when I complete them.

I am still happy to distribute my preliminary version free. I
am negotiating with Hank to market the new version for a cost.
The exact price and distribution methodology have not yet been
established.

By the way -- It is no secret that PASCAL-P4 is a subset but has
anybody compiled a complete list of its differences? I have
begun one and will enclose it for your information. I'm sure
it is not complete and would like someone to add to it and perhaps
publish it in PUGN.

Ted C. Park
Director, Systems Development

TCP:map

cc: H.S. Magnuski

1894 Commercenter West, Suite 302, San Bernardino, CA 92408

DEC PDP-8 (Minneapolis)

The SSRFC Pascal Group (SSRFC; 25 Blegen Hall; University of Minnesota; 269 19th Ave.
South; Minneapolis, MN 55455 (612/373-5599)) announced on 31 December 1971 that: "The
project is undergoingextensiveredesignand development. We apologizeto all thosewho
have received no response to inquiries regarding distribution.

'~e are not distributing any
version presently. A mailing list is being maintained so that interested parties can be
informed of changes in status."

--n
rn
t;J:J

:;;c

c::

»
:;;c

-<

00
V1

Digital Equipment Corporation (DEC) PDP-Il and LSI-ll -- Introduction.

--

~ News: DECUS Pascal SIG was resurrected by John Barr (Pascal SIG; c/o DECUS; 146 Main
Street, PK-3/E55; Maynard, MA 01754; -OR- Hughes Aircraft Co.; Box 92919; Los Angeles,
CA 90009; Attn: John R. Barr 377/C209) who edits the bimonthly DECUS Pascal SIG
Newsletter. So far (31 Dec. 1977) we have received two issues: Vol. 1, numbers 1 and ~
dated Sept. 1977 and Dec. 1977. Number 3 is on the way. To quote "From the Editor" in
issue number 1: "Welcome to the Pascal SIG. The Pascal SIG has been in existence in name
only since Atlanta (Spring 1976 DECUS). It was started again in Boston (Spring 1977 DECUS)
with a commitment from DEC (Larry Portner) to aid the SIG in the development of a Pascal
compiler for the PDP-11 computers and operating systems." And from the same issue:

"The main goal of the Pascal SIG is to provide DECUS members with common Pascal
compilers for all DEC equipment. One of the highest priority prerequisites of the
effort is that such compilers will be available to users for only the cost of
reproduction through the DECUS library. Support of the compilers will rest with the
Pascal Implementation Working Group who will use this newsletter to report bugs and
fixes to these bugs.

"A secondary goal of the Pascal SIG is to report the existence of commercially
available Pascal compilers and/or compilers developed outside of the SIG which may be
of interest to users. In accordance with DECUS policies we cannot report the cost of
such compilers but can only indicate who the users can contact for information on
them. We will publish at most one announcement per year from any company which has a
Pascal compiler available for DEC computers."

John Barr reports that the following persons are Officers of DECUS Pascal SIG:

- Program Librarian: Tom Tyson (PUG member).

- PUG/SIG Liaison: John Iobst (PUG member).

- Standards Committee: Ken Bowles (PUG member) and John Iobst.

- ~ Language Committee: Fredreck Bartlett and Don Chaney.

- Concurrent Pascal Co~ttee: Roger Vossler.

Anyone may join DECUS by contacting one of the following offices:

AUSTRALIA and NEW ZEALAND:
DECUS
P.O. Box 491
Crows Nest, N.S.W. 2065
Australia

EUROPE and MIDDLE EAST:
DECUS
Case Postale 340
CH-1211 Geneva 26
Switzerland

CANADA:
DECUS
P.O. Box 11500
Ottawa, Ontario K2H 8K8
Canada

ALL OTHERS:
DECUS
146 Main Street
Maynard, Massachusetts 01754
U.S.A.

DEC PDP-ll (Stockholm)

Seved Torstendahl's implementationhas become quite widespread -- it was reported (in PUGN
Checklist form!!) in the first issue of DECUS Pascal SIG Newsletter, and we have heard
from several PUG members who have used ~o~Gross (Minneapolis), Steve Schwarm
(Wilmington),and Rich Cichelli (Bethlehem).

DEC LSI-ll (San Diego)

See also Ken Bowles' article "Status of UCSD Pascal Project" in this issue for information
about Z80's, 8080's, and CP/M.

*
OFFICIAL NOTICE OF RELEASE OF ~ PASCAL *

Januar y 1978

D~ar Mini-Micro User;

This PASCAL system is our first system intended for general purpose
use away from UCSD. We are still making major modifications to the software.
and expect that you will find errors. If you do find an error in our system.
please contact us before attempting to fix the problem yourself. We may have
already found the error. and solved it. There are many expansions yet to be
made to our PASCAL system. and hope that you will let us know what is needed.
Recompilation of object code files will be necessary o~ maJor updates of
the system. Please remember that our proJect is mainly staffed by students.
We intend to support users who have paid the distribution fee within our
resources. but may not respond as quickly as a commercial vendor might. due to
conflicting university schedules.

We are offering two kinds of subscriptions:

Complete subscription: Floppy disks with all sources and code. Compiled
of all sources. User and system maintenance documentation as complete as
exists Updates at least three times during the next 12 months.

$200. (paid in advance)

listings
it

detai led
On ly

Code subscription: Floppy disk with system code. Users manual but no
system documentation. No continued support for later subscriptions.
minimal assistance in response to telephone inquiries.

$50. (paid in advance)

The complete subscription is a years bond with our proJect. We will
do our best to answer your questions. and keep you up to date on new sub-
scriptions. The code subscription is for the user who is not concerned with
our development. and Just wants a running PASCAL sys~em. A user of the code
subscription may upgrade to the complete subscription upon payment of $175.

Please make your check payable to: Regents. University of California

Please return the completed order form. and your check to:

PASCAL Group
Institute for

UCSD Mailcode
La Jolla. CA

Information Systems
C-021
92093

In a conversation with Andy Mickel on 17 December 1977, Ken Bowles mentioned that DEe is
coming out with Writable Control Store (WCS) for the LSI-Il. Ken expects that use of this
feature will speed up the UCSD system by a factor of five -- allowing it to compile 3000
lines per minutel

00
0>

*

REGUEST FOR 92EY OF \&pI) ~ *

Processor confiouration sustem is to ~ 2n:

LSI-ll
PDP-ll model

TERAK 8510
TERAK 8510A
other (please specify)

The above mentioned processor has PDPII/40 type (e. g. LSI-ll EIS/FIS chip)
floating point hardware

Memoru so ace available 2n above processor:

--.--.- wor ds.

t!i!li storaoe !.Q.~~ ~ with abo~ sustem:

RXII (DEC floppy disk drives)
(or hardware equivalent / software transparent)

l TERAK
L AED 3100
[RK05 (we may not be able to support all formats)

Other (please specify. we may not support it, someone else might)

!lllltt I!.eripheral.§. to tl supported:

l J The above system has a line printe~ with an LPII (or equivalent) interface.

Terminal(s) to be attached II £..Q!1.a..2l.J!!.deviu to abo~ sustem:

I
[

l

Decscope series (please specify model)
Datamedia product (please specify)
Other (please specify) --

I.l[I!.J!!.tl I'e 1.J!!.ll.J!!. !!li'Jl.tli:

Complete release ($200 paid in advance)

Code release ($50 paid in advance)

No release. but keep us up to date on new development..

Please complete this form. and return with your check to:

PASCAL Group
Institute for
UCSD Mailcode

La Jolla. CA

Information Systems

C-021
92093

SHIP TO: {i. e. where do you want your PASCAL sent}

DEC PDP-ll (Ams terdam)

1.DISTRIBUTOR/IMPLEMENTOR/MAINTAINER.
DISTRIBUTOR: Sources, binaries and documentation are part of

the third UNIX software distribution.
IMPLEMENTOR: Johan Stevenson, Vrije Universiteit.
MAINTAINER: Andrew S.Tanenbaum, Wiskundig Seminarium, Vrije

Universiteit, De Boelelaan 1081, Amsterdam, The Nether-
lands, tel: 020-5482410.

2.MACHINE. DEC PDP 11, all models on which the' UNIX operating
system version 6 will run.

3.SYSTEM CONFIGURATION. see 2.

4.DISTRIBUTION. The UNIX software distribution center takes care
of distribution.

5. DOCUMENTATION. Short manuals for the compiler and interpreter
in UNIX MAN format. A 12 page description giving details
about the implementation.

6.MAINTAINANCE POLICY. Bug reports are welcome. There will be
no improved release of the current system. However, we
are working on a totally new one. Main differences with
the old one are:

a new hypothetical stack computer named EM1 (see
Tanenbaum, A.S. "Implications of structured program-
ming for machine architecture" CACM Dec. '77). This
intermediate machine allows very compact code (only
15000 8-bit bytes for the compiler itself) and fast
interpretation. Emulating EM1 on a microprogrammable
computer must be easy. Moreover, this EM1 machine
allows compilation of other high-level languages as
well.
a new interpreter with all kinds of runtime checks
and debugging aids.
expansion of EM1 code into PDP-11 instructions.
less restrictions on the language Pascal.

7.STANDARD. Main differences with full Pascal are:
no goto's out of procedures and functions.
procedures and functions can not be passed as parame-
ters.
extern procedures and functions not implemented.
mark and release instead of dispose.
only non-local textfiles (up to 15).

an explicit get (or readln) is needed to initialize
the file window even for input.

8.MEASUREMENTS.
Compilation speed: 40000 chars per minute on a PDP-11/45 with

cache.
Compilation space: 48k bytes to compile the compiler. Very

big programs can be compiled.

00
.......

execution speed: You lose a factor 8 by interpretation. How-
ever I/O is relatively fast. Compared to not interpreted
Pascal on a big machine (Cyber 73) it is ten times
slower.

execution space: The size of the complete interpreter is 5300
bytes. The binary code for the compiler is 23000 bytes.

9.RELIABILITY. The compiler and interpreter are good. However
the runtime checking of the interpreter is poor.

10.DEVELOPMENT METHOD.
compiler. A
time needed by
months.

The compiler is based on the PASCAL-P2
Cyber-73 was used for bootstrapping. The
an unexperienced implementor was about 6

11.LIBRARY SUPPORT. No library support at all.

DEC PDP-ll (GTE SYLVANIA)

1. IMPLEMENTORS:
David Miller (PUG member)

GTE SYLVANIA
l1203A Avalanche Way
Columbia, Maryland 21044
(301) 992-5665

Larry Drews

(Address Unknown)

Sharlene Wong (almost PUG member)

GTE SYLVANIA
P.O. Box 205

Mountain View, California 94042
(415) 966-3373

David Shaw (PUG member)

STRUCTURED SYSTEMS CORP.
427 Embarcadero Road
Palo Alto, California 94301
(415) 321-8111

2. MACHINE:

Digital Equipment Corporation

PDP 11/45 and up I suppose

3. SYSTEM:

DOS/BATCH-II V9.20C

4. DISTRIBUTION:

Corporate policy has not been decided at this time. If
there is enough community pressure it could be arranged. It
must be emphasized that this compiler was developed to
support a single application.

5. DOCUMENTATION:

There is lots of good comments in 'the source compiler
and supplementary information on the internals of the
compiler system have also been written. There isn't much
good information on the usage or details on the extensions

however. We used the first edition of JENSEN and WIRTH
user manual.

6. MAINTENANCE:

The compiler probably will be maintained for several
years, to support the application. It is not expected to

change much over the years -- it is quite satisfactory as
it stands. Any problems which may turn up will probably

be worked around rather than fixed. For instance, LABEL

doesn't appear to work altogether correctly, but we don't
use it anyhow.

7&8 IMPLEMENTATION:

As described in our paper, we probably have the most
non-standard PASCAL in the world. We are therefore its
most fearsome friend. (PN8 - p33). The following shopping
list is a concatention of the University of Illinois
PASCAL (PN5 - p53, PN8 - pSI-52), and of our own modifica-

tions.

EXTENSIONS:

Overlay: the compiler is itself an overlay with nine
segments. The application doesn't use this feature.

Identifiers may contain an underscore as a break

character.

It recognizes octal constants.

Multiple assignments and imbedded statements are
supported.

McCarthy boolean expression evaluation has been
implemented.

WRITE formats may specify; octal, hexidecimal, binary,
unsigned decimal; field width; with or without
leading zeros.

Pretty print/line editor pass may be included in the
compilation. The editor line numbers are carried
through the compiler.

A cross reference pass may be included in the
compilation.

Compiler directives include:

list suppression

page eject

statement number code suppression (used for post

mortum trace)

"rTT
t>:I

=
=J>
=-<

00
00

subscript and pointer check (execution time) code
suppression

stack size specification

comment blocks

lexical inclusion of other source files (we included
TYPE and VAR files)

conditional compilations

fast code linkage for procedures at the expense of
tracing

CHANGES:

Abbreviations: BOOL, INT, PROC, FUNC

Lexical changes:

Post mortum trace and stack unwind.

for < >

\ for NOT

for {and} limited to one line

& for AND

for OR

DIV (and /) implemented as floor function to be
consistant with MOD.

Real time procedure trace.

CLOSE, EXTEND for files.
WRITE f (list)

READ f (list)
DISPOSE and NEW with one argument.

POINTER treats an integer as a universal pointer
variable. PROGRAM parameter redefined to be consistant with the

application.

ADDR creates a pointer.
Usage of tag field in the variant record.

NIL as zero.

EOL.
9. RELIABILITY:

MODULE, ENTRY to link PASCAL and/or MACRO object.

EXTERNAL, ENDEXTERNAL to support data linkage.

MACRO to imbed machine code in the PASCAL code.

.In our controlled environment, pretty print and the
co~p:ler have excellent reliability. However, at this
wrltlng, there are only four users.

TRAP to communicate within the application executive.
10. ANCESTRY:

FIRST and LAST to get the limits of a scalar.
.The compil~r is written in PASCAL (about 10,000 lines)

and l~S father lS from the University of Illinois. The
run tlme support package is written in MACRO (machine

langu~ge). I have no estimates on the man-hours expended
to bUlld our PASCAL.

DEC PDP-ll (Redondo Beach)

EXIT from a procedure instead of GOTO.

The compiler generates either load and go (no linking
required) or linkable object code. The object

generated has separate instruction and data space files
to allow the application the greatest use of the

11/45 architecture. Because PASCAL modules can be

linked, dynamic array can be explicitely used. How-
ever, the compiler doesn't support this feature.

(* Please see the letter from J.B. Heidebrecht which accompanied this checklist,
in the PASCAL VARIANTS (ConcurrentPascal) section. *)

Concurrent Pascal Implementation Checklist

printed

DELETIONS:

WITH !ifJAXINT

PAGE

1. Implementors~

J.B. Heidebrecht, R.A. Vossler, F. Stepczyk
D. Heimbigner, M. Feraud, and S. Danforth

SET and its support operations

REAL and its support operations PUT, GET
TRW DSSG
One Space Park
Bldg. 90/2178
Redondo Beach, CA 90278
(213) 535-0312

PACKED ARRAY

PACK, UNPACK

EOLN

READLN, WRITELN

(* and *)

(Original implementation by Per Brinch Hansen and Alfred C. Hartmann.)

2. Machines: PDP-ll/40, PDP-ll/45, PDP-ll/50

00
<D

3. Operating systems: SOLO, Experimental Development System, and user written
systems. DEC PDP-11 (Vienna)

Minimal hardware configuration:
memory, 1 - RKD5disk drive,
tape drive, FPll floating point option.
Future versions will run on smaller PDP-11

48 KW
1 - 9-track Distri~~tor~!::d Main!.ainer:

OsterreichischeStudiengesellschaftfur AtomenergieGes.m.b.H.,Lenau-
gasse10, 1082Wien,physikinstitutmachines without floating point.

4. Methodof distribution: no established policy.

5. Documentation available: (a) machine retrievable user manuals are
available for all utility programs; (b) several books and papers have
been published by Per Brinch Hansen and Al Hartmann on the operating
systems and compilers.

Implementor:

A portable Sequential and Concurrent Pascal compiler has been designed
and implemented by Prof. P.B. Hansen and A.C. Hartmann, California
Institute of Technology. The Compilers have been modified and a new
runtirnesystem has been implemented by D.l. Konrad Mayer, Osterreichische
Studiengesellschaft fur Atomenergie.

6. Maintenance: no established policy.
Machine:

7. Two compilers are available: CPASCAL(Concurrent) and SPASCAL(Sequential).
SPASCALimplements most of standard Pascal. The main excePtions are that
procedures may not be nested, and only a few of the standard predefined
Pascal functions are available. CPASCALhas further restrictions on scope
rules and does not implement the pointer type. Extensions to CPASCAL
include processes, classes, and monitors, and compile time checking of
access rights.

Digital Equipment's PDPll, all types

8. Both compilers generate virtual code which is interpreted. The interpreter
and operating system kernel are written in MACRO-ll, the PDP-ll assembly
language. Together they comprise less than 7000 statements, and are the
only assembly language components of the operating system. Work is currently
being done to reduce the size of the kernel. The SOLOoperating system is
written in Concurrent Pascal, consisting of about 1200 statements. All other
utilities, including compilers and the file system, are written in Sequential
Pascal. The compilers consist of seven passes each, totaling about 9200
statements per compiler. Compilation speed is about 240 char/sec on a
PDP-11/45.

System Configuration:

Operating System

a) RSXII-M (version 2 or later)
or compatible systems (RSXII-D, IAS)

b) RT11 (version 2C or later)

Minimum memory requirements for self-compilation of the compiler.

a) RSXIIM: 23 k words-partition

This amount can be reduced by using overlays.

b} RT11: 24 k words (including the operating system).

Distribution:

9. Reliability of compilers: very good; only one bug has been found in
nearly a year of heavy use.

Reliability of interpreter: excellent; no bugs have been found to date.

Distribution medium: DEC-tape or floppy disk or
magnetic tape (9 track, 800 bpi).

Format

10. Method of development: developed by A1 Hartmann and Per Brinch Hansen.
FiJes 11 or RT11 or DOS for DEC-tape and floppy disk
A ITPRESERVE"-copyof a RK05 disk for magnetic tape

11. Libraries of subprograms are not available. Procedures and functions to be
referenced by a program must either be included in the source file or
accessed through a procedure entry in the operating system. Facilities for
using procedures written in other languages are not currently available.
Separate compilation is available in a limited sense in two ways: (a)
commonly used procedures may be compiled and included in the operating system;
(b) a sequential program can call another sequential program.

The package contains

All sources and codes of the Sequential and Concurrent Pascal compiler.
All sources and object code of the runtime system and the I/O routines.
All indirect command files (RSXll only) for assembling and building the
runtime system.

The runtime system can execute only Sequential Pascal Programs! A system
for Concurrent Pascal programs will be available later.

A disassembler for analyzing the generated code of Sequential and
Concurrent Pascal programs.
Documentation

DEC PDP-11 (PAR)

The implementation started by Michael N. Condict (PAR Corporation; On the Mall; Rome,
NY 13440; 315/336-8400) and reported in Pascal ~ #9-10 has been discontinued.

Distribution costs:

5.000,-- Austrian Schilling
including distribution media.

lD
C>

Documentation:

The compiler and the language is described in

Hartmann, A.C., A Concurrent Pascal Compiler for Minicomputers.
r..ectur<rNotesin ComputerSci.ence50, SpringerVerlag,New York,NY, 1977

and in the Concurrent and Sequential Pascal Reports of California Institute
of Technology.

The distribution package includes a supplement to the reports and a description
of the runtime system.

Maintenanceand War:r"anty:

Although every attempt has been made to achieve accuracy and freedom from
errors, Osterrcichische Studiengesellschaft fur Atomenergie, makes no warranty
of any kind and does not guarantee correctness or maintenance of the system.
But reported errors will be corrected, if possible. Please report errors to
D.I. Konrad Mayer (address see above).

La~uage Standard:

Note, that Sequential Pascal is different to standard Pascal. The Sequential
and Concurrent Pascal compilers have been extended slightly (a different lexical
analyzer) to illeetRSXll and RTll standards. I/O routines for handling sequential
and random access files are provided.

Measurements:---
Compilation speed: 150 - 20C characters per second (PDPll/45)

Execution time: 1 to 3 times of equivalent Fortran programs

Reliability:.

The reliability of the system is really excellent. We have the system in
use since one year. Up to now we have had only one minor problem with the
system.

The portable compilers of P.B. Hansen/A.C. Har.tmannare in use on some
sites on different machines. The first release was January 1975.
(SeePascalNews,Vol. 6-10)

Development method:

We start.edwith the distribution kit of the Solo system. Then we wrot.e
a kernel-interpreter, which can execute Sequential Pascal programs without
needing the Solo operating system. The interface to DEC's operating system
RSXll (RTll) is the virtual machine instruction CAl.LSY.

External routines:.

Externalassemblerroutinescan be calledvia the IIprogrcun
external routine must be defined in the program prefix and
using the standard Fortran call conventions.

prefixll. Every

Can be linked

DEC PDP-11 (Los Angeles)

(* The following was obtained from the DECUS Pascal SIG Newsletter vol. 1, number 1. *)

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER.John R. Barr; 377/C209 - Hughes Aircraft Company
Box 92919 - Los Angeles, CA 90009 (213/648-8295).

2. MACHINE. PDP-11/35 and higher. Requires EIS.

3. SYSTEM CONFIGURATION. RSX-11D, lAS, RSTS, and RSX-l1M.

4. DISTRIBUTlpN. Send 600' mag tape. No cost.

5. DOCUMENTATION. (* no information given *)

6. MAINTENANCE POLICY. Bug reports accepted with corrections in the DECUS Pascal SIG
Newsletter.

7. STANDARD. Implements most of Standard Pascal. Exceptions are no for loops, real
arithmetic, or set operators "<=" or ">="; set operators are represented by Ill" (union)
and "&" (intersection);logical operators are "_,,(negation), "!" (disjunction), and

"&"
(conjunction); functions and procedures not supported are: abs,~, ~, eoln, ~,
In, round, sin, .§.9.!.,sqrt, trunc, pack, ~, ~, unpack, and writeln; predefined
terminal input and output files are INP and OUT; reset and rewrite require a second
parameter of type array [O..N] of char representing a file specifier terminated by a
blank. Extensions are structured constants and the ability to mix the order of const,
~, and ~ declarations.

8. MEASUREMENTS. The compiler is currently written in Block Structured Macros, and is in
the process of being converted to Pascal. It is a two pass compiler with each pass
requiring approximately 20K words of task space. Compile speed is approximately 450
characters per second. PASS2 of the compiler written in Pascal is approximately 2200 lines
which compiles in less than four minutes on a PDP-11/45.

9. RELIABILITY. At present the BSM compiler will loop and possibly abort under several
conditions. Syntax errors are reported using references to the error table in Jensen and
Wirth. The Pascal versions are expected to be much better.

10. DEVELOPMENT METHOD. The major portion of the compiler was taken from Brian Lucas' DOS
versionof the compiler.The PASS2 Pascalcodehas been extensivelydebugedin aboutthree
months of part time effort.

11. LIBRARY SUPPORT. Several Pascal programs which aided in the development effort are
available. At present there is no facility for separately compiling procedures or for
linking to non-Pascal subroutines other than the run-time library.

DEC-10 (Hamburg-DECUS)

UNIVERSITAT HAMBURG INSTITUT FOR

INFORMATIK

Prof. Dr. H.-H. Nagel

r -,
IDltltut f8r l.foUD8t11r.

]

Hamh'lJl'l
U, SchiiterunSe ,,-n

Dear Mr. Mickel,

in February 1977 I made our PASCAL compiler for the DECSystem-10
available to Di~ital Equipment Corp. to whom I had ceded the di-
stribution rights. Since the envisioned distribution through DECUS
took some time I received numerous enquiries concerning our com-
iler system. I refered people interested in using PASCAL on the
DECSystem-10 to DECUS. I would be interested in learning whether
the distribution of our compiler version through DECUS is now
running to the satisfaction of interested users. Experiences with
the distribution of our current compiler version might influence the
way that a further improved version might eventually be distri-
buted.

co

......
<.D

'-I
00

<.D
......

Since I no longer know who intends to use our latest compiler version
and who is actually using it I would appreciate if you could in-
clude this letter in the next PASCAL Newsletter.

With many thanks in advance I remain

yours sincerely,

Hewlett Packard HP-21MX (Dallas)

David Mcqueen from Analyst International, Dallas, Texas, reports that he has a Pascal
system for the HP-21MX implemented in Fortran which provides direct access files.

Honeywell 6000

THE UNIVERSITY OF KANSAS/LAWRENCE, KANSAS 66045

(* Please also see the article in this issue by James Q.Arnold entitled "A Novel Approach

to CompilerDesign".*)

Dear And y,
Department of Computer Science
18 Strong Hall
913 864-448229 October 1977

Thanks for entering my membership in PUG. I have read
my backissues of the PUG newsletter and find only passing
reference to the implementation of Pascal on the Honeywell
66/60 under GCOS. Pascal is a "software product" offerred
by Honeywell to installations with Series 6000 and Series 60
Level 66 computers. The compiler originated at the Univer-
sity of waterloo, Waterloo, Canada, and is distributed
through Honeywell (shades of WATFIV). There are two aspects
of the implementation which will be of interest to PUG
members: what the implementation should do, and what it
does do.

The Honeywell version of Pascal is an independent im-
plementation (unrelated to CDC-Pascal or Pascal-P) and is
written in "B," an implementation language and successor of
BCPL. It is canpletely time sharing based (compiled
programs can be run in either batch or TSS). The compiler
has one restriction on Standard Pascal and several exten-
sions.

The restriction is that the program statement is
replaced by ".Erqcedu~ !!!Un;" and the dot terminator at the
end of the program is eliminated. This has a curious side-
effect. Constants, types, variables, and procedures (func-
tions) may be defined 2~ig!:t of "main" and thus allows the
definition of a global environment which may be replicated
for externally (separately) compiled procedures, thus al-
lowing the global variables to be accessed both from the
program ("main") and from the externally defined procedures.
Other than that the compiler accepts Standard Pascal
programs.

Of the implementation dependent features, several are
worth mentioning here. Ide.ntifiers need to be distinct in
the first ~~ characters. The base type of a ~~ is limited
to at most 9,4.37,184 elements (.36bits x 262,144 words).

II

The compil er d ist inguishes be tween lower and upper cases and
will recognize keywords in both cases or in lower case only.
This is based on terminal command and means that you can use
the upper case version of a reserved word as an identifier
-- not suggested, but it can be useful. Our typical use is
uppercase CONST and TYPE identifiers and lowercase
variables. The standard character set is Ascii.

There are several extensions in the Honeywell implemen-
tatioo. An alternate I/O package is provided (in additioo
to the standard get, put, read, write, etc.) to make in-
teractive use easier (it is based on the RATFOR input/output
package described in 2.2~~~ 1:2.01s, by Kernighan and
Plauger). External procedures are allowed and calls may be
made to Pascal procedures or to procedures written in other
languages. The declaration of external procedures is im-
plemented as it is in CDC Pascal with the exception that
"extern <language>" can be used to declare an external
procedure in another language Currently, < language> may ooly
be FORTRAN. Extensions are planned to allow GMAP, COBOL,
Algol, PLll, B, C, etc. An ~iA~ clause is added to the case
statement (and in the record variant section) to allow
default selection. Files may be of any type, except file of
fil~. Files may be accessed and associated with a file
variable at run time via a procedure call. The standard
files "input" and "output" are normally directed to the ter-
minal, but can be redirected to files by terminal command
when invoking a Pascal program. Subscript checking is im-
plemented by bounds checking on all variables of subrange
type.

Now that I have decribed the way the compiler is sup-
posed to work, allow me to describe some of our experiences
using it. We at KU have had access to the compiler for ap-
proximately 10 months (since January 1977). We are cur-
rently using version 5 of the compiler and expect a sixth
version by late December. As stated earlier in this letter,
our Pascal is distributed through Honeywell. The actual im-
plementor is the University of Waterloo. This leads to
several problems; most of them having to do with the com-
munication of bugs, suggestions, questions, etc. The lack
of fast and accurate communications would not be quite so
important, however, if the compiler worked and if the
documentat ion were complete. Unfortunately, the compiler
has been plagued with several very serious bugs. When using
compound structures, the compiler sometimes computes incor-
rect addresses thus resulting in memory address faults or
operation faults (where the data is unintentionally stored
over the program code and subsequently "executed"). The
compiler aborts when it encounters sane simple syntax errors
(such as using a reserved word as an identifier). Resetting
an output file garbages the file. Most of the serious bugs,
and hence most of our complaints, center on the compiler
either aborting with no indication of what is wrong, or
procucing object code which behaves similarly. At present,
we have found more than 30 serious bugs in the compiler; the
current version retains 11 of them (the others being fixed).
Fortunately, we now have direct contact with Waterloo and
are gett ing much better response to our complaints. We hope
that by next January, most of the serious bugs will be
fixed. As it is, a couple of people working on large Pascal
programs have almost (?) given up using the compiler (one

has written a letter to PUG to vent his frustrations). It
is. unfortunate that more extensive testing was not done
before releasing the compiler for distribution.

-

.......
I.D
.......
00

We are currently using the compiler in three classes:
Data Structures, Compiler Construction, and Programming
Structures. This totals more than 150 students each using
the compiler several times a week. Two graduate students
are writing an assembler and a simulator (emulator?) for the
Interdata 85 minicompute r to a id in teaching an under-
graduate course. We are also trying to implement the BOBS
System Parser Generator (our copy from the University of
Aarhus, Denmark). Unfortunately, these projects are at a
standstill because the compiler either won't compile them
(the compiler aborts) or canpiles them into incorrect object
code. But, we're all hoping for the best, so until January
and a new version.

\U. Dl:VI::L[JPMNT '.\I::THOD.Thp. H311\ kp.rnp.1 i mi tatp.s thp. PfJP II \ rp.vp r~pd-
bytp. address nq which makps it comoatiblp wi th th" distrihution

t"""[Jut slo'li in xpcution. Thp. development was <;Jonp IIndp.r ems ;>10.
n1P. kernp.l is \~ri ttp.n in fJAP700.

\\. LlBHAI~Y SUPPORT. Thosp. providp.d h), th" snLn S'lstP.Pl.

IBM 360, 370 (Australia)

I am enclosing documentation which defines the dif-

ferences between Standard Pascal and Honeywell Pascal --
this is in the form of an appendix to the User Manual and
Report. You mayor may not want to include it in the news-
letter. It's up to you. I am sorry not to have written
this in the form of the implementation checklist, but I am
not the implementor -- I have talked with the folks fran
Waterloo and they assure me they will send you a letter.
Thanks for spreading the word.

Sincerely,

AUSTRALIAN ATOMIC ENERGY COMMISSION
NUCLEAR SCIENCE AND TECHNOLOGY BRANCH

RESEARCH ESTABLISHMENT, NEW ILLAWARRA ROAD. LUCAS HEIGHTS

TELEGRAMS: ATOMRE. SYDNEY
TELEX: 24562
TELEPHONE: 531-0111

IN REPLY PLEASE QUOTE: GWC.mwb

ADDRESS ALL MAIL TO:

AAEC RESEARCH ESTABLISHMENT
PRIVATE MAIL BAG, SUTHERLAND 2232

N.S.W.AUSTRALIA
Greg Wetzel

Research Assistant
4 January, 1978.

Dear Andy,

Honeywell H316
Enclosed is up-to-date information on our implementation of

Pascal 8000 for IBM 360/370 computers. Variations from previous
information are:------------

I. IMPLEMENTOR/fJISTRIBUTOR/MAINTAINEfi. Rohp.rt A. Str'l1c. \10n"",,,,p.l1
Corporate Computer Scip.nce Centp.r, 10701 Lyndalp. Ave. So.,
Bloomington. MN 55424; 612/887-4356.

1. Two versions are now supplied -the original compile-and-go
version, with provision for saving compiled code, as well as a version
which produces IBM-standard object modules and can link to externally
compiled procedures written in Pascal or Fortran or Assembler language.

2. MACHI NE. Honeywp.ll 11310.

3. SiSTEM CONFIGURATION. 32K. dual cartridqe disks. lin" orintp.r.
7 track magnetic tapp..

4. DISTRIBUTION. 1 track tapp. with programs to h00tstraQ fr0m RnS ?10.

5. DOCUMENTATION. Informal comments on 310 kp.rnel implp.mentati0n.

6. MAINTAINANCE. No known errors. no work plannp.rl.

7. STANDARD. P. B. Hansen's SOLO systp.m with m0rlified standard
and Concurrent Pascal.

2. The price is now $AIOO for both versions of the system in source
and object form, plus machine-readable documentation, all supplied on a
600 ft. magnetic tape. There is now no agreement to be signed.

8. MEASUHEMENTS. SOLO systp.m needs mi ni mum of 40K to "XP.CIJtP.
compilers.

Jeffrey M. Tobias

Gordon W. Cox

Applied Mathematics & Computing Division

9. RELIABILITY. No known p.rrors.

=

PASCAL 8000 FOR IBM 360/370

1. Implementors:
T. Hikita and K, Ishihata,
Dept. of Information Science,
University of Tokyo,
2-11-16 Yayoi
Bunkyo-ku TOKYO,
113 JAPAN

(HITAC - 8000 Version)

G.W. Cox and J.M. Tobias,
Systems Design Section,
AAEC Research Establishment,
Private Mail Bag,
SUTHERLAND, 2232,
N.S.W. AUSTRALIA

(IBM 360/370 Version)

Distributors/Maintainers:

G.W. Cox and J.M.Tobias
address as above

2 . Machines:
IBM360 and IBM370 -compatible machines

3. System Configuration:

The compiler runs under any of the OS family of operating systems - i.e.
MVT,MFT, VSl, VS2, SVS and MVS. A minimal program can be compiled in 128K;

the compiler requires about 220K to compile itself.

4. Distribution:

Write to G.W. Cox and J.M. Tobias at AAEC to receive an order form. The

cost is $AIOO; there is no agreement to be signed. Two systems are supplied:

a "compile-and-go" system which has its own compiled-code format, and a

"linkage-editor" system which produces IBM-standard object modules. Both source

and load modules for these systems are supplied -the compilers are written in

Pascal and the runtime support in 360 Assembler.

An implementation guide, plus machine-readable implementation JCL, and

machine-readable documentation are also supplied.

The system is distributed on a new 600 ft. magnetic tape at a density of

800 or 1600 bpi; the tape is supplied by the distributor.

5. Documentation

Machine-readable documentation is in the form of a report comprising a

summary of extensions to Standard Pascal plus a complete specification of the

language as implemented.

6. Maintenance Policy.

No guarantee on maintenance is given; however we are anxious to receive

bug reports and suggestions, and will do our best to fix any problems which may

occur.

7. Standard.

The full standard is supported with finiteness in a few areas:

maximum static procedure nesting depth is 6.

maximum set size is 64. (this precludes set of char.) It is hoped to

increase this soon.

maximum number of procedures in a program is 256

maximum size of compiled code in anyone procedure depends on its static level:

the main program may be up to 24K, and this is reduced by 4K for each

increment of static nesting level.

Significant extensions to the standard are in the following areas:

Constant definitions for structured types. It is therefore possible to have

arrays, records and sets as constants.

A 'value' statement for variable initialisation

A 'forall' statement of the form:

~ <control variable> in <expression> do <statement>

where <expression> is of type set.

A 'loop' statement, specifying that a group of statements should be

repeatedly executed until an 'event' is encountered. Control may then

be transferred to a statement labelled by that event.

The types of parameters of procedures or functions passed as parameters

must be specified explicitly, and this enables the compiler to guarantee

integrity.

The 'type identifier', restriction in a procedure skeleton has been

relaxed to allow 'type'.

Functions 'pack' and 'unpack' are supported, as are packed structures

in general.

Exponentiation is fully supported, and is used via the double character

symbol '**'.
A 'type-change' function has been introduced that extends the role of

'ehr' and lord'.

Case-tag lists may now range over a number of constants, without

explicitly having to list each constant.

The range is denoted by

<constant> .. <constant>

Thus,

4,6..10,15,30..45

is now a valid case tag list

A default exit is also supplied via

"IT1
I:>"
=c
:I>

=
-<

~: <statement>

i.e. else: is a valid case tag in every case statement. This path

will be used if none of the other tags match.

Other interesting features of the system are:

Procedure 'new' is fully supported, obtaining the minimum heap requirements

as specified by variant tags. Procedures 'mark' and 'release' are

also supported.

Procedure 'dispose' is not supported.

Files may be external or local. Thus, structures such as 'array of files'

are available. External files are named in the program statement, local

files are not. Both external and local files may be declared in a

procedure at any level.

Text-files with RECFM of F[B] [5] [A], V[B] [5] [A] and UrAl are supported.

Non-text files must have RECFM = F[B].

All real arithmetic is in double precision (64 bit floating-point format).

Control of input and output formatting is as described in the Jensen and

Wirth report. The form is

X[:n) [:m], where nand m are integer expressions.

Further, elements of type packed array £fchar may be read on input.

Execution errors terminate in a post-mortem dump, providing a complete

execution history that includes procedure invocations, variable values,

type of error, etc.

the use of separately-compiledprocedures in Pascal, FORTRAN or other

languages is supported by the linkage-edit version. Thus one can build

up a library of Pascal procedures or use a pre-existing library of

FORTRAN routines.

8. Measurements.

compilation speed about 2,500 chars/see on an IBM 360/65

compilation space 128K for small programs

160K for medium programs

220K for the compiler

comparable with Fortran G.

about 30K plus the size of the compiled code, stack and

heap

Compiled code is fairly compact - the compiler itself

occupies 8SK.

execution speed

execution space

Reliability.

The system was first distributed in its current form late in 1977. It is

currently used at.about 30 sites. Reliability reports have been generally good to

9.

excellent. A few minor problems which have been reported are currently being fixed.

10. Development Method

The compiler was developed from Nageli's trunk compiler and bootstrapped using

Pascal-P by Hikita and Ishihata, who got it running on a HITAC-8000 computer

(similar instruction set to IBM360). This version was further developed by Tobias

and Cox for use under the OS family of operating systems on IBM360/370 computers.

The compiler is written in Pascal 8000 (6000 lines) and runtime support is in 360

Assembler (3500 lines). Cox and Tobias spent about 10 person-months on the system.

Most of this time was spent improving the OS support and adding enhancements to what

was already a very workable system.

11. Library Support.

The linkage-edit version has the ability to perform separate compilation of

procedures or functions. These can be stored in a library and selected by the linkage

editor as necessary. It can also link to routines written in FORTRAN or other

languages which use a FORTRAN calling sequence. To use an externally compiled

routine, one must include a declaration for it. Such declarations consist of the

procedure or function skeleton followed by the word 'pascal' or 'fortran'. The

linkage-editor then automatically searches for that routine when it is linking the

program. Global variables are accessible to externally compiled Pascal routines.

Pascal procedures cannot be overlayed.

A symbolic dump of local variables and traceback of procedures called is provided

on detection of execution errors.

IBM 360, 370 (Williamsburg)

1. Michael K. Donegan

Dept. of Mathematics &

College of William and

Williamsburg, Virginia
(804) 253-4481

Computer Science
Mary
23185

2. IBM 360/370

3. OS/VS
Requires 192-256K to compile the compile~ l50K is sufficient to compile
"normal" programs.

4. Distribution is in the form of object, source, and documentation on 9-track
tape and is currently free if you supply a tape (we can't). This is sub-
ject to change.

TTl

--cJ
~
G>
TTl

lD
VI

7. The major discrepancies are:
1) Differences in the handling of EOLN.
2) Setsare limitedto 64 elements (no SET OF CHAR).

3) No subranges in sets, e.g. [1..4].

4) Subscripts are enclosed in parentheses.

5) Set brackets are (t and t).

6) PACK and UNPACK not supported.

7) Dynamic values cannot be freed.

8) All files must be declared globally.

9) Single precision REAL amithmetic.

Additions include~

5. Documentation is distributed on the tape. We are currently writing an
implementor's guide.

6. Maintenance is currently in the form of a new distribution and reported

bugs will be fixed on a time-available basis. We are continually working
on the limitations of the system and have plans for:

1) Additional debugging facilities, cross-reference, post-mortem dump
callable as a built in procedure, frequency profile.

2) Better interactive capability for TSO users.

3) Double-precision arithmetic.

4) Dynamicarrays--assoonas someone can comeup witha decentsyntax
for them.

5) A bottom-upversionof the compiler.

1) Additional formatting capability.

2) I/O for arrays, records, and all scalar types.

3) Modified handling of labels and gotos.

4) DirectAccessFiles.

5) Formattingfor READ and WRITEis different.

8. Compiler written in PASCAL (5500 lines). Compiler size is 108K + 8K
runtime support. Compiles itself in -78 seconds on IBM 370/158.

9. Runtime support for files has essentially no diagnostics. Real number
formatting is less than ideal. Post-mortem of variables is not available
on all errors. The compiler has been used for three semesters here with
little difficulty.

10. The compiler was written in PL/l using the unrevised compiler for the
CDC6600 as a model. This was done by two undergraduates, Doug Dunlop and
Mark Gillette, and required an academic year. The bootstrap took another
year of less-than-intensiveeffort. Improvements have been added as more
users have dictated. A major rewrite of the runtime system is in progress.

11. No, but should be available this year. No separate compilation planned at
this time.

IBM 370 (London)

(* The editors wish to thank the persons in Berlin and London for taking the time to fill
us in so well on their activities. We never expected such an outpouring of information
when we wrote #9-101 Once again, thanks! -Andy, Jim, and Tim *)

TECHNISCHE UNIVERSIT~T BERLIN
Fachbereich Informatik (20)

BERLIN

DVG
Technische Universttat Berlin IFS 20)
LEHREINHEIT OV-GRUNDAUSBILDU!lG
lllel1in 10, Otto-Suhr-Alle. 18/2D

ru Berlb. . FB 20 . VSH..
_
~ . Otto-S",hr-AII.. 18120, D-l000 BerlIn 10

PASCAL News - Editor

University Computer Center

227 Experimental Engineering
208 Southeast Union Street

University of Minnesota

Minneapolis, MN 55 455 USA

1.1.,(030)314- 4893
Telex, 1 84262 lubln ~-

November 30, 1977

Dear Andy:

A necessary correction of if 8 and 9/10 : At the Technical

University of Berlin, we never embarked on an implementation

based on P4 , but we do ~ intend to drop our efforts at a

new implementation of PASCAL for IBM /370 under CMS (Thomas

Habernoll). In addition, we are starting an implementation

of Concurrent PASCAL for the CYBER 18. We have added check

lists for both projects, reporting the current status.

We ~ using the P4-based implementation of Imperial College

London for purposes of teaching and bootstrapping. As these

people seem to be very modest (humble programmers ?), a word

of praise for their work seems appropriate:

1. Greg Pug h implemented a VM /370 CMS PASCAL-

compiler in September 76 based on P4. Its p-code

is converted to standard OS object modules in a

separate pass. A number of extensions are helpful

for systems programmers; the interface to the ope-

rating system is very convenient to use.

2. At Technical University of Berlin, the London com-

piler was ready to use within a few hours; we found

some minor bugs within six months of heavy usage,

and these have been corrected in the latest release

from London.

"rrl
t:J;::I
:::0
c:::
:J>
:::0

-<

I--'
to
'-I
00

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

3. Full Standard PASCAL is supported with several

notable additions,

full file support, including in-store files,

random-access files, explicit opening of files,

non-standard opening of files for interactive

DEPARTMENT OF COMPUTING AND CONTROL
180 Queen's Gate
Lnudon SW? 2az Telephone: 01-589 5Il I
Telegrams: IMPCOLLnndon SW? Telex: 261503
Head of Department Professor J.H. Westcott, DSC. FRCS,flEE

use;

external procedures and functions;

alfa variables and returncode in program heading;

symbolic post mortem dump;

cross reference option.

The compiler is not very fast (about 65 lines per

CPU-second), but we consider it now very reliable.

Andy Mickel

Pascal Users Group

University Computer Center:227EX

208 S.E. Union Street,
University of Minnesota
Minneapolis.
MN55455
USA

4. Along with the compiler comes a special batch system

running in CMS environment. It has been adapted and

extended for our purposes by Thomas Habernoll. It has

drastically reduced time-consuming system overhead

(re-initialization of the CMS batch machine) .

Dear Andy,

We are using Pascal on our tiny 370/135 under CMS,to

support our undergraduate course,for systems programming
and in a number of research projects.

Greg Pugh,one of our research students implemented
our compiler from the p4 compiler(* described in the

attached letter and report *)

Our undergraduate teaching began using Algol on the
7094,and moved to Delft Al~?J\'~lJ.enthe 370/135 appeared.
Because we wanted to use a ~ set of data structures and
types than those available in Algol 60 we changed our initial
teaching language to AlgolW.After two years with AlgolW we
have again changed our initial teaching language - this
time to Pascal.There were a number of reasons for this change:

By fall, we have switched - at last - our introductory course

from ALGOL to PASCAL, with excellent results so-far.

T H A N K S LON DONT 0

'r~ --"

(L. Christoph)

1) Some of us had regarded the choice of AlgolW as
a stop-gap until a reliable Pascal compiler was
available under CMS.This we now beleive has
happened with the P4 implementation at IC.

2) We use a number of different computers during

the undergraduate course,and we found that
'standard' Pascal was the only programming language
that we felt able to use on a Computer Science
Course,which had similar implementation across
thesemachines(IBM370/135,CDCCyber173,ICL1900
if CDO 7600)

3) It was clear that 'standard' Pascal included a
number of features which would'''extendthe life"
of our initial programming language,putting
off the time when any additional language need
be taught to provide a practical tool for
course support.

/4~?,-'J
ji.J<.,..l(

(T. Habernoll)

(* The Berlin implementation mentioned is listed separately, below. *) 4) We had a number of bad experiences with the

AlgolW Compiler.For example some large valjd
programs,would fail to execute,however
seemingly arbitary changes to them,got over
the problem.

=

......
lD
........
CO

We attempted to look at the compiler to fix the problems
but found it an almost impossible task to understand the

comment less PL360.The P4 Compiler Co the first pass anyway *J
being written in Pascal C* although with few comments *J is

generally understandable and therefore possible to correct.
Greg tells me the main areas where he met problems was in

the reliance of CDC character set ordering.

Its too early to say whether the change over has made
any great impact on the course or on the students' programming
ability - it can be said with some certainty that they are no
worse than other years I We beleive that by starting off their

programming in a well disciplined enviroment,that students

make better and perhaps a more cautious use of other programming

enviroments they meet later on.

Our final year students carry out group projects.Some of
them are using Pascal to implement the nucleus of a multiprogramming
operating system and others are implementing an algebraic
manipulation package in Pascal.(* Attempts to persuade the Data
Processing project groups to use Pascal Failed I *J

In the area of systems programming we have made a great deal
of use of Pascal. The P4 implementation is well integrated into the

CMS system and behaves exactly like any of the other compilers.
By accepting the basic architecture imposed by CMS,the P4 compiler
has avoided any problems about "being special" or "being an
exception".This has aided in user acceptability and made it much
easier to use for systems programming. Work is now in progress on

implementing out batch subsystem schedular in Pascal. Various system

utilities,and our central file manager which supports multi-user

access to the file base,have been written in Pascal.
The research use,of Pascal is quite diverseC* program

development systems,m'cro~assemblers,multi-usereditors *J and our
research students have produced a number of useful tools to aid nice
program production C* POLISH

-
a very powerful reformatting program,

SPUP - a Pascal system similar to CDe Update *J.A research group in
the department piloted the ICL 2900 implementation of Pascal to
use Pascal in research into operating system architectures.

Pascal,then is in wide use within the Deptment of Computing
and Control here at Imperial College I

Please keep up the good work of PUG I

Best wishes to you all,

lain Stinson

(* Greg Pugh wrote the following checklist. *)

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER. lain Stinson (distributor) and Greg Pugh
(implementor);Department of Computing and Control; Imperial College; London SW7; England;
Phone: 01-589-5111, extensions 2700 and 2758.

2. MACHINE. IBM 370 (not 360s). Our machine is a 135 with 384k. It operates a student
service within the department with some terminal work (up to 8 terminals) and a batch
stream, Pascal is the main teaching language.

3. SYSTEMCONFIGURATION.Operates under the VM/370systemusingthe CMS subsystem.It
would take quite a bit of work to convert the system to run under any of the other IBM
systems. The compiler should run on any machine that runs VM/370 (i.e. model 135 and
upwards, >- 256k).

4. DISTRIBUTION. The current version is available for distribution now. Distribution is
by 9-track magnetic tape in standard CMS tape dump format. Cost is just postage plus cost
of tape (or provide your own tape).

5. DOCUMENTATION. A user's manual is available replacing chapters 13 and 14 of the Jensen
and Wirth User Manual and Report. This includes details of all departures from standard
and additional features plus descriptions of error messages, invoking commands, etc.

6. MAINTENANCE. Currently we cannot offer any guaranteed support, since we are very short
of manpower, however we are using it for teaching ourselves so problems will probably be
fixed if you tell us about them.

7. STANDNill.The compiler provides a number of
couple of small extensions to the language
non-standard features are used. There are a
summarises the differences:

additional standard procedures and a
syntax. The compiler gives warnings when
few minor restrictions. The following

Extensions
Hex and Octal numbers are supported.
Expressions can be used to define the value of constants.
External procedures can be declared.
Some 20 additional standard procedures are available, including DATE, TIME, DAY,
MONTH, CPU time, routines to do direct access I/O on files, and several routines
allowing VM/370 commands to be issued from the program.
ALFA variables can be specified on the PROGRAM statement as well as files.

Restrictions

Sets are 0..255
Files of files are not allowed, but files can appear within other structures (i.e.
arrays and records of files are o.k.).
Dispose doesn't work (the dread Mark and Release can be used).
Packed is accepted but ignored (character strings are always packed anyway).

Features

We accept upper and lower case
Integers are 32 bits and reals
The compiler produces listings
etc.

identifiers with 30 characters significant.
64 bits.
with bold printed keywords, titles, nesting level,

8. MEASUREMENTS. The compiler is a much developed version of the P4 compiler. An
assembler for the P-code runs as a second pass producing standard object code. The P4
compiler is now about 7000 lines of Pascal, the assembler is 5000 lines of .PL370.The
run-time system consists of about 90 small modules (in Assembler F) which are included by
the loader on a by-need basis (a small program may only use about a dozen of these
routines). I'm not sure about exact compilation speed, but it is faster than IBM Fortran
and slower than AlgolW. The compiler generates re-entrant code and is shared between all
users (which saves a lot of store since the compiler code is quite large).

9. RELIABILITY. Reliability seems pretty good. Currently the compiler is being used
mainly for fairly large programs (4000 lines).A studentversionis now availableand
shuld put the system to a severe test.

10. DEVELOPMENT METHOD. The compiler was developed from the Zurich P4 compiler by writing
an assembler for the P-code in PL370 in 1976. The run-time library was written at about
the same time. A symbolic dump package dumping all variables (including records, arrays
etc.) is available. A batching version is available for student use.

11. LIBRARY SUPPORT. Procedures can be declared to be external and compiled programs can
be placed into object code libraries. Assembler and Fortran procedures can be accessed.

=

"I"Tl
t1::I

=
=»
=-<

<D
00

IBM 360, 370 (Berlin) 2.2._!!gU!&!!HHI

Hopefully good.---------------------
r---------------------------------------
I'Modular PASCALI1370 Compiler

IL-___
12/01/17
Page 1 1~L_~g!g12emgn1_~~~2~

The compiler is written in PASCAL. The syntax analysis is
based on the PASCAL 6000 compiler. which influenced the
method of code generation too.

The run time system is written in PASCAL and Assembler. I
hope that the Assembler part can be reduced to a minimum.

As I started working we didn't have a PASCAL compiler
useful for bootstrapping on the /370 at Technical
University. The Stony Brook and ftanitoba compilers were
not sufficient. Therefore I wrote a PASCAL-)Simula
compiler (in SIMULA). It is slow (compilation speed 10
lines per CPU second). I have learned something due to
this project: don't think that it is a simple and
straightforward task to translate a high level language
into another (relatively siailar) higa level language.

Just as I finished the PASCAL-)SIMULA compiler. we got
the PASCAL Pij compiler froa Imperial College London. This
facilitated ay work.

1,,-_I~l!!~~nt2t

Thomas Habernoll
Technische Universitaet Berlin
{Yachbereich Informatik}
(Institut fuer angewandte Informatik)

DV-Grundausbildung
VSH 5
otto-Suhr-Allee 18/20
0-1000 Berlin 10

IBft /360. /370
(Implementation is done on a 370/158)

VM 370 (CP+C!!S)

OS (with some modifications of the run time system)
I am trying now to write a 'modular compiler'; that
means. the compiler architecture allows changing of the
accepted language and/or of the generated code by
exchangtng only few modules. Therefore we will have not
one compiler for Standard PASCAL and another one fora
subset (e.g. for educational purposes) but a set of
modules. Depending on tae command, the modnles necessary
for a specific purpose will be loaded. Writing modules
(iu the sense of MODULA) in a block structured language
makes fun - if one has grim humour.

Not yet. probably starting fall 1978.

A detailed reference manual will be available in machine
retrievable form.

Presently the compiler is a one pass compiler. But its
structure allows splitting it into a multipass compiler.

I-'
to
.......
00

~,,-_~!&!nt~n~n£g_~21!£1

Not yet determinated.

The first version to be released will accept
PASCAL and produce (for several

IB!!/370-Assembler code. Later versions will
relocatable machine code (in standard OS loader
As a vision the following versions exist:

Standard
reasons)

produce
for.at).

I,,-_~t.!&nQ!&r!!

Full standard PASCAL. The co.piler is the first step to a
'co.piler fa.ily'. Later meabers of this family will
include extensions (especially for system programming).
But they will n2t. be named 'PASCAL co.piler'! (becanse
PASCAL is the language defined in the report of
Jensen/Wirth: User Mannal and Beport. At this level,
enough difficulties arise for portability of programs.)

PASCAL subset for educational purposes;

Presently. no precise information can be given.

PASCAL supersets.
First level: machine independent extensions like gl~
or ~t.~~r~~~g in £!&~g statements; a simple .odule
concept.
Second level: extensions for systems program.ing.

Generation of interpretative code. This is normally the
first step to implement PASCAL, but I think that
interpreters are a ~ood tool to check out progra.s-
even for large ones (one of these reasons is the fact.
that additional check out code and test aids need
additional space resulting in frustrated programer of
large programs. who fights against storage constraints.

lD
lD

Anothe~ ~eason is a possible step-by-step execution of
interpretative code, that is .ore useful than executing
step-by-step ou machine instruction level.)

optimizing compiler.

processing of
prog~iills to be

the p~ocessed
compilation and

pre-scanned source programs (assume
edited and analysed on a mini computer,
source being sent to the /370 for
executing.

Someone somewhere inte~ested
should please contact me. To
provide a bette~ support than
more softwa~e aids besides the
(for example the embedding of
system is a useful task).

in joining this project
have a chance, PASCAL must
other languages. Therefore
compiler must be provided

the compiler in an editor

Linkage to FORrRAN sub~outines is without any problem.
sepa~ate compilation is available. The fi~st release
provides no symbolic du.p. In the event of a run time
error the following informations will be giveu: error
message, co~responding source line nu.be~ and a back
t~ace of procedure calls (with source line nu.bers of
calls).

lCL -- Clearing House

(* David Joslin sent us the following announcement on 13 October 1977 *)

PCHlCL - the Pascal Clearing House for lCL machines - has been set up for the purposes of:

Exchange of library routines;
Avoidance of duplication of effort in provision of new facilities;
Circulation of user and other documentation;
Circulation of bug reports and fixes;
Organisation of meetings of Pascal users and implementors;
Acting as a "User Group" to negotiate with Pascal 1900 and 2900 suppliers.

There are currently about 40 people on PCHlCL's mailing list, mainly in Computer Science
departments and Computing Centres of U.K. Universities and Polytechnics. Any User of
Pascal on lCL machines whose institution is not already a member of PCHlCL should contact

David Joslin,
University of Sussex Computing Centre,
Falmer, Brighton, Sussex, BN1 9QH, United Kingdom.

All lCL Pascal users are urged to notify David of any bugs they find, any compiler
modifications they make, any useful programs or routines or documentation they have
written, anything they have that may be of use or interest to other users.

lCL 1900 (Belfast)

(* Thanks to Judy Mullins and to David Joslin who wrote on 4 Nov. 1977 and on 13 Oct.
1977, respectively, to correct the information which we printed in issue #9-10. David
provided the following revised checklist. *)

1. Implementor & Distributor: Dr. J.Welsh,

Dept. of Computer Science,

Queen's University,

BELFAST, N.Ireland, BT7 INN.

2. Machine: ICL 1900 series.

3. Operating System: ~ny (although the Source Library facility is

only possible, and the Diagnostics package only

practicable, under GEORGE 3 or 4).

Minimum Configuration: The compiler needs at least 36K of core,

and uses CR, LP, DA files.

4. Distribution: Free. Send a mag. tape (either 9-track PE 1600 bpi

or 7-track NEZI 556 bpi) to Belfast.

5. Documentation: Belfast's Users' Guide (supplement to Revised

Report) and implementation documentation is

distributed with the compiler.

Glasgow's supplement to the Revised Report is available from

Bill Findley or David Watt,

Dept. of Computer Science,

University ol Glasgow,

GLASGOW, Scotland, G12 8QQ

(who produced the Diagnostics package).

6. Maintenance Policy: No formal commitment to maintenance.

No plans for development in near future.

Send bug evidence to Belfast, and also a note of the bug to PCHICL

(see separate notice) who circulate bug reports & fixes to their

members.

7. Implementation Level: The language of the Revised Report, with:

Exceptions: There are no anonymous tag fields;

FILEs cannot be assigned, passed as value parareters,

or ooour as components of any structured type;

Predefined procedures & functions cannot be passed as

actual parameters;

The correct execution of programs which include

functions with side-effects is not guaranteed.

.....
lD
'ICO

ICL 2900 (Southampton)

(* Thanks again to David Joslin and Judy Mullins
information. *)

(see revised1900) sendingICL for

Only the first 8 characters of identifiers are significant.

SETs are limited to x..y where 0 ~ t\RD(x) .s;t\RD(Y) ~ 41

The ICL 64-character graphic set is used fer type CHAR.

PACKED is implemented, and TEXT - ~ FILE t\F CHAR.

ALFA - PACKED ARRAY rl..8J t\F CHAR.

Extensions: VALUE and DISPt\SE are implemented.

Integers may be written in octal.

Additional predefined prccedures & functions DATE,

TIME, MILL, HALT, CARD are provided, and procedures

ICL, ADDRESS~F, allow use of inline machine code.

....

1(a). Implementation

ICL are providing support for an implementation group based on the
University of Southampton.

8. Compiler Characteristics: Compiler, producing absolute binary

machine code.

The compiler is written as c. 14000 lines of PASCAL & c. 3500 lines

of Assembler Language (Issue 3). Performance is better than most

other ICL 1900 language processors (exceptions are incore compile-

and-60 batch systems of the the WATF~R type).

The postmortem analysis program is written as c. 2500 lines of

PASCAL. H.J.Zell,
New Huxley Building,
Imperial College,
University of London,
London SW7 2AZ,
England.

Project Supervisor: Dr.M.J.Rees,
Computer Studies Group

Faculty of Mathematical Studies,
The University,
Southampton, S09 5NH,
England.

Telephone: 0703 559122 x2270

Implementors: J.J.M.Reynolds,
Computer Centre,
Queen Mary College,
University of London,
Mile End Road,
London, E1 4NS,
England.

Reliability: Very good.

10. Method of development: Complete

compiler, which was bootstrapped

compilers by Welsh & Quinn.
Telephone: 01 589 5111

rewrite of original PASCAL 1900

from the original ZUrich CDC

11.
Telephone: 01 980 4811 x778

Libraries: Source Library facility available under GEORGE 3 & 4.

Efforts are to be made to develop a PASCAL version of the NAG

library (which would be applicable to ~ machine, not just ICL).

No facilities for separate compilation or for inclusion of semi-

compiled routines written in any other language.

1(b). Distribution

The Pascal compiler will be distributed as a standard ICL program
product. Contact should be made to the nearest ICL sales office.
Failing that, contact the project supervisor shown above.

2. Machine

The ICL 2900 series machines 2960, 2970 and 2980.

D.A.Joslin

October lOth 1977

3. Operating System

VME/B and VME/K

4, Method of Distribution

As per ICL standard, see 1(b) above.

"'T1
f'T1
t:C
::c
c:::
»
::c
-<

I--'
lD
""-J
CO

I--'
o

I--'

5. Documentation

Standard ICL manuals will be available:

(a) Pascal Language Manual: operating system independent aspects of the

Pascal Language.

(b) Running Pascal Programs on VME/B and VME/K: information on how to

run Pascal programs under the operating systems.

6. Maintenance Policy

Full maintenance will be provided by the implementation group and/or ICL

while the compiler is offered as a standard ICL program product. The
usual ICL procedures for bug reports will be adopted.

7. Language Standard

The compiler implements all features of the language as described in the
User Manual and Report (Jensen and Wirth, 1974).

8. Translation/ExecutionMechanism

The compiler is written in Pascal and produces Object Module Format
(OMF) compatible with all standard ICL compilers. The OMF module may be
directly loaded or linked with other OMF modules.

The source listing is approximately 10000 lines of Pascal and produces
80K bytes of code. Approximately 160K bytes of store are required to
compile the compiler.

9. Reliability

Current reliability is moderate to good.

10. Method of Development

The compilp.rwas bootstrapped using thp.1900 compiler from the Queen's
Univer3ity of Belfa~t, North~rn Ireland ~s 3 base. , Nothern Ireland as
I baRf'.

Twenty four person-months of effort from experienced programmers were
requirf'd.

11. Li braries

As the compiler produces OMF modules, separate compilation and the
inclusion of external procedures will be possible providing the
necessary operating system facilities are present.

Intel 8080 (San Diego)

For information, see Ken Bowles' article "Status of the UCSD Pascal Project", and for an
order form see the DEC LSI-ll (San Diego) implementation note.

Intel 8080 (Oslo)

David Barron sent us a short piece that appeared in the 17 November 1977 issue of
Computing describing an 8080 implementation distributed by the Norwegian company, Mycron,
of Oslo. The compiler is said to run in 29K bytes. (* We would appreciate receiving any
more information about this implementation that a PUG member could provide. *)

MITS Altair 8800

See DEC LSI-ll (San Diego).

Motorola 6800 (St. Paul)

Mark Rustad asked (30 October 1977) that we make the following updates to his checklist
printed in Pascal News 119-10.

1. Work phone: 612/376-1143.

2. Developed using a Motorola 6800 Exercizor (48K, dual floppies) and MITS Altair 680b and
SWTP 6800. Should be extremely easy to adapt to any system using the M6800 chip.

3. Requires 32K bytes and ~~ terminal. Also, a high speed I/O device (floppy disk,
cassette, or data cartridge) is highly recommended to reduce loading time to a reasonable
amount.

4. The system is being distributed by Computer Depot (3515 West 70th Street; Minneapolis,
MN 55435; (612/927-5601» for less than $100 for documentation, binary, and interpreter
source.

5. Documentation is the responsibility of the distributors. Mark is providing a machine
retrievable supplement to the ~ User ~ and Report to the distributors.

6. Mark guarantees maintenance only to the distributors. They are expected to pass bug
reports, etc., to him. Future plans include full acceptance of upper/lower case with
mapping of reserved words to single case, and separate compilation of procedures.

7. The following are not supported: with and goto statements; real arithmetic and the
transcendental functions; pack and unpack. The compiler handles real arithmetic but the
present interpreter does not. The system is designed to make it easy to interface the
interpreter to a floating point package or a hardware floating point chip. The following
extensions have been made: predefined procedure ~ and halt. As of 77/10/23, only lower
case is recognized.

8. Interpreter requires 4K (with floating point package). No compilation speed was
provided. The interpreter is unbuffered and can keep up with typing speeds of 10cps.
Approximately2-5K M-codeinstructionsare executedper second. This is at least 5-10
times faster than SWTP BASIC.

9. As of 77/10 the compiler had successfully compiled itself in the 6800. Was released to
two external sites for testing.

10. As of 77/11 about 3 person-months had been invested. The compiler source is about 2400
lines.

11. The compiler and interpreter are completely relocatable, may be located anywhere in
address space where sufficient memory exists. Presently this memory must be contiguous,
but it is planned to change this in the future. A crude but usable method for calling
external (assembly code) procedures exists. No direct parameter passing is available -
this must be done via the stack.

.,
I'T1
tx:J
::0
c:::
J:>
::0
-<

I-'
o
N

Prime P-300

THE UNIVERSITY OF HULL
HULL Hue 7RX. ENGLAND

Tellphone: Hull 46311

Department of Computer Studies

15th December, 1977

Mr. Andy Mickel,
Editor, "Pascal News",
University Computer Centre,
227 Experimental Engineering Building,
University of Minnesota,
MINNEAPOLIS. MN 55455
U.S.A.

Dear Andy,

The main purpose of this letter is to let you have a copy of the enclosed
implementation notes. As we're only about half way through building our PASCAL
compiler for the PRIME 300, we've left some of the details vague. We'll send
you a fuller set of implementationnotes sometime in 1978.

We started our compiler because we couldn't find a suitable version of
PASCAL on PRIME 300 computers. The only other implementation that we know of

is an implementation of Per Brinch Hansen's Sequential PASCAL. We did some
work in early 1977 taking bugs out of this implementation and it is now avail-
able from PRIME Computer International, Bedford, England. We don't like it
because: (a) Sequential PASCAL doesn't permit nested procedures, (b) it's
very slow which makes it useless for teaching purposes.

We currently teach ALGOL 60 to our Computing ~ience undergraduates.
After much debate within the department, we will be teaching PASCAL to our
first years from October 1978. For this purpose we'll be using the Belfast
Mk.2 compiler as the University's mainframe is an ICL 1904S.

The conversion to PASCAL would be easier if there was a book which prop-
erly teaches programming! We haven't found one yet. Addison Wesley are
bringing out a book in early 1978 which we think may be suitable - it's

entitIed "Programming in PASCAL" and written by PUG member Peter Grogono.

Finally, we'd like to say what an excellent job you're doing with "Pascal
News". It stimulated us into implementing PASCAL-P for PRIME 300s and is
keeping us well informed of what's happening elsewhere. Thanks.

Yours sincerely,

g.~ 11M /1«::

Barry Cornelius.

Ian Thomas.
Dave Robson.

THE UNIVERSITY OF HULL'S PASCAL COMPILER

FOR PRIME 300 COMPUTER

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER:Barry Cornelius, Ian Thomas or Dave
Robson; Department of Computer Studies, University of Hull, Hull, HU6 7RX,
England;Hull (0482) 497951.

2. MACHINE: PRIME 300.

3. SYSTEM CONFIGURATION: Our own system is currently 48K words running under
PRIMOS-3 Revision 10 (but Revision 14 sometime in 1978).

4. DISTRIBUTION: We hope to have a first release of the compiler completed
by April 1978. No details about distribution have been arranged yet.

S. OOCUMENTATION: None - see details of PASCAL-P elsewhere in "Pascal News".

6. MAINTENANCE POLICY: We intend to correct reported errors for the next
few years. Error reports and updates will be sent at irregular intervals to
all those who receive the compiler.

7. STANDARD: PASCAL-P subset of Standard PASCAL.

8. MEASUREMENTS: No details are yet available.

9. RELIABILITY: No details yet.

10. DEVELOPMENT METHOD: The code generation parts of the PASCAL-P4 compiler
are currently being rewritten to generate PMA which can then be assembled. The
first version of the compiler is being tested using the Belfast ~~.2 ICL 1900
compiler. It will be bootstrapped on to the PRIME by using a P-code inter-
preter for the PRIME written in CORAL 66. The work has been done on and off

since June 1977 by five people - some have now left and some learnt CORAL 66

and PASCAL during this time!

11. LIBRARY SUPPORT: No facilities for external procedures are currently avail-
able but they may be developed in the future.

Univac 1100 (Madison)

A short note appeared in the 24 October 1977 issue of the University of
Academic Computer Center newsletter, MACC NEWS, which stated that "The
is now fully supported by MACC." Two versiom;-;-the relocatable, and the
mentioned.

Wisconsin Madison
UW-Pascal compiler
load-and-go, were

Zilog Z-80 (San Diego)

For information, see Ken Bowles' article "Status of the UCSD Pascal project", and for an
order form see the DEC LSI-ll (San Diego) implementation note.

C/)

I N D EXT 0 IMP LEn E N TAT ION N D T E S

General Information

1/9&10: 60.
1/11: 70.

Checklis t

1/9&10: 60.

Applications

1/11: 70.

Software Tools

1/9&10: 61.

Portable Pascals

Pascal-P
1/9&10: 61~62.
1/11: 70-72.

Pascal Trunk
1/9&10: 62.

Pascal J
1/9&10: 62.

Pascal Variants

Concurrent Pascal
1/9&10: 63.
1/11: 72-74.

Modula
1/9&10: 63.
1/11: 74.

Pascal-S
1/9&10: 63.
1/11: 72.

Default Case
1/9&10: 69-70.

Variable Parameters
119&10: 71.

Interactive1/0
119&10: 71-72.

Unimplementable Features
1111: 75.

Long Identifiers
1/11: 78-79.

Boolean Expressions
1/11: 76-78.

Machine Dependent Implementations

Alpha Micro Systems AM-II

SeeDEC LSI-11.
Amdahl 470

See IBM 360, 370.
AndromedaSystems11-B

1/11: 80.
BurroughsBl700

1/9&10: 73.
Burroughs B3700, 4700

1/9&10: 73.
Burroughs B5700

1/9&10: 74.
1/11: 81.

Burroughs B6700, 7700
1/9&10: 74-75.
1/11: 81.

CDC Cyber 18 and 2550
1/9&10: 75.
1/11: 81-82.

CDC 3200
1/9&10: 75.
1/11: 82.

CDC 3300

1/9&10: 75.
CDC 3600

1/9&10: 75.

CDC 6000, Cyber 70, Cyber 170
1/9&10: 76.
1/11: 82-83.

CDC 7600, Cyber 76
1/9&10: 76.
1/11: 83.

CDC Omega 480-1, 480-11
See IBM 360, 370.

CDC Star-100

1/9&10: 77.
Cll Iris 50

1/9&10: 77.

CII 10070, Iris 80

1/9&10: 77-78.

Feature ImplementationNotes

Set of Char
1/9&10: 64-66.

For Statement

1/9&10: 66-69.
1/11: 79-80.

Computer Automation LSI-2
1/9&10: 78.

Cray ResearchCray-1
1/9&10: 78-79.

Data GeneralEclipse
1/9&10: 79-80.
1/11: 85.

DataGeneralNova
1/9&10: 79-82.
1/11: 83-85.

DEC PDP-8
1/9&10: 82.
1/11: 85.

DEC LSI-11and PDP-11
/19&10: 82-88.
1/11: 86-91.

DEC DECSystem-10
1/9&10: 89-91.
1/11: 91-92.

Dietz MINCAL 621
1/9&10: 91-92.

Foxboro Fox-1
/19&10: 92.

FujitsuFACOM230
1/9&10: 92.

Harris I 4
1/9&10: 92-93.

HeathkitH-11
1/9&10: 93.

Hewlett Packard HP-21MX
119&10: 93.
1/11: 92.

Hewlett Packard HP-2100
1/9&10: 93.

Hewlett Packard HP-3000
119&10: 94.

HitachiHitac8700,8800
1/9&10: 94.

Honeywell H316
1/9&10: 94.
1/11: 93.

Honeywell 6000
1/9&10: 94-95.
1/11: 92-93.

IBM Series 1
1/9&10: 95.

IBM 360, 370

1/9&10: 95-101.
1/11: 93-100.

IBM 1130
1/9&10: 101-

ICL 1900
1/9&10: 101-102.
1/11: 100-101.

ICL 2900
1/9&10: 102.
1/11: 100,101-102.

Intel 8080, 8080a
1/9&10: 102-103.
1/11: 102.

Interdata 7/16
1/9&10: 103.

Interdata 7/32, 8/32
1/9&10: 103-104.

ITEL As/4, As/5
See IBM 360, 370.

!CardiosDuo 70
1/9&10: 104.

Mitsubishi MELCOM 7700
1/9&10: 104-105.

MITS Altair 680b
See Motorola 6800.

MITS Altair 8800
See DEC LSI-11.

MOS Technology 6502
SeeDEC LSI-11.

Motorola 6800
1/9&10: 105.
1/11: 102.

Nanodata QM-1
1/9&10: 105.

NCRCentury200
1/9&10: 105.

Norsk Data NORD-10
1/9&10: 106.

Prime P-300
1/11: 103.

PrimeP-400
1/9&10: 106.

SEMS T1600, SOLAR 16/05/40/65
1/9&10: 106.

Siemens330
1/9&10: 107-108.

Siemens 4004, 7000.
1/9&10: 108.

Telefunken TR-440
1/9&10: 108.

Terak8510
See DEC LSI-11.

Texas Instruments TI-ASC
1/9&10: 109.

Texas Instruments 9900/4
119&10: 109.

Univac 90130
1/9&10: 109.

Univac 90/70
1/9&10: 109.

Univac1100
1/9&10: 109-112.
1/11: 103.

UnivacV-70
1/9&10: 112.

VarianV-70
See Univac V-70.

Xerox Sigma 6, 9
1/9&10: 112.

Xerox Sigma 7
1/9&10: 112.

2110g 2-80
1/9&10: 112.
1/11: 103.

m
~
C/)

"T1
m
tJ;j

;;0

c::
::>
;;0

-<

I
I...

1

~i

~I
I

'"
I;

t
1

~\

\
\,

Oii
.
of,
.,.
)
i

~.
,

POLICY: PASCAL USER'S GROUP (77/12/30).

Pascal User's Group (PUG) tries to promote the use of the programming
language Pascal as well as the ideas behind Pascal. PUGmembers help
out by sending information to Pascal News, the most important of which
is about implementations (out of the necessity to spread the use of
Pascal).

Purposes:
("1

The increasing availability of Pascal makes it a viable alternative for
software production and justifies its further use. Weall strive to
make using Pascal a respectable activity.

Membership: Anyone can join PUG: particularly the Pascal user, teacher, maintainer,
implementor, distributor, or just plain fan. Memberships from libraries
are also encouraged.

See the ALL PURPOSE COUPON for details.

FACTS ABOUT Pascal, THE PROGRAMMINGLANGUAGE:

Pascal is a small, practical, and general purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.
Pascal has met these design goals and is being used quite widely and
successfully for:

* teaching programming concepts
* developing reliable "production II software
* implementing software efficiently on today's machines
* writing portable software

Pascal is a leading language in computer science today and is being
used increasingly in the world's computing industry to save energy and
resources and increase productivity.

Pascal implementations exist for more than 62 different computer systems,
and the number increases every month. The Implementation Notes section
of Pascal Newsdescribes how to obtain them.

The standard reference and tutorial manual for Pascal is: ~
U.--
o
Q.

I
I

I
I

I
""'--

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth

Springer-Verlag Publishers: NewYork, Heidelberg, Berlin
1975, 167 pages, paperback, $5.90.

Introductory textbooks about Pascal are described in the Here and There
Books section of Pascal News.

The programming language Pascal was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Pascal User's Group is each individual member's group. We currently have more than
1351 active members in more than 30 countries. This year Pascal News
is averaging more than 150 pages per issue.

