CONTROL DATA’

6400/6500/6600 COMPUTER SYSTEMS
SCOPE Reference Manual

REVISION RECORD

REVISION DESCRIPTION
A This manual incorporates Update 1 dated Yebruary 29, 1968.
1 (4-1-68)
B SCOPE 3 changes in Chapters 1, 2, 3, 9 and Appendix C.
(3-28-68)
C SCOPE 3.1.2 changes in Chapters 1-7, 9-11, Appendixes A-E, F, and H,
(9-25-68) Contents and Index.
D
(10-25-68) | SCOPE 3.1.2 changes in Chapters 1, 2, 3, 9, Appendix C, and Index.
E SCOPE 3.1.3 changes in front matter, Chapters 1, 2, 3, 4, 5, 8, 9, 10 and
(12-13-68) | Appendixes E, F, and H.
F Documentation changes to Chapter 6.
(12-27-68)
G SCOPE 3. 1.4 changes include Stack Processor 1I, READNS function, Rewrite-in-
(1-31-69) Place, DMPECS, TAPES I, REQUEST macro, Device Type Codes and C.E.

Diagnostics. Affected pages include front matter, pages 1-10; 2-2, 5, 6, 9 thru

2-11; 3-2 thru 3-5, 3-8, 3-13 thru 3-15, 17, 18, 21, 23, 26 thru 3-54; 4-2, 6,

4-8 thru 4-11; 5-8; 8-1, 3; 9-4, 7, 11, 13, 9-16 thru 9-18, 21; 10-6 thru 10-18;

11-14, 15; 12-1 thru 12-5; A-1; D-5; E-1; F-3 thru F-7, H-1 thru H-4, 7, 8, 11,

12, 17, 18, 25, 26, 29, 30, 33, 34, 41, 42; L-1 thru L-15; Index-1 thru Index-9

Publication No.

60189400
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.

©1968,1969

CONTROL DATA CORPORATION
Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA 94304

Control Data Corporation or use Comment Sheet in the
Printed in the United States of America back of this manual

REVISION RECORD (Cont'd)

REVISION

DESCRIPTION

il

SCOPE 3.1.5 changes include the use of ECS as an allocatable device,

(3-21-69)

CPLOADR, 512 printer support, COMBINE utility, stack processor improve-

ments, and a new CHECKPOINT/RESTART. Affected pages include front

matter, pages 2-4 thru 2-13; 3-4, 6, 10, 14a, 16, 17, 26, 28, 32, 36, 45, 47,

49, 50, 55; 4-1 thru 4-13; 5-2; 6-3, 9, 21, 31; 8-1 thru 8-6; 9-6 thru 9-6b, 8,

11, 19, 22, 23; 10-12, 13; 12-3, 5; A-2; F-1; H-1 thru H-48; 1-2; J-5 thru J-7;

L-1 thru L-3, L-5; M-1, M-2, Index-1 thru Index-9.

I

(7-18-69)

SCOPE 3. 1.6 changes include permanent file capability, improved operator

capability (DSD), 512 printer selectable on REQUEST cards, magnetic tape

revisions, private disk packs, user ability to process control cards and mass

storage REQUEST changes. New and changed pages include front matter;

pages 1-1 thru 1-15; 2-1 thru 2-16; 3-1 thru 3-72; 4-1 thru 4-13; 5-1 thru 5-12;

6-1 thru 6-32; 8-1 thru 8-6; 9-1, 9-2 (completely replaces 9-1 thru 9-23);

10-1 thru 10-18; 11-1, 11-2; 12-1, 12-2; 13-1 thru 13-20 (this is a new chapter);

Glossary-1 thru Glossary-10 (this is a new section); A-1, A-2; C-1 thru C-5;

D-1, D-2; E-1, E-2, F-5, F-6; G-1, G-2 (formerly Appendix I); H-1 thru H-86;

I-1 thru I-20 (formerly Appendix L); J-1, J-2 (formerly Appendix M); the old

Appendixes G, J and K have been dropped; Index-1 thru Index-10.

J

Additional documentation change for SCOPE 3.1.6 involving interpretation of the

(11-14-69)

MESSAGE function, and miscellaneous corrections and clarifications. Affected

pages: 1iii; 2-3, 2-9, 2-13; 3-6, 3-21, 3-53, 3~54; 4-9, 4-11: 10-6, 10-6a,

10-11, 10-13; 13-1, 13-12, 13-15; E-1; H-11, H-17, H-31, H-35, and H-57:

Index-1, Index-2, and Index-6,

Comment Sheet,

Publicatipn No.
60189400

60189400 Rev. J.

iii

REVISION RECORD (Cont'd)

REVISION DESCRIPTION
K SCOPE 3.2 features include ECS user area accommodated by checkpoint feature,ﬁ—'
(12-31-69) level 17 always interpreted as end-of-file, multipurpose COPY routine not
terminated on double end-of-file, a new record (EST) on deadstart tape, multiple
CMR configurations on deadstart tape, addition of customer engineering diag-
nostics. New and changed pages include front matter; pages 1-2, 1-7, 1-9; 2-1;
3-12, 3-28, 3-49, 3-54; 4-1, 4-11; 5-1 thru 5-3, 5-9 thru 5-12; 8-1, 8-2, 8-6;
10-2, 10-3, 10-18 thru 10-20; 12-1 thru 12-18; 13-1 thru 13-22; H-2, H-4, H-5,
H-7, H-13, H-16, H-19, H-23, H-24, H-34, H-36, H-39, H-43, H-46 thru H-49,
H-52, H-62, H-80; I-5; Index-1 thru Index-10; Comment Sheet.
L Features added or changed since the previous version are indicated by a bar in
4-30-171) the outside margin or by a dot next to the page number if an entire page is

affected. Additions and changes include: addition of System Engineering File

Description and System Engineering File Analyzer (CEFAP) and miscellaneous

corrections. New and changed pages include front matter, pages 2-10; 3-3,

3-24, 3-26, 3-27, 3-46, 3-62; 4-7, 4-8; 5-2,1; 6-13; 7-6; 10-2 thru 10-6.1,

10-13, 10-15; 11~1, 11-7, 11-13; 12-18 thru 12-30; 13-6 thru 13-10, 13-14,

13-15, 13-21; D-2, D-8; E-2; F-6, F-7; H-9, H-10, H-28, H-31, H-42, O-T71;

1-6; J-2; Index-1 thru Index-10; Comment Sheet.

Publication No.

60189400

60189400 Rev. L

PREFACE

CONTROL DATA 6400/6500/6600 computers operate under the SCOPE operating
system (Supervisory Control of Program Execution), This manual is a compre-
hensive reference document written for system and user programmers. This
revision reflects the SCOPE 3.2 release.

The documents listed below are related software publications available
through the nearest Control Data Corporation sales office.

Document Publication Number
6400/6500/6600 Computer System 60100000
Reference Manual

6400/6500/6600 Peripheral Equipment 60156100
Reference Manual

6400/6500/6600 SCOPE 3 Product Set 60252000
Diagnostic Handbook

6400/6500/6600 SCOPE Product Set 60191800
General Information Manual

6400/6500/6600 SCOPE Installation 60235600
Handbook

6400/6500/6600 SCOPE Operator's Guide 60179600

60189400 Rev., K

CONTENTS

SECTION 1

SECTION 2

SECTION 3

SECTION 4

60189400 Rev. K

INTRODUCTION

SYSTEM DESCRIPTION

1.1 Hardware/Software Integration
2 Multi-Programming
3 Files
.4 Random Access
5 File Labels

JOB PROCESSING

2.1 Job Flow

2.2 Control Cards

2.3 Program Execution
2.4 Equipment Assignment

OBJECT PROGRAM - SYSTEM COMMUNICATION

File Name Table

File Environment Table

Labeled Tape Files

FET Creation Macros

Central Program Control Subroutine (CPC)
System Communication Macros

File Processing

File Disposition

.

LW W W W W W W
0 -3 O U i oD =

LOADER OPERATION

4.1 Loading Sequence

4.2 Segmentation

4.3 Overlays

4.4 Loader Directives

4.5 Memory Allocation

4.6 Memory Map

4.7 Errors in Assembly/Compilation

1 1
ST

ll\':N['\')l\?l\')
© DN

1
I e
o

~

=2}

|1
OO NN

wmwwcr:wwww
]
\-]

Hlkn-lk

e e e

vii

el
[
aQ
[}

SECTION 5 SYSTEM LIBRARY PREPARATION AND MAINTENANCE 5-1
5.1 EDITLIB Call Cards 5-2
5.2 EDITLIB Function Cards 5-2.1
5.3 EDITLIB Example 5-9
SECTION 6 UPDATE 6-1
6.1 Program Library Information 6-1
6.2 UPDATE Parameters 6-3
6.3 Control and Data Cards 6-5
6.4 Listable Output From UPDATE 6-19
6.5 Overlapping Corrections 6-20
6.6 UPDATE/EDITLIB Interface 6-21
6.7 Files Processed by UPDATE 6-21
6.8 UPDATE Card Deck Examples 6-23
6.9 UPDATE Messages 6-31
SECTION 7 EDITSYM 7-1
7.1 Program Library Format 7-1
7.2 Compile Output 7-3
7.3 Control Cards 7-4
7.4 EDITSYM Examples 7-8
SECTION 8 CHECKPOINT/RESTART 8-1
8.1 Checkpoint Request 8-1
8.2 Restart Request 8-6
8.3 Unrestartable Checkpoint Dumps 8-6
SECTION 9 SYSTEM OPERATOR COMMUNICATION 9-1
9.1 DSD 9-1
9.2 DIS 9-2
SECTION 10 UTILITY PROGRAMS 10-1
10.1 Copy Routines 10-2
10.2 File Manipulation 10-13
10.3 Octal Correction Routine 10-14
10.4 Request Field Length 10-15
10.5 Dump Storage 10-15
10.6 Dump Extended Core Storage 10-15
10.7 COMPARE 10-16
10.8 Automatic Program Sequencer (APR) 10-18

viii 60189400 Rev. L

SECTION 11

SECTION 12

SECTION 13

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I

APPENDIX J

60189400 Rev. L

DEBUGGING AIDS

11.1 TRACE

11.2 SNAP

11.3 DMP

11.4 DEBUG

11.5 Sample Deck Structure

CUSTOMER ENGINEERING (CE) DIAGNOSTICS
12.1 Modes of Operation

12,2 CPU and Memory Tests

12,3 Peripheral Equipment Tests

12.4 Sample Jobs

12.5 System Engineering File Description

12.6 System Engineering File Analyzer (CEFAP)
12,7 IEF Description

12.8 Operation

PERMANENT FILES

13.1 Terms and Concepts

13.2 Privacy

13.3 Permanent File Calls

13.4 Permanent File Utility Routines

GLOSSARY

CHARACTER SET

FET EXTENSION FOR COBOL AND SORT/MERGE USAGE
STANDARD LABELS

RELOCATABLE SUBROUTINE FORMAT
CARD FORMAT

SAMPLE SOURCE LISTING

SYSTEM SYMBOL DEFINITIONS
ERROR MESSAGES

MAGNETIC TAPE 1/0

PRINT FILE CONVENTIONS

INDEX

Page
11-1
11-1
11-6
11-14
11-14
11-16

12-1
12-1
12-3
12-7
12-2
12-18
12-24
12-26
12-27

13-1
13-1
13-3
13-7
13-22

Glossary-1
A-1
B-1
C-1
D-1
E-1
-1
G-1
H-1
-1
J-1

Index-1

ix

INTRODUCTION

6400/6500/6600
COMPUTER SYSTEM

OPERATING SYSTEM
COMPONENTS

60189400 Rev. L

The SCOPE operating system for CONTROL DATA® 6400/6500/6600 is a
file-oriented system using mass storage, random access devices. It is
designed to make use of all capabilities of the CONTROL DATA 6000 computer
systems. SCOPE exploits fully the multiple-operating modes of all segments
of the computer. SCOPE controls job execution, assigns storage, and per-
forms segment and overlay loading. SCOPE features include comprehensive
input/output functions and library maintenance routines. The dayfile main-
tains a chronological record of all jobs run and any problems encountered.
Dumps and memory maps are available to aid debugging. A variety of
assemblers, compilers, and utility programs may be operated under control
of SCOPE, including FORTRAN, COBOL, SORT/MERGE, PERT/TIME,
EXPORT/IMPORT, RESPOND, SIMSCRIPT, APT, OPTIMA, ALGOL, and
utility routines.

The CONTROL DATA 6400/6500/6600 computer is composed of one or two
high-speed central processors and ten peripheral processors. Each peripheral
processor has its own memory and can execute programs independently of

the other processors. In addition, all processors have access to the larger
central memory. Up to seven jobs may operate concurrently, sharing the
central processor in a multiprogramming manner. During a job, one or more
peripheral processors are used for high-speed information transfer in and

out of the system.

Components of the SCOPE Operating System are distributed among the
central memory, the peripheral memories and system mass storage devices.
The central resident portion of the system consists of system tables and
pointers, communication areas used to link the peripheral and central mem-
ories, and frequently used subroutines for both central and peripheral
processors.

The system monitor routine is assigned to one of the peripheral processors
and the system display program to another. The other eight peripheral
processors have no fixed assignments but form a common pool available
for assignment as needed. They contain idling routines that repeatedly
examine their communication areas in central memory for requests. The
remainder of SCOPE is stored on mass storage and in central memory and
called as needed.

JOB PROCESSING

LOADER

Ixii

A job consists of one or more programs, preceded by control cards specifying
equipment, time limits, priority, operator instructions and other information
needed by SCOPE. The operator initiates job loading from the system input
unit into mass storage. SCOPE selects and processes jobs from mass storage
and routes output to the proper devices.

All system activities are controlled by the system monitor. The monitor ac-
cepts messages from processors and routes them to processors for action.

It communicates with the resident programs in the other nine peripheral pro-
cessors and with programs active in the central processor through central
memory communication locations and control point areas.

Central processor job operation is initiated or interrupted by an exchange
jump command from the monitor routine. The central processor enters infor-
mation about a new program into registers and stores the current information
of the interrupted program in the new program's control point area. Hardware
features insure that the interrupted program is left in a state for re-entry.

Jobs assigned to control points and waiting for execution after interruption
are stacked by priority. The job using the central processor is at the top

of the stack. When it is interrupted (for example, to await completion of a
peripheral processor function), the next job in the stack becomes the top,
and the first job is temporarily removed from the stack. When it re-enters
the stack, the job using the central processor, along with all jobs beneath it,
are pushed down.

Blocks of central memory storage assigned to control points occupy positions
in central memory relative to the control point number to which they are
assigned. Storage assigned to control points is relocated up or down as
storage is released or required. Such relocation is possible because all
references to central memory are made relative to the reference address
assigned by the monitor routine.

The loader performs the following functions: loads absolute and relocatable
binary programs, links separately compiled or assembled programs, loads
library subprograms and links them to user programs, detects errors and
provides diagnostics, outputs a memory map, and generates overlays.

The loader is used whenever relocatable programs are transferred from an
input or storage device to central memory. Loading errors are written as
diagnostics on the dayfile. During the loading process, the loader links sub-
programs together and generates overlays as directed.

60189400 Rev. L

SYSTEM LIBRARY

AND MAINTENANCE

PROGRAMS

SYSTEM REQUESTS

60189400 Rev. L

Three types of loading are performed: normal, segment, and overlay.
Segments and overlays allow programs that exceed storage to be organized

so that portions or groups of programs may be called, executed, and unloaded
as needed.

The available system library and maintenance programs are EDITSYM,
EDITLIB and UPDATE. EDITSYM and UPDATE provide symbolic, language-
independent editing of program files, which alleviates the burden of main~-
taining large card files. A two-level editing technique permits the installation
to make modifications to standard software without affecting the standard se~
quence numbers. EDITSYM and UPDATE process symbolic card decks in
compressed format. They can compress and sequence the source cards of
one or more decks to form a program library or create a compile file from
one or more decks in a program library. Modification of program libraries
can be done independently or in conjunction with the creation of a compile file.

The system library file is created and modified through the EDITLIB routine.
This file may reside on mass storage and in central memory or on a dead-
start load tape. EDITLIB runs in a normal multiprogramming environment
and is submitted as a normal job. It can create a deadstart load tape from
any combination of the following sources: the currently operating system,

an already existing deadstart tape, and a binary input file. EDITLIB can
delete, add, or change the residence of routines in a currently operating
mass storage/central memory system library.

System requests enable the user to access certain variables in his operating
environment, to manipulate data files, request dumps, and perform input/
output functions. These requests are grouped into file action requests and
system action requests.

File action requests consist of position functions, data functions, and file
initialization functions. Position functions move files on sequential devices
forward or backward, and position files on random access devices at
specific locations. Data functions transfer data between hardware devices
and central memory. Files are readied for processing by the file initiali-
zation functions.

A system action request for a checkpoint dump causes SCOPE to record all
information relevant to the execution of the program. Execution may be re-
started from the checkpoint dump rather than the beginning of the job. This
feature is particularly useful for long jobs, which may not be run continuously
from beginning to end.

xiii ||

DAYFILE

SYSTEM DISPLAYS

I xiv

Through other system action requests the user may release or request
additional central memory or extended core storage.

The dayfile is a mass storage file that holds a running account of all control
cards, equipment assignments, error diagnostics, central and peripheral-
processor time used, and input/output routines used by the jobs in central
memory. At the end of a job printout, all dayfile messages associated with
the job are printed. The dayfile can be accessed for accounting purposes.
The latest dayfile messages are visible to the operator on one of the display
scopes.

Two console screens provide system monitor information and central memory
displays. Through the console keyboard the operator can control the operation
of the running system.

The operator can request various displays: the most frequently used are

job status, system files, and dayfile displays. The job status display pro-
vides the status of all jobs being executed, their priority, and position in

the control point stack, the last program message, and other pertinent infor-
mation. The system files display shows the status of jobs not yet being
executed. The dayfile display gives the latest dayfile messages. As new
messages are added to the bottom of the display old messages are removed
from the top.

60189400 Rev. L

SYSTEM DESCRIPTION 1

1.1
HARDWARE/
SOFTWARE
INTEGRATION

60189400 Rev. I

When the computer is deadstarted, all the peripheral processors (PP's)

are forced to read, and can be filled with programs from a system tape.
Once this has been done, each of the PP's is completely sovereign; other
components of the machine cannot force PP activity; they can neither put
information into its memory nor read information out of its memory. A PP
can be requested to receive, transmit, or process information only. (Every
PP must contain a program for receiving and responding to requests.)

A central processor (CP), though a main component from the user's view-
point, is completely in the power of every PP at all times. Any PP, by
executing one of its own instructions, can alter all the registers of a CP,
write new information into central memory (CM), or read information out of
CM. A CP, on the other hand, cannot directly affect a PP in any way (unless
the central processor exchange jump option is available).

PPO contains the monitor program (MTR) and is in permanent, overall control
of the system; the other PP's cannot perform any function not approved in
advance by MTR. A communication area in central memory is assigned to
each PP. The first word of each communication area is the input register of
the associated PP; the second word is the output register, and the remainder
is the message buffer.

PP9 is permanently assigned to the system display routine (DSD). The other
PP's, 1 to 8, are initially assigned to read their input registers over and

over. The monitor makes a request of a PP by putting a significant word into
the input register of that PP. Upon finding the request, the PP obeys it (or
determines that it cannot do so), indicates to the monitor via its output register
that it has finished, and returns to its idling state of continually reading its
input register. Thus all requests to a PP other than the monitor are com-
municated through the input register of that PP.

Each PP (other than MTR) uses its output register for requests to the monitor
and for completion status of the requests. The monitor periodically reads
the other PP output registers in turn, looking for requests, and zeros them
whenever the requests have been satisfied.

1.2
MULTI-
PROGRAMMING

1.2.1
CENTRAL
MEMORY USAGE

1.2.2
CONTROL POINTS

Although the primary task of a PP is to act on request from MTR, on
occasion a PP must request the cooperation of other PP's. Such requests
are routed through the monitor. Furthermore, a PP must request per-
mission from the monitor before using an I/0 channel. Since every PP is
capable of commecting itself to any channel, it is essential in preserving order
that only one PP at a time try to use any one channel. To avoid an attempt
by two PP's to use the same channel (which would disrupt both PP's and the
channel), the monitor maintains a list of channels and their status. Before
a PP can use a channel, it must request the monitor to assign that channel
for its exclusive use. When finished with the channel, the PP frees the
channel.

CM low core, called the central memory resident or CMR, is reserved for
system tables and programs and is never accessible to a user's CP program.
The remainder of CM is allocated by the monitor to user jobs as they are
selected on a priority basis for execution. SCOPE can supervise as many

as seven separate CP jobs.

Up to eight areas, numbered 0 to 7, are designated as control points within
central memory resident (CMR); the actual number is a configuration param-
eter within CMR. Every CP program is assigned to a control point; control
point 0 is used for system functions.

When a job is in CM, the control point area to which it is assigned includes
the following information: job name, length, starting address in CM, time
used so far, I/0 equipment assigned to job, and its control statements. The
control point area also contains an exchange package, a 16-word section
consisting of the contents of all CP registers used in executing a program.
This information is necessary to start or resume a program. The format of
the exchange package follows:

60189400 Rev. K

60189400 Rev, I

59 53 3 17 0o Words
Program A0 (Address 0
Address (P) Registers)

Reference Al B1 (Increment 1

Address (RA) Register)

Field

Length (FL) Az B2 2
Exit

Mode (EM) A3 B3 3

RA-ECST[000000 |A4 B4 4

FL-ECST [000000 |A5 B5 5

Monitor

Addresstt |AS B6 6

A7 B7 7

X0 (Operand Registers) 10

X1 11

X7 17

A central memory program can be easily relocated by moving the program in
memory and resetting the reference address (RA) in the exchange jump area.
All central processor references to central memory instructions or data are
relative to the program's CM reference address. The RA and field length
(FL) define the central memovry limits of a program (RA plus FL). TField
length is the total program length. The program address register (P) defines
the location of a program step. Each reference to memory is made to the
address specified by P + RA, In starting a program for the first time, the
monitor provides the values for RA, FL, and P in the exchange area.

T The ECS RA and FL are expressed in thousands (octal).

Tt This applies only to machines equipped with the central processor
exchange jump feature (CEJ).

1-3

1.3
FILES

1.3.1
ACTIVE FILES

1-4

SCOPE is a file-oriented system: all information contained within the sys-
tem is considered to be either a file or part of a file. Active files —those
immediately available to the system at any moment — are defined to be any
of the following:

All jobs (each job is a file) waiting to be run. This set of files is
called the job stack or input queue.

Output files from jobs which have been run and are waiting to be dis-
posed of by printing, punching, etc.

Jobs (files) presently in some state of execution.
Files currently being used by the jobs in execution.
Common files, which maintain active status by specific request.

Permanent files which are attached to a job

The SCOPE operating system maintains a file name table (FNT) in central
memory resident, This table contains one 3-word entry for each active file
in the system. The first word identifies the file and contains other infor-
mation about it. The 2nd and 3rd words which describe its status, are
sometimes called a file status table or FST entry. When the user requests
a file with a REQUEST control card or macro call or when he issues an 1/0
request referencing a file that does not exist, the SCOPE system creates an
TNT entry for the file and assigns the file to a device. Thereafter, each
time a user makes an [/O request, file status information is transmitted
between the user's FET (section 3.2) and the FNT.

The four types of active files are: input, local, output, and common. When
a permanent file is attached to a job, it becomes a special kind of local file.
As a job progresses, the job file goes through several type changes.

When a job file is read from the card reader, it is copied onto mass storage
and becomes an input file; it is not assigned to any control point. The file
name is that name given on the job control card. The file name/status table
contains a priority (from the control card) for the file which becomes the
priority for the job.

60189400 Rev. I

60189400 Rev. I

When the job is assigned to a control point, the input file becomes a local
file; and its name is changed to INPUT. The original name of the input file
is saved in a word of the control point as the name of the job. New local
files named OUTPUT, PUNCH, and PUNCHB will be established, if refer-
enced, and given disposition codes of print, punch coded and punch binary,
respectively.

INPUT, OUTPUT, PUNCH and PUNCHB are all local files on mass storage.
They are the immediate source of card input and the immediate destination
of printer output and coded and binary card output. Because several jobs
may run concurrently at different control points, several local files called
INPUT, OUTPUT, PUNCH, and PUNCHB may be in the file name/status
table simultaneously. When a local file is sought in the table, both the name
and the control point number are used to identify it.

When a job terminates, the local file called INPUT for the assigned control
point is released. Entries in the file name/status table for the local files
called OUTPUT, PUNCH, and PUNCHB for that control point are altered so
that their names are changed to the name of the job itself, which is found in
the control point area. The control point is then released.

Other local files can be created by the job. For instance, the first time a
job references a file called RASP, the system consults the file name/status
table entries for a local file of that name assigned to the job's control point.
If one does not exist, a file is immediately created, initially consisting only
of an end-of-information mark. This file is named RASP and entered into
the file name/status table as a local file assigned to that control point. When
the job terminates, all local files created in this manner are completely
eliminated from the system.

The fourth type of active file — the common file — is a local file for which
active status is maintained by a control card request, so that the file does
not disappear when the job originating it is terminated.

Example:

A job contains the control statement:

COMMON RASP.

If this control statement generates a local file called RASP, that file
does not disappear when the job terminates. The entry in the file name/
status table for the local file RASP is altered so that it no longer belongs
to any control point, and its type will be common. If RASP is assigned
to a private disk pack, however, it will be preserved on the disk pack
when the job terminates and the COMMON card will have no effect.

An attempt to declare a permanent file COMMON is illegal.

1-5

1.3.2
LOGICAL RECORDS

1-6

It is assumed that the file name/status table did not already contain

an entry for a comraon file called RASP. However, if it did contain
such an entry, when a job is processed that contains the control state-
ment COMMON RASP., file RASP would be assigned to the control point
of that job. RASP would then be available to that job just as if it were

a local file.

If a third job contained the control statement COMMON RASP. and if,
when this card was processed, it was found that the common file RASP
had been assigned to the control point of a running job, the earlier job
would have to terminate and file RASP be detached from its control point
before RASP would be available to the latest job.

To eliminate a common file like RASP from the system, a job must contain
the control statement COMMON RASP. and a later control statement:

RELEASE RASP.

When the latter control statement is processed, RASP is converted from a
common file to a local file, but not otherwise altered. When the job is
terminated, the local file RASP is destroyed.

All files within the SCOPE system, regardless of type, are organized into
logical records: for input files, through the ordering of control cards; for
output files, through the language translator or other program producing
the outpuf ; otherwise, logical record generation is up to the user.

Since the logical record concept is defined for all devices, files may be
transferred between devices without losing their structure. The physical
format of a logical record is determined by the device on which the file
resides. The physical record unit size (PRU) is the smallest amount of
information that may be transferred during a single physical read or write
operation for each device within the system. Logical records are written

as one or more PRU's, the last of which is short or zero-length. A zero-
length PRU is written if the logical record is an even multiple of the PRU size
or if a write operation was requested with no data in the buffer. A zero-
length PRU contains fewer bits than a CM word.

Coded files on 1/2-inch magnetic tape receive special treatment. Within the
SCOPE system, all coded information is carried in display code; therefore,
a conversion to external BCD must be made before writing on the tape.
Translation is character-for-character.

60189400 Rev. I

LEVEL NUMBERS

60189400 Rev. K

The display code end-of-line mark (12-bit zero byte) is converted to the
external BCD characters 16325. The display code end-of-line mark is

recognized only when it appears in the lower 12 bits of a central memory
word.

PRU Sizes (decimal)

6638 disk 64 CM words
6603 disk . 64 CM words
865 drum 64 CM words
854 disk pack 64 CM words

For magnetic tapes reference appendix I.

Related logical records within a file may be grouped by the user into an
organized hierarchy. The level number (0-17 8)T of a logical record is con-
tained in the short or zero-length PRU which terminates the record. This
PRU is the level mark. The level number is declared in the write request.
If no number is specified, a level of 0 is assigned. If, when no data is in
the buffer, a level number is specified in a write request, a zero-length
PRU containing the level number is written. A write end-of-file request
causes a zero-length PRU of level 17 (logical end-of-file mark) to be
written. A logical record of level 17 is always interpreted as a logical end-
of-file, whether or not it is of zero length, The level mark appended to each
logical record is not placed in the circular buffer when the file is.read; but it
is returned as part of the status information,

T Level number 16 should not be used for a job which includes a request for
a checkpoint dump as this level number is used in a unique way by the
checkpoint dump program.

1-7

The lowest level within a file is associated with a single logical record.
A higher level defines a set of records consisting of the logical record at
that level plus all preceding records at a lower level.

For instance, a file might be regarded as a multi-volume book; level 0
would be equivalent to a page, level 1 to a chapter, and level 2 to a volume.
In the following example, the lowest level 0 is associated with a single
logical record called a page; level 1 marks delimit a group of pages called
chapters; chapters are grouped by level 2 marks into volumes. A reference
to a logical record of level 1 includes all information between the referenced
level 1 mark and the succeeding one. Included, therefore, will be several
logical records as shown in the diagram.

Logical Record Level Mark Page Chapter Volume
1 0 1
2 1 2 1
3 0 3 I
4 0 4 2
5 2 5
6 0 6
7 0 7 3
8 I 8
9 0 9
10 0 10
11 0 11 4 o
12 1 12
13 0 13
14 2 14 °
15 0 15
16 1 16 6
17 0 17 111
18 0 18 7
19 2 19
End of Information

60189400 Rev, I

The format of the level mark varies depending on the device type on which
file resides, as follows:

Card Files

Each logical record is terminated by a card with 7,8,9 punches in column 1.
Columns 2 and 3 may have an octal integer, 00-17, to denote level number.
Level zero is assumed in the absence of punches in columns 2 and 3.

The end of information is signaled by a card with 6,7,8,9 punches in column 1,

or with 7,8,9 punches in column 1 and 17 punched in columns 2 and 3. I

Mass Storage Files and Binary Mode 1/2-inch
Magnetic Tape Files (SCOPE Standard)

Each logical record is terminated by 8 characters (48 bits) as follows:

binary zeros; reserved for future system use ‘

47 3 0

level number, in binary

If the last information in the logical record does not fit exactly into a physical
record unit, the 8-character marker is appended to the last written PRU;
otherwise, the marker is written as a single PRU of zero length.

Coded Mode 1/2-inch Magnetic Tape Files (SCOPE Standard)

Each logical record is terminated by 8 characters as follows:

blank; reserved for future system use A

47 3 0

level number, in binary

The level number is the low order 4 bits of the last character. The upper two
bits of this character are always zero except for level zero where they are
015. For example, level five would be represented by 2020202020202005 in
external BCD. Level zero would be represented by 2020202020202020 in
external BCD. If the last information in the logical record does not fit exactly
into a physical record unit, the 8-character marker is appended to the last
written PRU; otherwise, the marker is written as a single PRU of zero-length.

60189400 Rev, K 1-9

1.4
RANDOM ACCESS

1-10

Random access files can be created on mass storage devices and their
records can be read by direct addressing or sequential references. A disk
address refers to pointers to system tables. When random file processing is
requested, the disk address is returned when a logical record is written. A
disk address is accepted from the user when a logical record is read.

Generally, the disk addresses returned when the file is written are gathered
into an index. SCOPE provides a routine (IORANDM) which automatically
formats one of two types of indexes containing either named or numbered
records. In either case, the first word is an indicator of the index type:

+1 or -1. If the file contains only numbered records, sequencing of disk
addresses in the index corresponds to the record numbering; the first
address belongs to record one, the second to record two, and so on. The
index need be only n + 1 words in length, where n is the maximum number of
logical records in the file. The first word of such an index is set to + 1 the
first time the file is written.

If the file includes named records, the index contains a two-word entry for
each record. The length of this index is 2n + 1 words. The first word of the
index entry contains the record name, one to seven display code characters,
left justified with zero fill. The second word of the entry contains the disk
address of that record. If a given record has no name, the first word of its
index entry contains zero, and the record must be accessed by its sequence
number. The first word of a name index is set to -1 the first time the file is
written.

When a record is written with a name that already appears in the index, the
new record is substituted for the existing record. When a record is written
with a name that does not appear in the index, JORANDM places the new name
in the index at the lowest unoccupied position and assigns the number of that
position to the record. When there is no space in the index for a new name,
the request is rejectecd and index full status is returned.

When a record is written by number and the records for that file can be
named, the name is not disturbed.

Other forms of indexes may be defined with a central processor subroutine
which sets fields in the file environment table (FET) and locates the records
within the index.

When files contain many logical records, multiple levels of indexes can be
defined to conserve central memory space. When a multi-index file is
written, logical record disk addresses are directed to a subindex buffer.
When the buffer becomes full, the subindex itself can be written as a logical
record in the file: the subindex disk address is directed to a main, or
primary, index. The forms of the primary and subindexes can be that
supplied by IORANDM or by a user-supplied routine. They need not be the
same type.

60189400 Rev. I

1.5
FILE LABELS

60189400 Rev. I

Random files which are to endure between runs in a job or between jobs
should be assigned to private disk packs, declared as common files or
cataloged as permanent files. At the end of a run which creates such a file,
the user should close the file. The system then automatically appends to
the end of the file the [contents of the index buffer specified in the FET.
When the file is to be read, the user must open the file with an index area
specified in the FET. The system then reads the index record into the
specified area.

SCOPE system file labels are defined for files recorded on 1/2-inch mag-
netic tape only. The labels are described and designed to conform to the
Proposed USA Standard, Working Paper Magnetic Tape Labels and File

Structure for Information Interchange, produced by ISO, the International
Organization for Standardization, Technical Committee ISO/TC 97, Sub-
Committee 2. In addition to the standard SCOPE labels, an installation may
optionally choose to process tapes with a label format identical to that used
by Control Data 3000 series computers (Appendix C).

Tapes containing a system label (or optionally a 3000 series label) are
recognized as labeled tapes. All other tapes are considered unlabeled.
Label processing is not provided for unlabeled tapes. SCOPE system labels
are recorded at 556 bpi (or at a value set by an installation parameter).
Control Data 3000 series labels are recorded at the same density as the file.

All system labels are 80 characters. Labeled tapes are checked by the
system for file name, reel number, creation date, expiration date, and
edition number. Labeled tapes are protected from accidental destruction by
checking the creation and release dates in the file header label. This label
is delivered to the circular buffer for an input file, so that the program may
check it further as required. Unless the user process (UP) bit is set in the
FET, reel swapping for a multi-reel tape file is automatic. The system
executes two function. calls: CLOSER UNLOAD and OPEN REEL, Since
these calls are issued by the system, the file header label is delivered in the
FET for the first reel only.

1-11

The following terms are defined in conjunction with the SCOPE system file
labels.

Volume: Synonymous with reel of magnetic tape.
Volume Set: A collection of related volumes in which one or more files are
recorded. A volume set may consist of:
A single volume containing one file
A single volume containing several files
Several consecutive volumes containing one file
Several consecutive volumes containing several files
Tape Mark: A one-character record, 17g4, plus check character recorded

in even parity. The tape mark separates label information from file
information.

The first four characters of labels identify the type.

Type Identifier
Volume header label VOL1
Volume trailer label EOV1
File header label HDR1
File trailer label EOF1
Device header label DEV1

Label formats are described in Appendix C.

1.5.1

TAPE FILE STRUCTURE SCOPE standard system labels and tape marks establish the tape file structure
according to the following rules. Required labels are indicated by a 4-char-
acter identifier, and tape marks are indicated by asterisks.

Single-Reel File

VOL1 HDR1*...Data Blocks...* EOF1**

Multi-Reel File

VOL1 HDR1*, ., First Volume Data.,.* EOV1**
VOL1 HDR1*...Last Volume Data,..* EOF1**

1-12 60189400 Rev. T

60189400 Rev. 1

Multi-File Reel

VOL1 HDR1*,,.File A.,.*EOF1* HDR1*, ,.File B...*EOF1**

Multi-Reel Multi-File

VOL1 HDR1*...File A...* EOF1 * HDR1*..,File B...* EOV1#**
VOL1 HDR1*...Continuation of File B........... * EOV1**
VOL1 HDR1*,,. Last of File B...* EOF1* HDR1*,..File C...* EOF1**

Volume Header Label
The first PRU in the volume must be a volume header label; it may not
appear elsewhere.

File Header Label

Every file must be preceded by a file header label and every file header
must be preceded by a tape mark or a volume header label, When a
volume ends within a file, the continuation of that file in the next volume
must also be preceded by a file header.

File Trailer Label

A file trailer label is required as the last block of every file. A file
trailer must be preceded and followed by a tape mark, and if it is the
last file trailer in the volume, two following tapemarks are required.

Volume Trailer Label

When a volume ends within a file, the last PRU of the file in that volume
must be followed by a volume trailer label which must be preceded and
followed by tape marks.

When end-of-volume and end-of-file coincide the labeling configuration is one
of the following (* indicates tape mark):
...File A, . ,* EOV1* *

VOL1 HDR1** EOF1 * HDR1*...File B...
@A)) (B)

...File A...* EOF1 * HDR1* * EOV1* *

VOL1 HDR1*..,File B...
(B)

1-13

1.5.2
DISK PACK
FILE STRUCTURE

An 854 disk pack is organized into 2000, record blocks of five PRU's each.
Every RB fills a single track of the disk pack; its logical number is 10a+b,
where a is the cylinder number and b the head group number. Of the 16
sectors physically available on a track, the last (number 15) is unused; the
remainder are grouped into PRU's as follows:

PRU Sectors

0,1, and 2

6, 7, and 8
12, 13, and 14
3, 4, and 5

9, 10, and 11

O =)

Two revolutions are required to read PRU's in sequence in a record block.

Disk pack use can be either public or private. If public, it is available to
the system for writing and reading files on the same basis as a large disk
unit of the non-removable type. If private, it provides space for up to 63
files, none of which are permitted to overflow to another storage device.
When a private pack is assigned to a job (in response to an RPACK control
card), the names of the files it contains are read from the first three record
blocks into CMR, along with the record block reservation table (RBR) and
record block table (RBT) chains needed to access the files. When the job
terminates, these tables are written back onto the pack before it is logically
unloaded.

The first PRU of a disk pack contains its label, formatted as follows:

Character
Positions Description
1-4 DEV1
5 Binary zero
6-10 Julian date (yyddd in display code)
11-20 Visual number/identifier, right justified
with display code zero padding
21-30 Binary zero
31-38 Binary zero if public device; pack name, left

justified with binary zero fill, if private

60189400 Rev. I

60189400 Rev. T

Character

Positions

39-40

41-78
79-80
81-460
461-640

Description

Binary zero if public; binary count of files on pack
if private

Binary zero
Checksum of all other 12-bit bytes of PRU
RBR table

Binary zero

If the pack is public, the rest of the first record block cannot be used, and
usable space begins with the second record block (number 1).

If the pack is private, file names and RBT chains are stored in the rest of
the first record block and may extend through the second and third; usable
space begins with the fourth (number 3).

Files on a private pack can be accessed only by the job to which it is
assigned. Private pack files can be only type local (not common or output)
and must have zero disposition codes.

1-15

JOB PROCESSING 2

A job consists of one file of punch cards or card images. The first logical
record of a job file consists of the control cards which identify the programs
and data files and control the sequence of program executions (runs). Con-
trol cards specify how the job is to be processed; they determine all operations
performed on subsequent logical records of the job file.

2.1
JOB FLOW SCOPE begins processing by reading the job card. It copies the job file on .
mass storage and adds the name of the job to the list of input files.

When a control point is available for the job and the required amount of
memory is free, the job is brought to the control point through the following

steps:
L Memory is allocated; jobs already in the computer may be moved in
central memory.
° The first record (or part thereof) of the job deck (control card

record) is copied into the control statement buffer of the control
point, and a pointer is initialized to indicate the first control card.

L The name of the job file is changed to INPUT and the file is positioned
to the beginning of the second record.

L The first control statement in the buffer is executed, and the pointer
moves to the next control statement. This begins the first run within
the job. When that run is completed, the next control statement is
executed, beginning the second run. When control statements are
depleted, the job is terminated. Control cards are written in the job
dayfile as they are executed.

Each job must begin with a job card and end with a file separator card. All
control cards must appear between the job card and the first record separator.
The end of the control cards is signified by a 7,8,9 punch card (end-of-
record) or a 6,7,8,9 punch card (end-of-information) if the job consists of
control cards only.

60189400 Rev. K 2-1

2.2
CONTROL CARDS

JOB CARD

[\
]
Do

Control cards have two fields. The first contains the flag word starting in
the first non-blank column. Flag words described in this section are re-
served for the system and may not be used as a name or a program call card.
All cards with a flag word not recognized by SCOPE are treated as program
call cards.

The second field is optional; it may contain one or more parameters, sepa-
rated by any character that is not alphanumeric, not a blank nor an asterisk.
The two fields are separated by any character that is not alphanumeric nor an
asterisk. The parameter field is terminated by a period or right parenthesis
and a terminator must be present even when no parameters are specified.

All blanks are ignored in the parameter field. Comments may appear to the
right of the terminator. Characters in the range of 1 to 44 in display codes
(A-Z and 0-9) are considered alphanumeric.

n, Tt, CMfl, ECfl, Pp.t

The first control card of a job must indicate the job name, priority, central
processor time limit, and memory requirements. Fields are separated by
commas and the last field is terminated by a period. Blanks are ignored in
a job card. Fields other than n may appear in any order as they are identi-
fied by leading characters indicated above by capital letters.

n Alphanumeric job name (1-7 characters); must begin with a letter.
To assure unique job names, SCOPE replaces the last two characters
with a system generated value. If only a job name is specified,
installation-declared values are assumed for the remaining fields.

Tt t central processor time limit for the job in seconds; a maximum of
5 octal digits. Time limit must suffice for the whole job including
all compilation and execution. Value may not exceed
32767((717117g). The value of 32767, defines an infinite time:
no time limit check is performed in this case.

CMfl fl = total central memory field length of the job; a maximum of 6
octal digits. The field length (storage requirement) is rounded up to
a multiple of 100g by the system.

ECT] fl = total extended core storage field length given as the number of
1000g-word blocks required. Value may not exceed 7777g.

Pp p = priority level, in octal, at which job enters the system.
1=p= 2K_1. k is an installation option = 8; 1 is the lowest priority.

tCompatibility with job card formats used by previous systems may be
obtained at installation option.

60189400 Rev. G

SWITCH CARD SWITCH, n.

At the beginning of a job pseudo sense switches 1-6 are_set to off. Settings
may be changed and preserved at the control point for reference by a subse-
quent program within the same job. Each use of the SWITCH,n. card changes
the current status of the specified switch. For example the first SWITCH,4.
card will turn that switch on, the second SWITCH,4. card will turn it off.
Switches also may be changed by console commands OFFSW and ONSW.

MODE CARD MODE, n.

MODE is used to select exit or stop conditions for a central processor pro-
gram., The exit selections (n) are loaded into the exchange jump package.
Upon an exchange jump, the selections are stored in the central processor
and the exit occurs as soon as the selected condition is sensed., The exit

. mode is set to 7, if not otherwise specified.

n value Exit Condition
0 Disable exit mode - no selections made
1 Address is out of range because of:

Attempt was made to reference central memory or
extended core storage outside established limits

Word count in extended core storage communication
instruction is negative

2 Operand out of range, floating point arithmetic unit received
an infinite opeYrand.

3 Address or operand is out of range.

4 Indefinite operand, floating point arithmetic unit attempted
to use an indefinite operand.

5 Indefinite operand or address is out of range.

6 Indefinite operand or operand is out of range.

7 Indefinite operand or operand is out of range or address is out
of range.

Example:
MODE, 3. Selects address out of range or

operand out of range as stop conditions,

A mode zero error may occur if the program jumps to relative location zero.

60189400 Rev. J 2-3

CKP CARD

RESTART REQUEST

COMMENT CARD

EXIT CARD

CKP.

CKP causes a checkpoint dump to be taken of all files currently active at
the control point. The effect is identical to that of the CHECKPT macro
call (section 8.1), except that no parameters can be specified.

A job may be restarted from its checkpoint tape by the RESTART control
card. Section 8.2 describes the five possible card formats.

COMMENT. comments

The period must appear in this card. Characters following the period
through column 80 are entered into the dayfile and displayed. The speed
at which control cards are processed by SCOPE may prevent the comment
from being noticed by the operator. The COMMENT card does not halt job
processing.

EXIT.
The EXIT card can be used to separate the control cards for normal execution
from a group of control cards to be executed in event of error exit as listed

below:

Error Flag Cordition

(octal)

1 Time expired Job has used all CP time it requested;
any further attempts to use CP will
cause termination.

2 Arithmetic error CP error exit has occurred.

3 PPU abort PP has encountered an illegal request
such as illegal file name or request to
write outside the job field length.

4 CPU abort Central program has requested that
the job be terminated.

5 PP call error Monitor has encountered a PP call
error entered in RA+1 by a central
program.

6 Operator drop Operator requested job to be dropped.

7 Kill Set by operator or PP program to

drop a job and inhibit all output.

60189400 Rev. I

60189400 Rev. I

Error Flag

(octal) Condition

10 Rerun Set by operator to force job back
into the input queue.

11 Control card error

12 ECS parity error

13 Job card error

14 Job pre-abort Job not read correctly (e.g., check-
sum error discovered by JANUS).

15 Auto-recall error Job entered auto-recall with
completion bit set.

16 Job loop in No activity exists for a job in auto-

auto-recall recall, and completion bit is not set.

Conditions 3 and 5 can occur if a program accidentally writes in
RA+1.

If no error condition occurs but an EXIT or EXIT(S) (section 4.7) control
card is encountered, the job will terminate. If error condition 7, 10, 13,

or 14 occurs the job will terminate. If error condition 11 occurs or if a
user tries to load the output from a bad assembly or compilation, a search
is made for an EXIT(S) control card. If the search is not successful, the job
terminates; otherwise the error flag is reset and the control cards following
the EXIT(S) card are processed. Any of the other error conditions (1,2,3,
4,5,6,12,15,16) result in a search for either EXIT or EXIT(S) control card.
If encountered the card is written to the job dayfile and the control cards
following it are processed.

Example:
MYJOB, P1,T400, CM50000. Job card
REQUEST, TAPES. Request scratch tape
RUN. Compile and execute
EXIT.
DMP. Dump exchange package
DMP,1000. Dump first 10008 words of storage
7-8-9 Record separator
(program)
7-8-9 Record separator
(data)
6-7-8-9 End of information

Dumps are made only when an error condition occurs.

LOADER CARD

2.3
PROGRAM
EXECUTION

2-6

LOADER (name)

In a2 SCOPE system containing more than one loader, this card selects a
loader for the job in exccution. Name is 1-7 alphanumeric characters
chosen from a prescribed list (currently PPLOADR and CPLOADR).

The primary operations of PPLOADR (text relocation and loader table
building) are performed in the PP. The primary operations of CPLOADR
are performed in the CP.

When this control card is omitted from a job, or if no name is given, the
system selects a loader by default. The default option is defined by a system
installation parameter. An unrecognized name produces a dayfile message
and the job is terminated.

Four control cards that relate directly to the loader are discussed in the
next section: LOAD, EXECUTE, program-call-card, and NOGO. Each of
these control cards is processed by either loader in the same way.

These control cards are used to load and execute files. The SCOPE control
card format described below pertains to the EXECUTE and program call
cards. All numbers used are decimal. The card may be a unit record of up
to 80 characters including freely interspersed blanks. The general SCOPE
format is:

Name List Comment

Name and list are required fields; comment is optional. Name is a string
of one to seven alphanumeric characters beginning with a letter. Comment
is a string of Hollerith characters composed from the set defined in
Appendix A.

List contains parameters to be used by the function or program being executed.
The contents of list depend upon the specific program. If parameters are not
required, list is simply a period. Parameters may be enclosed in parentheses
or preceded by a comma and concluded by a period.

60189400 Rev. I

LOAD CARD

EXECUTE CARD

PROGRAM
CALL CARD

60189400 Rev. H

LOAD (lfn)

This card directs the system to load the file named lfn into central memory.
If 1fn is INPUT, loading begins from the current position of the file. All
other files are rewound by the system prior to loading. Loading terminates
when the end-of-information or an empty record is encountered. All loader
directives must appear in the named file before any subprogram. These
directives specify whether overlay, segment, and section processing is
required. Overlays, segments, and relocatable binary decks may be loaded
with the LOAD control card. The first record of the file lfn specifies the kind
of loading operations to be performed.

If subprograms are to be loaded from more than one file, more than one
LOAD card is needed; but the first record of the first file always determines
the kind of loading for all subsequent LOAD cards.

EXECUTE (name,pl,pz, . ,pn)
Name is the entry point of the program to be executed once loading is com-
pleted. If name is absent, the last transfer address (XFER, appendix D)
encountered is used. The parameters pi are passed to the program to be
executed.

The EXECUTE card causes completion of loading. This process includes
filling out all unsatisfied references with entry points in relocatable routines
from the system library except where inhibited by segment parameters.

For segment or overlay operations, program execution begins in the first seg-
ment or the main overlay. Subsequent segments or overlays must be loaded
by user calls from these programs.

name (pl,pz,---,pn)

Initially, the file name/status table is searched for this name. If found, sub-
programs are loaded from the named file, bypassing with a message on
OUTPUT, any routines already loaded by LOAD cards. The file is rewound
before loading. If name does not appear in FNT/FST, the system library is
searched and matching subprograms are loaded. Loading is completed; if no
fatal errors are found, execution begins at the specified name. The parameters
p; are passed to the program to execute.

Example: LOAD (BTGN) }

EXECUTE. = BIGN.

NOGO CARD

REDUCE CARD

To replace one subprogram with a subprogram of the same name {rom
another file, a possible sequence is: LOAD (HOO45)
LAU36.

The subprograms will be loaded from the file HOO45 and those of the same
name on LAU36 will be bypassed.

NOGO.

When NOGO is encountered, the loader processes the loaded program in the
same manner as for an EXECUTE card; however, the program is not exe-
cuted. This card permits mapping a program, bypassing execution, and
continuing other portions of the job.

REDUCE.

When the REDUCE card is encountered, a flag is set for the loader. After
loading and just prior to execution, the field length is reduced to the highest
word address loaded (or the top of blank common) rounded up to the next

100 (octal). The field length remains reduced until the end of the job or

until an RFL card is encountered. The REDUCE card is not honored if an
external reference is made to LOADER. The REDUCE card may be positioned
anywhere before the EXECUTE or PROGRAM CALL card. Any succeeding
runs that require a larger field length will be terminated unless an RFL card
is used to increase the field length.

Example:
LOAD(FAT) Load large program
REDUCE.
EXECUTE. Field length will be reduced
RFL(60000) Increase field length for next load
LOAD(FAT)
REDUCE.
LOAD(NOTFAT) Load more
NOTFAT. Field length reduced again

60189400 Rev. I

MAP CONTROL

24
EQUIPMENT
ASSIGNMENT

60189400 Rev.

CARDS

d

Any of the three MAP cards may appear prior to an EXECUTE or PROGRAM
CALL card, The MAP option selected by a MAP control card prevails until
end-of-job, or until changed by another MAP control card.

Default, as defined by installation parameter, prevails when a MAP control
card does not appear. The default option may be set by installation parameter
to be any one of the three options described below:

MAP(ON)

When this card is used, a map is produced after loading is completed. Pro-
grams loaded from the system library as a result of explicit control card
calls, such as RUN, COMPASS, etc, do not appear in the map.

MAP(OFT)

When this card appears, no map is produced after loading is completed.

MAP(PART)

This card is used to produce a partial map after loading is completed. The
partial map is identical to that produced by MAP(ON) except that entry
addresses are omitted.

If a file is not specifically assigned by a REQUEST card or function, the
system assigns that file to mass storage. A job need not assign the card
reader, printer or punch for normal input/output, as this is done auto-
matically by the system. In addition, certain files with special names
(OUTPUT, PUNCH or PUNCHB) will always be processed by the system
when the job is completed.

A REQUEST card or function must be given to assign a file directly to a
private device. The device assigned to the requesting control point becomes
the private source or destination of files for that job. As job control cards
are processed in order, required private equipment assignments must pre-
cede any reference to the corresponding file.

REQUEST CARD

REQUEST, lfn,dt,dc,x,y,eq.

This card declares properties of a file and requests assignment of a physical
unit. Assignment may be automatic or may require operator action; and it
may be to a specific mass storage unit by EST ordinal, or to any available
mass storage unit by equipment type and allocation style. Assignment of a
file to other than a mass storage device requires a REQUEST card or function.

Because the control cards of a job are processed in order, equipment assign-
ments must be made before the file is referenced. A REQUEST card must
have at least one parameter, and the first parameter is assumed to be lfn;
all other parameters may appear in any order. Successive blanks, commas,
periods, left or right parentheses are ignored. If a parameter is listed more
than once or is in error, a message is issued and the job is terminated.

lfn Logical file name (1-7 digits or letters beginning with a letter),
specifies name of the file to which equipment is to be assigned
and the name by which the user refers to the file.

dt Designates type of device to which file is to be assigned.
When dt is specified, the operator must assign the proper
type of device; otherwise any equipment may be assigned by
the operator. dt may take the following forms:

hh Hardware type mnemonic from the basic file
environment table (section 3.2.1). In addition,
A* may be used for mass storage if the user is
not concerned as to which mass storage device is
assigned. For mass storage, hh is equivalent to
hhaa with aa = 00. The hh specification requests
the operator to assign a device of the specified
hardware type. No other hardware type assign-
ment will be accepted.

hhaa. Designates a mass storage device where hh is as
above and aa is an optional allocation style code
(two octal digits) as listed in section 3.2.1. The
operator must assign a mass storage device of the
specified hardware type and allocation style; no
other hardware type or style will be accepted.
By using A*aa, the user indicates any mass
storage hardware type with the aa allocation style.

*hhaa Same as for hhaa, except that no operator inter-
vention is required. When *A* is used, the sys-
tem will assign any mass storage hardware type
with the allocation style aa.

*hh Same as for hh, except that no operator inter-
vention is required.

60189400 Rev. L

60189400 Rev. I

Dnnnn

PK

LO
HI

HY
MT

Meaningful only for mass storage, nnnn is
equivalent to the combination, ddaa, corre-
sponding to a hardware type mnemonic and
allocation style under the specification hhaa.
dd is the octal device type code corresponding
to hh.

Valid only for private disk packs. The format
of the request card must be REQUEST, Ifn,
PK, pname; where pname is the name of the
private pack already assigned by the operator
in response to an RPACK control card. This
form of request card does not cause a halt for
operator assignment; the assignment is made
automatically. If no pname is assigned to the
job, a dayfile message is issued and the job is
terminated.

1/2" magnetic tape at density 200 bpi
1/2" magnetic tape at density 556 bpi
1/2" magnetic tape at density 800 bpi

1/2" magnetic tape at installation default density

When the equipment type is MT and the tape has SCOPE
system labels, input tape is read at density specified in
volume header label. Output tape is written at density
specified by an installation parameter. For unlabeled
tape, a density specified by an installation parameter is

used.

zhh

z has significance only for MT, LO, HI and HY.
When z = 2, two 1/2-inch magnetic tape units are
requested, and they are used in the order
assigned by the operator. When the tape on the
first unit reaches end-of-reel, the system begins
processing the tape on the second unit while the
tape on the first unit is rewound and unloaded.
When the tape on the second unit reaches end-of-
reel, the system returns to the first unit which
should have been mounted with a new tape in

the interim. The tape on the second unit is re-
wound and unloaded. This alternating process is
repeated as long as the file is referenced. When
z = 1 or absent, and an end-of-reel occurs, the
system rewinds and unloads the unit and waits
for the unit to become ready.

Example:

REQUEST, TAPEL,2MT.
Requests two tape units for file TAPE1

REQUEST, TAPE1, AA02.

Requests operator assign 6603-I disk, outer zone for file TAPEL

REQUEST, TAPEL, *AP.

System will assign first available public disk pack to file TAPEL

REQUEST, TAPE1, *A*01.

System will assign first available mass storage unit that contains
allocation style 01 (50 PRU's per assignable unit)

de Disposition code. Optional properties of a file may be de-
clared by the disposition code. The following mutually
exclusive values are permitted; CK and MF may be used
only for magnetic tape; all others apply only to files on
allocatable devices, and disposition will be ignored if they
are used for files on other than allocatable devices, such

as tapes.

CK
MF

P8

PR

P1

P2
PU

PB

FR

Identifies checkpoint dump file.

Identifies a multi-file tape (section 3.2.1).
The 1fn must be six characters or less.

Punch file at job completion; 80 columns are
punched with no formatting of the card.

Print file on any printer at job completion;
automatically assigned to the file named
OUTPUT.

Print file on 501 or 505 printer at job completion.
Print file on 512 printer at job completion.

Punch coded file at job completion; automatically
assigned to the file named PUNCH.

Punch binary file at job completion; automatically
assigned to the file named PUNCHB.

Print on microfilm recorder at job completion;
automatically assigned to the file named
FILMPR (Driver not provided.)

60189400 Rev. I

FL Plot on microfilm recorder at job completion;
automatically assigned to the file named FILMPL
(Driver not provided.)

PT Plot at job completion; automatically assigned to
the file named PLOT (Driver not provided).

HR Print on hard copy device at job completion;
automatically assigned to the file named HARDPR
(Driver not provided).

HL Plot on hard copy device at job completion;
automatically assigned to the file named
HARDPL (Driver not provided).

X,y These two fields describe the data format conventions and the
labeling conventions for magnetic tape files. If the fields are
omitted and the file is declared to be magnetic tape, the file is
assumed to be in standard SCOPE data format with no labels.
Any one of the optional data formats described below may be
declared in either field; any one of the label declarations may
be placed in the other, except no label format may be speci-
fied with the X data format. More than one data format
declaration or more than one label declaration is considered
an error; a message will be given and the job will be terminated.

Data Formats (see Appendix I)
blank SCOPE standard

X External - SCOPE 2.0 compatible
S Strangér tape
L Long recoxd stranger tape

Label Formats

absent Unlabeled

E or N SCOPE standard labels (E and N are equivalent)
Y 3000 (or installation defined) label

eq Specific device. The eq option is available for use in an en-
vironment where the user has control over equipment assign-
ment (such as in an open shop). K is not recommended for
use otherwise. eq is one or two octal digits specifying an
ordinal in the equipment status table (EST). The system will
assign the named file to the specific device without operator
intervention. If the equipment is unavailable, the operator
is notified; the request is reprocessed until the equipment
becomes available or the operator terminates the job. The

60189400 Rev. J 2-13

RPACK CARD

eq option may be used in combination with the hhaa option,
in which case SCOPE verifies that the specific equipment
satisfies the device type and allocation style specification.

RPACK,pname,N. RPACK, pname,E. RPACK, pname, E,vrno.

This card directs the cperator to assign a private disk pack named pname.
This is not the name of any file associated with the pack, though the pack
and one of its files may, by coincidence, have identical names.

If the second parameter is N, the operator must assign a pack that is
already blank labeled. When he does so, the message TYPE IN VISUAL
PACK NUMBER will appear, and the operator types n. VRN, xxxxxx. where
Xxxxxx is the number or other identification of the physical pack. Then the
pack is assigned to the job as a private pack not yet containing any files; a
label, containing the pack name and visual number, is written immediately
on its first PRU.

If the second parameter is E, the operator must assign a pack that is already
labeled as a private pack with the name pname. K the third parameter,

vrno, appears on the card, it must match the visual identification in the

pack label. If the pack assigned by the operator fails either test, the opera-
tor is informed and the job waits until another unit is assigned or the job is
dropped. When a pack passes the tests, its files are made available to the
job, and other files can be added to it by REQUEST cards.

Examples for RPACK and REQUEST card:

1. JOBI1 creates two files TAPE1 and TAPE2 to reside on a private
disk pack named MYPACK with visual ID of N1122,

JOBL, T1000.

RUN(S)

COMMENT. THE OPERATOR SHOULD ASSIGN A BLANK
COMMENT. LABELED PRIVATE PACK AND HE SHOULD
COMMENT. TYPE IN A VRN OF N1122 TO THE FOLLOWING
COMMENT. RPACK REQUEST

RPACK, MYPACK,N.

REQUEST, TAPEL, PK, MYPACK. AUTOMATIC SYSTEM

ASSIGNMENT
REQUEST, TAPE2, PK, MYPACK. AUTOMATIC SYSTEM
ASSIGNMENT
LGO.
7-8-9

FORTRAN PROGRAM TO CREATE
FILES TAPE1 AND TAPE2

60189400 Rev. I

REMOVE CARD

COMMON CARD

60189400 Rev. I

2. JOB2 reads the two files previously created by JOB1 and creates
a third file TAPE3 on the private pack.

JOB2, T1000.
RUN(S)
COMMENT. THE OPERATOR MUST ASSIGN PRIVATE PACK
COMMENT. WITH VISUAL ID N1122 TO FOLLOWING RPACK
COMMENT. REQUEST
RPACK,MYPACK, E,N1122,
REQUEST, TAPES, PK, MYPACK.
LGO.
7-8-9
FORTRAN PROGRAM TO READ
FILES TAPE1 AND TAPE2 AND
CREATE A THIRD FILE TAPE3

REMOVE, lin. REMOVE, lin, pname.

This card requires no operator action. It removes the file named lfn from
the File Name Table provided it is assigned to a private disk pack. All its
disk space is released, and its name will not appear in the label written on
the pack at the conclusion of the job. If parameter pname appears on the
control card, a check will determine that this is the name of the pack con-
taining file 1fn.

Example:

JOB3 removes the file TAPE2 from private disk pack named
MYPACK with visual ID of N1122,

JOB3,T1000.
RPACK,MYPACK, E,N1122.
REMOVE, TAPE2, MYPACK.
7-8-9

6-7-8-9

COMMON, lfn.

If the file name, 1fn, is type common in the file name table (FNT) and is not
being used by another job, it is assigned to the current job until it is returned
or unloaded or until job termination. If the file's status is not common or if
it is being used by another job, this job must wait until the file is available.

A job which uses a common file is marked by the system as being unable to
be rerun.

RELEASE CARD

RETURN

If the file name, lfn, already appears as a local file name for the job, the
file will be assigned common status in the FNT and becomes available to any
succeeding job after the current job terminates. However, if a common file
of the same name already exists, the COMMON card will be rejected.

If the file named on the COMMON card does not appear in the FNT, an
operator message is displayed, and the job must wait until the file appears
and is available.

If the file resides on a non-allocatable device such as magnetic tape, the
equipment will be logically turned OFF until the common file is released.

If the file resides on a private disk pack, the COMMON card has no effect,
but a diagnostic is issued.

RELEASE, lfn.
With the RELEASE control card, the common file named lfn currently
assigned to this job is dropped from common status and assigned local
status in the FNT. The file is released at the end of the job.

RETURN, Ifn_,lfn_,...ln .

1 2 n

When the RETURN card appears, a CLOSE, UNLOAD is performed on each

file named. Files and equipments are returned to the system for subsequent
processing (section 3.6.1).

60189400 Rev. I

OBJECT PROGRAM-SYSTEM COMMUNICATION 3

3.1
FILE NAME
TABLE

60189400 Rev, I

The control cards direct the SCOPE system to initiate and terminate user
programs, SCOPE also supervises user program runs, controlling all
input/output operations and providing program-system interface.

These run-time functions are performed by system subroutines called by the
user in the text of his program. A comprehensive set of system macros is
available for calling subroutines and generating the tables for passing param-
eters between the system components. System subroutines and communication
tables reside in the user's field length and should, therefore, be considered
when specifying field length.

During a user program run, the system performs two types of operations:

® Input/output operations, initiated by file action requests in the
user program

® System operations, initiated by system action requests

Both file and system requests call the Central Program Control subroutine
(CPC) which provides linkage with the monitor. Before CPC can honor a
file action request, the File Environment Table (FET) must have been
established for the file to be processed.

The File Name Table (FNT) is a system table containing a three-word entry
for every active file in the system. It provides a link between the user's
FET and the system input/output routines. The FNT is protected from user
access, as it resides in low core and is outside the field length of user jobs.

The following information is contained in each FNT entry.

FILE NAME

The name of the file, If the file is created by OPEN, REQUEST, or CIO
calls, the name must be 1-7 alphanumeric characters beginning with a letter,
and it cannot include embedded blanks., Otherwise, the file may be any 42-bit
quantity in which the high-order 12-bits are not all zeros.

FILE TYPE

A number which identifies the file type: input, output, local, or common,

CONTROL POINT NUMBER

The control point to which the file is assigned. If a file is associated with a
job running at a control point, it is assigned to that control point. Otherwise
it is assigned to control point zero.

Files of type input are always assigned to control point zero. Each input file
must have a unique name. Each file assigned to any control point other than
zero must have a name which is unique among files at that control point.
Local files at control point zero need not have unique names. Each common
file must have a name unique among all common files regardless of control
point.

EQUIPMENT TYPE

A number which specifies the type of device or equipment on which the file
resides. This could be a mass storage device such as drum, disk, or disk
pack; or it could be a sequentially accessible equipment such as magnetic tape,
line printer, card reader, or card punch. Most mass storage devices are
called allocatable, since portions of the device can be allocated to different
jobs. Sequential access devices are non-allocatable. A private disk pack is

a non-allocatable mass storage device.

The system enters the equipment type in the FNT when the file is created, If
the user creates the file with 2 REQUEST control card or macro, he can
specify the type of device. If the file is created when the user issues an 1/0
function for a non-existent file, the allocatable device with the most available
space is selected. The user can specify allocation style in his FET which can
help determine the device; but he cannot specify the device itself. The device
type field in the FET consists of 6 bits for the allocation style and 6 bits for
the hardware device type. Each time a user requests an I/0 function, the
device type from the FNT is placed in the hardware device type field in the
user's FET and the allocation style is set in his FET. However, if the 6-bit
hardware device type field in the user's FET indicates a non-allocatable
device when he is opening a non-existent file, the job is terminated. The
value of the hardware device type in the FET is ignored in any other case.

60189400 Rev, I

LAST CODE AND STATUS

To perform an I/O operation, the user must set a code in the code and. status
field of his FET. If he uses a system macro, this will be done automatically.
When the system starts to process the I/0 request, it stores the code and
status from the FET in the FNT. When the I/O operation is complete, the sys-
tem stores status information in the FNT code and status field, and also sets
the completion bit (bit 0 of field). The FNT code and status is then copied to
the FET. If an end-of-record or end-of-file status was returned on the last
READ, the user must clear these bits before the next READ is issued; other-
wise CPC will not honor the next READ action requested.

SECURITY CODE

This code indicates whether the file is currently open or closed; and if open,
the code indicates whether it is open for READ, WRITE or ALTER.

PERMISSIONS
To perform certain operations on a permanent file, a user must first obtain
permission. TFor example, to write on a permanent file the user must have

either EXTEND or MODIFY permission., The current file permission is kept
in the FNT.

DISPOSITION CODE

When it is time to dispose of a file, this code indicates the action to be taken.
Normally, files with non-zero disposition are placed in the output queue.
JANUS will pick up files from the output queue having disposition codes
between 10g and 47g; other disposition codes indicate EXPORT/IMPORT and
RESPOND files. In addition, the system uses a bit in the disposition code to
indicate when the type of a file is to be changed between common and local.

If the FET length is five words, the disposition code in the FET is not
placed into FNT nor is it checked by SCOPE.

The disposition code can be set in the FNT in several ways:

When a REQUEST control card or REQUEST macro specifies a dis-
position code, the code is put in the FNT.

If the user issues any I/O request, including OPEN, for a file that
does not exist and specifies a disposition code in his FET, this code
is placed in the FNT.

If the user opens or closes an existing file with an FNT disposition
code of zero, the disposition code in his FET is placed in the FNT.

Prior to disposing of a local file, the SCOPE system checks for.
special name files such as OUTPUT, PUNCH, PUNCHB, etc.,

60189400 Rev. L 3-3

3.2
FILE ENVIRONMENT
TABLE

and if the current FNT disposition code is zero, an appropriate
disposition code will be inserted automatically in the file's FNT.

If the user opens or closes a file with a non-zero FNT disposition code, the
code is placed in his FET. In addition, for an I/O request other than an open
or close on an existing file, the disposition code from the FNT is placed in
his FET regardless of its value. Therefore, once a disposition code is set
in the FNT it can never be changed; and after every I/O operation, the FET
and FNT will contain the same disposition code.

In setting a disposition code from his FET or from a REQUEST macro, the
user should be certain the value is legal as the system will accept any value.
Normally, the user should never set a disposition code greater than 47g; nor
should he set the EXPORT/IMPORT, RESPOND or common file change bits.
These should be set only by the system.

FET ADDRESS

The relative address of the FET used for the last operation on the file.

The File Environment Table (FET) is a communication area initiated by the
user; it is interrogated and updated by the system and the user during file
processing. An FET must be declared for each file. The system section of
the FET is used by the peripheral processor input/output routines and CPC
as well as by the user program. A user section may be appended to the sys-
tem FET to centralize other information pertinent to the file. All FET's
reside within the field length of the program. The format of the system FET
is shown below.

60189400 Rev, I

Bits 59

3.2.1
BASIC FILE
ENVIRONMENT TABLE

60189400 Rev, I

47 44 35 32 29 23 17 0
logical file name (1fn) code and status
. uld ela disposition
device type prin plo| bli cIZ) de £ FIRST
0 IN
0 ouT
FNT voint d block si physical record LIMIT
pointer [record block size unit size
working storage
working storage fwa lwag 1 i
(Magnetic Tape) UBC | |MLRS
(Mass Storage) record request/return information
Efr;%fg: index length index address

EOI address

error address

Label file name (first 10 chars)
Label file name (last 7 characters) position number
edition retention cycle creation date
number
Multi-file name (6 chars) reel number

Words

10

11

12

13

To facilitate rapid changes of IN and OUT sizes, bits 18-59 of words 3 and 4
are never used; all other fields not specified are reserved for future system

use.

Logical File Name (1fn) (42 bits)

The lfn field contains from one to seven alphanumeric display-coded char-
acters starting with a letter, left justified; if less than seven are declared,

unused characters are zero-filled. This field is used as a common reference

point by the central processor program and the peripheral processor input/

output routines

The 1fn parameter declared in an FET creation macro is also used as the
location symbol associated with the first word of the FET. Thus, a
reference to lfn in the file action requests is a reference to the base address

of the FET.

3-5

Code and Status (CS) (18 bits)

The CS field is used for communication of requested functions and resulting
status between the central processor program and the peripheral processor
input/output routines. This field is set to the request code by CPC when a
request is encountered for this file. The request codes are defined in the
file action request descriptions. The code and status bits have the following
significance:

Bits 14-17 Record level number. On skip and write record requests,
this subfield is set by CPC as part of the function code. On
read requests, it is set by CIO as part of the status when an
end-of-record is read. Initially the level subfield is set to zero
when the FET is generated.

Bits 9-13 Status information upon request completion. Zero indicates
normal completion. Non-zero indicates an abnormal condition,
not necessarily an error; an OWNCODE routine, if present,
will be executed. Status codes are described under OWNCODE
routines. Initially, this subfield is set to zero when the FET is
generated.

Bits 0-8 Used primarily to pass function codes to a peripheral processor.
Function codes are cven numbers (bit 0 has a zero value). When
the request has been processed, bit 0 is set to one. When the
FET is generated, bit 0 must be set to one to indicate that the
file is not busy. Bit 1 specifies the mode of the file (0 = coded,
1 = binary). Bit1l is not altered by CPC when a request is
issued.

Bits 2-8 are used to pass function codes to a peripheral proc-
essor (file action requests).

Bits 3 and 4 may be altered by the peripheral processor routine
when the request is completed if an end-of-record (102) or

end-of-file was read (112).

The initial value of bits 2-17 should be zero.

60189400 Rev. d

SCOPE CIO Codes in Octal (Circular Buffer 1/0)

All codes indicated by - are illegal; all reserved codes are illegal. All codes are shown for coded
mode operations; add 2 for binary mode. Example: 010 is coded READ, 012 is binary READ. Upon
completion of operation, code/status in FET is changed to an odd number, usually by adding 1 to the
code. In some cases, code is further modified to indicate manner in which operation concluded.
Example: a READ function (010), at completion, becomes 011 (buffer full), 021 (end of logical record),
or 031 (end of file).

000 RPHR 054 - 130 CLOSE,NR
004 WPHR 060 UNLOAD 134 -

010 READ 064 - 140 OPEN, READ
014 WRITE 070 - 144 OPEN, WRITE
020 READSKP 074 - 150 CLOSE

024 WRITER 100 OPEN, READNR 154 -

030 - 104 OPEN, WRITENR 160 OPEN,ALTER
034 WRITEF 110 - 164 -

040 BKSP 114 EVICT 170 CLOSE,UNLOAD
044 BKSPRU 120 OPEN, ALTERNR 174 -

050 REWIND 124 -

200 Series for special reads or writes (reverse, skip, non-stop, rewrite, etc.)

200 - 230 - 254 -

204 - 234 REWRITEF 260 READN
210 - 240 SKIPF 264 WRITEN
214 REWRITE 244 - 270 -

220 - 250 READNS 274 -

224 REWRITER

300 Series used for tape OPEN and CLOSE

300 OPEN, REELNR 324 - 360 -
304 - 330 CLOSER,NR 364 -
310 - 334 - 370 CLOSER, UNLOAD
314 - 340 OPEN,REEL 374 -
320 - 350 CLOSER
354 -

400 Series reserved for CDC

500 Series to be reserved for installations

600 Series

600 - 630 - 654 -
604 - 634 - 660 -
610 - 640 SKIPB 664 -
614 - 644 - 670 -
620 - 650 - 674 -
624 -

700 Series reserved for CDC

60189400 Rev, I 3-7

Device Type (DT) (12 bits)
The device type field may be used in one of two ways:

The file may be assigned to a specific type of allocatable device when an
OPEN function is given. Such an assignment is effective only if no prior
reference to the file has been made.

The hardware type portion of the field will be set by SCOPE upon return
from any other file action request, if the FET is more than five words
long (the field length in word 2 of the FET is nonzero).

The device type field contains two 6-bit fields; the left 6 bits specify a hard-
ware device and the right 6 bits declare a type within the device. When the
code is 00, SCOPE selects the most easily accessible allocatable device.
Other codes are showa below in octal:

Hardware Device Allocation or Recording Technique

AA 01 6603-1 disk 1T 00 system default, same as 03

01 inner zon 1
. eony }alternate

02 outer zone only sector halftrack

03 both zones

T04 both zones .
} sequential

T -
05 inner zone only sector fulltrack

T06 outer zone only
07 CDC reserved
10 eight sector allocation (RESPOND)
11-77 CDC reserved
AB 02 6638 disk 00 system default, same as 01
01 alternate sector halftrack
02 CDC reserved
03 same as 01
04-07 CDC reserved
10 eight sector allocation (RESPOND)
11-77 CDC reserved

Tem 03 data cell

AC 04 6603-1I diskiT xx same as for 6603-I

-- 05,06 CDC reserved

AP 07 3234/854 disk 00 system default, same as 03
pack drive 01-02 CDC reserved

03 alternate triplets of sectors, one track
04-77 CDC reserved

TCodes are defined but supporting software is not provided by SCOPE.

T16603-1 disk is a basic 6603 with or without field option 10098 (disk speedup)
installed; 6603~II is a 6603 with both field options 10098 and 10124 (speedup
augment) installed.

60189400 Rev, I

60189400 Rev. I

TAF
TAE
AD

TWT
TR
fTp

LP
L1
L2

CP
DS

fGae
tHC
TrMm
TpL

Hardware Device Allocation or Recording Technique

10
11
12

13-17
20

21-27
30-37

41
42-43
44
45
46-47
50
51
52
53-565
56-57
60
61-65
66-67
70
71
72
73
74
75
76-77

814 disk file

3637/863 drum

3637/865 drum 00 system default, same as 03

01-02 CDC reserved
03 alternate triplets of sectors,
one halftrack
04-77 CDC reserved

CDC reserved

ECS 00 normal system allocation

CDC reserved

reserved for

installations, mass

storage only

60x 1/2-inch 7- (Right 6 bits in binary)

track, magnetic xxxx00 HI density 556 bpi

tape xxxx01 LO density 200 bpi
xxxx10 HY density 800 bpi
xxxx11 CDC reserved
xx00xx TUnlabeled
xx01xx SCOPE standard label (USASI)
xx10xx alternate label
xx11lxx CDC reserved
00xxxx SCOPE standard data format
0lxxxx X data format
10xxxx S data format

1-inch magnetic tape 1lxxxx L data format

CDC reserved

paper tape reader

paper tape punch

reserved for installations

501, 512, 505 line printer

501, 505 line printer

512 line printer

CDC reserved

reserved for installations

405 card reader

CDC reserved

reserved for installations

415 card punch

6612 keyboard/display console

252-2 graphic console

253-2 hard copy recorder

254-2 microfilm recorder

plotter

reserved for installations

T Codes are defined but supporting software is not provided by SCOPE.

T Codes 4000~7777 require a device assigned by REQUEST card or function
before file is opened.

Random Access (r) (1 bit)

The r field is set to cne if the RFILEB or RFILEC macro is used; otherwise,
r is zero. This field indicates a random access file and that record position
information should be returned. If the file does not reside on a random access
device, the r field is set to zero when the first reference is made to it.

Release Bit (n) (1 bit)

A release bit set to one when a file action request is issued has the following
effects for read and skip operations; it is meaningless on any other operation.

After a read or a skip forward operation, record blocks will be released.

User Processing (UP) (1 bit)

The UP bit is set to one when the calling program is to be notified when an
end-of-reel condition is encountered during a 1/2" magnetic tape operation.
If the field is set to zero, tape switching proceeds automatically without
notification to the calling program; the function in process when end-of-reel
is detected will be completed on a subsequent reel of tape.

When the UP field is set to one and an end-of-reel is detected on 1/2'" mag-
netic tape, the end-of-reel status is set, 028 in bits 9-13 of the code and
status field. This is the only point at which the end-of-reel status is re~
turned.

All functions that do not transfer data from the circular buffer will be com-
pleted; those which transfer data may be re-issued as indicated by examination
of the buffer pointers. CPC detects the end-of-reel status and transfers to

the EOI OWNCODE routine, if present. At this juncture, the calling program
may perform any action subject to the following restrictions:

CLOSER and OPEN, REEL functions must eventually be issued for the
file in that order.

No file action requests other than CLOSER and OPEN, REEL may be
issued for a labeled tape file.

The following decision table indicates action taken by the system and per-
mitted in the CP program.

3-10 60189400 Rev. I

60189400 Rev. I

End-of-Reel Detected

Labeled Tape Y[N|Y |N

Up bit Set N[(N]Y |Y

Automatic switching of tapes with SCOPE labels. CP program is not
aware of the operation. Control returns to the CP program after the
request obstructed by the end-of-reel condition has been completed on
the new tape.

Automatic switching of tapes without SCOPE labels; otherwise as in 1.

OWNCODE routine entered, if present. Only CLOSER and OPEN,REEL
requests may be issued, in that order. These requests should be issued
with recall to simplify processing. When the OPEN, REEL request is
issued for an input tape, the system will deliver the file header label for
the new reel to the circular buffer.

OWNCODE routine entered, if present. Any file action request is
honored. Thus, the user may effectively put his own labels at the
beginning or end of the tapes. Eventually a CLOSER function must be
issued for the current reel of tape to terminate processing. Also,
eventually an OPEN,REEL request must be issued for the subsequent
reel of tape to restore the system to its proper status. If data is written
prior to issuing the OPEN,REEL function for the new reel of tape the
OPEN,REELNR option should be used so that this data is not overwritten.

The OPEN function delivers an input label only if labels are declared on
the REQUEST card or function.

Routines which should be executed before and after the first volume file
header label and the first volume trailer label may be written before and
after the OPEN function or the file. Routines which should be executed
before and after the last volume file trailer label may be written before
and after the CLOSE function for an output tape. For an input tape such
routines may be written in conjunction with the OWNCODE routine which
processes the end of information status 0lg in bits 9-13 of the code and
status field.

Error Processing (EP) (1 bit)

The EP bit is set when the calling program is to be notified of error conditions.

Generally if EP=0, the job is terminated. When labeled tape is checked,

however the operator can terminate the job (DROP) or continue it (GO).

3-11

Error Bypass (EB) (1 bit)

Reserved for future use

Absolute Index (AI) (1 bit)

Reserved for system use., I Al=1, the request/return information field will
contain the record block and PRU address of the logical record. This bit
should be set only by EDITLIB.

DISPOSITION CODE (dc) 12 bits
The value in this field indicates the disposition to be made of a file when the

job is terminated or the file is closed. This code has no effect if the file
resides on a private disk pack or is a permanent file.

Mnemonic Value (Octal) Disposition Default File Namef
tSC xx00 Scratch -
CK xx01 Checkpoint -
MF xx02 Multi-file tape -
TSV xx04 Save -
PU xx10 Punch Hollerith PUNCH
PB xx12 Punch Binary PUNCHB
P8 xx14 Punch 80 Columns -
TTfFR xx20 Film Print FILMPR
TTfFL xx22 Film Plot FILMPL
TTTHR xx24 Hard Copy Print HARDPR
TffHL xx26 Hard Copy Plot HARDPL
T1iPT xx30 Plot PLOT
PR xx40 Print (501,505,512) OUTPUT

TA file with the specified name will automatically be assigned the corre-
sponding disposition code value at job completion.

TTMnemonic is defined but supporting software is not provided by SCOPE,

TTTscope recognizes mnemonic and its value, but does not provide drivers.

3-12 60189400 Rev. K

Mnemonic Value (Octal) Disposition Default File Namet

P1 xx41 Print (501, 505 only) -
P2 xXx42 Print (512 only) -
- XXTX Reserved to Installation -
- x1xx Change common file -
- 2XXX RESPOND file -
- 4xxx EXPORT/IMPORT file -

All other codes are reserved to the system.

Length of FET (f) (6 bits)

The system FET length is determined as follows: FET first word address +
5+ ¢ = last word address + 1. The minimum FET length is five words

(2= 0). If the minimum FET is used, only the logical file name, code and
status field, FIRST, IN, OUT, and LIMIT are relevant. No other field will
be set or checked by SCOPE. A length of six words (£= 1) is used if a
working storage area is needed for blocking/deblocking. A length of eight
words (£= 3) is used if the r bit is set, indicating an indexed file. Length
is nine words (£= 4), if OWNCODE routines are declared. The maximum
system FET length is 13 words (£ = 8). The maximum size is used if a
labeled tape file is declared.

FNT Pointer (12 bits)

The FNT pointer is set by SCOPE, upon return from a file action request,

to the location of the file in the FNT/FST. The pointer is placed in the FET
to minimize table search time and does not affect the program. The pointer
will not be set if a minimum FET is used. (FNT is discussed in section 3.1)

Physical Record Unit Size (PRU) (15 bits)

The physical record unit size of the device to which the file is assigned is
returned in this field at OPEN time. It is given as the number of central
memory words. The PRU size is used by CPC to determine when to issue
a physical read or write. PRU size will not be returned if a minimum FET
is used.

TA file with the specified name will automatically be assigned the corre-
sponding disposition code value at job completion.

60189400 Rev. I 3-13

Record Block Size (15 hits)

If the file resides on an allocatable device, the size of the device record
block is returned in this field at OPEN time. It is given as the number of
physical record units in a record block. If the number of PRU's is not de-
fined or is variable, the field is set to zero. Record block size is not re-
turned if a minimum FET is used.

FIRST, IN, OUT, LIMIT

Data is transmitted in physical record units, the size of which is determined
by the hardware device. For example, the 6603 disk has an inherent PRU
size of 64 CM words; binary mode magnetic tape files are assigned a PRU
size of 512 words.

For each file, the user must provide one buffer, which can be any length
greater than a PRU size. This is called a circular buffer because it is
filled and emptied as if it were a cylindrical surface in which the highest
addressed location is immediately followed by the lowest.

The FET fields FIRST, IN, OUT and LIMIT control movement of data to
and from the circular buffer.

FIRST and LIMIT never vary; they permanently indicate buffer limits to the
user and to SCOPE. During reading, SCOPE varies IN as it fills the buffer,
and the user varies OUT as he removes data from the buffer. During
writing, the user varies IN as he fills the buffer with data, and the system
varies OUT as it removes data from the buffer and writes it out -— the
program that puts data into the buffer varies IN, and the program that takes
it out varies OUT. The user cannot vary IN or OUT automatically except
when using READIN and WRITOUT functions; he must do this within the pro-
gram by inserting a new value into lfn + 2 (IN) or lfn + 3 (OUT). For the
user's as well as for the system's convenience, the words containing IN

and OUT contain no other items; this eliminates the need for masking
operation.

The system dynamically checks the values of IN and OUT during data trans-
fers, making continuous read or write possible.

If IN = OUT, the buffer is empty; this is the initial condition. I IN > OUT,
the area from OUT to IN - 1 contains available data. If OUT > IN, the
area from OUT to LIMIT - 1 contains the first part of the available data,
and the area from FIRST to IN - 1 contains the balance.

3-14 60189400 Rev, 1

60189400 Rev. I

To begin buffering, a READ function may be issued. SCOPE will put one
or more PRU's of data into the buffer beginning at IN, resetting IN to one
more than the address of the last word filled after each PRU is read. Data
may be processed from the buffer beginning with the word at OUT, and
going as far as desirable, but not beyond IN - 1. The user must then set
OUT to one more than the address of the last word taken from the buffer.
He sets OUT = IN to indicate that the buffer is empty.

When a READ request is issued, if the buffer is dormant (no physical read
occurring), CPC determines how much free space the buffer contains.

If OUT > IN, OUT - IN words are free. If IN > OUT, (LIMIT - IN) +

(OUT - FIRST) words are free. The system subtracts 1 from the number of
free words, because it must never fill the last word; this would result in

IN = OUT, which would falsely indicate an empty buffer. If the number of
free words, minus 1, is less than the PRU size, CPC does not issue a
physical read request; control is returned normally.

The example below illustrates the way IN and OUT pointers are used.
Speed of operation is not considered and simultaneous processing and physical
1/0 is not attempted.

The initial buffer pointer position is:

FIRST = BCBUF
IN = BCBUF
OUT = BCBUF
LIMIT = BCBUF+500

The user issues a READ with recall request.

Neglecting the possibilities of an end-of-record or end-of-file, the
system reads as many PRU's as possible (if PRU size is 64 words,
7 x 64 = 448 words) and leaves the pointers:

FIRST = BCBUF

IN = BCBUF+448

OUT = BCBUF

LIMIT = BCBUF+500

3-15

The user is processing items of 110 words. He takes four items from
the buffer, leaving the pointers:

FIRST = BCEUF

IN = BCEUF+448

OUT = BCEUF+440

LIMIT = BCEUF+500
The user issues another READ request, since he knows the buffer does
not contain a complete item. The system is aware that IN > OUT, so

that the vacant space amounts to LIMIT - IN + OUT - FIRST = 492 words;
since it must not fill the last word, it must read fewer than 492 words.

The nearest lower multiple of 64 is 7 x 64 = 448, so it reads 52 words
into IN through LIMIT - 1, and then 396 more words into FIRST through
FIRST + 395. It then resets IN so that the pointers look like:
¥FIRST = BCEUF
IN = BCBUF+396
OUT = BCEUF+440
LIMIT = BCBUF+500
The system has just used the circular feature of the buffer; now the user
must do so. The next time he wants an item, he takes the first 60 words
from OUT through LIMIT - 1, and the remaining 50 from FIRST through
FIRST + 49. Then he resets OUT, making the pointers:
FIRST = BCEUF
IN = BCEUF+396
OUT = BCEUF+50
LIMIT = BCEUF+500
On input, this can continue indefinitely, with OUT following IN, around the
buffer. The system stops on encountering an end-of-record or end-of-file,
and sets the code and status bits accordingly. The system may, or may not,
have read data before the end-of-record, so it is up to the user to examine

the pointers and/or process the data before taking end-of-record or end-of-
file action,

3-16 60189400 Rev. I

word 7

60189400 Rev. I

In writing, the process is similar, but the roles are reversed. The user
puts information into the buffer and resets IN; and when he calls the system,
it removes information from the buffer and resets OUT. For writing, the
system removes data in physical record units and empties the buffer if
possible. The user must be careful not to overfill the buffer; IN must not
become equal to OUT. During the process of emptying the buffer, SCOPE
resets OUT after each PRU has been written and checked for errors.

Working Storage Area

The two fields in word 6 of the FET specify the first word address (fwa) and
last word address + 1 (lwa + 1) of a working storage area within the program
field length. Logical records may be deblocked into or blocked from this
area into the circular buffer. (See READIN and WRITOUT.)

File Indexing Fields

Words 7 and 8 are used for communication between the pgripheral processor
input/output routines and the running program depending on the device and
file type.

For magnetic tapes with S or L data format, the structure of word 7 of the
FET is:

59 29 23 17 0

UBC MLRS

UBC (Unused Bit Count) Bits 24-29

The UBC field is used for a file declared to have either S or L format.
For a READ or READSKP function, SCOPE will store into this field the
number of low-order unused bits in the last data word of the record.
The UBC field is not used during a READN request., TIor a WRITE,
WRITER or WRITEF function, SCOPE will read the contents of UBC and
adjust the length of the record accordingly.

For example, to write a single record of 164 decimal characters, the
data length is 17, to the nearest CM word. The number of low-order
unused bits in the last word would be 36, The user would set UBC = 36,
set IN and OUT pointers to reflect 17 words of data, and then issue a
WRITE or a WRITER.

SCOPE does not use the UBC field during a WRITEN request. UBC may
range from 0 to 59, but will always be a multiple of 12 when set as a
result of a read operation, If it is not a multiple of 12 for a write
request, SCOPE will truncate the value to the nearest multiple of 12: if

3-17

3-18

UBC is 18, SCOPE will execute as though it were 12, and if UBC is 6,
SCOPE will execute as though it were 0. The field in the FET remains
unchanged.

MLRS (Maximum Logical Record Size) Bits 0-17

The MLRS field contains the size of the largest logical record to be
encountered (considered as valid when either reading or writing) when
the S or L tape format is used. The size is given in number of CM
words.,

The MLRS field is required for all S and L tape operations; therefore, a
7-word Fet is mandatory.

For S tape format, if MLRS = 0, the value of the maximum PRU is
assumed to be 512 words. For L tape format, if MLRS = 0, the
assumed maximum PRU is LIMIT - FIRST - 1 for standard reads and
LIMIT - FIRST - 2 for READN.

For mass storage random files, the format of word 7 of the FET is:

59 29 0
record request/
return information

The file indexing fields (record request/return information, record number
index length and index address) are used for communication between the
peripheral processor input/output routines and the CP programs. Index
address and index length fields are declared when the FET is generated; the
index buffer must be within the program field length, The record request/
return information field is set to zero when the FET is generated. Both the
indexing functions and the peripheral processor input/output routines set the
field during random file processing.

For other than the SCOPE indexing method, the following information is
pertinent. At the start of writing a new logical record, if the random access
bit and the record re»quest/remrn information field are non-zero, the latter
field is assumed to contain the address of a location within an index. The PP
routine inserts into that location (in bits 0-23) the PRU ordinal (starting from
1) of the logical record. To read the record again, the random access bit
should be set to non-zero and the PRU ordinal should be entered in the FET
in the record request/return information field.

60189400 Rev. I

60189400 Rev. I

OWNCODE Routines

Addresses of user-supplied routines may be given in the FET. These
routines are executed by CPC as indicated below. A zero value indicates
that no routine is supplied.

An OWNCODE routine should be set up like a closed subroutine with execution.
beginning in the second word of the routine. CPC calls an OWNCODE routine
by copying the exit word of CPC into the first word of the OWNCODE routine,

putting the contents of the first word of the FET into X1, and branching to

the second word of the OWNCODE routine.

Termination of an OWNCODE routine by a branch to its first word causes a
branch to the point in the program to which CPC would have returned if the
OWNCODE routine had not been called. The A, B, and X registers may
have been changed by CPC before control gets back to the routine that called
CPC. Therefore, an OWNCODE routine which is terminated by a branch

to its first word should not rely on passing information té6 the main program
in the registers.

EOI Address Field

CPC enters the end-of-information (EOI) routine under the following
circumstances:
Bits 9-13 of Code and Status:

01 End-of-information encountered after forward operation or
beginning-of-information after backward operation

02 8 End-of-reel reached during magnetic tape forward operation

Just before entering an end-of-information OWNCODE routine, CPC zeros
bits 9 and 10 of the first word of the FET. However, as the routine is
entered, X1 still contains the first word of the FET as it appeared before
those two bits were zeroed.

Error Address Field

This field specifies an address to receive control if an error condition occurs
after a file action request. The FET code and status field will reflect the
error condition. If processing can continue, the error routine should exit
through its entry point; otherwise, an ABORT request may be issued.

If the error address field is zero, the run continues normally. The FET

code and status bits reflect the error condition upon normal return to the
program.

3-19

Bits 9-13 of Code and Status (values are octal):

04 Irrecoverable parity error on last operation, or lost data on
write,

10 When reading from magnetic tape, physical record size
exceeds circular buffer or maximum allowable PRU size
(MLRS for S and L tapes). When writing to S or L magnetic
tapes, the FET is less than 7 words, or an attempt is made
to write a noise record. When writing to mass storage, all
mass storage space meeting the constraints imposed by the
file (allocation style and/or equipment number) is in use or
otherwise unavailable.

20 OPEN function redundant.
21 CLOSYX. function redundant.
22 Illegal function.

23 Index full.

24 FNT full.

25 An attempt was made to read or write record number n of a
random file, but the index of the file is full.

26 An attempt was made to read a named record from a random
file, but the name does not appear in the index.

27 An attempt was made to write a named record on a random file,
file, but the name does not appear in the index, and there is
no room to add a new name,

30 Buffer argument error.

31 A READ or SKIPF was attempted beyond EOI.

32 File name does not meet the requirements of section 3.2.1.
If both EOI and error routine execution are needed, the error routine is
executed. Just before entering an error OWNCODE routine, CPC zeros bits

11-13 of the first word of the FET. However, as the routine ‘_is entered, X1
contains the first word of the FET as it appeared before those bits were

zeroed.
3.3
LABELED
TAPE FILES The label macro with the following format specifies information stored in

the file header label (appendix C).

Ifn LABEL fln, ed, ret, create, reel, mfn, pos

3-20 60189400 Rev. I

3.3.1
MULTI-FILE TAPES

60189400 Rev. J

File label name (fln). 17 alphanumeric display code characters starts with
letter, left justified; if less than 17, it is binary zero-filled. The file label
name ensures the correct file is referenced. The file is checked when
opened if labeled tape REQUEST card or function is specified.

Edition Number (ed). 2 characters stored in field 8 of file header label for
output tape and verified for input tape. If omitted, 01 is written in output
tape label and FET, and no checking is done for an input tape.

Retention Cycle (ret). 3 digits specify number of days a tape is to be
protected from accidental destruction. This field 12 is added to value of
creation date to obtain expiration date written on output tape label or verified
for input. When ret is 999, an expiration date of 99999 establishing perman-
ent retention is placed in the tape label.

Creation Date. First two characters specify year, remaining three Julian
day within year. Stored in field 10 of file header label for output tape and
verified for input tape. If omitted, today's date as stored in SCOPE system,
is written in this format in label output tape and in FET. For input tape,
this field is read from label and stored in FET.

Reel Number. 4 characters stored in field 5 of the file header label for
output tape and verified for input tape. If omitted, 0001 is written in output
label and FET. For each reel, this field is increased by one at conclusion of
processing for file trailer label and tape mark is written on the tape. When
file is closed, this field is set to 0001.

Multi-file Name (mfn); left justified alphanumeric display-coded characters

starting with a letter; if less than 6 characters, binary zero-filled. Tield 4

of the file header label identifies all files of a multi-file volume and must be
the same for all files on a volume. If this field is omitted, only a single file
may be generated or read in a volume set. Tapes with Y labels do not have

the multi-file capability.

A multi-file tape must be declared by stating its disposition on a REQUEST
card/function; the multi-file name is given as the 1fn, for example:

REQUEST, mfn,dt, MF,x.
Only one file on a multi-file tape may be open at any given time.

Position Number (pos), 3 digits; ignored unless a multi-file name is speci-
fied. If it is absent for a multi-file output tape, the file is assigned in
sequence in which it is written and this position number is returned to FET.
Overwriting a file on a multi-file volume set destroys the remaining files.
If absent for a multi-file input tape, the value determined in the search for
the file is stored in FET,

3.4
FET CREATION
MACROS

3-22

System macros in the COMPASS language facilitate generation of the system
FET, as follows:

The subfields WSA, DTY, DSC, UPR, IND, OWN, LBL, EPR, UBC, MLR)
are order-independent: within the subfield, order is fixed. Upper case char-
acters designate subfield content, lowér case characters indicate parameters
to be supplied by the user. All parameters except 1fn, fwa, and f are optional.

Coded File - Sequential

Ifn FILEC fwa, f, (WSA = addr_, lw), (OWN = eoi, err), LBL, DTY = dt,
DSC =dc, UPR, EPR, UBC = ubc, MLR = mlrs

Binary File - Sequential

Ifn FILEB fwa, f, WSA = addr_, 1,), (OWN = eoi, err), LBL, DTY = dt,
DSC = de, UPR, EPR, UBC = ubc, MLR = mlrs

Coded File - Random

lfn RFILEC fwa, f, (WSA = addr,, 1), (IND = addr;, 1),
(OWN = eoi, err), LBL, DTY =dt, DSC = d¢, UPR,EPR

Binary File - Random

lfn RFILEB fwa, f, (WSA = addr_, 1), (IND = addr;, 1,),
(OWN = eoi, err), LBL, DTY = dt, DSC = dc, UPR,EPR

1fn file name

fwa substituted in FIRST, IN, and OUT

f length of circular buffer + 1 (fwa + f is substituted in
LIMIT)

WSA Working storage area parameters
addry, first word address of working storage area

1w addry + 1y = (last word address + 1) of working storage
area

IND Index buffer parameters
addr; first word address of index buffer

1 length of index buffer

60189400 Rev. 1

OWN OWNCODE routines

eoi end-of-information address

error error address
DTY Device type parameter

dt 12-bit code described in FET field descriptions
DSC Disposition code parameter

de 12-bit code described in FET field descriptions
UPR User specifies processing at end-of-reel

LBL Label information will follow. The LABEL macro which provides
: label information, must be written immediately following the
FILE macro to which it pertains.

EPR User specifies handling of error conditions.

UBC Unused bit count
ubc 6-bit code described in FET field descriptions
(S and L tapes only). It causes the generation of a 7-word
FET which is mandatory for S and L tapes.

MLR Maximum logical record size
mlrs 18-bit code described in FET field descriptions
(S and L tapes only). It causes the generation of a 7-word
FET which is mandatory for S and L tapes.

Examples:

To create a minimum FET for the standard INPUT file:
LBUFFER EQU 65
INPUT FILEC BUFFER, LBUFFER

To create an FET for a binary random file:

LBUFFER EQU 65
LINDEX EQU 25
FILEABC RFILEB BUFFER, LBUFFER, (IND = INDEX, LINDEX)

60189400 Rev. I 3-23

To create an FET for a labeled tape file with user processing at end-of-
reel condition. CWNCODE routine is supplied:

TAPE1l FILEB BUFA, LBUFA, LBL, UPR, (OWN=PROCEOR)
TAPE1 LABEL SORTINPUTTAPE, 32, 90

To create an FET for a list file. OWNCODE routines are supplied
and the working storage area is used:

PRINT FILEC BUFB, LBUFB, (WSA=LINE, 14), DSC=40B,
(OWN=ENDING, ERRORS)

To create an FET for a file to be written on a 6603 Disk, using only
inner zones:

FILE1l FILEB BUFD, LBUFD,DTY=0101B

3.5

CENTRAL

PROGRAM CONTROL

SUBROUTINE (CPC) The central program control subroutine (CPC) provides the linkage between
user programs and the SCOPE system. All file action requests and system
action requests are processed by the CPC library subroutine which is loaded
with the user program within the field length of the job. The program
communicates with CPPC through macro requests and the file environment
table (FET). Communication with SCOPE is handled by CPC setting and
checking RA + 1.

CPC may also cause the execution of one or more user subroutines for
which addresses are specified in the FET. Such a subroutine is entered at
the address given in the FET + 1. The exit from the CPC is stored at the
OWNCODE routine given in the FET; (X1) = the first word of the FET.

A normal exit from CPC returns control to the object program at the point
following the macro request. A normal exit is made if the request is honored
and no error conditions occur. X1 contains word 1 of the FET upon exit if
the status is other than request completed. CPC saves and restores all
registers except Al, A6, X1 and X6.

3.5.1
CALLING SEQUENCE Format of the calling sequence to the central program control subroutine:

59 41 39 29 17 0
b RJ CcPC

Yyy nr z

5-24 60189400 Rev. L

RJ Return jump instruction
CPC Entry point to the CPC subroutine
n= File action request

yyy Display-coded name of the PP program to be inserted
by CPC in RA + 1 or one of the following:

000001 if only a file RECALL is wanted

000007 for CLOSE or EVICT

000004 for OPEN

000002 for READ or WRITE (without end-of-record)
000003 for other functions

X SAl <base address of FET>
Z Request code
n =1 System action request
yyy Display-coded name of the called PP program
X not relevant
Z parameters as required
r=1 Issue request and enter RECALL
r =0 Issue request and return control to the program

A file action request to the SCOPE monitor is formatted by CPC in RA + 1
as follows:

59 41 39 17 0
yyy Olr base address of FET

A system action request to the SCOPE monitor is formatted in RA + 1 as
follows:

59 41 39 35 0

yyy 1z Z

z appears in the buffer code and status field of the FET.

Bits not specified in the calling sequence are reserved for future system use.

60189400 Rev. I 3=25

3.6

SYSTEM
COMMUNICATION
MACROS

3.6.1
FILE ACTION
REQUESTS

REQUEST

3-26

In the following descriptions the system macro is followed by the macro
expansions.

File action requests result in a return jump to the central program control
subroutine. Subsequent actions depend on the state of the file. An OWNCODE
routine may be executed and/or a request to SCOPE may be posted. File
action requests will be posted but not honored if the EOI or error bits are

set and OWNCODE addresses are present where a call is issued to CPC.

In either case, control returns to the calling program after SCOPE accepts
the request if the recall bit, r, is equal to zero, or after SCOPE completes
the request if r is equal to one. If the optional recall parameter is non-blank,
r is set to one.

REQUEST param

59 41 39 29 17 0
RJ CPC

REQ 11 param

With the REQUEST function, a CP program can assign equipment during
execution without requiring a REQUEST control card. param is the first
word address of a two-word list of parameters, as shown below.

59 47 35 28 23 17 11 0

logical file name status

eq a |pydax de dt

The values for de and dt are given in section 3,2.1 (Basic File Environment
Table). The 4-bit parameter pygx applies only when dt specifies 1/2-inch
magnetic tape. p and ¢ are interpreted only if dt = 4000, 4001, or 4002,
otherwise the corresponding entries in dt override these two parameters.

y is always interpreted. x is currently not interpreted. The meaning of

pygx is:

60189400 Rev., L

External tape

il

SCOPE tape

2 tapes

1 tape

SCOPE system labels for this file
Unlabeled

K QL <9< <9 T v
] 1] 1}
< A - s =T

il

Existing file

New file

»
]

The 1-bit parameter, a, has the same effect for mass storage assignment as
the * preceding the dt on the REQUEST card (section 2.4). If a = 0, operator
action is requested. If a =1, assignment is automatic. The eq field speci-
fies the EST ordinal of the device to which the file is to be assigned. If dtis

. also specified, the type must match that of the EST entry. If eq is specified,
no operator action is required regardless of the value of a.

If the 1fn designated by REQUEST parameters is already associated with a
file, the REQUEST function is ignored and control is returned to the calling
program. Therefore, the REQUEST function should be issued prior to any
reference to the logical file name, since a later reference to a nonexistent
Ifn will cause the name to be associated with an empty file on a mass storage
device. The status field should contain zero when the REQUEST function is
issued. Bit 0 is set to one when the function is completed. In addition, the
following octal values may be returned in bits 9-13 of the status field.

22 Illegal function; REQUEST function was issued without the
recall bit.

23 Device type of specified EST did not match dt or automatic
assignment indicated for a non-allocatable device.

24 FNT is full.

26 No equipment is available; requested equipment does not exist

in the configuration or all equipment of this type is already
assigned to this control point.

30 Duplicate file name, file already assigned.
OPEN OPEN Ifn,x,recall
59 47 41 39 29 17 0
SAl 1fn RJ CPC
000004 Oir z

60189400 Rev. L 3=27

The OPEN function readies the file for processing. The x parameter specifies
the operation to be performed: READ, WRITE, READNR, WRITENR, ALTER,
ALTERNR, REEL or REELNR. The OPEN function causes information to be
returned to the user via the FET,

OPEN will not reset the buffer pointers; the user is responsible for correctly
setting the pointers.

This function is optional except in the following cases:
Indexed file: The OPEN function is required to read the index into

the index buffer.

File recorded on 1/2-inch magnetic tape with standard SCOPE system
labels: The OPEN function is required to process the label and position
the tape. The label is delivered to the circular buffer for an input file.

Device type other than 0000 is to be assigned to the file.
x = READ (Z = 140)

If the file has a system label, it is read into the circular buffer and positioned
at the first data record. If the file does not exist, an end-of-information
status is returned. The file may be read only until it is closed.

x = WRITE (Z = 144)

If the file has a system label, it is written using the parameters in the FET.
The file remains positioned after the tape mark following the tape label. The
file may be read and written until it is closed.

x =ALTER (Z = 160)

If the file has a system label, it is read into the circular buffer and the file is
positioned at the first data record. If the file does not exist, an end-of-
information status is returned. The file may be read and written until it is
closed.

A file is normally rewound when the OPEN function is issued. If it is not to
be rewound, options of x may be issued:
x = READNR (Z = 100) Open as in READ; do not rewind.

x = ALTERNR (Z = 120) Open as in ALTER; do not rewind. Security
code is SET OPEN.

x = WRITENR (Z == 104) Open as in WRITE; do not rewind.

60189400 Rev, K

Swapping for multi-reel, labeled tapes may be controlled by setting the UP
bit in the FET and using the following option:

x = REEL (Z = 340)

x = REELNR (Z = 300)

Tape is rewound; for labeled tape beginning
label is processed. Reel is initialized.

Tape is not rewound. Reel is initialized.

CLOSE CLOSE lin, x, recall
59 47 41 39 29 17 0
SA1l 1fn RJ CcPC
000007 0111 Z

The CLOSE function sets the file to closed status.

The x parameter specifies

additional action to be performed. An end-of-information mark is written on
an output file. If the file resides on 1/2-inch magnetic tape and standard
SCOPE system labels are used, ending label procedures are performed.

x is absent (Z = 150)

x = NR (Z = 130)
x = UNLOAD (Z = 170)

60189400 Rev.

TFile is set to beginning of information or

beginning of current reel. Buffer pointers

(IN and OUT) are set equal to FIRST.
File is not rewound.

Termination procedures for the file are

executed., Files are flagged for no rerun

(as indicated below) if the initial conditions

for a job have changed. Files which have

special names are given the corresponding

disposition (section 3.2.1). A magnetic

tape file is rewound and unloaded. The lock

bit is set for a file on a private pack and
the normal end-of-job processing will

release the space and delete the reference

to the file name.

3-29

3-30

File Type

Local
(section 1.3.1)

Local

Local
Old CommonT

Common
(section 1.3.1)

Common

New CommonTT

Disposition

0

immaterial

#0

immaterial

immaterial

Device Type

Allocatable

Non-allocatable

Allocatable

Allocatable

Non-allocatable

Action

Release space on
device, delete refer-
ence to file name

Release device, de- -
lete reference to file
name

Assign to system for
disposition

Same as for local,
except prohibit rerun

Prohibit rerun,
assign to system as
a common file

Prohibit rerun, off
equipment, assign to
system as a common
file

Same as for common

For a local file on a private disk pack, device label, RBR record, and RBT
chain are written on the pack. The unit assignment is dropped from control
point. The disk pack remains in a private mode until unloaded by operator

and a new pack is added.

TAn old common file is one that was common at the beginning of a job and
has since been released by a RELEASE card or a COMMON request. It is

treated as a local file except for the RERUN feature.

1A new common file is one that was created during the job and has not been

detached from the control point,

60189400 Rev. I

CLOSER

EVICT

CONTRLC

60189400 Rev. I

CLOSER lfn,x,recall
59 47 4139 17
RJ CPC

SAl 1fn

000007 Wy

The CLOSER function is used for files on 1/2-inch magnetic tape to terminate
processing prematurely on a given reel of a multi-reel tape or to control
labeling, If standard SCOPE system labels have been used, ending label pro-

cedures are performed for the reel.
The x parameter specifies file position after CLOSER action.

x is absent (Z = 350) Current reel is rewound.
x = NR (Z = 330) Reel is not rewound.
x = UNLOAD (Z = 370) Tape is rewound and unloaded.

EVICT lfn,recall

59 47 41 39 29 17
RJ CPC

SA1 Ifn

000114

000003 Ofr

EVICT releases to the system all space occupied by a file on mass storage
and makes it available for use by either the releasing program or other pro-
grams. The logical file name is retained. EVICT is ignored for permanent

files, and an information message is issued.

CONTRLC addr

41 39 29 17
RJ CPC

59

addr

ACE 11

With the CONTRLC function, a CP program can read or backspace the control
addr is the address of a word in the following format:

17 0

card record.

59

Reserved for system use code

3-31

code is both the function and status reply as follows:

READ code = 000010g

The next control card is placed in RA+70 to RA+77 with the
space remaining between the end of the card and RA+100
zeroed.

BKSP code = 000040g

The control statement pointer is reset to the previous
statement.

When the function is completed bit zero of the code is set to one. If on the
read there are no more control cards, the area RA+70 to RA+77 is zeroed
and bit 4 is set to 1 for end of record., If the record is set to the start of the
control card record when a BKSP function is issued, the statement pointer is
unchanged and the end of record reply is issued.

With this request the user can position the control card record for SCOPE job
processing, and it is his responsibility to position the record properly, for
example in front of an EXIT card; otherwise results are unpredictable.

3.6.2
DATA FUNCTIONS

READ READ lfn, recall
59 47 41 39 29 17 0
SAl 1fn RJ CPC
000002 O|r 000010

This function reads information into the circular buffer if the specified file
is open. If there is room in the circular buffer for at least one physical
record unit, reading is initiated and continues until:

3-32 60189400 Rev. I

READN

60189400 Rev, I

Buffer does not contain enough room for the next physical record

End-of-record or end-of-file is encountered (not applicable for S or L
tapes)

End-of-information is encountered
An error is encountered (see FET, section 3.2)
For S or L tapes, one physical record is read
Mode is determined by bit 1 in first word of FET. If end-of-record (bit 4) is

set upon entry to CPC, no operation is performed. For S or L tapes, the
unused bit count is returned to the UBC field in FET word 7.

READN 1fn,recall

59 47 4139 29 17 00
SA1l Ifn RJ CPC
000003 iy 000260

S or L magnetic tape only: The READN function reads data from tape to the
circular buffer until one of the following conditions occurs:

Buffer does not contain enough room for next record (MLRS+1 words),
end-of-file is encountered, end-of-information is encountered, error
is encountered.

The mode of the file is determined by bit 1 in the first word of the FET.
Word 7 of the FET must contain the size of the largest possible logical
record when this function is used (appendix L).

READN enables non-stop reading for maximum tape throughput. READN can
be used only for S or L tapes. As long as the user provides sufficient room
in his buffer (room for two records and their header words), tape reading
continues without releasing and reloading the PP between logical records,
and maximum utilization of interrecord gap time is realized. The concept of
circular buffering is retained; however, a header word is placed in the buffer
along with data from each logical record. It precedes the data and contains
the number of CM words in the logical record and the number of unused bits
in the last data word. IN is moved by the I/O system after a complete logical
record together with its header word have been placed in the buffer. The
format of the header word is:

59 29 23 17 00
No. Bitg #CM
unused words

3-33

3-34

READSKP

RPHR

READSKP 1fn,{,recall

59 47 41 39 29 17 13 0

SAl 1fn RJ CPC

000003 Olr 4 00020

READSKP functions like READ, except that if the buffer is filled prior to the
end-of-record, the rest of the information is discarded and the file will be
positioned ready to read the next logical record. If the MLRS field in the
FET is zero, the buffer size is set to 512 words for S tapes and to the
LIMIT - FIRST - 1 for L tapes.

If a level parameter ({) is specified, information is skipped until the occur-
rence of an end-of-record with a level number greater than or equal to the
one specified. Only a level 17 (EOF) is recognized by S and L tapes. Any

other level parameters in the request will be ignored.

Executing a READSKP sets the end-of-record (bit 4) to 1, since an end-of-

record is encountered., If the next operation on the file is READ, the EOR
bit must first be zerced by the calling program.

RPHR lfn,recall

59 47 41 39 29 17 0
SAl 1fn RJ CPC

000003 O|r 000000

Magnetic Tape (SCOPE or X format only)

The RPHR function causes any information already in the buffer to be dis-
carded by setting the OUT pointer equal to the IN pointer; then the next
physical record is read into the buffer. The mode is determined by bit 1 of
the first word of the FET. TFor coded files, only conversion from external
to internal BCD is performed. If the data read does not exactly fill an
integral number of CM words, the last word is filled with zeros.

60189400 Rev. I

READNS

READIN

60189400 Rev, I

READNS lfn, recall

59 47 4139 29 17 0
SA1 1fn RJ CPC

000002 Uiy 000250

Mass storage files only

READNS operates in the same way as READ, except that it is not ignored by
CPC if the last code/status in the FET is 02X or 03X, and reading does not
necessarily stop at the end of a logical record. Instead, a READNS operation
terminates under any of the following conditions:

Next PRU will not fit into the circular buffer.

A zero length logical record (any level) has been read.

A level 16 or 17 logical record (any length) has been read.

. End-of-information has been encountered.

[TNV U VN

An irrecoverable error is detected; the error code ee is usually 04 for
parity error.

The status stored in the FET for each case is as follows:

case 1 000011 coded, 000013 binary
case 2 or 3 740031 coded, 740033 binary
case 4 741031 coded, 741033 binary
case 5 O0ee0ll coded, 0ee013 binary

In cases 2 and 3 the level of the terminating logical record is lost.

READIN Ifn,x

'READIN may be used for indexed or sequential mass storage files or tape

files. The format depends on file mode, file index, working storage area,
and the x parameter as shown in the following pages, In the descriptions n
represents the number of words in the working storage area.

3-35

3-36

READIN takes the next n words from the circular buffer of file 1fn and stores
them in the working storage area; a READ request is issued if the buffer is
empty. If the file is binary mode, READIN attempts to fill the working
storage area until end-of-record or end-of-information is encountered.

For a coded file, information is moved to the working storage area until a
zero byte (end-of-line) is encountered or until the working storage area is
full. When a zero byte is encountered, two blanks are substituted and the
remainder of the working storage area is filled with blanks. If a zero byte is
not encountered before the working storage area is full, the remainder of the
line is skipped and a subsequent READIN request reads the next line.

The status of the request is returned in X1 as follows:

+0 Requested number of words was read and the function
completed normally.

positive Fewer than n words remained in the logical record when the

nonzero request was issued. When control is returned to the user
program, X1 contains the last address + 1 of the data trans-
ferred to working storage or first word address if no data
was transferred. For coded files, this is always the first
word address.

negative If end-of-information or end-of-file is encountered, X1
nonzero contains a negative number. No information is transferred
into the working storage area.

If a working storage area is not specified, a READIN request has no effect
and no error indication is given unless it addresses a file with a name or
number index. In that case, the effect of the request will be to terminate
any previcus action on the file, locate the specified logical record; the next
READIN request to transfer data from that file will begin with the first word
of the specified record.

1. x is absent: READIN lfn

59 29 17 0
RJ IOREAD

1fn

This form of the READIN request transfers data to the working storage area.
It may be used for tape or mass storage files since it transfers data from
buffer to working storage area; if the buffer is empty a READ is issued. If
1fn is a mass storage file, it may be sequential or random.

60189400 Rev. I

WRITE

60189400 Rev. 1

2. xis of the form /name/: READIN lfn, /name/

59 29 17 0

RJ IORR

1fn

name

With this form of the READIN request, logical record /name/ on the mass
storage file named 1fn is read into the circular buffer. n words are trans-
ferred to the working storage as described above. The file must have a
name index.

3. x is of the form m where m is a logical record number: READIN

59 29 17 0
RJ IORR

1fn

This form of the READIN request causes the logical record number m of the
file, 1fn, to be read into the circular buffer. n words are transferred to the
working storage area as described above. The file must be indexed by name
or number. If m is zero, the next record is read. The next record is the
first logical record of the file if this is the first request, or the last logical
record read + 1, for any subsequent READIN.

WRITE Ifn, recall

59 47 41 39 29 17 0
SAl 1fn RJ CPC

000002 Or 000014

The WRITE function causes information to be written from the circular buffer.
For mass storage files and SCOPE standard and X tapes, only full PRU's are
written, Writing continues until the buffer is empty or there is not enough
data in the buffer to fill a PRU. For S and L tapes only one record is written.

3-38

WRITER

WRITEF

For S or L tapes, if the requested record length, indicated by the OUT and
IN pointers, is greater than MLRS, device-capacity-exceeded status is
returned (10) and the record is not written.

WRITER Ifn, £, recall

59 47 41 39 29 17 13 0
SAl 1fn RJ CPC

000003 Ojr 2 00024

This function is processed the same as WRITE, with the following exceptions:

For mass storage files, SCOPE standard tapes, and binary X tapes, data
in the circular buffer is written out and terminated by a short or zero-
length PRU to indicate end-of-record. If no information is in the buffer,
a zero~-length PRU is written.

For coded X tapes, data is written in 136 character PRU's until the
buffer is empty. No short PRU is written.

If the level parameter (f) is present, the short or zero-length PRU will
reflect the level number, In the absence of the level parameter, the £ field is
set to 0 and level zero is assumed. The £ field is ignored for S, L and X
tapes. For S and L tapes the WRITER request is identical to the WRITE
request, unless made through CPC for records less than 512g words.

WRITEF lin, recall

59 47 41 39 29 17 0
SAl 1fn RJ CPC

000003 Olr 000034

For SCOPE standard tapes the WRITETF function produces a logical end-of-
file mark; it is written as a zero-length physical record of level 17g. When
this function is issued, any data present in the buffer is written and termi-
nated with a level zero end-of-record. If the buffer is empty and the last
operation was WRITE, a zero length PRU is written.

For an S or L tape, if data in the buffer is less than or equal to MLRS, itis

written to tape followed by a physical tape mark. If data in the buffer exceeds
MLRS, nothing is written and device capacity exceeded is returned to the FET.

60189400 Rev. 1

WRITEN

WPHR

60189400 Rev. I

For X tapes, data is written as in WRITER, and terminated with a physical
tape mark.

WRITEN lin, recall

59 47 41 39 29 17 0

SA1 Ifn RJ CPC

000003 O|r 000264

Magnetic tape only; S and L tapes only:

WRITEN improves throughput by writing one or more logical records on
tape. As long as the user provides data ahead of the 1/0 system, tape
writing continues without releasing and reloading the PP between logical
records, making full use of the interrecord gap on tapes (as long as the
circular buffer contains at least two records). The concept of circular
buffering is retained. However, a header word must precede each logical
record in the buffer. This header word gives the number of CM words in

the logical record and the number of unused bits in the last data word. If

the number of unused bits is not mod 12, the I/0 system will make it so for
execution by subtraction. The UBC field in the FET is not changed, however,

OUT is moved by the I/O system after a complete logical record has been
written to tape. Writing continues until there is no data in the buffer or
until an end-of-file or error condition is detected. No writing will take
place unless the difference between OUT and IN is greater than the number
of CM words in the logical record. The user should not move IN beyond
the header word until the header and the complete record are in place.
An error will rvesult if SCOPE detects this condition. The format of the
header word is:

59 . 29 23 17 00
No. Bits #CM
unused words

WPHR Ifn, recall

59 47 41 39 29 17 0
SA1l 1fn RJ CPC

000003 0fr 000004

SCOPE or X magnetic tape only:
This function causes information in the circular buffer to be written as a

single physical record on the output device which must be magnetic tape.
Mode is determined by bit 1 in the first word of the FET.

3-39

3-40

WRITOUT

If the buffer contains less than 512 (decimal) words, IN and OUT pointers

in the FET are set to the same value at completion of writing to indicate

an empty buffer. Only internal to external BCD conversion is performed.

If the buffer contains more than 512 words when the request is issued, the
first 512 words are written and IN and OUT pointers are set to show that
words remain in the buffer. Device-capacity-exceeded status (10) is returned.

A WPHR function issued for any device other than 1/2-inch magnetic tape in
SCOPE or X format i3 ignored and an illegal function status (22) is returned.

With this function, writing depends on file mode and the presence or absence
of a file index, a working storage area, and the x parameter. In the following
paragraphs, n represents the number of words in the working storage area.

WRITOUT takes n words from the working storage area and transfers them
to the circular buffer, thereby adding them to the logical record currently
being constructed. If there is no current record, they become the first
words of a new logical record. If the file is indexed, however, such a
request is rejected, because the system has no way of knowing whick record
of the file is being addressed. A WRITE request is issued automatically
when the buffer is full.

For a binary mode file, the entire working storage area is transferred to the
circular buffer. In coded mode, trailing blanks are removed and a zero byte
(end-of-line) is inserted as data is transferred to the buffer. The WRITER
function may be requested to terminate record writing; but if the file is indexed,
and no record is being written, the request is rejected.

If a working storage area is not specified, execution of a WRITOUT request
has no effect and gives no error indication, unless it addresses a file with a
name or number index. This request terminates any previous action on the
file, locates the specified logical record, and sets up the pointers so that
the next request to continue writing the current record on that file will begin
with the first word of the specified record.

1. xis absent: WRITOUT lfn

59 29 17 0
RJ IOWRITE

1fn

This form of the WRITOUT request adds data from the working storage area
to the logical record currently being constructed; if the circular buffer con-
tains no data and the file is indexed, this request is rejected as the system
cannot determine which record is being addressed.

60189400 Rev. I

2. xis of the form /name/: WRITOUT Ifn, /name/

59 29 17 0
RJ IORW

1fn

name

This form of the WRITOUT request transfers data from the working storage
area and adds it to the logical record currently being constructed; if there is
none in the circular buffer and if the file is indexed, this request will be
rejected since the system cannot determine which record of the file is being
addressed.

3. xis of the form m, where m is a logical record number:
WRITOUT Ilfn, m

59 29 17 0
RJ IORW

1fn

This form of the WRITOUT request begins constructing logical record
number m on the file named Ifn using the words in the working storage
area as the first words of the record. The file must be indexed, either

by name or by number. If m =0, the request will address the record
with a number one higher than that of the record most recently addressed,
or record number 1 if the file has not been addressed. The first record
of an indexed file is number 1; there is ho record number 0.

Requests 2 and 3 above perform the following functions:
1. Perform a WRITER on the file if its previous status was write, or
the buffer contains data as a result of a previous WRITOUT.

2. Set the buffer to empty, and the FET status to write completed.

3. Set up the random file index and FET to point to the correct
record.

4. Transfer the working storage area to the buffer.

5. Call WRITE if the buffer contains at least one PRU of data.

60189400 Rev. I 3-41

The WRITOUT Ifn, m or /name/ statement is used only to begin an indexed
record. The record can be continued with WRITOUT lfn statements. It
should be terminated by a

WRITER lfn
statement, although if this step is neglected, the next WRITOUT lfn,m or
/name/ statement for the same file will cause it to be carried out as step 1

above.

If the working storage area size is zero, nothing is transferred to the buffer,
but steps 1, 2, 3 and 5 above are carried out.

REWRITE REWRITE lfn,recall
REWRITER REWRITER lfn,¢,recall } Mass Storage Only
REWRITEF REWRITEF lfn, recall
59 4139 29 1713 00
SA1l ifn RJ CPC
yyy Ofr [22Z

yyy 002 for REWRITE
003 for REWRITER and REWRITEF

727 214 for REWRITE
224 for REWRITER
234 for REWRITEF

The REWRITE functions make use of a previously allocated file on a mass
storage device to update records in an existing file without changing its
index or mass storage allocation. They should be used to replace a record
in a sequential or random indexed file by a record of the same length. A
knowledge of the structure and record lengths of the file to be rewritten is
essential. If the rewritten record is shorter or longer than the original
record, results are unpredictable. The system cannot determine. the length
of the original record, so there is no protection from over or underwriting,
nor is a diagnosis of such a condition made. The system guarantees only
that a rewritten record does not extend beyond the end-of-information. It
issues a diagnostic, the write takes place up to end-of-information, and
end-of-information indicators are not moved. The user may destroy an
index previously written on the file.

Writing always begins at the current position of the file. The file is rewritten

with information from the CIO buffer. (REWRITE transfers a minimum of
one PRU of data.) For REWRITER, an end-of-record, level number £ is

3-42 60189400 Rev. I

written at the end of the data transferred. For REWRITEF, a logical end-
of-file (level 17) is written at the end of the data transferred. After
REWRITEF is used, other data in the file remains allocated to the file;
therefore an end-of-file may occur in the middle of the file. Rewrite opera-
tions do not change the storage allocation of the file; no additional record
blocks are assigned, nor is the index of a random file modified. It is, in
effect, a write-in-place operation. - If rewrite is used for a common file and
the job is rerun by operator or user, the data of that common file will not
be the same as when it was previously used by that job.

Application of rewriting for sequential files

Rewriting begins at the current file position. After each request is executed,
the current file position is updated to point to the PRU that follows the last
PRU rewritten by the request. A series of REWRITE operations, followed
perhaps by a REWRITER, can be used to replace a single logical record.

When a logical record is to be replaced with a record of the same length in
a single rewrite operation, REWRITER should be used.

When a record is replaced with a shorter record, the new record might be
followed by another record which is the last part of the original record.

For example, if the original record is 120 words (one full length and one
short PRU) and it is replaced by REWRITER with a 60-word record, the end
result is one 60-word record followed by another 56-word record (a short
PRU) which is the second PRU of the original record.

If a logical record is replaced with a longer record, the new record will
overwrite more than one record, and part of the surplus might appear as

a logical record that immediately follows the new record. End-of-information,
however, is not destroyed.

Application of rewriting for random indexed files

Rewriting begins at current file position. A logical record may be replaced
by a single REWRITER or by a series of REWRITE's followed by a
REWRITER. The programmer must reposition the file for each logical
record to be rewritten. Otherwise, records will be rewritten in the order
they were originally written — not in index order.

60189400 Rev. I 3-43

3-44

WRITIN

To position an indexed file for rewrite of a particular record, the user
may use one of two methods:

Set up the file's FET the same as for a random READ; i.e., insert
into the Record Request/Return Information field in FET+6 the record
address found by searching the file's index.

Use the WRITIN function, which causes the system to search the user's
index and set the necessary FET fields. (WRITIN will also issue a
REWRITE request in some cases. Refer to the WRITIN description for
detail).

Once the file is positioned for a record, a REWRITE/REWRITER sequence,
or a WRITIN/REWRITER sequence, can be executed without further re-
positioning. The FET+6 field will be cleared by the system after the first
REWRITE (or after WRITIN) and should remain cleared until repositioning
for another record is required.

The methods of rewriting, and the results of underwriting or overwriting

a logical record are the same as for sequential files. Index integrity,
however, can be destroyed by the user if he writes shorter or longer records
than those in the original file. A longer record destroys records originally
written just after the one being replaced (not necessarily records which appear
next in the index). A shorter record may create an extra record which is
not represented in the index. The index is never modified by the system for
REWRITE. The PRU's and RB's allocated to the file remain assigned,
though they might contain some useless unaccessible data as a result of re-
writing with shorter records. Such unused areas can be utilized later when
a longer record (but shorter than or equal to the original) is rewritten.

Use of such techniques requires an understanding of the file's logical and
internal structure.

WRITIN lfn,x

WRITIN provides automatic index and working storage area management for
REWRITE. WRITIN is a write-in-place function, unlike WRITE which writes
at end-of-information. It may be used for indexed or sequential mass storage
files. The results of a WRITIN request depend on file mode and the presence
or absence of a file index, a working storage area, and the x parameter. In
the following paragraphs, n represents the number of words in the working
storage area.

WRITIN transfers n words from the working storage area to the circular

buffer, putting them into the area where the file is currently positioned.
A REWRITE request is issued automatically when the buffer is full.

60189400 Rev. 1

If the file is in binary mode, the entire working storage area is transferred
to the circular buffer. If the file is in coded mode, trailing blanks are re-
moved and a zero byte (end-of-line) is inserted as the data is transferred
to the buffer. The REWRITER function may be requested to terminate
writing of a record. :

If a working storage area is not specified, a WRITIN request has no effect
and gives no error indication, unless it addresses a file with a name or
number index. In that case, the request will terminate any previous action
on the file, locate the specified logical record, and set up the pointers, so
that the next request for REWRITE or REWRITER or another WRITIN (with-
out x parameter) to continue writing the current record on that file will
begin with the first word of the specified record. If the next request

is WRITOUT or WRITIN, the current logical record will be terminated by
execution of a REWRITER of level 0 before the function is executed.

x is absent: WRITIN 1fn

59 29 17 0

RJ IOREWRT

1fn

This form of the WRITIN request transfers data from the working storage
area to the buffer.

x is of the form /name/: WRITIN lfn, /name/

59 29 17 0

RJ IORRW

1fn

name

This form of the WRITIN request begins rewriting the /name/ record on

the file named Ifn, using the words in the working storage area as the first

n words of the record. The named record must have been written previously,
so that the file index has the name with a storage address already assigned.

60189400 Rev. I 3-45

3.6.3
POSITION FUNCTIONS

SKIPF

3-46

x is of the form m, where m is logical record number: WRITIN fn,m

59 29 17 0

RJ IORRW

In

This form of the WRITIN request begins rewriting logical record number m
on the file named lfn using the words in the working storage area as the
first n words of the record. The file must be indexed, either by name or
by number, and the logical record referenced must have been written
previously.

SKIPF lfn,n,¢,recall

59 47 41 39 29 17 13 0
SA1l Ifn RJ CPC
000003 O|r n 2 00240

SKIPT causes one or more logical records to be bypassed in a forward
direction. The request may be initiated at any point in a logical record.
The number of logical records or record groups to be skipped is specified
by the n parameter; the value 1 is assumed if n is absent. The maximum
value of n is 777776g. When n = 777777g, a tape file is not positioned;
however, a disk file is positioned at end-of-information.

1If the level parameter (f) appears, logical records are skipped until an end-
of-record with a level number greater than or equal to the requested level is
reached; the file is positioned immediately following the end-of-record mark.
This positioning process will be performed n times. For example, using the
illustration shown on page 1-9, a SKIPF lfn, 2, 1 issued while positioned at
page 6 would cause repositioning to the beginning of chapter 5 (Level Numbers,
1-3). If £ = 17g, skipping is performed until record level 17 or an end-of-file
mark (tape mark) is encountered.

60189400 Rev. L

60189400 Rev. 1

For S and L tapes, if £ # 17g, the level is assumed to be zero.

If the level parameter is absent, the £ field is set to zero and the file is
positioned forward n logica} records (or partial logical records if the
SKIPF is issued in the middle of a logical record).

If the end-of-information is encountered before an end-of-record with the
specified level is found, the end-of-information status bit will be set.
Parity errors encountered during a SKIPF operation are ignored.

On external tapes, level numbers are not appended to records. However,
level numbers may be specified for SKIPF requests. If the level number

17 is specified, a skip to end-of-file is performed. For other level numbers,
one record is skipped.

Backspace Functions

Backspace functions will not go beyond the beginning of the current reel of
magnetic tape. If beginning of reel is encountered before the requested
number of backspaces, the beginning of information status bit is set. Parity
errors encountered during backspace operations are ignored.

Reverse Functions

Reverse functions will not go beyond the beginning of the current reel of
magnetic tape.

If the last operation on a magnetic tape was a write function, trailer label

procedures will be executed before the reverse motion takes place. For
X tapes,four tape marks will be written.

3-47

3-48

'BKSP

BKSPRU

SKiPB

BKSP lfn, recall

59

47

41 39

29

17

SAl

1fn

RJ

CPC

000003

Olr

000040

The BKSP function causes one logical record to be bypassed in a reverse
direction. The request may be issued at any point in a logical record. This
function is a subset of SKIPB; it is included for compatibility with previous

systems.

BKSPRU lfn, n, recall

59

47

41 39 35

29

17

SAl

1fn

RJ

CPC

000003

Olr

000044

One or more PRU's are bypassed in a reverse direction. The request may be
issued at any point in a logical record. If n appears, n PRU's are bypassed.
If n does not appear one PRU is bypassed. Parity errors encountered during
a BKSPRU are ignored.

SKIPB lin,n,{, recall

59

47

41 39 356

29

17

13

SAl

1fn

RJ

CcPC

000003

O|r

00640

SKIPB causes one or more logical records to be bypassed in a reverse
direction. The request may be initiated at any point in a logical record.
The number of logical records or logical record groups to be skipped is
specified by the n parameter; the value 1 is assumed if n is absent. The
maximum value of n is 7777778; ifn= 7777778, the file is rewound.

60189400 Rev. 1

REWIND

60189400 Rev. K

If the level parameter is used, logical records are read backwards until a
short PRU of the specified level has been read., A forward read is issued,
leaving the file positioned after this short PRU. If the file is positioned
initially between logical records, the logical record immediately preceding I
the current position is ignored in searching for a logical record of the speci-
fied level. This positioning process is performed n times,

Consecutive logical records within a file may be organized into a group by
using level numbers. The file will be composed of one or more groups of
logical records. This may be done by choosing a minimum level number

£ # 0 and assigning a level number greater than or equal to £ to the last logical
record of each group, and a level number less than £ to all other logical
records.

Then SKIPB lIfn, , £ will skip the file backward to the beginning of the logical
record group which immediately follows a logical record of level £. In the
example of level numbers shown in section 1.3.2, the minimum level number
was 1; a SKIPB 1fn, 2,1 issued while positioned at page 14 would cause reposi-
tioning to the beginning of chapter 4.

If the level parameter is absent, the { field is set to zero and the file is
positioned backward n logical records (or partial logical records if the SKIPB
is issued in the middle of a logical record).

If the beginning-of-information is encountered before the requested level
number is found, the beginning-of-information status bit is set. Parity
errors encountered during a SKIPB operation are ignored.

On external tapes, level numbers are not appended to records; however, they
may be specified for SKIPF requests. If level 17 is specified, a skip to
end-of-file is performed. For other level numbers, one record is skipped.
For S and L tapes, only levels 0 and 17 are recognized. If { # 17, zero level
is assumed.

REWIND lfn, recall

59 47 41 39 29 17 0

SAl 1fn RJ CPC

000003 Olr 000050

REWIND positions the file at beginning of first data record or at beginning of
current reel, A REWIND function on a file already rewound has no effect.

A REWIND function issued for a closed file or for a device that cannot be
repositioned causes an illegal function status (22g) to be returned.

3-49

UNLOAD UNLOAD 1fn, recall

59 47 41 39 29 17 0
SAl Ifn RJ CPC
000003 ojr 000060

UNLOAD operates in 2 manner similar to REWIND. If the file resides on
magnetic tape, the tape is rewound, and then unloaded.

COMMON COMMON addr, recall
59 29 17 0
RJ cPC
CTS 1jr| addr
41 39 17 0

This function may be used to manipulate common files from a central pro-
cessor program. A new common file is one which was created during the job
and has not been detached from the control point. An old common file is one
which was common at the beginning of job and has since been released by a
RELEASE card or the COMMON request (n = 2), An old common file is
treated as a local file except for the RERUN feature. Addr is the address of
a word in the following format:

59 17 0

1fn n

Ifn is left justified with binary zero fill. n specifies both the function and a
status reply word.

Attach or create common file Ifn: n =0

n=1 Request was completed normally; either a local file lfn
was changed to a new common file or an unassigned
common file 1fn was attached to this control point. In
the latter case the job will be marked as unable to be
rerun. If the file resides on a non-allocatable device,
the equipment will be requested and reserved until the
common file is released.

n=3 A common file named 1fn is attached to another control
point, but no local file named 1fn is at the calling control
point.

3-50 60189400 Rev. I

3.64
SYSTEM
ACTION REQUESTS

MEMORY

59

n=>5
n=17
n=11
n=13
n =15

No common file Ifn is in the system at present, and no
local file lfn is at the calling control point.

Duplicate names; the calling program has a local file
named lfn and a common file in the system is named lfn.

A common file named 1lfn is already at this control point.
The common file lfn resides on equipment which cannot

be assigned to this control point.

The file is a permanent file.

Release common file 1fn: n =2

n=1

n=3

Request was completed normally; the common or the new
common file 1fn assigned to this control point will be
changed to type local at job termination. If the file is an
old common file the job will be marked as unable to be
rerun.

Common file named 1fn is not at this control point.

Detach common file Ifn: n =4

n=1

Request was completed normally; the common file or the
new common file 1fn was detached from this control
point; 1fn is no longer available to this control point.

The job will be marked as unable to be rerun. Opera-
tion is the same as a CLOSE, UNLOAD, except that no
index is written.

Common file named 1lfn is not at this control point.

MEMORY type, status,recall

41 39 29 1817 0
RJ CcPC

t status

60189400 Rev. I

3-51

The field length assigned to a job may be obtained or changed by the MEMORY
request. Control will not be returned until the request is complete.

type = CM If central memory field length is to be referenced. (t=0)
type = ECS If extended core storage field length is to be referenced. (t=1)

If the location addressed by status initially contains zero, no field length is
altered: the current field length is returned in the upper half of the location

and bit 0 is set to one.

If the upper half of the location initially contains a number, the field length
is altered to equal the value of the number and bit 0 is set to one.

Bits 0-29 of the location addressed by status should initially contain zero in
either case.

CHECKPOINT CHECKPT param, sp

59 41 39 35 29 23 17 0
RJ CPC

param

A checkpoint dump may be requested from an executing program. A check-
point dump is taken when this function is issued. The object program must
have checked for conditions conductive to a checkpoint dump, such as end of
reel, x logical records processed, etc. Checkpoint requests may appear
more than once in an cbject program.

param Address of a user-supplied parameter list containing logical file
names for which a checkpoint is to be made. (See section 8.1 for
format of list.)

sp Special process flag that indicates all mass storage files are to be
processed (sp = zero) or only a limited set of files are to be pro-
cessed (sp = non-zero). If this parameter is omitted, a checkpoint
is made for all local files associated with the user's control point.

RECALL The RECALL request generates one of two calling sequences depending on
the presence or absence of the lfn parameter. Execution of either function
causes the job to relinquish the central processor.

3-52 60189400 Rev. I

RECALL lfn
59 47 41 39 29 17 0
SAl Ifn RJ CPC

000001 o1 7T

Ifn is the base address of a file environment table. Control returns to the
program when bit 0 of the code and status field becomes a one, indicating com-
pletion of an input/output request for that file. Error checking is performed
and an OWNCODE routine executed, if necessary, before control is returned.
Since recall may be entered when the operation is initiated if the recall para-
meter is used, RECALL is needed only if some useful processing can be done
between initiating and completing an input/output operation.

RECALL
59 41 39 29 17 0
RJ CPC

RCL 1 {0 000000

When RECALL does not specify 1fn, the central processor is relinquished only
until the next time around the monitor loop. The user must determine whether
the condition that required a recall is still present.

MESSAGE MESSAGE addr,x,recall
59 41 39 35 29 23 17 0
RJ CPC
MSG 1|r X addr

The MESSAGE function enters a message into the job dayfile. The message
must be stored in display code and must not contain any characters with
display codes greater than 57g (appendix A). The maximum message
length is 807 characters because of truncation by the dayfile routine.
SCOPE considers the message to end cither at the first word with all zeros
in the rightmost 12 bits or at the 80th character, whichever comes first.

60189400 Rev. J 3-53

3-54

Any characters beyond the 40th appear on a second line. If the x parameter is
non-blank, the message is displayed but not entered into the dayfile. addr is

the address of the start of the message.

ENDRUN ENDRUN
17 0
RJ CPC

Execution of the ENDRUN function is the normal way of ending a run., SCOPE
examines the control card record of the job deck, and begins execution with
the next unused control card, If there are no more control cards or if the
next card is an EXIT card, the job is terminated.

ABORT ABORT
59 41 39 29 17 0
. RJ CPC

ABT 11

Execution of this function causes the monitor to terminate the job, just as if
an error, such as out-of-bounds memory reference, had occurred. If the
control card section of the job deck contains an EXIT card, the system con-
tinues processing the job with the next control card after the EXIT card.

TIME TIME status
59 41 39 35 29 23 17 0
T T o @\ . : = e
0000 status
59 41 24

60189400 Rev., K

Before clearing RA+1, monitor returns in status the job time limit and the
central processor time already used by the job in the following binary format:

59 35 11 0

TIME limit (seconds) CPU time (seconds) milliseconds

CLOCK CLOCK status

23 17 0
RJ CPC

TIM 1|0 0002 status

Before clearing RA+1, monitor returns the current reading of the system
clock in status, in the following format:

59 0

(* or blank) hh . mm . ss *

Character 1 = * if time from deadstart, blank time is entered by operator
at deadstart.

DATE DATE status

59 41 39 35 29 23 17 0
RJ CPC
TIM 110 0001 status

Before clearing RA+1, monitor returns in status the current date, as typed
by the operator, with one leading blank and one trailing blank,

JDATE JDATE status

23 17 0
RJ CPC

status

60189400 Rev. I 3-55

3-56

Before clearing RA+1, the Julian date is returned in status in the following
format: (yyddd is in display code)

59 29 0
Zeros yyddd
RTIME RTIME status
59 414039 356 29 23 17 0
RJ CPC
TIM 110 0004 status

Before clearing RA+1, the real time clock maintained by monitor is returned
in status in the following format:

47 35 23 0
seconds millisec. 11s
(modulo 4096), | (modulo 1000) milliseconds
LOADER LOADER param
17 0
RJ LOADER
param

A program may request service from the loader with this function. Param
is the location at which the user has established a parameter list for the
load sequence. Only the parameters are described below. The loader is
described in Chapter 4.

When a job area is initially loaded with program material, a small resident
is placed within the user's field length. LOADER is an external symbol
which is satisfied by the loader and which will ultimately reference an entry
point in this resident.

60189400 Rev. I

Unlike control card requests for LOADER activity, user requests do not
cause the specified file to be rewound. Instead it is the user's responsibility
to position all files properly before issuing a user request. Upon a request
for a full file load, LOADER loads programs only to the end-of-file. In all
other cases, the file is searched for the specified programs end-around.

If all programs are located, the file will be positioned immediately following
the last program loaded. If not all programs are located, a fatal error flag
is returned to the user; the PPLOADR will leave the file positioned at its
original starting point, and the CPLOADR will leave the file positioned at
end-of-file.

The load sequence parameter list begins at address param. The list consists
of one or more 2-word entries, the last of which is followed by a full word of
zeros. The format of an entry is shown below.

59 17 0
1fn (logical file name) sl
11 L, r|plulvimik|sif |c Iwa fwa
59 53 47 43 41 39 37 35 17 0

1in One of the following:

Name of file from which programs will be loaded
(sl may or may not be 0)

Name of an entry point in a program (sl = 0)
Program name (sl = 0)
Zero (sl # 0)
sl If non-zero, the location of a list of sections, a segment, or a
list of subprograms to be loaded as a segment; or if segment
loading is not requested, a list of subprograms to be loaded from

file Ifn. Names may not exceed seven characters. The list may
be empty. It is terminated by a zero word.

Each entry in the sl list has the following format:

59 17 0

subprogram name

60189400 Rev. I 3-57

11

12

lwa

fwa

3-58

Segment level if s # 0 and v = 0. Primary overlay level if s =0
and v # 0.

Secondary overlay level if v # 0,

Reset bit, H r # 0 all loader tables are cleared before loading;
normal loading only. :

Partial map bit. If p #0 a one-line partial core map is given.

Library flag., When u # 0, and v = 0, sl refers to a list of exter-
nals that are to be satisfied by loading from the system library.
When u # 0 and v # 0, an overlay will be loaded from the system
library. In this case sl = 0 and lfn = program name.

Whenu #0, v=0, s # 0, and Ifn = 0, sl points to a list of sections,
a segment, or list of programs to be loaded as a segment from the
library.

Overlay flag. If v # 0, an overlay load operation is requested.

NOMAP flag. If m # 0, all maps are suppressed.

Search key. If k # 0, 1fn is the name of an entry point. The
search key is used to find the address of a previously loaded
entry point, and no loading is performed.

Segment flag. If s # 0, a segment loading operation is requested.

Fill flag. If f # 0, unsatisfied external symbols are filled with
out-of-bounds references.

Complete flag. If c # 0, loading is to be completed by loading re-
locatable subroutines from the system library. The origin and
length of blank common will be established. Until loading has
been completed, the length may vary between subprograms.

Last location, relative to RA, available for the loading operation
If Iwa = 0, the limit of program loading is the first word of
LOADER tables stored in core descending addresses starting

at fwa LOADER. For blank common declarations, lwa is
designated as RA + ﬂ—208.

Initial location, relative to RA, at which to begin loading. If
fwa = 0, loading begins at the next available location as de-
termined by the current state of the loading operation.

60189400 Rev. I

60189400 Rev, I

Reply from LOADER

When LOADER has completed the requested operation (loading is not neces-
sarily complete) LOADER signals the caller by setting the parameter list as

follows:

Word 1

Wword 2

59

53

37 36 35 17

ne|fe aa ea

ne

fe

aa

ea

Level at which segment was loaded. ¢ = 0 if segment loading
not requested.

Non-fatal error flag. ne # 0 if the following loading errors
are detected by LDR:

Unsatisfied externals if ¢ = 1.

Duplicate occurrences of a named program; second and
subsequent occurrences are ignored.

No entry point for a named transfer,

Fatal error flag. fe # 0 if the following loader errors are
detected by LOADER,

Improper deck structure
Improper parameter specification

Requested file name, program name, or entry point not
found

Entry address. aa = 0 if less than two named XFER's were
encountered. aa = address of next to last name if more than
one named XFER was encountered.

Entry address. If k = 0, ea is the location (relative to RA) of
last encountered named entry specified in a XFER table. If
more than one named XFER is encountered, the last one is in
ea, and the earlier entry in aa. If k=1, ea is the location
(relative to RA) of the named entry point, If v # 0, ea is the
entry point to the overlay. If ea =0, no name was found.

3-59

If sl # 0, the list of entry points and/or subroutines to be
loaded from the library contains the address at which each
name is loaded. If the name was not loaded, the address is
zero. The list then has the form:

59 17 0

name addr

name addr

T a0 e

User Request Processing

Examples of parameter lists to be processed by the loader are given below:

Load from File:

It

1fn = name of file

sl =0

0

=0

s =0

The file is not rewound before loading. If no file is found, the system

library is searched as in the following example. Subprograms will be

loaded from 1fn until end-of-information is encountered. 1y and lp are
ignored. If ¢ # 0, loading will be completed.

Load Named Entry:

1fn = name of entry point in a subprogram or the name of a subprogram.

s1=0
u =0
v =0
k =0
s =0

3-60 60189400 Rev. 1

60189400 Rev., I

The File Name Table is searched first; if found, action is a Load from
file as in the previous example; if not found, the system library is

searched. 11 and l? are ignored. If ¢ # 0, loading will be completed.

Load Segment from File:

The segment defined by the list at sl will be loaded from lfn at level 11.
If 11 > current segment level, the segment will be loaded at the current
level + 1. If 17 = current level, segments at a higher level will be re-
moved, If a subprogram specified in the segment list is not located on
1fn after the entire file has been searched, the fatal error flag will be
set. lfn is not rewound prior to loading.

1fn=name of file

sl = address of list, contains a segment name or section names and
subprogram names only

11 = desired level

u =0
v =0
k =0
s =1

If ¢ =0, loading will be completed in that the origin and length of blank
common will be established. If ¢ # 0, loading will be completed normally.
f # 0 will cause unsatisfied external references to be set to out-of-bounds
references,

Load Named Subprograms from File:

The list of subprograms specified by the list at sl will be loaded from
1fn and the System library.
1fn = name of file

sl
11 & 12 ignored

address of list

u =0
v =0
k =0
s =0

If ¢ # 0, loading will be completed.

3-61

3-62

LOADREQ

Load Overlay from File:

Ifn = name of file

sl =0

1; = primary level

lo = secondary level

u =0

v =1

r, p, m, k, s, fand ¢ are ignored.

The overlay file (constructed during the initial load from overlay cards
and binary text) is searched for the unique identifier 1y, 1. If FWA =0,
the overlay will be loaded at the address at which the overlay was
created, otherwise the load will be at FWA. The absence of such an

overlay will cause the loader to set the fatal error flag. No map is
produced.

Load Overlay from System Library:

59

Ifn = program name
sl =0
11 = primary level

1o = secondary level

r, p, m, k, s, f, and ¢ are ignored,

LOADREQ, param

29 17 0

RJ CPC

LDV 1{0 param

59

41 39 17 0

This request is used to load absolute overlays from the system library or
a user file.

The

LOADRER request results in a call to the PP overlay LDV. The func-

tions of I.DV depend upon the value of param:

60189400 Rev. L

3.7
FILE
PROCESSING

60189400 Rev. I

1. A non-zero param has the same significance as when used in the
LOADER request (p. 3-56). LDV examines the two-word entry pointed
to by param.

® If the v bit in word 2 indicates that this operation is not an overlay
load, LDV calls LDR. The results are unpredictable.

e If this is an overlay and the u bit in word 2 indicates that this is
from a user file, LDV calls LDR to perform the operation.

® If this is an overlay and the u bit in word 2 indicates that this is
from the library, LDV loads into the user's area the CP overlay
named in bits 18-59 of word 1 of the two-word entry pointed to by
param. If the named CP overlay does not appear in the library,
LDR is called to handle the error condition.

2. If param is zero or omitted, this call is to the loader for loading from a
file. The name of the file must be specified in RA + 64. LDV calls the
loader for the load-and-go operation selected by the most recent LOADER
control card encountered in this job; or if no LOADER control card had
been used for this job, the loader is selected by default.

After the CP overlay has been loaded, LOADREQ generates reply information
for the user in the same format as the LOADER request.

The FNT entry for a file in the input or output queue is slightly different from
other FNT entries. If a file is in either queue the FNT will contain a priority
field, The priority given to input queue files depends on the priority specified
on the job card, the length of time the file has been in the queue, and possibly
the other parameters on the job card., Input queue priorities are used to
determine the order in which jobs are brought to control points.

The priority given to a file in the output queue is the priority of the job at the
time the file was put in the queue. This priority is incremented with time.
JANUS and other output routines normally process files in order of priority.
The priority of files in either queue can be changed by an operator type-in.

In addition to the priority field, the input queue FNT entry contains other
parameters from the job card including central memory and ECS field length
requirements and the time limit. Output queue FNT entries contain an addi-
tional field which specifies how much data is on the file. This number is
given as a multiple of blocks of 100g central memory words.

3-63

3.7.1
INPUT
QUEUE FILES

3.7.2
OUTPUT
QUEUE FILES

3.7.3
INPUT FILE

3-64

Files are placed into the input queue by JANUS, as it reads in jobs from the
card reader, by other system jobs such as LOAD, LOADX and RESQ, or by
EXPORT/IMPORT or RESPOND. An input queue file contains the entire job
which consists of a record of control cards followed by any number of data
records., Files in the input queue must be type input, assigned to control
point zero, and have non-zero priority. The file name will be the job name.
Input queue files are always put on allocatable devices.

Files can be put in the output queue by the user when CLOSE, UNLOAD is
performed on a file or by the system at job termination. Files in the output
queue must be type local or output, assigned to control point zero, and have
non-zero disposition and non-zero priority. The file name is the name of the
job which created the file. Files are always rewound before they are put into
the output queue.

A file will not be put in the output queue unless it is on an allocatable device
since JANUS and other output routines cannot handle non-allocatable files.

A random file can be put in the output queue; however, JANUS handles random
files sequentially. The categories of local files which may be attached to the
control point of a running job are described below.

When a job is brought to a control point, the input queue FNT entry is changed
so that the file is assigned to the control point, has the name INPUT, and is
type local. The input file is still the same file as the input queue file, It
contains the control card and data records and it resides on an allocatable
device. Since the input file contains the control cards for the job, it is illegal
to CLOSE the input file; any attempt to do so will be ignored. SCOPE main-
tains special pointers to the control card record on the input file. Normal
operations such as READ or REWIND on the input file do not affect these
pointers. The user can, however, call the system macro, CONTRLC, which
can change the pointers to the control card record, and can affect the order
in which control cards will be processed.

The user should never write on the file INPUT or detach it from his control
point, although it is possible to do both. In the first case, the user could
destroy the control card record; in the second, the entire file could be des-
troyed or lost,

60189400 Rev, I

3.74
OUTPUT FILE

3.7.5
SPECIAL
NAME FILES

3.7.6
NON-ZERO
DISPOSITION
FILES

60189400 Rev. I

The output file is a local file at the user's control point with the name
OUTPUT. When an error condition occurs, the system will dump to the out-
put file the exchange package and 100g central memory locations before and
1004 after the address to which the P register pointed at the time of error.
At job termination, the dayfile is copied to the end of the output file (unless
the job has been terminated by KILL, in which case no output is produced).

If no output file exists, the system will create one. The output file will
always be on an allocatable device since it is illegal to request OUTPUT with
either the control card or macro. Any attempt to do so will terminate the
job.

When it is time to dispose of the OUTPUT file, it is treated as a special
name file. Unless the user specified a disposition code, the file will be given
print disposition and be placed in the output queue. If an output file is dis-
posed of by a CLOSE,UNLOAD it is put into the output queue with type local.
At job termination the output file is put into the output queue with type output.
Therefore only one file for each job can have type output and that file will
contain the dayfile for the job.

Several other file names are treated as special cases. The user can specify
disposition for these files and that disposition will be honored; however, if a
local file with one of the special names has a zero disposition code, the sys-
tem will automatically set the disposition code to an appropriate value before
disposing of the file.

Names treated as special cases are the following:

OUTPUT FILMPL
PUNCH HARDPR
PUNCHB HARDPL
FILMPR PLOT

All local files which have disposition set by the user and all special name files
which have disposition set by the system will be rewound and placed in the
output queue at disposal time if they reside on allocatable devices.

3-65

3.7.7

NON-
ALLOCATABLE
FILES

3.7.8
COMMON FILES

3.7.9
PERMANENT
FILES

3-66

If a local file resides on a non-allocatable device it will be dropped (its FNT
zeroed) at disposal time regardless of its name or disposition code. It will
not be put into the output queue because JANUS and other output routines can-
not process non-allocatable files.

A user can change the type of any local file to common if it is attached to his
control point and is neither a permanent file nor a private disk pack file.

He can also attach an existing common file to his control point. If a common
file is not being used, it will be attached to control point zero. A common
file may be on an allocatable or non-allocatable device, it may have a special
name, and it may have non-zero disposition.

When it is time to dispose of a common file, the file is assigned to control
point zero and made type common regardless of its name, disposition code,
or the type of device on which it resides; however, the disposition code is
saved and when the file is released and made local, it is treated as a special
name file or a non-zero disposition code file if appropriate.

A permanent file can exist across deadstarts. The file and sufficient infor-
mation to access the file is maintained on a mass storage device. An FNT
entry is made for a permanent file only when the file is attached to a control
point; it will be type local and will be marked as a permanent file, A perma-
nent file can never be assigned to control point zero.

At job termination, a permanent file is disposed of by deleting its FNT entry
and releasing its RBT chain, The file will still exist on the mass storage
device. A CLOSE,UNLOAD on a permanent file also saves the file but
deletes the FNT., A special name or a non-zero disposition for a permanent
file is meaningless and is ignored.

A user can completely remove a permanent file from the system with the
PURGE command. The mass storage space occupied by the file will be

released.

A permanent file cannot be used as a common file; any attempt to do so will
be ignored, and a non-fatal error message will be issued.

60189400 Rev. I

3.7.10
PRIVATE DISK
PACK FILES

3.7.11
RANDOM FILES

60189400 Rev., I

A disk pack unit may be designated as public or private. A public unit is
treated the same as any other mass storage device; it may contain one or
more files of various types assigned to different control points.

A private disk pack unit is treated somewhat like a magnetic tape. The unit
can be assigned to a control point with the RPACK control card, and it may
contain one or more files associated with the control point, A private disk
pack unit cannot be attached to control point zero. The REQUEST control
card must be used to create a file on a unit attached to a user's control point.
The name on the REQUEST card cannot be one of the special names; if it is,
the job is terminated with a control card error,

When a private disk pack unit is attached to a control point an FNT entry is
made for each file on the unit as well as one FNT entry for the unit itself.
The latter is marked so a file on the pack can have the same name as the
pack. The files will be type local and will be assigned to the control point.

A private disk pack file cannot be made type common or put into the output
queue. If a user gives a disposition code to a privatc disk pack file, it will
be ignored. At job termination information about cach private disk pack file
(such as name and physical disk locations used by the file) is written to the
disk pack; and the file itself remains on the pack; but the FNT entry for each
file is deleted from the FNT, The I'NT entry for the pack is also deleted.

Other entries in system tables refering to the private pack files arc deleted,
and the equipment is detached from the control point.

To eliminate a file from the private disk pack and from thc system, the
REMOVE control card is used.

If a random file is to be saved, the file index must be written as the last logi-
cal record on the file. A user may write the index himself or he may call the
system macro CLOSE or CLOSE,UNLOAD to write the index for him.
CLOSE automatically writes out an index for a random file if the file security
is open, write or open, alter, A permanent file must also have EXTEND
permission,

If the user neglects to write out the index on a random file or an error termi-
nates the job before he has a chance to do so, the system will write out the
index if the file satisfies all the following conditions:

Tile must be random and open for write or for alter.

The FET indicated by the pointer in the FNT must appear valid. (The
random bit must be set, the FNT pointer must be correct, the index

3-67

3.8
FILE
DISPOSITION

3.8.1
NORMAL
TERMINATION

3-68

length must be non-zero, and the address of the last word in the index

must be less than the field length.) This is to prevent the system from
writing out the index if the index and the FET which points to the index
have been destroyed.

The file must be permanent with EXTEND permission, a common file,
or a private disk pack file.

When jobs terminate, the method of file disposal varies according to the
circumstances that cause termination.

1. All local files with non-zero disposition code (including output and other
special name files) which reside on allocatable devices are rewound and
put into the output queue by changing the file name to the job name, and
assigning the file to control point zero.

2. All common files are assigned to control point zero with type common.
They are not rewound. If a common file is on a non-allocatable device,
the equipment is dropped (detached from the control point) and set to
logically off to prevent its assignment to another file.

3. All FNT entries for permanent files at the control point are deleted.

4. All FNT entries for private disk pack files and the FNT entry for the
disk pack unit are deleted from the FNT. Information identifying each
file is written on the disk pack and the equipment is detached from the
control point.

[z}

The index is written out prior to disposing of a file if it is random, open
for write or alter, has a valid FET, and if the file is one of the following:

permanent file with EXTEND permission
private disk pack file
common file
6. All other files, including the input file, local files with zero disposition,
and local non-zero disposition files on non-allocatable devices are
dropped. This involves deleting the entry in the FNT for the file,
releasing any reserved mass storage space on an allocatable device, or

dropping the equipment if it is non-allocatable. A file on a non-allocata-
ble device remains at its current physical position.

60189400 Rev. I

3.8.2
KILL

3.8.3
RERUN

3.84
NO RERUN

60189400 Rev. I

When the operator types in n.KILL at the control point, the job terminates
and all local files associated with the job, including the output file, are
dropped regardless of name or disposition. Permanent files, private disk
pack files, and common files are treated as for normal termination. An
index is written if appropriate. No files are put into the output queue.

When the operator types in n. RERUN at the control point, the job is termi-
nated and returned to the input queue, so that it can be run later. Files
associated with the job are handled as follows:

The input file is returned to the input queue. Its file name will be the
job name and it will be type input at control point zero.

The output file is dropped and a new output file is created. The job day-
file is copied to the new output file which will not be rewound, but made
local at control point zero; the file name will be the job name. Itis
called a pre-output file, and becomes an output file when the job is run
again. The output file for the rerun job will contain the dayfile from the
first partial run of the job and the output and dayfile from the second
complete run of the job.

Any files attached to the job's control point that were common at the
start of the job are returned to control point zero as common files cven
if they had already been released by the job. If they are random files
and meet the other requirements, the index will be written out.

Common files created by the job are dropped.

Permanent files and private disk pack files are treated as for normal
termination. If they mect the requirements, an index will be written out.

All other files, regardless of name or disposition, are dropped.

In some cases, a job might perform a function which would make it impossible
to restore conditions to their initial state (before the job was run), For
example, if a job writes on an existing common file, that information cannot
be erased. Trying to rerun such a job could have bad effects, and therefore
RERUN should be prevented on such a job. The no-rerun flag can be set in
the control point area. If set, the operator type-in n. RERUN will be rejected.
The no-rerun flag will be set in the following cases:

1. The user attaches an existing common file to his control point
(because it cannot be determined if information has been written on
the file).

3-69

3.8.5
DISPOSAL
PRIOR TO
TERMINATION

3-70

2. The user detaches a common file from his control point with
CLOSE,UNLOAD or COMMON macros, or the RETURN control
card.

3. This is a RESPOND job,

4. The job has attached a permanent file to its control point with
EXTEND, MODIFY, or CONTROL permission, or has cataloged a

file.

Prior to job termination a user can dispose of any file attached to his control
point by calling the system macro CLOSE,UNLOAD, or by using the
RETURN control card. A common file can be disposed of by calling the sys-
tem macro COMMON, After the user disposes of a file, he may create and
reference a new file with the same name.

CLOSE,UNLOAD

The system macro CLOSE can include the parameter UNLOAD to specify
disposal of a filc at the user's control point. Files disposed of in this
way are handled as for normal job termination with the following

exceptions:
1. CLOSE cannot be used for the INPUT file.
2. A sequential file is rewound.
3. A file on magnetic tape is physically unloaded.
4., A file on a private disk pack is locked.
5. CLOSE,UNLOAD (or any other CLOSE) will write out the index

RETURN

to any non-permanent random file which is open for write or
alter with EXTEND permission.

The RETURN control card can be used to dispose of a file at the user's
control point. RETURN will perform a CLOSE,UNLOAD on the file.

COMMON

The system macro COMMON can be used to dispose of a common file at
the user's control point. Disposal is the same as in normal termination.
If the file referenced in the call is not type common, no action is taken,
but an error indication is returned to the user.

60189400 Rev. I

3.8.6
BUFFER EMPTYING

3.8.7
EXPORT/IMPORT
AND RESPOND -

60189400 Rev. I

The system will empty the buffers of certain files before disposing of them.
A write end-of-record will be issued to write any information still in a user's
buffer onto the associated file, Buffers are emptied when a job terminates
and the error flag is not KILL or RERUN; or when an error (other than KILL
or RERUN) occurs which does not cause termination because the job contains
an EXIT card followed by more control cards.

In the former case, the system will empty the buffers as described above.

In the latter, the system will empty the buffers, process the error condition,
and continue processing cards after the EXIT card. A CLOSE,UNLOAD will
not empty the buffers.

Files with non-zero disposition (including output and other special names) are
emptied if they meet all the following conditions:

The last code and status in the file's FNT indicates that the last operation
on the file was an OPEN,WRITE (with or without rewind) or any type of
write (WRITE, WPHR, WRITER, WRITET).

The FET pointer in the FNT points to an FET with the same name as the
file name.

The buffer is not empty.
For common files, buffers are emptied regardless of disposition.
The FET pointer in the INT points to the address of the FET used in the last

I/0O operation, If a user has two FET's for a file, it may not be possible to
determine which buffer is emptied.

Files associated with EXPORT/IMPORT and RESPOND jobs are handled as
described below:

EXPORT/IMPORT

When files attached to an EXPORT/IMPORT job are disposed of by the user
or the system, they are handled the same as for a normal job, except that
4000g is added to the disposition codes of all files placed in the output queue,
Files in the input queue with disposition codes of 4xxxg are ignored by
JANUS, as they are picked up by the EXPORT/IMPORT package. In some
cases, the EXPORT/IMPORT package may reset the disposition so that
JANUS will process the output.

3-71

3-72

RESPOND

If the user disposes of a file attached to a RESPOND job, the file is treated
normally. All others, except for the output file, are disposed of by the
RESPOND package at end of job. The output file will be put into the output
queue with 2000g added to its disposition. JANUS will ignore the output file,
as it will be picked up by the RESPOND package.

60189400 Rev, I

LOADER OPERATION 4

The relocatable loader provides high-speed transfer from input and storage
devices to central memory. Initially, the loader is called by SCOPE control
cards; later it may be called from an object program.

The two loaders included in this system may be selected with a control card.
If the user does not select a loader, the system selects it by default. Loaders
are specified by a name of 1-7 alphanumeric characters; PPLOADR and
CPLOADR are currently available. These loaders are externally compatible
except for file positioning at the end of selective load operations (described
under LOADER request, section 3.6.4) and the lack of recognition of code
assembled at absolute origins by the CP loader (section 4.5.1). Both loaders
function as follows:

Subprograms assembled or compiled independently, in absolute or relo-
catable binary, may be loaded and linked to one another or to library
subprograms by the loader. The loader issues diagnostic messages on
the dayfile and prints memory maps when requested.

A number of subprograms may be grouped together as a segment to be
loaded, linked and, upon request, later delinked and removed as a unit by
the loader. The loader can also generate overlays which are written out
to a specified file in absolute format, These overlays may then be loaded
by a smaller, faster version of the loader.

These features are governed by control cards, loader requests from
object programs, and a standard relocatable subprogram format.

4.1
LOADING
SEQUENCE Loading for PPLOADR proceeds in the following general manner:

1. The loader may be called by the user program or as a result of con-
trol card requests.,

2. The initial control card results in loading of the PRU routines, LOD,
LDR, and a CPU routine, LOADER.

3, LDR handles all loader input/output and relocation to central memory;
LOADER handles all bookkeeping, routine linking and delinking.

60189400 Rev. K 4-1

10.

The combination of these two routines, hereinafter referred to as
the loader, processes specific requests in the parameter list on the
control card or in the user program. These may be:

Build segment definition tables

a
b. Build section tables

c. Prepare overlays and write them out to a defined file
d. Load absolute programs

e. Load relocatable program texts

f. Load segments

g. Load overlays

(d and e are subset functions of g and f, respectively.)

Programs can be loaded from more than one file (including the
system library) for a single job.

During loading, all external reference points and entry points are
linked together as described in appendix D. Duplicate entry points
produce a non-fatal diagnostic.

At completion of load and at the user's discretion, all unsatisfied
references are filled with references to entry points in relocatable
routines from the system library or by out-of-bounds references.

During loading, a memory map is created for all programs other
than main programs loaded from the system library (such as
FORTRAN, etc.).

Loading is completed upon appearance of an EXECUTE or NOGO
card. NOGO inhibits program execution and is used primarily to
provide a map of the program. Subsequent loading following the
NOGO will begin as if no programs had been loaded prior to NOGO.
An EXECUTE card causes control to transfer directly to the loaded
programs.

Loading of OVERLAYS by normal or segment jobs, or the converse,
is not prohibited by LOADER. However, extreme care must be
exercised in the allocation of core and communication between
component programs. The loading of absolutely "original" code is
also permitted but can result in complex situations when accom-
plished in overlays and segments.

60189400 Rev. I

60189400 Rev. H

CPLOADR operates primarily in the central processor within the user's
field length. Within CPLOADR the following functions are reserved for
the central processor:

Text relocation

Loader table generation

Loader table processing

Linking

Replication
Labeled and blank common assighments

Library loading

Issuing I/O requests to PP routines

Segment handling operations (including delinking)

Overlay generation

Overlay loading

Issuing maps and error diagnostics

Components of the central processor portion of the loader follow:

LOADERQ®

LOADERS
LOADERV
LOADERE
MAPOUT

Main module, for loading overlays, relocatable programs
and library subroutines in normal load operations.

Used when segment loading is in operation.
For overlay generation.
For fatal errors.

For editing full maps.

Functions of peripheral processor components of the loader follow:

LOQ
LDQ

Load main central processor module, LOADERQ.
Called by LOADERQ for:

Reading input files from mass storage into central
memory buffer

Reading library directory into user's field length

Reading relocatable subroutines from library into user's
central memory buffer

Reading central processor time spent in loading for map
output

Checking validity of loader directives (SEGMENT,
OVERLAY, etc.)

4.2
SEGMENTATION

Other peripheral processor routines called are:

CIO Called for:
Reading input files from tape into central memory buffer

Reading input files from any device into central memory
for selective load from a file

LDR Called as a result of a user request to load an overlay
from input file (device independent) or system library.

The control cards described in section 2 and the user request formats
described in section 3 have the same significance to CPLOADR as they do
to PPLOADR.

A segment is a group of relocatable subprograms which are to be treated as a
unit by the loader. Segmentation allows the user to add programs as they are
required and to eliminate those no longer required during the execution of his
job. The user defines subprograms to be included in a segment with loader
control cards or with parameters included in the object program loader call.
To facilitate reference to groups of programs, a segment definition may con-
tain both program names and section names. A section is a convenience in
the loader scheme to reduce the number of program names appearing in
segment calls.

Segments are loaded at levels ranging from 0-7 Tg- Level zero is reserved
for the initial, or main, segment. Segment zero must be the first segment
defined; thereafter segments may be defined and loaded at any level.

When a segment is loaded, external references within the segment are linked
to entry points in segraents previously loaded at a lower level. Unsatisfied
external references may be linked to entry points in segments loaded sub-
sequently. Optionally, the user may specify that unsatisfied external re-
ferences be satisfied, if possible, from the system library, thereby
nominally including certain library subprograms within a given segment. If
the level requested for loading a segment is less than or equal to the level
of the last loaded segment, the loader performs a delinking operation. All
segments previously loaded at a level equal to or greater than the presently
requested level are removed and all linking of external references to entry
points within these segments is eliminated, causing the external references
involved to become unsatisfied again. Once delinking is complete, the seg-
ment is loaded at the requested level.

60189400 Rev. I

60189400 Rev. I

Ordinarily, only one occurrence of a given subprogram or entry point is
loaded since all segments are linked to that subprogram. However, a user
may force subsequent loading of an already loaded subprogram by explicitly
naming it in another segment to be loaded at a higher level. Thereafter,
all external references in higher level segments would be linked to the last
loaded subprogram.

Example:

The SINE routine is loaded in a segment at level 1. To try an experi-
mental version of SINE, the user loads a new segment containing SINE
at level 3. Now, although any references to SINE occurring at level 2
will be linked to the entry point in level 1, all segments loaded at level
4 or higher will be linked to SINE at level 3. This will occur until level
3 is delinked and removed as described above or until yet another SINE
is loaded at a higher level.

Labeled common block references are established between programs in a
given segment but not between segments. Therefore, delinking is not re-
quired. Blank commeén references are established between programs within
a segment and also between segments. The origin and maximum blank
common length is established in the first segment which declares blank
common. If this segment is ever delinked, blank common will be re-estab-
lished in the next segment loaded which declares blank common. The
following diagram shows the storage allocation in core resulting from the
loading of several scgments:

Loading Segment Contents of User's Area After the
Order Level Loaded Segment is Loaded
1 0 of
2 2 0 21
3 4 0 2 4¥
4 7 0 2 4 71
5 2 0 2
6 1 0 1
7 2 0 1 2t
8 5 0 1 2 57
9 7 0 1 2 5 |f

anewly loaded

4.3
OVERLAYS

The loader provides the facility to subdivide a large task into portions, called
overlays, and write them out in absolute form. These overlays can then be
loaded at execution time without a relocatable loading operation. The resident
loader for overlays is substantially reduced in size and may be easily retained
with the job for subsequent loading. Overlays are generated through control
cards processed directly by this loader (loader directives).

Each overlay is identified by an ordered pair of octal numbers, 0-77. The
first number denotes the primary level; the second denotes the secondary level.
A secondary overlay (non-zero secondary level) is associated with a sub-
ordinate to the primary which has the same primary level and a zero second-
ary level. Overlays (1,1), (1,2) and (1,3) are secondary overlays of the
primary (1, 0).

The initial, or main overlay, must be primary with level 0,0. It cannot have
any associated secondary overlays; overlays numbered 0,1; 0,2; etc., are
illegal. The main overlay remains in memory throughout the job. For any
given program execution, all overlays must have unique identifiers.

Primary overlays all begin at the same point immediately following the main
overlay (0,0). The loading of any primary overlay will destroy any other
primary overlay. For this reason, LOADER will not return CP control to the
instruction following the LOADER call. Instead, control will be transferred
to the entry point of that overlay.

The origin of secondary overlays immediately follows their associated
primary overlay, and they may be loaded only by their primary overlay or by
the main overlay. The loading of a secondary overlay destroys any previously
loaded secondary overlay. No more than three overlays are available to

the user at one time: the main overlay, one primary, and one secondary.

When the loader detects illegal overlays during preparation, because of

erroneous identification or size, an abort flag is set which causes the system
to bypass the next EXECUTE or NOGO card.

60189400 Rev. H

4.4
LOADER
DIRECTIVES

4.4.1
OVERLAYS

60189400 Rev. H

The following example shows the storage allocation in core during an overlay
loading operation:

Loading Primarir S econlda;'y Contents of User's Area After this
Order gj‘;ia(; g:::la; Overlay has been Loaded

1 0 0 (0,0) Must be first loaded overlay

2 1 0 0,0 | @,0

3 1 1 ©,0 |@,0]a,m

4 1 3 (0, 0) (1,00 | (1,3)

5 2 0 (0,0) (2,0)

6 2 2 (0,0) 2,0) (2,2)

7 2 1 0,0 | @,0 @,1)

8 4 0 (0,0) | (4,0

The following control cards are interpreted by the loader as directives for
the loader execution. They may be interspersed with tables but may not be
interspersed with cards making up a table.

OVERLAY (lfn, Ly, Lo, Cnnnnnn)

Ifn is the file name on which the overlay is to be written; the first overlay
card must have a named lfn. Subsequent cards may omit it, indicating that
the overlays are related and are to be written in the same lfn. A different
1fn on subsequent cards results in the generation of overlays to the new lfn.
The source file for overlay generation may not be used as the lfn on
any overlay cards. Loader writes the first overlays to the output file
before all overlays on the source file have been processed. Lj is the
primary level number in octal; Ly is the secondary level number in octal.
Ly, Lo for the first overlay card must be 0,0.

Cnnnnnn is an optional parameter consisting of the letter C and a six-digit
octal number. If this parameter is present, the overlay will be loadéd nnnnnn
words from the start of blank common. This provides the programmer with
a method of changing the size of blank common at execution time. Cnnnnnn
cannot be included on the overlay 0,0 loader directive. If this parameter is
omitted, the overlay is loaded in the normal manner.

OVERLAY DECKS

OVERLAY FORMAT

Contents 5000 L4 Ly fwa ea

Bits

The data, relocatable binary decks immediately following OVERLAY up to the
next OVERLAY control card or an end-of-file, comprise the overlay deck.
When the overlay deck has been loaded, loading is completed by satisfying
undefined external references from the system library. The overlay and its
identification are written as the next logical record in the file. Writing to
the overlay [ile takes place when a directive is encountered which specifies
an overlay level which would overlay a level currently residing in memory.
Writing also takes place when the last overlay has been created.

Each overlay has a unique entry which is the last transfer address (XFER)
encountered in the overlay subprograms during preparation. External re-
ferences which cannot be satisfied, even by the system library, result in

job termination after loading is completed and maps are produced for all
overlays. References to entry points in the main overlay may be made from
primary and secondary overlays. References to entry points in a primary
overlay may be made only from an associated secondary overlay. Similarly,
common blocks defined in a lower level overlay can be referenced from a
higher level overlay. Data can be preloaded into a labeled common block if
the overlay which defined the common block has not been written to the over-
lay file.

Each overlay consists of a logical record in absolute format. The first word
is an identification. Words 2 through end of logical record are data words.

59 47 41 33 17 0

L, primary overlay level fwa first word address of overlay

1
(overlay is loaded at FWA)

L, secondary overlay level
ea entry point to the overlay

60189400 Rev. L

4.4.2
SECTIONS

4.4.3
SEGMENTS

4.5
MEMORY
ALLOCATION

4.5.1
SYSTEM USAGE

60189400 Rev. J

This card defines a section within a segment. Segments are loaded by user
calls during execution or by the loader during initial load.

SECTION (sname,pnl,pnz, v ,pnn)

sname is the name of the section and pn; are names of subprograms belonging
to the section. If more than one card is necessary to define a section,
additional cards with the same sname may follow consecutively. All names
must be a maximum of 7 alphanumeric characters.

All subprograms within a section are loaded whenever the named section is
loaded. All section cards must appear prior to the SEGMENT cards which
refer to the named sections.

All programs requiring segmentation loading must contain the SEGZERO card
and all SECTION and SEGMENT cards before any of the binary text.

SEGZERO (Sn,pnl,pnz, . ,pnn)

sn is the segment name and pn; are names of subprograms or section names
which make up the main or zero level segment. Defining other segments in a
similar manner reduces the list of subprograms in the loader call. All names
must be a maximum of 7 alphanumeric characters.

SEGMENT (sn,pnl,pnz, ceey pnn)

The parameters are defined as in SEGZERO. In a segment, all programs
must reside on the same file. A segment defined in the user's program
need not be defined by a SEGMENT card; however, a SEGZERO card is
always required.

Storage areas are allocated within the user's declared field length in contig-
uous memory locations. The first 100 8 locations of the area are automatically
assigned as follows:

59 i} 5 00

Sense Sense
+0 (not to be set by any CDC routine) &|Switches | Lights
+1 User/System Interface
+2
. % Parameters from Program Call Card 4 };ggR?ﬁ;I)‘s Z—/
+63 .
+64 Program or File Name No. of Parameters
+65 Segment Table Pointer Reserved Next Available CM
+66 FWA Loader Tables |[MHO|s[T|c|L| ovLvL l 2d FWA ;ifgi‘znome“
+67 S.OFLAG P(EQIMRCT] 2221 FWA Loader
+70 59 53 35 31 20 27 23 7 00
47 Card Image 4;7
476
+77 A

In the above diagram RA+64 through RA+67 are reserved for the SCOPE
system-loader interface and bytes are assigned as follows:

2d Indicator for loader directive

OVLVL Level of incoming overlay

CT Control card type NOGO, LOAD, EXECUTE, PROGRAM
R RSS mode indicator

M No map flag for library load

Q Request flag - communication between LDR and LOADER
E End of load flag

S.OFLAG Segment -~ FWA of tables for lowest segment in user's
job area

Overlay - FWA blank common
GO/PAUSE flag; 0 =GO, 1 =Pause, wait for GO

A ASA flag (used by RUN2.3); 0 - not ASA; -0 = ASA
FFORTRAN does not use 70-76(7) in the card image manner

oS}

P Partial map flag
SNAP
T TRACE

4-10 60189400 Rev. I

c Change dump

I‘J Labeled dump

e} REDUCE (OBESE) flag

MP Map flag: 001 = Full map, 010 = No map, 100 = Partial map
Card Upon initial entry from a named routine call or an EXECUTE
image card, these locations will contain the card image (in display

code) of the card which called for execution.

If a SECTION card appears prior to an initial loading operation, a section
definition table (SDT) is started at RA+100g otherwise the user's first loaded
subprogram is started at RA+100g, The origin of the user's area can be
found in bits 0-17 of RA+66g.

Absolute programs on the system library which are loaded by program call
cards are loaded at location RA+100g regardless of the declared origin of the
program. Relocatable programs are loaded originally at RA+100g. The
origin of a program made absolute by COMPASS must be location 101 as
COMPASS places a control word in front of the first location.

The system cstablishes loader tables at the high end of the user's field length
area. The user must provide space for the loader and the loader tables in his
field length declaration. (An additional 5000g is usually sufficient.) Blank
common may overlay the loader and its tables; conversely, if the loader is
called again it may overlay blank common. It is the user's responsibility to
assure that this field length is long enough to accommodate the loader, its
tables, and blank common if he is concerned with preservation of data.

The CP loader uses memory beyond the last loaded address of the user's
programs for mapping purposes. Code assembled by COMPASS at absolute
origins is not included in the range of that last address. Thercfore such code
may be destroyed by the loader. The PP loader does not have this restriction. I

There are no guarantees that the programmer cannot destroy the loader or
loader tables. Both areas are checksummed and the checksum is verified
upon initial entry into LOADER. If this initial verification routine is des-
troyed the results of RJ LOADER are meaningless.

60189400 Rev. K 4-11

4.5.2
USER ALLOCATIONS

4.5.3
SEGMENT
ALLOCATIONS

4.6
MEMORY MAP

4-12

The subprogram and associated labeled common blocks are assigned memory
as they are encountered. Blank common relocation information is preserved
until loading is completed, at which time it is allocated following the last
loaded program and/or labeled common block.

The initial declaration of a labeled common block establishes the maximum
length for that data block. Length declarations in subsequent programs must
be less than or equal to the original declaration. A diagnostic occurs if this
rule is violated.

Declarations of blank common may vary between subprograms, and the
largest declaration determines the memory allocation.

After a segment is loaded, the current loader tables are moved to a point
immediately following the last loaded subprogram/common block.

The user must allow for the space consumed by the loader table within his
field length definition.

Following completion of loading, an optional map of the user's area may be
produced in the OUTPUT file. The map includes:

Names, lengths, and locations of entry points with a sublist of all
programs referencing the entry point
Names and locations of common blocks
Total length of all loaded programs and common blocks
Length of the loader and its tables
Unsatisfied external references
During execution of a segmented or overlay job, a record of a new segment

or overlay load is provided each time a call is made to LOADER. This map
can be suppressed by setting the NOMAP bit in the LOADER parameters to 1.

60189400 Rev. H

4.7

ERRORS IN
ASSEMBLY/
COMPILATION

60189400 Rev. H

Errors encountered in assembly and compilation do not automatically cause
the system to terminate a job. Rather, the job is terminated when the user
attempts to load the assembled program. The loader recognizes the directive
ERRORS, which is produced in the first record in the first character position
on the binary output file. ERRORS IN ASSEMBLY. is produced by COMPASS,
ERRORS IN RUN COMP. is produced by RUN. To avoid indiscriminate
dumping of system routines, such as LOADER, COMPASS, etc., EXIT proc-
essing will not occur if the ERRORS directive caused termination; that is,
control cards following an EXIT card will not be processed. When the EXIT
card contains an S parameter:

EXIT(S)

EXIT processing will occur in all cases.

4-13

SYSTEM LIBRARY PREPARATION AND MAINTENANCE S

60189400 Rev. K

The SCOPE system library includes system routines, library maintenance and
utility routines, members of the SCOPE product set such as COMPASS,
FORTRAN, COBOL, etc. and coded records.

The EDITLIB program creates and maintains the SCOPE library. Modifica~
tions may be applicable to only the currently operating environment or they
may be permanent changes to a system library deadstart load tape.

The library material may be in three forms:

e System library tape, which may be deadstart loaded.

® File called SYSTEM on mass storage, which is virtually a copy of a
system library tape after deadstart loading is completed. Parts of
SYSTEM will also have been copied into central memory; in particu-
lar, library programs that are to be available from CMR.,

® TFiles containing one or more logical records in a form suitable for
insertion into SYSTEM or a system library file.

The released system library consists of 18+n records followed by an end-of-
file, where n is the number of programs and overlays in the library. Any
installation, however, may expand the 18 records to 25 since the SCOPE 3.2
system permits up to eight different CMR records on the library to correspond
to eight different equipment configurations at an installation., The released
SCOPE 3.2 system has only one CMR record on it, If the installation places
additional copies of CMR on its system tape, the number of records preceding
the library programs will increase by one record for each additional CMR.
The programmer should modify the parameters in his EDITLIB control cards
if necessary to match his installation tape.

Name/Record No. Description
CEA 1 PPO save program. If the save switch on the deadstart

panel (word 7, bit 2) is down (set to 0), PPO is copied
to central memory (starting at IP, SVADR) allowing the
contents of PPO0 to be dumped by the deadstart dump

program.

CED 2 Deadstart control program

D 3 Decadstart dump program

CMR 4 Central memory resident (up to eight copies allowed)
EST 5 Deadstart equipment reconfiguration program

5.1
EDITLIB
CALL CARDS

5-2

Name/Record No.

IRP
5CP
5CQ
5CR
5CS
5CT
P
STL
IRCP

MTR

DSD

6
7
8
9

10
11
12
13
14

15
16

17
18

19 and
follow=-
ing

Description

Deadstart I/O control program
Deadstart 6603-1I driver

Deadstart 6638 driver

Deadstart 865 driver

Deadstart 854 driver

Deadstart 6603-II driver
Preaddress 6603-II program
Deadstart system initiation program

Deadstart main program (performs device labeling,
permanent file processing, preloading, loading, and
recovery)

System monitor program (resides in PP0 during system
operation)

Display control program (resides in PP9 during system
operation)

Entry point table copied into directory area of CMR as
its first section. Each entry contains name of an entry
point in a central processor program in system library,
and a number which locates it in the program name table.

Program name table copied into directory area of CMR
as its second section. Each entry contains name of a
PP program, CP program, CP overlay, or ERT, and
its length, type, edition number, and residence,

Programs and overlays; each has an entry in the pro-
gram name table. As these records are read, the
loader inserts disk addresses into corresponding pro-
gram name table entries,

EDITLIB is called into operation when an EDITLIB card appears in the control
card record of a job. This card may assume one of two forms which affects
only the initial processing (thereafter processing is identical for the two

forms).

EDITLIB.

With this form, the current system directory is saved on a common file
called SSSSSST.

60189400 Rev. K

EDITLIB(RESTORE)

With this form, the current system directory is replaced by the contents of
the common file called SSSSSST.

EDITLIB uses the following file names. These names should be unique, since
it is impossible to protect these files under the current system; therefore, the
user must NOT CREATE ANY FILES with the following names:

SSSSSSS SSSSSSX
SSSSSST SSSSSSY
SSSSSSU SSSSSSZ
SSSSSSV SYSTEM
SSSSSSW
5.2
EDITLIB
FUNCTION
CARDS The EDITLIB program initially reads one record from file INPUT and copies

it to a scratch file, This file contains the function cards to control the run
initiated by the EDITLIB call card., The first card image read informs
EDITLIB of an action to be performed. When the action is complete, the next
card image is read, and the action it calls for is performed. When the record
is exhausted, EDITLIB returns control to SCOPE.

A function card begins with the name of the function, which may start in any
column. Parameters may be separated by blanks or any characters other.than
period, dollar sign, right parenthesis, minus sign, or asterisk. A period or
right parenthesis terminates the card, and the minus sign and asterisk have
special meanings for the ADD function. In a word that begins with a letter, a
dollar sign is treated as a letter; elsewhere, a dollar sign acts as a separator.

ADD(A,B,CM) and ADD A+B,,,CM. have the same meaning.
A function card requesting a condition that already exists is ignored. Errors
in function cards result in a message, For some errors the function card is
ignored, for others the job is terminated.

The following notations are used in the descriptions of the function cards:

s Source file; name of a file from which data is to be read. The name
SYSTEM is reserved for the current operating system.

d Destination file; the name of a file onto which data is to be written.
The name SYSTEM is reserved for the current operating system.

60189400 Rev. L 5-2.1

5.2.1

SYSTEM
MODIFICATION
FUNCTIONS

MOVE

DELETE

60189400 Rev. K

p Name of record to be processed.

r Residence. The device from which a particular record is to be
loaded when that record becomes part of SYSTEM. All records
are written on disk (DS). In addition, some records may be kept

in central memory (CM) for faster access. In the latter case, the

residence is central memory.

e Edition. A number, 0-63, attached to a record by the ADD function.

The following functions may be requested without a preliminary READY
function. In this case, the running system, SYSTEM, will be modified.

MOVE(p, 1)

The residence of a record is changed in the SYSTEM directory. If a record
is moved into or out of central memory, the body of the record is added to or

removed from the directory. Storage is moved accordingly.

DELETE(p)
Record p is to be deleted from the SYSTEM directory. If record p was

resident in central memory, the body of the record is removed and storage is

moved accordingly. The disk copy of the record is not affected.
DELETE (py-py)
This function deletes from SYSTEM directory records py through poy, as

listed in the program name table. If Py does not appear after Py in the pro-

gram nameé table, the job is terminated with the message:

((DEL)) EXHAUSTS PNT BEFORE SATISFACTION

If any record (pq-pg) is resident in central memory, the body of the record is

removed and storage is moved accordingly. The disk copy of the record is

not affected.

Before any change is made to SYSTEM, a message appears on the B display

at the control point.

EDITLIB WARNING - GO or DROP

The operator must type n. GO to allow the MOVE or DELETE to proceed. If

the operator prefers not to risk the change, he can DROP the job, and
SYSTEM will remain unaltered.

52.2

LIST

LIBRARY REVISION

FUNCTIONS

5-4

READY

LIST (s)

File s is rewound and searched until DSD is found, and the next two records
are read on the assumption that they are the entry point table and program
name table for the system which the file constitutes. The name of the file is
written on OUTPUT, and the two tables are used to write, on OUTPUT, a list
of the records in the file. For each record the following information is given:

Name
Description (PP PROG, CP PROG or OVERLAY)
Residence (CM or DS)

Edition number (2 decimal digits)

Length (5 octal digits); length is in CM words, excludes the prefix of the
record.

If the record is a program with entry points, they are listed immediately
below, indented.

In response to the READY function, EDITLIB prepares to create a system
library on file d. A READY function is required for any modification more
complex than deleting or changing residence of one or more programs from
SYSTEM.

READY (d)

If d # SYSTEM, a model of an empty directory and an empty scratch file is
prepared. Subsequent function cards cause information to be written into the
directory and scratch file.

READY (SYSTEM)

The directory of the presently operating SYSTEM is to be manipulated. The
current directory is copied within the field length of the EDITLIB program
for subsequent modifications.

60189400 Rev. I

TRANSFER

60189400 Rev. 1

READY (SYSTEM, *)

An empty directory is created. This form is used when SYSTEM is to be

completely replaced from sources other than the currently operating
SYSTEM.

With the above forms, any records added are written into a common file
called SSSSSSU. This file is not rewound between one dead start and the
next. It is used as a scratch file of indefinite length. Directory entries
for programs added since dead start will point to SSSSSSU.

The records from CEA through DSD are not indexed in a system file directory.
This function is used to add such records to a system file.

TRANST'ER (s,n)

If n is a number, the next n records are copied from file s to the new file. If
any records have a prefix,the run is aborted.

If n is not a number, the prefix of the next record name on file s is verified
against n; the prefix is discarded and the remainder of the record is copied

to the new file. If the name in the prefix is different from n or if the record
has no prefix, the run is terminated.

TRANSFER (s) and TRANSFER (s,1) are equivalent statements.

TRANSFER (s,n, 2)

In this form of the TRANSFER statement, n is a name. The next record on
file s is checked for a prefix containing name n. The prefix is discarded and
the rest of the record is copied to the new file. The file record is finished
by adding, without checking prefix, all of the next record on file s.

5-6

ADD

ADDBCD

ADD (p,s,r,e)

Record p from file s is added to the system library currently under con-
struction. The record is assigned residence r. If r is absent, and file s is
a system library, the residence p is taken from file s; otherwise, disk
residence is assumed. The edition number attached to each record added
is e, 0-63. I e is absent and s is a system library, the record is trans-
ferred with its same edition number. If e is absent and s is not a system
library, the edition number will be 0. Since r is never a number, and e

is always a number, they cannot be confused, and any of the following is
acceptable:

ADD (p, s) ADD (p,s,e€) ADD (p,s,r,e)
ADD (p,s,r) ADD (p,s,e,T)

If s # SYSTEM, s must be positioned at the beginning of record p; if file s
is not properly positioned, a diagnostic is given and the function card
skipped. If s = SYSTEM, pre-positioning is not necessary.

In addition to a single record name, the p parameter may assume the
following forms:

b, ~ Py Records Py through p, are added to the system library under
construction. p, must appear after Py in the file s.

p-* All records on file s from record p to the end of the file
are added to the system library under construction.

* All records on file s from the present position to the end of
the file are added. If s = SYSTEM, all records listed in the
directory are added.

The following two functions are needed only to add special records from a
file other than a system library.

ADDBCD (p,s,1,€)

Parameters have the same meaning as for ADD; however, p is the name of

a coded record. An overlay is created and written on the new system library.
The first card of a coded record to be added to a system library must contain
the name p, beginning in column 1. p must be the name of a single record;
the formats P, - pz, P, - *, and * are not allowed.

60189400 Rev. C

ADDTEXT ADDTEXT (p,s,r,e)

This is like ADDBCD except that file s is presumed to be a coded file for-
matted as the COMPILE file output by EDITSYM. Even though there is a
serial number after column 80 on each line, ADDTEXT discards everything
after column 72 to save space in the overlay. p must be the name of a single
record; formats p1 ~ Py P - *, and * are not allowed.

ADDCOS ADDCOS (p,s,T,€)

Parameters have the same meaning as for ADD; however, p is the name of
a record without a prefix. ADDCOS is used to add the Chippewa Operating
System RUN compiler and object routines to a SCOPE system library.

DELETE DELETE (p)

This function used after a READY function causes record p to be deleted
from the new directory and system library under construction.

DELETE (p,-p,)

This function deletes from the system library under construction, records
py through p, inclusive, as listed in the program name table of the model

directory under construction. If Py does not appear after p; in this table,

the job is terminated with the message:

((DEL)) EXHAUSTS PNT BEFORE SATISFACTION

LENGTH LENGTH (p)

When p is a digit from 4 to 9, EDITLIB request a field length sufficient to
accommodate a directory model of p times 100005 words. Before any func-
tion cards are obeyed, EDITLIB must have obtained a field length for a
directory model of at least 300008 words.

The directory models to be accommodated are those of the running system as
EDITLIB finds it initially, plus any modifications EDITLIB may make between
obeying a READY (SYSTEM) card and the succeeding COMPLETE card.
Directory length = 2+2ptetr. p = number of programs and overlays in
library; e = number of entry points in CP programs in library; r = number of
words in the bodies of all CM-resident programs. Normally no more than
300008 words are required; however, a larger field length can be established
by using LENGTH (p) as the first function card read by EDITLIB.

60189400 Rev. C 5-1

COMPLETE COMPLETE
This function causes the file id initialized by a READY function to be com-
pleted. A COMPLETE function without a preceding READY is meaningless
and the job will be terminated.
If d = SYSTEM, the revised directory prepared since READY was executed

replaces the current system directory. Before the replacement is made, a
message appears at the control point on the B display.

EDITLIB WARNING - GO or DROP

The operator must type n.GO to permit replacement, or n.DROP to prevent
it by terminating the job.

If d # SYSTEM, the new directory and scratch file are written on file d.

5.2.3
POSITION FUNCTIONS A position function may appear anywhere within an EDITLIB deck.

REWIND REWIND (s)

File s is rewound.

SKIPB SKIPB (s, n)

1
n logical records are backspaced on file s. n may be 1 to 2 7—1.

SKIPF SKIPF (s,n)

If n is numeric (1 to 217—1), n logical records on file s are skipped in a
forward direction. If n is a name, the skip is forward to the end of logical
record n. If the end-of-information is reached before n can be satisfied,
the job is terminated.

5-8 60189400 Rev. G

5.3
EDITLIB EXAMPLES The running system includes program FORTRAN, a resident on disk only.

e DBring into central memory residence, run a batch of compilations, and return
the program FORTRAN to disk residence:

job card
EDITLIB. Control card begins an EDITLIB run.
7/8/9
MOVE (FORTRAN,CM) Function card read by EDITLIB.
6/7/8/9 Ends EDITLIB run and job.
job card Begins batch of compilations.

Cards for the compilation jobs.
6/7/8/9
job card
EDITLIB. Control card begins an EDITLIB run.
7/8/9
MOVE (FORTRAN, DS) Function card read by EDITLIB.
6/7/8/9 Ends EDITLIB run and job.

® Construct a file called NEWSYS on tape, which duplicates the system now
running:
job card
REQUEST,NEWSYS. Operator will assign a tape.
EDITLIB. Saves current directory and begin EDITLIB run.
7/8/9
REWIND(SYSTEM)
READY(NEWSYS) Prepares NEWSYS to receive records.
TRANSFER(SYSTEM, 16) Copies first 16 records of system.

ADD(*, SYSTEM) Copies to a scratch file all programs found in
directory.

COMPLETE. Copies tables and scratch file to. NEWSYS.

6/7/8/9 Ends EDITLIB run and job.

60189400 Rev. K 5-9

Same as preceding example, except that the program in the present system
called 2TS is to be replaced in NEWSYS by another program called 2TS, which
is at hand as a deck of cards; 2T8 is to have mass storage residence:

job card

REQUEST,NEWSYS. Operator will assign a tape.

EDITLIB. Saves current directory and begin EDITLIB run.
7/8/9

REWIND(SYSTEM)

READY(NEWSYS)

TRANSFER(SYSTEM,16) Transfers 16 SYSTEM records.

ADD(*,SYSTEM) Copies all programs in the directory to a scratch
file.

DELETE (2TS) Removes program called 2TS from new directory.

ADD(@2TS,INPUT,DS) Adds new 2TS from INPUT.,

COMPLETE,

7/8/9

the new 2TS binary deck

7/8/9

6/1/8/9

Replace, temporarily, the program called 2TS; try it out by runs within the
same job; and finally restore the original system:

job card

EDITLIB. Saves present directory and, therefore, system.

Control cards for runs
that will test new 2TS

EDITLIB(RESTORE) Restores what was saved by EDITLIB.
7/8/9

READY (SYSTEM) Function cards for EDITLIB,
DELETE(@2TS)

ADD(2TS,INPUT, DS)
COMPLETE.
7/8/9

60189400 Rev. K

60189400 Rev. K

New 2TS binary deck
7/8/9

Input cards for runs that
will test new 2TS

6/7/8/9

Produce a new system file called MYTAPE which is a copy of the presently
running system except that MTR is to be replaced:

job card

REQUEST MYTAPE.
EDITLIB,

7/8/9

REWIND(SYSTEM)
READY(MYTAPE)
TRANSFER(SYSTEM, 14)
TRANSFER(INPUT,MTR)
SKIPF(SYSTEM, 1)
TRANSFER(SYSTEM, 1)
ADD(*,SYSTEM)
COMPLETE.

7/8/9

New MTR binary deck
6/7/8/9

Transfers first 14 records.

Transfers new MTR to MYTAPE,

Skips over the old MTR.
Transfers DSD to MYTAPE,

5-11

Simulate the deadstart loading of a system tape called MAYBE, assuming its
first 16 records to be the same as on file SYSTEM:

job card

REQUEST,MAYBE.

EDITLIB.

7/8/9

SKIPF(MAYBE, 18) Skips over the 16 system records and the 2
directory records.

READY(SYSTEM, *)

ADD(*, MAYBE)
COMPLETE.
6/7/8/9

Any succeeding jobs, provided they do not call EDITLIB, will use the system
from MAYBE. Then the original system can be restored by:

job card
EDITLIB(RESTORE)
6/7/8/9

60189400 Rev. K

UPDATE 6

6.1
PROGRAM LIBRARY
INFORMATION

60189400 Rev. I

UPDATE is a maintenance program that creates, corrects, and manipulates
program library files, UPDATE can be used with SCOPE 3,0 and newer
versions for temporary testing or generating a new program library. A
field length of 40000g should suffice for most UPDATE runs.

UPDATE data may be source cards for a compiler or assembler run, data
cards, or any other symbolic information convenient to the user. Columns
73-80, however, are destroyed by UPDATE card identifiers. The UPDATE
system call (control card) directs the program to the specific files and modi-
fies the operation of the program.

The program library, which UPDATE creates and/or modifies, contains the
symbolic data for programs being maintained on the system tape. These
programs are arbitrarily divided into decks by insertion of *DECK and
*COMDECK cards into the text stream. The program library file consists
of a directory, a deck list, and text stream.

The first word of the program library file is composed of two counters:
the count of the identifiers and the count of the deck names.

59 35 17 00
Word 1 Zero Count of Count of
identifiers deck names
Directory

The directory lists all identifiers, left justified with zero fill, in the upper
42 bits of suceceeding words. The lower 18 bits of each entry contain
miscellaneous data.

Deck List

The deck list contains the names of all decks in the file including those no
longer current. The deck list entries have the same format as the directory
entries.

Text Stream

The text stream contains card images and control information known as
correction history bytes (CHB's). At least one word of control information
precedes each card image:

59 53 35 17 00

Zeros
(un- CHB1 CHB2
used)

Secondary CHB's recorded
in bits 17-00 of the first
word continue in subse-
quent 18-bit bytes in the
lower order 54-bits of
each word and terminate
with a zero-value CHB.

Primary CHB; this byte identifies deck or
correction set under which this card was
introduced and gives the card its alphanumeric
name,

Number of words used by the compressed card image; this
information speeds up input operations.

Activity bit; contains & 1 if the text card, which immediately follows the
control information, was active at the time the program library is written.

CHB format:

17 15 00
correction
set name

>

identifies correction set which performed action; provides
ordinal into identifier table.

Activity bit; contains a 1 if the correction set activated this card.

Not used.

60189400 Rev. F

6.2
UPDATE
PARAMETERS

60189400 Rev. I

Compressed Card -

The compressed card image begins in the word subsequent to that which
contains the zero-value CHB. 00 characters represent consecutive blank
columns. A two-character field of 00xx represents xx + 1 blank columns;
the value 0000 represents end-of-card. The value of 55 is retained for one
blank column.

Card Identification

A card identification assigned by UPDATE is permanent and cannot be
changed. Since the validity of sequence numbers has not been ascertained
for text information following any particular card image, if an irrecoverable
parity error occurs, the UPDATE run will terminate. Card identifiers are
in the format:

beta.seqnum

beta is the alphanumeric identifier; maximum of seven characters.
It is defined on the *DECK and *COMDECK card for program library
creation of on the *IDENT cards for correction runs.

seqnum is the sequence number obtained by colinting the cards with
the same identification.

The two elements of an identification are separated by a period.

An identifier and sequence number are required. For example, SC12.42 is
the 42nd card (sequence number) with the identifier SC12. The identifier is
composed of a reference symbol (SC) combined with a reference number (12).

TFile parameters and special options on the UPDATE card may appear in any
order. Each parameter must be specified by a string of characters of the
form: ident=value. ident may be any character string beginning with the
letters P, N, I, L, C, or S; it cannot contain a comma, period, or paren-
thesis. Value is a string of characters following an equal sign (blanks
ignored) which specifies a file name and is subject to file name format rules.

The idents P, I, L, and C and their default file names are assumed whether
or not they appear. The N and S files are generated only if the parameter is
specified.

The meaning and default values of the file parameters and special options
are indicated below.

Parameter (ident)

Option Values

P (OLDPL)

N (NEWPL)

I (INPUT)

L ourpuT)f

C (COMPILE)

S (SOURCE)

Special Options

F

File containing old
program

File containing new
program

File containing control
cards

Listable output file

File onto which card
images to be assembled
are written

File on which a copy of

source deck is written;

contains a copy of cards
necessary to regenerate
existing library, minus

inactive cards.

Write all decks on
compile file

Speeds updating process
by specifying informa-
tion on routines which
will be updated

Suppress automatic
rewinding of P, N, S
and C files

Default Value

OLDPL is assumed.

If N is not specified, no new
program library is written.

INPUT is assumed.

OUTPUT is assumed.

COMPILE is assumed.
(COMPILE output depends
upon mode of updating.

If C =0, no compile file
is written.)

If S option is not svecified,
no source deck file is
written.

If F option is not specified,
only those decks modified
are written.

This option is effective
only if correction runs
are being performed.

S, ¢, P, and N are rewound
before and after processing.

T The L option does not list the card images of a program deck and their
sequence identifiers in a creation run or when inserted via ADDFILE. To
obtain such a listing, copy the COMPILE file onto OUTPUT.

60189400 Rev. I

6.3

CONTROL AND

DATA CARDS Control and data cards are punched on an 80-column card through column 72;
columns 73-80 are used by the Update Program for sequencing. The control
word is signified by an asterisk in column one; the word begins in column 2
and terminates with a blank or comma. Parameters may begin in any
succeeding column with any number of intervening blanks; but no embedded
blanks are permitted in the parameter string (except for the *LABEL card).
All identifiers, both for decks and correction identifiers, are one to seven
alphanumeric characters. All numeric fields contain decimal numbers.

6.3.1
MANIPULATING
FILES When text and other control cards are to be read from files other than the

main input file, file manipulation cards are used to direct update operations.
They may appear at any point in an input record. Except for *LABEL, they
may not appear on other than the main input file. File manipulation cards
may not reference any of the files UPDATE is controlling.

*REWIND This card causes the tape file, indicated by fname, to be rewound.

(*REWIND fname

fname Name of file from which information is to be read

*SKIP The SKIP card causes the named file to be spaced forward the number of
records specified in the numeric field, rent. If the record count is zero or
absent, the file is spaced forward one logical record.

(*SKIP fname, rent

fname Name of file from which information is to be read

rent Number of records to skip

60189400 Rev. F 6-5

6.3.2

*READ

*LABEL

CREATING A NEW
PROGRAM LIBRARY

*DECK

UPDATE reads input data from the named file until an end-of-record is
encountered, at which point it returns to the main input file. Any cards,
except *SKIP, *REWIND, *ADDFILE and *READ, may occur on the
fname file.

| *READ fname

fname Name of file from which information is to be read

This card is meaningful only in a creation operation. *LABEL precedes the
first *DECK or *COMDECK card, and it specifies the 20-character label
name to be given to the program library being created. The UPDATE pro-
gram automatically updates the edition number and labels program libraries
generated as a result of corrections. The label must be punched in
columns 11-30.

FABEL label name

label name 20-character label name of the new program
library

The following control cards are used to create a program library.

This card indicates the beginning of a new deck; dname must be different
from that of any previously introduced deck or correction identifier. A deck
is terminated by the first occurrence of another *DECK, *COMDECK, or
end-of-record. All intervening cards comprise text. They are identified
with the deck name ard numerically sequenced starting at 00001 for the
*DECK card itself. File manipulation control cards may be embedded within
the data cards, but they are not included in the numbering scheme. Cards
introduced as a result of *READ, however, are included in the numbering
scheme. Output control cards other than *DECK and *COMDECK may also
be introduced and numbered.

60189400 Rev. F

fDECK dname

dname Name of deck introduced; must differ from name
of any previously introduced deck or correction set.

* COMDECK This card introduces a common deck. *COMDECK is subject to the same
rules as the *DECK card concerning naming and numbering; however, it
is output in a different manner (section 6.3.4).

(*COMDECK dname

dname Name of common deck introduced; must differ
from name of any previously introduced deck or
correction set.

*END The *END card is provided for EDITSYM compatibility; it is ignored and
suppressed. When the S option is selected, UPDATE regenerates *END

cards.
rkEND

DECK GROUPING In the usual application, a *DECK or *COMDECK card would precede the
definition of each deck or common deck in a system. However, more than
one subprogram may be included in a deck, as indicated in the following
example:

60189400 Rev. F 6-7

*DECK FIRST
IDENT FIRST

IDENT SECOND

*END
*COMDECK FDATA

BLOCK DATA

COMMON/J3/A (10)

DATA A/3%0.,7%1.0/

END
*END
Deck grouping is chiefly a function of the output section of UPDATE.
Normally, two decks are grouped together if modification of one requires
reassembly of both decks. Deletion of a *DECK card, however, also removes
the deck division and groups two or more decks together. Similarly, insertion
of a *DECK card in a later updating run will introduce a division. If, as in
the above example, two subprograms are joined into one deck, all cards are

identified by the first deck name regardless of later insertion of a *DECK
card for the second deck.

The following control cards may appear as input during an UPDATE creation
run:

*DECK *COMDECK *END
*REWIND *SKIP *READ
*LABEL */ *WEOR
*CALL *CWEOR

All other UPDATE control cards produce a diagnostic,

60189400 Rev. I

6.3.3

CORRECTING AND

UPDATING

*IDENT

*PURGE

60189400 Rev. I

The following control cards are used for correcting and updating a program
library.

The *IDENT card introduces a correction set. All corrective operations
except *PURGE and *ADDFILE must occur after *IDENT. All cards in the
correction set are identified by idnam, which is subject to the rules for iden-
tifiers. This identifier must not be the same as any identifier currently in
effect, such as original deck names or any later identifier names. Presum-
ably, the identifier would be a correction set number, such as SC12, or some
other unique name. This identifier holds until the next *IDENT or *PURGE

card.

(*IDENT idnam

idnam Name of correction set; must differ from the name of
any previously introduced correction set or deck.

The *PURGE card may appear in the place of an *IDENT card. Any reference
to the correction set idnam is completely purged by changing the name to

. . .+, which allows it to be reintroduced in a later correction set. When
two identifiers are separated by period, these identifiers are purged as well
as all identifiers that occur between them on the identifier list.

All cards introduced under the specified identification are physically removed
from the new program library; all corrections to the named set are removed
by squeezing out correction history bytes of that identification. Since perma-
nent sequencing information is affected, the *PURGE card must be used with
care.

(*PURGE idnamy,idnams,...,idnam;,

(*PURGE idnam, . idnam,

idnam;g Name of correction set to be purged (must be a known
identifier)

*PURGE simulates the effect of *YANK (described later); although the results
of *PURGE cannot be undone, the results of *YANK can be altered. *PURGE
can be used to remove completely a deck of cards and their idname. Assume
that routine CIO is initially introduced with the deck name CIO. All cards of

CIO (and only those cards) have identifier CIO. To remove CIO completely
from the deck, two modifications are required:

*IDENT XXHXXX
*DELETE CI0.1,CI0,978 (978 cards are assumed)
*PURGE CI10O

The first statement deactivates all inserts made to CIO and the second
removes all CIO cards. An alternate form of the *PURGE statement is used
to purge all correction sets introduced on or after the introduction of one
identified by idnam.

[*PURGE idnam,*

Since all modifications introduced are recorded in the library, this form is
order dependent and may be used to return a program library to an earlier
level. Purged items cannot be restored, however. Care must be taken if an
idnam,*, has been introduced. If * is to be purged, it must be the first name
on a PURGE card or UPDATE will assume that the * refers to an alternate
form.

Example 1:

A program library LIB has been periodically modified for a

number of months; at some point in time, it becomes desirable to step
back permanently to a previous level of LIB. The following deck se-
quence illustrates this use of UPDATE:

© oo =3 Oy

where all modifica-
— tions made after May
follow JUNMOD1
in the identifier list

7
8
9 -
(UPDATE (N=LIBMAY, P=LIBAUG, C=0)
The program library
REQUEST, LIBMAY.
Q modified only through

/REQUEST, LIBAUG. May, to be created
JOB i

(*PURGE JUNMODI, *

Most recent version of
the program library
LIB

60189400 Rev. I

60189400 Rev. F

Example 2:

Assume that a specific deck, BAD, on program library LIB, is no
longer of any use and is to be removed permanently from the program

library,
removal:

/6
g (end-of-file)
9

/*PURGE BAD

The following deck sequence illustrates such permanent

«—Purges all cards with

identifier BAD

(’T‘DELETE BAD.1,BAD.33

/ *IDENT DELBAD

g (end-of-record) —__

L.~ Deactivates all cards

between BAD.1 and
last card of deck

/ UPDATE (P=LIB, N=LESSBAD, C=0)

/T{EQUEST, LESSBAD.

REQUEST, LIB.
JOB.

™~

Program library, with
BAD purged, to be
created by this run

Most recent program
library

6-11

6-12

*DELETE

*RESTORE

*INSERT

Cards may be deactivated with the *DELETE card. The first form of the
statement specifies one card; the second, an inclusive range of cards.
This range may include cards already deleted which are deleted again by
appending a correction history byte. In the second form, the b.m card
must oceur after the a.n card; in both forms all specifically referenced
cards must exist. Text cards may be inserted after the last card deleted.

(*DELETE a.n

(*DELETE a.n,b.m

a,b Alphanumeric identifier (a deck, common deck
or correction set name)

n,m Decimal numbers corresponding to card
sequence numbers

Specified cards are reactivated with the *RESTORE card. The first form of
the statement specifies one card; the second an inclusive range of cards.
Cards are restored by appending a correction history byte. Text cards may
be inserted after the last card restored.

(*RESTORE a.n

(*RESTORE a.n,b.m

a,b Alphanumeric identifier (a deck, common deck
or correction set name)

n,m Decimal numbers corresponding to card
sequence numbers

Cards may be inserted with the *INSERT card. a.n specifies the card after
which the insertion is to be made.

fINSERT a.n

a Alphanumeric identifier (a deck, common deck
or correction set name)

n Decimal number corresponding to card sequence
numbers

60189400 Rev. F

* YANK All effect of correction sets may be removed with the *YANK card. The
correction sets must exist at the time the *YANK card is encountered.
*YANK restores the library to a form it had before the correction set
occurred. The effect of any *YANK card included in the correction set is
nullified. Two names separated by a period indicate an inclusive list of cor-
rection sets to be removed. Insertions may not follow the *YANK card.

(*YANK a,b,c,d
(*YANK a.b

a,b,c,d Alphanumeric correction set names

Example:

To reverse the effect of a correction set but not permanently remove
the correction set from the program library LIB:

1. This change may be made temporarily for testing purposes:

Nullifies effect of
correction set GOTTOGO

\\/*YANK GOTTOGO

/ *IDENT NEGATE

© oo~

7
8
9

/ COMPASS (I=COMPILE)
/ UPDATE (P=LIB)

/ REQUEST, LIB.
JOB.

60189400 Rev. L 6-13

2. To put this change onto a new program library:

O o0 ~3 O

[*YANK GOTTOGO

/ *[DENT NEGATE

7
8
9

/ COMPASS (I=COMPILE)
/UPDATE(P=L1B, N=NEWLIB)
/f{EQUEST, NEWLIB.

[REQUEST, LIB.
JOB.
e
*/(slash) A correction set may include comment cards; they have an asterisk in col-

umn 1, a slash in column 2, and a comma or blank in column 3. This card
is ignored by UPDATE; it is simply copied onto the report. A comment card
may appear anywhere within the input deck or on a remote file; except within
an ADDFILE.

f /Aany comments

* ADDFILE When *ADDFILE is encountered, UPDATE rewinds the named file fname,
reads creation control cards and text card data, and inserts this information
after the a.n card on the old program library. The first card on fname must
be *DECK or *COMDECK. UPDATE reads from this file until an end-of-
record, which returns UPDATE to the main file. The *ADDFILE card must
not be used when the UPDATE (Q) option is being used. Comment cards in
this file are treated as text cards.

6-14 60189400 Rev. I

6.3.4
DIRECTING THE
OUTPUT

*DECK

*COMDECK

60189400 Rev. F

*ADDFILE fname,a.n

fname Name of file from which information is to be read

a Alphanumeric identifier (deck, common deck or
correction set name)

n Decimal number corresponding to card
sequence number

Output control cards are used to organize and order information output to
the COMPILE file. *DECK and *COMDECK cards have additional functions
during program library creation; these control cards are included in the
program library.

DECK delimits a deck for compile output. This division is meaningful

during a correction run when the selective assembly feature is employed.
Under the selective assembly mode of operation, the only decks included on the
assembly files are those in which one or more cards have been changed.

In selecting the cards to be assembled, the UPDATE program compares

card activities in the current run with those which existed when the program
library was created. If any common deck called within a deck has been
changed, that deck is considered to be changed.

*DECK dname

dname Deck name

This card introduces a common deck. Common decks are not written onto
the COMPILE file; they are saved by UPDATE and introduced into the
COMPILE file as a result of *CALL statement. The common deck must
precede the call.

*COMDECK dname

dname Deck name

6-15

6-16

* WEOR

*CWEOR

The WEOR card is used to organize the COMPILE file for ease of input to
compilers, assemblers, etc. It writes an end-of-record of level n on the
COMPILE file. If n is 15 or greater, a level 157 end-of-record is written
but not an end-file tape mark; level 0 is assumed if not specified. The
*WEOR card does not appear on the COMPILE file. *WEOR may be inserted
into a deck on the program library; it is effective only when that deck is
written onto the COMPILE file.

*WEOR n

n Decimal number corresponding to SCOPE
end-record level numbers (a number = 15
writes level 151 end-record but not an
end-file tape mark). Level 0 is assumed
if not specified.

CWEOR is a conditional WEOR. If information has been written on the
COMPILE file when the CWEOR card is encountered, it acts as a WEOR card.
However, if the COMPILE file has not been written on during the run, the
CWEOR card is ignored and processing continues with the next card.

*CWEOR n

n Same as for WEOR

Example:

To create a program library (PL) consisting of a COMPASS deck and a
FORTRAN deck and to generate a COMPILE file that would permit these decks
to be processed by the assembler and compiler, the following deck structure
is required:

60189400 Rev, I

Creation Job

NeJo obN o)

Q FORTRAN source deck
vV

Vi
/*DECK FORT

J*WEOR

A
L
L

/
/
/COMPASS source deck

L

va

L
A

/*DECK COMP

7
8
9

RUN(S, , , COMPILE)
COMPASS(I=COMPILE)
/UPDATE(NZPL)
/REQUEST, PL.
JOB.

Generated COMPILE File

COMPASS deck Picked up and assembled by COMPASS
78 Terminates the COMPASS scan

9
FORTRAN deck Picked up by the FORTRAN compiler
67 Terminates the FORTRAN scan

89

60189400 Rev. F 6-17

6.3.5
SELECTIVE
ASSEMBLY

6-18

*CALL

* COMPILE

This card is used to insert the text of a previously encountered common
deck, dname, into the COMPILE file. Common code, such as system
symbol definitions, may be declared in the common deck and used in sub-
sequent decks (or assemblies) without repeating the data cards. The *CALL
card does not appear on the COMPILE file. The contents of the common
deck, excluding the *COMDECK card, follow immediately. The *CALL card
cannot occur within a common deck.

*CALL dname

dname Name of common deck name

The selective assembly feature is handled by the control cards described
below. This feature is used in determining information to be written on
the COMPILE file. Normally, only modified decks are written onto the
COMPILE file. To control this process at the deck level, COMPILE cards
are introduced .

The * COMPILE card specifies decks to be assembled. With the first form
shown below specific decks are mentioned. In the second form, a range of
decks is specified. Decks written on the COMPILE file include the two
specified as well as all decks listed between them in the list of deck names
produced by UPDATE. All decks affected by these statements are written
on the COMPILE file regardless of the existence of any modifications within
them.

(*COMPILE a,b,c,...,d

*COMPILE a.d

a,b,c,d Deck names

If the full assembly (F) feature is selected on the UPDATE call card, the
*COMPILE cards are ignored.

60189400 Rev. I

6.3.6
SPEED UPDATING

6.4
LISTABLE OUTPUT
FROM UPDATE

60189400 Rev. I

For speed updating, the Q option must be specified on the UPDATE call
card. It is effective only if corrections are being performed. If the @
option is used incorrectly, the UPDATE operations result in job termination.

The following modifications of the updating operation take effect under this
option:

1. Only routines named within *COMPILE statements are written onto
the COMPILE file. The names specified in the *COMPILE state-
ments must include all routines to be modified.

2. When corrections are made to common decks, UPDATE does not
automatically include on the COMPILE file the decks which call
the common deck. Propagation of these modifications is left to
the user; he must specify each such deck on the *COMPILE card.

3. 1If corrections are specified to routines not included in the *COMPILE
statements, UPDATE will print unprocessed corrections.

4. Selective assembly has no effect.

5. A new program library cannot be produced; if so specified, it is
ignored.

6, If a source file is requested (S), all the common decks as well as
decks specified only on the *COMPILE cards will be produced.

Creation of a new program library produces a list file containing a copy of

all file manipulation and creation cards and a list of deck names and correction
set names known at the end of the UPDATE run, as well as error diagnostic
messages.

During a correction pass, the listings are more detailed. The first listing

is a printout of the correction sets as encountered. Each *IDENT (or *PURGE)
appears on a titled page. A printout of each card on the input file follows. All
cards input by the *READ command are included and identified on the right by
the file from which they were read.

The second set of listings, a continuous commentary of all effective changes
introduced to the file, includes all purged cards as well as cards for which
the activity status changed since they were placed on the program library.
Cards inserted by the *ADDFILE statement are not listed.

6-19

6.5
OVERLAPPING
CORRECTIONS

6-20

Diagnostic messages are listed as they occur. Whether or not the updating
process is successfully accomplished, an appropriate dayfile message appears.

When a COMPILE file is written, the locations of all *WEOR and *CALL cards
are listed. If L = 0 on the UPDATE card, all listable output from UPDATE is
suppressed. If L =1, the deck name list, identifier list, and continuous com-
mentary are suppressed.

A correction set can be remodified by a later correction set. Corrections
which modify a card more than once in one correction set are marked in the
output listing by the word OVERLAP. Modifications for each correction set
are performed by UPDATE in the order in which sets are introduced. The
order of specification is irrelevant if no correction is dependent on another.
If a dependent relationship exists, however, the order is of paramount
importance.

TFor example, if a numbered insertion in a correction set is subsequently
deleted, the insertion card is present but inactive. When the deletion
occurs first, however, by specifying a range of cards and then indicating
the point at which insertion is to be made, the numbered insertion can be
made active.

An *INSERT statement can be used to verify that an earlier correction is
present on the file. In such a case, the insertion will be empty; if the card
{ollowing *INSERT is another UPDATE control card, no insertion will be
made.

*IDENT MODSUB1

* /ATHE CHANGES MADE BY THIS CORRECTION SET
*/ADEPEND ON THE IMPLEMENTATION OF THE

* /ACORRECTION SET - MOD - IF THIS SET OF

* /ACORRECTIONS HAS NOT BEEN ADDED TO THE

* /APROGRAM LIBRARY ABORT THIS CORRECTION
* /ASET

*INSERT MOD. 1

*INSERT A.n

Correction subset (MODSUB1) depends on the initial correction set
(MOD) having been previously inserted in the sequence.

60189400 Rev. F

6.6
UPDATE EDITLIB
INTERFACE

6.7
FILES PROCESSED
BY UPDATE

60189400 Rev. I

Unlike EDITSYM, UPDATE does not produce a COMPILE file with routines in
the order in which modifications were made to them; rather, the order of
routines on the COMPILE file is determined by their position on the OLDPL.

Input cards to EDITLIB (such as ADD cards) should be ordered according to

routines' positions on the OLDPL, not in the order of mention in the UPDATE
modification cards.

With the control card identifiers indicated below in the second column, the
user may process several UPDATE files; some may be assigned to tape units.

Position after

File Identifier TFunction Type Update Call

Input 1 Provides Coded Left at end of record ter-
control minating update control
information cards; other cards may

follow. Position after
abort unpredictable.

Output L Produces Coded At current position of file.
listings If L #OUTPUT, fname not
rewound.
Compile C Produces Coded Rewound before and after
images for UPDATE operation unless
assembly or rewind suppressed by R
compilation option.
Old PL P Contains old Binary
PL Rewound before and after
UPDATE; no rewind if R
New PL N Contains new Binary/ option specified.
PL
Source S Contains copy Coded Same as P and N
of cards to
regenerate

existing libra-
ry, inactive
cards omitted.

NOTE: Since the validity of sequence numbers has not been ascertained for

text information following any particular card image, if an irrecoverable
parity error occurs, the UPDATE run will terminate.

6-21

The following files are used by UPDATE in processing:

File Name Functions Comments

CMPSCR Scratch file. During library Binary file. Rewound prior to
creation, it holds entire and after updating. Not used
symbolic source. During if full assembly mode is
correction runs, it holds selected although it is addressed
programs as they are up- by UPDATE.

dated. CMPSCR is used
also to copy decks to be
written to COMPILE file.
(To avoid disk conflicts,
tape assignment is often
desirable if large volume
files are involved.)

COMDKS Used internally by UPDATE (Must be mass storage files.
{ Files are evicted before and
FTEXT Used internally by UPDATE after the updating operation.

Files mentioned in ADDFILE, READ, REWIND and SKIP operations are
left as defined by the latest directive encountered on the input stream.

6-22 ’ 60189400 Rev. I

6.8
UPDATE CARD

DECK EXAMPLES 1. To set up an UPDATE program library containing two normal decks
and two common decks:

(end-of -file)

0%

*DECK name I

/ﬁE CK name

A
/* COMDECK D1

7
58) (end-of-record)
/UPDATE(N)
/ﬁEQUE ST, NEWPL.
JOB.
|

60189400 Rev. F 6-23

2. To modify a program library and produce an assembly listing:

dname appears on a *COMPILE
card since dname not referenced
by preceding corrections.

[NoNeJin Kop)

jCOMPILE dname
{/?kDE LETE
/ﬁNSERT

‘/ﬁDENT

Corrections

/%
9

/COMPASS(I=COMPILE)

UPDATE(P=fn)
/ﬁEQUEST,fn | fn specifies
/ﬁB. program
library created
in a prior run.

60189400 Rev. F

60189400 Rev. F

3. Run to generate a new program library with corrections:

O oo~I»

/*DELETE
/*INSERT
/*IDENT

Corrections

W=

/UPDATE(P=fn1, N=fn2)
REQUEST, fn2.
/REQUEST,fnl.
JOB.

6-25

6-26

4.

Example of Q-option use. UPDATE temporarily places the data from
decks on file COMPILE (may be otherwise specified) and terminates.
COMPASS picks up data from COMPILE file and assembles it.
6
7
Must name ail decks g
modified by the
corrections *COMPILE
/*DELETE
Corrections /*INSERT
/ *DENT
7
8
9
/COMPASS (I=COMPILE)
UPDATE(Q, P=fnl)
/T?EQUEST,fnl
JOB.

60189400 Rev. F

5. To construct a new program library from the old program and add a
new routine, a new common deck, and a new SYSTEXT deck by calling

UPDATE.
6
7
8
9
7
8
9
Vi :
Text cards for routine FFT -
/ﬁ
*DECK, FFF l
/*INSERT, GGG.nnn
New routine FFF »~/*IDENT, FFT’
myly |
Text cards for deck DDD Vi
Name card required for DDD
EDITLIB text cards for /*WEOR
system text
*DECK,DDD

Add DDD after deck
* [7
EEE, card nnn *7’ INSERT, EEE. nnn

DDD is new _,-———j*IDENT, DDD

system text &

VA
/*COMDECK,AAA

¥INSERT, BBB.nnn Text cards for common
— deck AAA
*IDENT, AAA
/1 / Add AAA after deck
8 r—_ BBB, card nnn
9 |
-q\ .
E AAA t
/UPDATE(N, C=0) Enggd)e dCK AA is to

/ REQUEST, NEWPL.
_/REQUEST,OLDPL.

[IOB.

60189400 Rev. I 6-27

6. To insert a common deck (COMDKI) at the beginning of a new program
library. The common deck must be at the beginning of the new program
library since the first deck (ELRENO) on the old library will call for
the common deck to be inserted, and common decks must precede the
*CALL for the deck.

6
7
8
9
(Card still has identifier /;CALL, COMDRL
ELRENO. 10)
*INSERT, ELRENO. 10
(New deck name for __
ELRENO) *DECK, NELRENO
Ve
(Contents of =
COMDK1)

—
*COMDECK, COMDK1
*DELETE, ELRENO.1

ﬁIDENT,ADDCDl

__—(delete *DECK,
ELRENO card)

7
8
9

UPDATE (N, C=0)
REQUEST,NEWPL, MT.

/REQUE ST,OLDI’L,MT.
JOB.

6-28 60189400 Rev. I

7. Simplified example for generating a program library by calling
UPDATE:

Contents of file Al:

*DECK, SET1
PROGRAM ZIP

C A DO-NOTHING JOB
END

*DECK, SET2
SUBROUTINE JIM
A = B - SIN(C)
END

*COMDECK, CSET
COMMON A, B, C

6/7/8/9

For the UPDATE task:

6
7
g / UPDATE (I=A1, N)
REQUEST, NEWPL.
REQUEST, Al
JOB.

The contents of file COMPILE will contain:
decks SET1 SET2

which contain:

PROGRAM ZIP SET1 00002
C A DO-NOTHING JOB SET1 00003
END SET1 00004
SUBROUTINE JIM SET2 00002
A = B - SIN(C) SET2 00003
END SET2 00004

60180400 Rev. F

6-30

To alter the program:

FORTRAN statements {

7’*CALL, CSET

*INSERT,SET2.2
CALL JIM
C=3.1419

B=1.0

/*CALL, CSET

/*DELETE, SET1.3

/*1 DENT, ADD1

7
8
9

/UPDATE .

REQUEST, OLDPL.

JOB.

OLDPL =
tape generated
by previous run.

Results in decks SET1 and SET2 on the COMPILE file; contents are:

PROGRAM ZIP SET1
COMMON A, B, C CSET
B=1.0 ADD1
C=3.1419 ADD1
CALL JIM ADD1
END SET1
SUBROUTINE JIM SET?2
COMMON A, B, C CSET
A =B - SIN(C) SET2
END SET2

00002
00002
00002
00003
00004
00004
00002
00002
00003
00004

60189400 Rev. F

6.9

UPDATE MESSAGES Listing Messages

60189400 Rev. I

#%x ABOVE CARD ILLEGAL DURING CREATION RUN

#xx ADDFILE FIRST CARD MUST BE *DECK OR *COMDECK BUT WAS:
*%*ADDFILE INVALID FROM *READ FILE

#%x ADDFILE INVALID WITH Q-OPTION

*%x*CARD LENGTH ERROR ON OLD PROGRAM LIBRARY
***CARD NUM ZERO OR INVALID CHAR IN NUM FIELD

#%* CONTROL CARD INVALID OR MISSING

#x*DECK NAMES SEPARATED BY PERIOD IN WRONG ORDER
#%* DUPLICATE DECK NAME

#** DUPLICATE IDENT NAME

*#*ERROR_____DECK DOES NOT EXIST

*#% __ ERRORS IN INPUT: NEWPL, COMPILE, SOURCE SUPPRESSED
#**FILE NAME LONGER THAN 7 CHARACTERS
#**[DENT______ UNKNOWN

***[DENTIFIER LONGER THAN 7 CHARACTERS
**x+[DENTIFIERS SEPARATED BY PERIOD IN WRONG ORDER
#+*INVALID NUMERIC FIELD

#+%NO DECK NAME

*+*NO SUCH COMMON DECK

*¥¥NOT ALL MODS WERE PROCESSED

#**NULL ADDFILE

*%kON THE ABOVE CARD THE FIRST LIMIT EXCEEDS TERMINAL
LIMIT

*x¥OR A REFERENCE IS MADE TO DECK NOT MENTIONED ON
COMPILE CARD (This line appears only if the Q option is in effect)

+ PREMATURE END OF RECORD ON OLD PROGRAM LIBRARY
***RESERVED FILE NAME

%+ THESE MAY BE MODS TO DECKS NOT MENTIONED ON COMPILE
CARD OR AN INCOMPLETE ADDFILE

***UNKNOWN IDENTIFIER

6-31

Display and Dayfile Messages

CORE OVERFLOW

DECK STRUCTURE CHANGED

FILE NAME ON UPDATE CARD GR 7 CHAR, UPDATE ABORTED
IMPROPER UPDATE PARAMETER, UPDATE ABORTED

ONE OR MORE OVERIAPPING CORRECTIONS

SKIPPING (appears during Q-mode skip; does not appear in Dayfile)
UPDATING deckname (does not appear in Dayfile)

UPDATE ERRORS, JOB ABORTED

UPDATING FINISHED

_____ERRORSIN UPDATE INPUT

6-32 60189400 Rev, I

EDITSYM 7

The EDITSYM program enables the user to organize symbolic information
into program libraries and to make symbolic corrections or alterations to
existing program libraries. Data in a program library may be source
cards for a compiler or assembler run, data cards, line images for a
document, or any other symbolic information desired. Once the symbolic
material has been put into the program library format, EDITSYM provides
a two-level editing capability.

Primary edit operations result in permanent alterations to the program
library; secondary edit operations allow the user to keep track of changes.
All primary level editing operations result in physical rearrangement of

the program library and resequencing of the primary sequence numbers.
Secondary level operations do not result in resequencing; they do not alter
the arrangement of cards with primary sequence numbers. Primary and
secondary levels are associated with two sets of decimal sequence numbers.
Primary sequence numbers are decimal integers 1-n. Secondary sequence
numbers are decimal numbers in the form j.k where j is the primary se-
quence number of the preceding card and k is a secondary sequence number.

For example, in a program library containing a deck of cards numbered

one to five, a primary level edit operation would be used to delete card

three. The new file would not contain card three, and the sequence numbers
would be changed to one through four. If, however, a secondary level edit

is performed to delete card three, the card image would still exist on the

new file but it would be marked as cancelled. Similarly, new cards added

in a primary edit would be inserted where requested and given appropriate
primary sequence numbers. If new cards were added in a secondary edit,

for instance, after card three, they would be assigned the numbers, 3.1, 3.2,
3.3, etc., and the primary numbers would remain as they were.

7.1

PROGRAM

LIBRARY

FORMAT A program library may consist of two sections: common and text, but it
need not contain both. Each section may contain one or more logical records.
In both sections the first two words of a logical record, the prefix, contain
deck name identification information. The format of the prefix is as follows:

60189400 Rev., C

Word 1

59 53 47 35 11 0
778 0 1 0 N

N 2-digit display code number
= 02 common section

= 03 text sections

= 99
Word 2 of common and text sections

59 17 11 0

deck name 00 |fdition number

The deck name may not exceed seven characters. The edition number is a
display coded integer which is increased by one each time a new program
library is requested.

7.1.1

COMMON DECKS The first section of a program library contains the common decks. Each
common deck consists of one logical record with a two-word prefix. The
remainder of the record contains the packed images of the deck. The last
card image is *END. I there are no common decks, there is no common
section.

7.1.2

TEXT DECKS The second section of a program library contains an arbitrary number of text

decks. Each consists of one logical record identical in format to a common
section record, except that in the first prefix word N is equal to or greater
than 3.

7-2 60189400 Rev. C

713

COMPRESSED

DECK FORM Both common and text decks exist in the program library in compressed form
with blank characters removed. Blanks are replaced by the character 55
followed by a 6-bit count. Thus, the character pair 5500 represents one
blank, 5501 represents two blanks, etc. If more than 64 blanks are to be
represented, two character pairs are needed. 55775502 as a consecutive
character string represents 67 blanks. The end of a card is recorded by a
00 character followed by a 00, 01, or 02 depending upon the editing status
of the card.

00 indicates card to be used.
01 indicates card logically deleted by secondary editing.
02 indicates card added by secondary editing.

7.2 ,

COMPILE OUTPUT The main function of EDITSYM is to produce, from selected portions of a
program library, a file of information in a format that can be processed by
FORTRAN, COMPASS, or other processor. When a compile file is re-
quested, the procedure is as follows:

Card marked as cancelled by secondary editing is
not written on the compile file.

EDITSYM control cards are not written on the compile
file, with one exception. Control card *CALL,dn, when
encountered within the text of a deck on the program
library, is retained as a comment card. The common
deck named dn is found and written immediately after
the *CALL card.

Text decks are written into the compile file as a single
logical record until or unless a *WEOR card appears in
the EDITSYM control card deck. Cards are represented
by 90 display code characters, terminated by a zero byte
(end-of-line), as follows:

Columns

1-72 Supplied on the source

73-79 Deck name

80-84 Primary sequence number

85 Period for a secondary text card

86-90 Secondary sequence number

60189400 Rev. C 7-3

73
CONTROL CARDS

7.3.1
EDITSYM
CALL CARD The call for EDITSYM is as follows:

EDITSYM(I=input file, C=compile file, L=list file,
OPL-=old program library, NPL=new program library)

Parameters may appear in any order.

Input absent corrections on INPUT
I corrections on INPUT
INPUT corrections on INPUT
I=lfn corrections on 1lfn
INPUT=1fn corrections on lfn

Compile absent no compile output
C compile output on COMPILE
COMPILE compile output on COMPILE
C=0 no compile output
COMPILE=0 no compile output
C=lfn compile output on lfn

COMPILE=lfn compile output on lfn

List absent no list
L list on OUTPUT
LIST=L list on OUTPUT
LIST list on OUTPUT
L=0 no list
LIST=0 no list
L=1fn list on ln
LIST=Ifn list on Ifn
Old Program Library absent no old program library
OPL=0 no old program library
OPL old program library on OPL
OPL=lfn old program library on lfn
New Program Library absent no new program library
NPL=0 no new program library
NPL new program library on NPL
NPL=lfn new program library on lfn

(NPL is unlabeled, if written on tape).

7-4 60189400 Rev. C

7.3.2
NEW DECKS

733
DECK SEQUENCE
CONTROL

60189400 Rev. C

The following cards control the addition and deletion of entire decks and local
corrections within decks. All control cards referencing common decks must
precede any control cards referencing text decks. This is necessary because
all of common must exist in its final form before any text processing is done
to insure correct processing of common references within text decks.

New decks may be introduced by placing
*COMDECK, dn

or
*DECK,dn,n

in front of the deck, and
*END

at the end of the deck.

The deck name to appear in the prefix is dn. All cards introduced in this way
are considered primary cards and are given a 00 editing status terminator.

*COMDECK card specifies the introduction of a common deck.

If common decks are to be introduced, *COMDECK cards must precede any
control cards which introduce or reference text decks.

*DECK identifies the subsequent cards as a deck belonging to the text
section of the new program library.

The n parameter specifies the value of N to be used in the prefix. n may
be 3 to 99; the value 3 is assumed if n is absent. Values 4-99 may be used
ag special flags for other routines which process program libraries.

%)
COPY,dnl,dn:2

When this card is encountered, EDITSYM copies the entire text decks from
the old program library to the new one and/or to the compile file. Copying
begins at deckname dnj and continues up to and including the deck name dn_.
It dn2 is absent, only dn1 is copied., If dn1 is * copying begins at the

7-5

7.3.4
EDIT CONTROL

-3

present position and continues through dny. If dny is * copying begins at dny
and continues through the end of the program library.

*WEOR

The WEOR card causes EDITSYM to terminate the logical record being
written on the compile file.

*CATALOG,1lfn

Common and text deck names from the program library, lfn, are listed on
OUTPUT.

*COMPILE, lfn

A compile file will be written on lfn. A *COMPILE card overrides the
compile parameter on the EDITSYM call card; the *COMPILE card applies
only to the deck specified on the following *EDIT, *DECK, or *COPY card.
Once a *COMPILE card has been encountered, compile files for any re-
maining text decks must be requested by a *COMPILE card.

The user can make corrections to a program library deck with edit control
cards. The editing process does not depend upon a ¥*COPY function. Primary
and secondary numbers specify cards in the deck to be altered or after which
new cards are to be entered. Sequence numbers are not contiguous from one
program library deck to another; therefore, the name of the deck must also
be specified.

*EDIT, dn

dn is the name of the deck to be edited. This card must terminate the set
of edit control cards which modify the deck dn.

Primary Level Edit Control

*INSERT,n

Corrections are inserted following card n. The corrections terminate

with the EDIT control card. All text introduced is considered primary text
and thus will cause resequencing if a new program library is requested.

n must be an integer.

60189400 Rev. L

60189400 Rev. C

*DELETE,m,n

Cards m through n, inclusive, are deleted. If n is omitted, only card m is
deleted. Source cards may follow the *DELETE control card and are in-
serted following the last deleted card. The cards deleted are removed from
the new program library. Any cards inserted are primary corrections.

n and m must be integers.

*RESTORE,m,n

This card restores to its original state a portion (m through n inclusive) of
a deck altered by secondary editing. All primary text cards cancelled as
a result of a secondary editing operation (all cards with a 01 editing status
terminator), are restored as normal primary text cards. All added
secondary text cards appearing within this range are removed.

Secondary Level Edit Control

*CANCEL,m,n

Either m or n may be of form j.k where j is a primary number, and k is

a secondary sequence number. This card will cause cancellation of all

cards from m to n inclusive. Primary cards are not removed; they are
marked as cancelled; however, secondary cards are removed. Source
cards may follow the *CANCEL control card and are inserted following the
last cancelled card. The insertions are marked as secondary text. Cancel-
lation does not cause resequencing of the primary cards when a new program
library is requested.

*ADD,n
n may be of the form j.k as defined above. The ensuing cards are inserted

as secondary text. Addition does not resequence primary cards when a
new program library is requested.

7.4
EDITSYM
EXAMPLES

7-8

Create a program library.

REQUEST NPL.
REWIND (NPL)
EDITSYM (NPL, L)

7
8
9

*COMDECK, MACRCS

*END
*COMDECK, DIMENS

*END
*DECK, PROGA

*END
*DECK, PROGB

.

*END
*DECK, FTNPROG

*END
*DECK, FTNSUBR

macro definitions

dimension statements

COMPASS subprogram
containing *CALL, MACROS

COMPASS subprogram
containing *CALL, MACROS

FORTRAN program con-
taining *CALL, DIMENS

FORTRAN subroutine
containing *CALL, DIMENS

60189400 Rev. C

Modify and assemble PROGB from the program library created in the
preceding example.

REQUEST OPL.

REWIND (OPL)

EDITSYM (OPL, C)

COMPASS (I=COMPILE, B=PUNCHB)

7
8
9

*INSERT, 300
*DELETE, 2,3

*EDIT, PROGB

Modify and assemble/compile the program library in the preceding examples;
also add two decks and create a new program library. Catalogue the new
program library.

REQUEST, OPL.
REQUEST, NPL.
REWIND, NPL.
REWIND, OPL,
EDITSYM (NPL, OPL)
COMPASS (I=ASSEM)
RUN(S, , ,COMPL)

7
89
*COMPILE, COMPL

Correction deck

60189400 Rev. C 7-8

7-10

*EDIT, FTNPROG
*COMPILE, COMPL
Correction deck
*EDIT, FTNSUBR
*COMPILE, ASSEM
Correction deck
*EDIT, PROGA
*COMPILE, ASSEM
Correction deck
*EDIT, PROGB
*DECK, PROGC
Source deck
*END
*DECK, PROGD
Source deck
*END
*CATALOG, NPL

60189400 Rev. C

CHECKPOINT/RESTART 8

CHECKPOINT/RESTART is a system facility which captures the total
environment of a job on magnetic tape so that the job may be restarted from
the same point in processing. Total environment includes local files asso-
ciated with the control point of the job. For mass storage files (drum or
disk), the complete file is captured as well as the relative position within
that file. For magnetic tape files, only the relative position on the tape is
captured, so the tape may be properly re-positioned during restart.

Checkpoint/Restart cannot handle:

Respond jobs
Rolled-out jobs
Random files
Common files

Multi-file reels.

When a programmer takes a checkpoint dump during job execution a file is
written containing all information needed to restart the job at that point. In
the event of machine malfunction, operator error, or program error, the
job can be restarted from the last checkpoint rather than the beginning of

the job.
8.1
CHECKPOINT
REQUEST A checkpoint dump may be requested by a CKP control card in the job stream,

an executing program, or by a console message entered by the operator.
An executing program would request CHECKPOINT at logical points within
its execution such as end-of-file, x logical records processed, x seconds
of elapsed time, etc. CHECKPOINT requests may be issued more than
once. CHECKPOINT is requested as follows:

60189400 Rev. K 8-1

CHECKPT param,sp.
59 41 39 35 29

23

17 0

RJ

CPC

param

sp = zero indicates all mass storage files are to be processed

sp = nonzero indicates a limited set of files

param Address of a parameter list within user's relocatable code;

format follows:

59 17 11 0
0000

1fnl f1
1fn2 2
1fnn. fn

n defines number of terms in the list (number of Ifn entries);

maximum value is 4210.
Ifn; name of the i-th user mass storage file in list.
1 flag indicating specific manner in which Ifn; is to be processed.

The low order 12 bits of the first word in the list must be zero during each
call to CHECKPOINT. The user should clear these bits before each CHECKPT
request because preceding checkpoint calls will have set them to a non-zero

value.

For a general call to CHECKPOINT using the macro call, the sp field will be

Zero:

If n = 0, all mass storage files assigned to the control point including
INPUT, OUTPUT, PUNCH, PUNCHB, and LGO will be copied to the
CHECKPOINT dump tape in the manner determined by the last code/

status (f flags).

If n # 0, all mass storage files named in the 1fn list will be copied to the
CHECKPOINT dump tape in the manner determined by the f flags, except
for system mass storage files which are copied as determined by the last

operation performed on each file,

60189400 Rev. K

60189400 Rev.

I

The f flags can have only the following values:

If f = 0, the mass storage file is copied from beginning of information to
its present position at checkpoint time; and only that portion will be
available at restart time. The file is positioned at the latter point.

If f = 1, the mass storage file is copied from the present position at
checkpoint time to end of information; and only that portion will be
available at restart time. The file is positioned at the former point.

If f = 2 or 3, the mass storage file is copied as determined by the last
operation on that file. Generally, these values of f are used when the
value of sp is non-zero.

If the value of the sp field is non-zero in the macro call, only the lfn's
supplied by the user in the param list plus system files will be processed.
Processing is determined by the f flag settings.

When the manner of copying a mass storage file is to be determined from
the last operation on the file, CHECKPOINT derives f-values from the last
code/status as follows:
f = 0 if code/status ends in 4, 5, 6, or 7.
£ = 0 if code/status ends in 0, 1, 2, or 3 and end-of-information bit is set.
f = 1if code/status ends in 0, 1, 2, or 3 and end-of-information bit is

not set.

This generally causes the entire mass storage file to be copied for write
operations, read operations resulting in end-of-information status, and rewind
operations (excluding some OPEN functions).
Examples:
For COMPASS users:

CHECKPT PARAM

PARAM DATA 0
All mass storage files would be CHECKPOINT processed (sp=0, n=0).

All operator or CKP control card requests are processed in the same
manner as this example.

8-3

For FORTRAN (RUN) users:

DATA (variable=0)

. or variable=0
CALL CHEKPTR (variable) CALL CHEKPTR (variable)
For FORTRAN Extended users:
DATA (variable=0)
. or variable=0
CALL CHEKPTX (variable) CALL CHEKPTX (variable)

For the above examples checkpoint processing is performed for all mass
storage files as described above for sp=0, n=0. Selected files may be pro-
cessed if the pattern shown in the following example is followed.

DIMENSION KPARAM (4)

KPARAM (1)=30000B
KPARAM(2)=5LTAPEL. OR.10000B
KPARAM (3)=6LTAPE23. OR.10000B
KPARAM (4)=5 LTAPE3

CALL CHEKPTR(KPARAM, 1) or CALL CHEKPTX(KPARAM, 1)

CHECKPOINT requests from overlay programs

The user should rewind the overlay files prior to requesting CHECKPOINT if
they are on mass storage.

FORTRAN overlay programs should declare the mass storage overlay files

to be TAPEn files and use REWINDn before CALL CHECKPTR (variable) or
CALL CHEKPTX (variable).

60189400 Rev. 1

Example for FORTRAN (RUN) users:
OVERLAY(TAPEY, 0, 0)
PROGRAM MAIN(. .., TAPE9)
DATA(FILE=5LTAPE9)

CALL OVERLAY(FILE, 1, 0)
END
OVERLAY(TAPEY,1,0)
PROGRAM OVERI1

DATA PARAM/0B/

REWIND9
CALL CHEKPTR(PARAM)

END

CHECKPOINT requests from COBOL and SORT/MERGE

Refer to the COBOL and SORT/MERGE manuals for CHE CKPOINT/
RESTART description.

CHECKPOINT dump tape

With a REQUEST control card the user may specify an unlabeled tape

with checkpoint disposition on which the checkpoint'dumps are to be written.
This REQUEST should be the first control card of the job. If no such

tape is supplied, CHECKPOINT will define an unlabeled tape with the

name CCCCCCC as a local file the first time CHECKPOINT is requested
including operator initiated checkpoints. In any event, only one check-
point dump tape should be defined for the job.

CHECKPOINT/RESTART defines the following files for its use:
CCcCcccce
CCCCCCI
CccceceeM

The user should refrain from using these file names.

60189400 Rev I 8-5

8.2
RESTART
REQUEST

8.3

UNRESTARTABLE

The RESTART control card directs a job to be restarted from its checkpoint
tape. This card has five possible formats:

RESTART ,name,#. RESTART,name. RESTART.
RESTART,#,name. RESTART, #.

name Name of checkpoint file as defined at checkpoint time. If the name
expression is omitted, the file name CCCCCC is assigned as a
default value. '

Number (decimal) of checkpoint to be restarted. If the expression
is omitted, a default value of 1 is assigned by RESTART. If the
number is greater than the number of the last checkpoint taken, the
restart attempt will be terminated.

After locating the proper checkpoint dump on the checkpoint tape, the restart
program requests all tape files which were defined at checkpoint time, and
repositions these files, The restart program also re-establishes all mass
storage files from the copies appearing on the checkpoint tape, restores the
central processor program, and restarts the user's job.

The restart job should not contain any REQUEST control cards; RESTART
requests all necessary files internally.

Permanent files are not copied to the checkpoint tape. However, if any per-
manent files are attached to the control point when CHECKPOINT is called,
their local file names will be listed in the job dayfile with a message.

The user should attach all these permanent files to the control point, and
reposition them before calling RESTART.

Any ECS user area attached to the control point will be copied in its entirety
to the checkpoint tape. At restart time, it will be recopied to ECS from the
checkpoint tape. On the job card for the restart job, the user must request
at least as much ECS as was attached to the original checkpointed job., If
reconfiguration results in insufficient ECS available to the user, restart is
not possible.

CHECKPOINT DUMPS A checkpoint dump may not be restartable in the following cases:

8-6

A tape file necessary for restarting the program was overwritten after
the checkpoint dump was taken.

A machine error propagated bad results but did not cause abnormal
termination until after another checkpoint dump.

60189400 Rev. K

SYSTEM/OPERATOR COMMUNICATION 9

9.1
DISPLAY
CODES

9.1.1
DSD

60189400 Rev. 1

SCOPE communicates with the operator through two or more console display
screens and a keyboard. The major display programs are the System Display
(controlled by the program DSD), and the Control Point Job Display (con-
trolled by the program DIS).

The system indicates the status of operations on the console screens. The
operator may introduce jobs, change job priorities, and examine selected
portions of memory via the keyboard. Data entered from the console is also
displayed. A permanent record of all system/console communication is
retained by the system in a dayfile which may be printed at operator request.

The display console is normally controlled by the system display package
DSD, which permanently resides in peripheral processor 9. DSD maintains
a current display of the system status and processes keyboard entries from
the operator. At the console keyboard, the operator may assign equipment,
exercise control over execution and job scheduling, initiate utility programs,
select displays, etc.

The screens may be assigned to any combination of two displays:

Name Display

System or control point dayfile
Job status (for all control points)
Data storage

Data storage

Equipment status

File name table

Program storage

Input/output queues

= o e H Mg Qw9 >

Unprocessed control cards

oy

JANUS control point status

9.1.2
DIS

Name Display

Control point area or system table addresses

Central programmable

PP communications area

Reserved for PP debugging display; available from VIM

Operator messages

< 0 Z 2 ¢ R

Command format syntax dictionary

N

Display dictionary

DIS, similar to DSD, displays information relevant to a single job assigned to
a control point. Under DIS, the B display shows the exchange jump area of a
job. Central memory addresses relative to a job's reference addresses are
used for data and program display. DIS can be brought to a control point to
monitor the progress of a job, or it can be brought to an empty control point
to initiate utility routines, change priorities and suspend job execution.

For a complete description of DSD and DIS, their displays, keyboard com-
mands and error messages, see the SCOPE Operator's Guide.

60189400 Rev. I

UTILITY PROGRAMS 10

60189400 Rev. I

The SCOPE library contains a set of PP and CP utility programs which can
be called by control cards or by keyboard entries.

Card-to-tape, tape~to~-tape, tape-to-print, card-to-central storage, and
central storage-to-punch operations as well as general file manipulation are
possible. Utility operations can be performed with named files, each of
which designates a specific peripheral device, such as a card reader, tape
unit, printer, card punch or mass storage unit.

Before the first reference to any named file, an equipment should be assigned
to it by the operator with the ASSIGN statement or by the programmer with
the REQUEST statement; otherwise, the system assigns the file to a mass
storage unit. All files, except mass storage, specify a unique peripheral
equipment and all references to a specific equipment are made through the
file name,

Utility jobs conform to the normal deck structure, The job deck contains the
following cards:

Job card first control card
Request cards equipment assignment
Program cards data operations
6/7/8/9 end of job

The job card includes name, priority, time limit and field lengths. If only
utility programs are to be executed, a short field may be specified. In all
copy operations, the central memory buffer is automatically set up to use the
entire field length of the job. Some operations between high speed devices
may be accelerated with a larger field length.

The operator should be requested to assign equipment to all necessary files
which do not reside on the mass storage. Tapes can be rewound and posi-
tioned upon request. Each utility program is called by specifying its name
starting in column 1, Parameters for execution of the program appear in
parentheses after the name,

Example:

To print the third and fourth coded files from a tape:
TAPEPRT, T520,CM1000,P6. (Job Card)

10-1

10.1
COPY ROUTINES

10-2

Assign unique file name MAGTAPE with a REQUEST control card to a tape
unit:

REQUEST,MAGTAPE,MT. Operator would assign specific tape unit.
REWIND(MAGTAPE) Rewinds tape unit to be sure of position,
COPYCF(MAGTAPE, XX, 2) Skips tape to beginning of third file by

copying first two files to an unused
dummy file XX,

COPYCF(MAGTAPE,OUTPUT,2) Copies the two coded files to the output
file. OUTPUT is automatically printed
at end of job.

6/7/8/9 End-of-file card completes the job.

COPY TO END-OF-INFORMA TION

r COPY(file 1,file 2)

The named file 1 is copied onto file 2 until a double end-of-file or end-of-
information is detected on file 1. Both files are then backspaced over the
last file mark, If parameters are omitted, INPUT, OUTPUT are assumed.
COPY will not operate on S or L tapes, on labeled tapes, or on BCD tapes.

This routine may be used to copy a tape even if the number of files on the tape
is not known, A sample deck structure would be as follows:

[NoRe s B

8 /COPY(TAPE 1, TAPE 2)

9 /REWIND (TAPE 2)

/REQUEST TAPE 2, MT.

REWIND(TAPE 1)

/REQUEST TAPE 1, MT.
JOB, P17, T100, CM3000.

60189400 Rev, L

MULTI-PURPOSE COPY

The system library multi-purpose copy routine is a CP routine with entry
points COPYCR, COPYCF, COPYBR, COPYBF. If the number of records
or files is unknown or not readily determined, an exceedingly large para-

meter may be specified. The following parameter information is pertinent
for the four copy control cards that follow:

file 1 and file 2 name the input and output files. Information is copied
from file 1 onto file 2. If these files are not specified by name, INPUT
and OUTPUT are assumed.

n is a decimal number indicating how many files or records are to be

copied. If n is omitted only one file or record is assumed.

L indicates that the first record on the input file contains label information
that is to be copied onto the output file header label., When the L parameter
is used, file 1, file 2, and n are also required.

COPY BINARY T'ILE

COPYBF(filel,file2,n, L)

COPY CODED FILE
COPYCF (filel,file2,n, L)

COPY BINARY RECORD
COPYBR(filel,file2,n, L)

COPY CODED RECORD
COPYCR(filel,file2,n, L)

The first two routines terminate when the specified number of files are read,
or when an end-of -information is encountered.

The latter two routines terminate when the specified number of records are
read or when a file mark is encountered. For example, if the card specifies
100 records but the file contains only 50 records, the copy operation termi~
nates after 50 records.

General Comments pertaining to COPYBF,COPYCF,COPYBR,COPYCR

Error recovery is handled by SCOPE. If, after a number of re-trys, a
parity error persists (a PARITY ERROR message appears on the console
display), the copy should be abandoned by the operator due to the indeterminate
state of the data.

60189400 Rev. L 10-3

10-4

When an end-of-reel is detected, the next reel is obtained, label checking/
writing is performed if the tape is labeled, and the function continues
normally on the next reel.

If an end-of-file is encountered on the input file before the record count is
exhausted, the copy operation will cease (but not abort) at that point. A
message is entered in the dayfile. An EOF is written on file2 and backspaced
over and file is left open.

If an end-of-information is encountered on the input file before the record/
file count is exhausted, the copy operation will cease (but not abort) at that
point. A message is entered in the dayfile; an EOF is written on file 2; both
files are closed.

The copy routines open the files specified on the copy control card., At the
conclusion of the copy operation, only those files on which EOI has been
encountered are closed. The COPY routines require a field length of
20000B.

Although not primarily implemented for that purpose, the copy routine is
capable of limited format conversion. The following matrix shows format
conversion copies that can be handled successfully:

OUTPUT
SCOPE X S L
Bin Yes
SCOPE Yes BCD Yes 1 Yes
Yes 2
Bin Yes Bin
5 Yes 1
; X BCD Yes 3 Yes
= Yes 2 BCD Yes
Bin Yes Bin Yes
S BCD BCD Yes Yes
Yes 1 Yes 2
Bin Yes Bin Yes
L BCD BCD Yes 1 Yes
Yes 1 Yes 2
NOTES:

1. Conversion of this type cannot be guaranteed because of possible trunca-
tion of the input record. Maximum record size for S tape output files is
512 words (5120 coded characters). Maximum physical record size for
coded SCOPE tapes is 1280 characters. If these sizes are exceeded, the
output record is truncated and the copy allowed to proceed after entering
a message into the dayfile.

60189400 Rev. L

60189400 Rev. I

2. Because of potential loss of data significance within the format conver~
sion, the output data cannot be guaranteed; a diagnostic is entered in the
dayfile and the copy allowed to proceed.

3. BCD records may be up to 136 characters on input and will always be 136
characters on output.

COPY LABEL CARD FORMAT

*COPY LAB(LAB=x,EN=x, RN=x, CD=x, RC=x, MFN=x, PN=x)

If an L parameter is specified on any copy control card that routine will read
the next record on the input file and that record should contain the *COPYLAB
card, The LAB parameter is required; all others are optional and will be set
to system default values if omitted (section 3. 3),

Maximum characters

LAB= Label name (written on output 17
and used to open input if
labeled)
EN= Edition number 2
RN= Reel number 4
CD= Creation date 5
RC= Retention cycle 3
MFN= Multi-file name - 6
PN= Position number 3

Columns 1-9 must contain *COPYLAB, or *COPY LAB(

ILAB must be the first parameter, others are order independent.

All fields are separated by commas.

Blanks are not permitted between fields.

Imbedded blanks may appear in the LAB field only.

The end delimiter is a period or right parenthesis.

The L parameter must appear on the copy control card if the input or output

file is declared labeled. If the copy of a labeled tape is to retain the existing
input label, the COPYLAB card requires only the label name,

Example: *COPYLAB(LAB=NAME).

10-5

COPY SHIFTED BINARY FILE

(COPYSBF (file 1, file 2)

A single file is copied from file 1 to file 2, shifting each line one character
and adding a leading space. If parameters are omitted, INPUT, OUTPUT
are assumed.

This routine is used in formatting a print file where the first character of
each line is not a control character and is to be printed. The space charac-
ter added will result in single line spacing when the file is printed.

Example:

Control cards to print a Hollerith card file. The Hollerith card file read by
the operator-assigned card reader will be printed on OUTPUT file of job

CARDCPY.
6 l
e |
9 |8 /COPYSBF(CARDS,OUTPUT)

/ REQUEST, CARDS, CR.
/CARDCPY ,P1,T100,CM3000,

10-6 60189400 Rev. L

COPYBCD

(COPYBCD(filel,file2,n)

This routine copies packed output files to a magnetic tape where each line
image is a discrete physical record, so the tape may be listed offline.

Default values for the parameters are INPUT, OUTPUT, and 1 respectively.

Allowable control card formats and the interpretation of each is given below:

COPYBCD. (INPUT,OUTPUT, 1)
COPYBCD(n) (INPUT,OUTPUT ,n)
COPYBCD(filel) (filel,OUTPUT, 1)
COPYBCD(filel,n) (file1,OUTPUT,n)
COPYBCD(filel,file2) (filel,file2,1)

COPYBCD(filel,file2,n) (filel,file2,n)

Any other format or illegal file names will cause the job to terminate with
the dayfile message CONTROL CARD ERROR.

COPYN

COPYN (pl, out, inl, inz, N inlo)

Logical records from up to ten binary input files (inj-inyy) may be extracted
and written on an output file (out).

Record format is
indicated by py; a non-zero value indicates the identification field (ID) of the
logical records is to be omitted from the output file, zero indicates the
records are to be copied verbatim. If records do not contain an ID, they are
copied verbatim.

Text cards associated with the COPYN routine determine the order of the
final tape. A routine may be selected from a composite tape, temporarily
written on a scratch tape and transmitted as input to a translator, assembler,
or programmer routine, eliminating the need for tape manipulation by the
second program. Several tapes may be merged with COPYN to create a
composite COSY or library tape. In its most basic form, COPYN can per-
form a tape copy.

The file names (iny-inq o) reference binary files on tape, mass storage, or

cards. A binary tape file consists of the information contained between load
point and a double end-of-file; the tape file may contain any number of single

60189400 Rev. L 10-6.1

60189400 Rev, I

end-of-file marks. A mass storage file ends with one file mark, and a card
deck must be terminated by a record separator (7,8,9 punch in column one).
The output file name may reference mass storage, tape, or card punch. A
file mark for an output tape is written by a WEOF card or it may be copied in
a range of records and counted as a record.

Records to be copied may or may not have an ID prefix control number

(12 bits), number of words in the prefix (12 bits), and the name associated
with the logical record. A record ID format consists of the first seven char-
acters of the first word of each logical record. If logical records of the input
file are not prefixed, all record identification cards must use the record
number - the position of the logical record from the current position of the
file.

REWIND, SKIPF, SKIPR, WEOF (write End-Of-File), and record identifica-
tion cards may be used in conjunction with COPYN: these text cards are
read from INPUT and are terminated by a record separator (7, 8,9 punch

in column 1). The text cards are free field; they may contain blanks but
must include the separators indicated in each card description.

REWIND

(REWIND)

This card generates a rewind of file p which must be one of the input or
output file names given on the COPYN control card. File p may not be the
system INPUT file.

SKIPF

f SKIPF (p,+n)

With this card, n file marks on file p may be skipped. File p must be a
tape; requests for other types of files will be ignored. The skip may be
forward (+n) or backward (-n). There is no indication when SKIPF causes
a tape to go beyond the double end-of-file or when the tape is at load point.

10-7

SKIPR

(SKIPR (p, +n)

With this card, n records may be skipped on file p. File p must be a tape;
requests for other types of files will be ignored. The skip may be forward
(+n) or backward (-n). Zero length records and file marks must be included
in n.

WEOF

(WEOTF (p)

This card writes a file mark on file p, which must be one of the input or
output file names on the COPYN control card.

RECORD IDENTIFICATION CARD

pl’pZ’pS

The parameters on this card identify a record or set of records to be
copied from a given file.

p. Record to be copied or the beginning record of a set of records to

1
be copied. The name associated with the record or a number giving
the position of the record from the current position of the file may
be specified.
pz Last record to be copied in a set of records.
name logical records P, through p2 are copied.

decimal integer n n logical records are copied, beginning with
py. Zero length records and file marks
are counted.

p1 through an end-of-file mark are copied.

*k p1 through a double end-of-file mark are
copied.

/ p, through a zero length record are copied.

0 or blank only P is copied.

10~8 60189400 Rev. I

p3 Input file to be searched. If py is a name, and Pg is omitted, all
input files declared on the COPYN card are searched until the p
record is found. If it is not located, a diagnostic is issued. If p1
is a number and p,, i$ omitted, the last input file referenced is
assumed. If this is the first text card, the first input file on the
COPYN card is used.

Examples:

SIN, TAN, INPUTA Copies all logical records from SIN through TAN
from file INPUTA.

SIN, 10, INPUTA Copies 10 logical records from file INPUTA, from
SIN through SIN+9.

SIN, TAN Searches all input files beginning with current file.
(X this is the first text card, the first input file
named on the COPYN card is used). When SIN is
encountered, all logical records from SIN through
TAN are copied.

SIN, , INPUTA Copies logical record SIN from file INPUTA.

1, TAN, INPUTA Copies the current logical record through TAN
from file INPUTA.

1,10, INPUTA Copies 10 logical records, beginning with the
current logical record on file INPUTA,

1,*,INPUTA Copies the current logical record through the first
file mark encountered on file INPUTA.

FILE POSITIONING

The files manipulated during a COPYN operation are left in the position
indicated by the previously executed text card, they are moved only during
a search, If file name (pg) is omitted from the record identification card,
all files on the COPYN card will be searched end-around. The end of a file
is determined by a double end-of-file if tape, or a single end-of-file if mass
storage., The first input file declared is searched until either py or the
original position of the file is reached, whereupon a search of the second
input file begins. In this manner, all files remain effectively in the same
position except the file containing P1s which is positioned at pytl.

60189400 Rev. I 10-9

10-10

The output file is not repositioned after a search so that the COPYN routine
may be re-entered, if desired. Therefore, the programmer is responsible
for any REWIND, SKIP, or WEOF requests referencing the output file that
may be necessary prior to exiting the job,

Example 1: Record identification card: REC, ,INPUTI1
EE
Input file INPUT1: |ABLE|BAKER... REC {SIN | TAN| ZEE %)%)

If INPUT1 were positioned at TAN, TAN and ZEE would be examined for
REC. The double end-of-file would cause ABLE to be the next logical
record examined, continuing until REC is read and copied to the output
file. INPUT1 would then be positioned at SIN.

Example 2: Record identification card: RECA
Input file INPUT, 1 EE
P g Al |B1 |...|2Z1 [0O
positioned at Bl: FI
i EE
Inpgt.flle INPUTZ2, ' A2 |REcaA | D2 | 0O
positioned at loadpoint FE
Input file INPUTS3, EE
positioned at loadpoint A3 B3 |C3)... |23 %%

All routines from Bl through Al are compared to RECA and INPUT1 is
repositioned at B1. A2 is compared, then RECA is copied to the
output file and INPUT2 is positioned at D2. INPUTS3 is not searched.

Example 3:
Record Identification cards and binary logical records on INPUT file,

REC, ,INPUT

JOB1,JOB3,INPUT

ABLE, ,IN2

Record Separator (7,8,9 punch in column 1)
REC (binary)

Record Separator

JOB1 (binary)

Record Separator

JOB2 (binary)

Record Separator

60189400 Rev. I

JOBS3 (binary)

Record Separator

Since there is no end-around search of the INPUT file, REC and
JOB1-JOB3 must directly follow the requesting record identification
cards in the order specified by those cards. An incorrect request for
an INPUT record terminates the job.

ERROR MESSAGES

The text cards are written on the system OUTPUT as they are read and
processed. When an error occurs, the abort flag is set, and a message is
printed (Appendix H) on OUTPUT followed by the card in error. This card
is not processed and an attempt is made to process the next text card. When
the last text card is processed, the abort flag is checked; if it is set, the job
is terminated. Otherwise, control is given to the next control card.

COPYL

COPYL(file 1,file 2,file 3)

This program allows for selective replacement of one or more routines. File
1 contains the old set of decks; file 2 contains the replacement routines, and
file 3 contains the updated set of decks. Files 1 and 2 are not rewound, and
processing continues until the end-of-file on file 1. Routines on file 2 need not

be in any order.

Example:

COPYL(OLD, CORR, NEW)

60189400 Rev, J 10-11

The following job will update 1AJ, 1RA, and 2TS from a tape (OLD) which
presumably contains the binary decks of these and other system routines.
CORR will contain the new 1AJ, 1RA, and 2TS and the new file will be written
on a tape file called NEW.

JOB,CM60000, T1000,

REQUEST OLDPL. (UPDATE LIBRARY TAPE)
REWIND(OLDPL)

UPDATE(Q)

COMPASS (I=COMPILE, B=CORR,S=SCPTEXT)
REQUEST OLD.

REWIND(OLD)

REQUEST NEW.

REWIND(NEW)

COPYL(OLD,CORR,NEW)

UNLOAD(NEW)

REWIND(OLD)

7/8/9

*IDENT, TEST

Modifications to 1AJ, 1RA and 2TS

*COMPILE 1AJ, 1RA, 2TS

7/8/9

6/7/8/9

COPYL can be used tc find out the contents and order of routines on a dead-
start tape by declaring the deadstart tape to be the correction file for a
dummy file.

Example Jobcard.
REQUEST,SYSTAPE, HI. Assign deadstart tape
REWIND(SYSTAPE)
COFYL(DUMMY,SYSTAPE,DUM)
7/8/9
6/7/8/9

COFPYL will list all the routines on SYSTAPE in order as
none exist on the file DUMMY.

COPYL Messages

Listing Messages: COPYL DONE

COPYL DID NOT FIND XXXXXXX.
ILLEGAL COPYL PARAMETER

Display Message: UPDATING XXXXXXX,

10-12 60189400 Rev. I

10.2
FILE
MANIPULATION REWIND FILE

(REWIND(file 1...,file n)

All files specified are rewound.

UNLOAD FILE

(UNLOAD(ﬁle 1...file n)

All files specified are rewound and unloaded. This function issues a CLOSE,
UNLOAD and releases the file assignment to the control point. The UNLOAD
macro only rewinds and unloads the files. The UNLOAD control card, how-
ever, is similar to RETURN.

SKIP OPERATIONS
SKIPF (ifn, n,lev, m)

SKIPF causes one or more logical records to be bypassed in a forward
direction. The request may be initiated at any point in a logical record.

SKIPB(lfn, n, lev, m)

SKIPB causes one or more logical records to be bypassed in a reverse
direction. The request may be initiated at any point in a logical record.

Ifn Logical file name (1-7 digits or letters); must begin with a letter.

n Number of logical records or record groups to be skipped, maxi-
mum value is 777776g. nis a decimal number. A value equiva-
lent to 777777g will be treated as a no-operation for SKIPF and
as a rewind for SKIPB.

lev Logical records are skipped until n end-of-records with level
numbers greater than or equal to the requested level is reached;
the file is positioned immediately following (for SKIPF) or pre-
ceding (for SKIPB) the last record. lev is octal.

m B for binary files, or C for coded files.

The control card SKIPB. is interpreted as SKIPB(FILE,1,0,B). The control
card SKIPF, is interpreted as SKIPF(FILE,1,0,B).

60189400 Rev. L 10-13

10.3
OCTAL CORREC-
TION ROUTINE

10-14

BACKSPACE LOGICAL RECORD

(BKSP(filel,n)

Multiple logical records are backspaced as specified by the decimal n.
Backspacing terminates if it results in a rewound file,

COMBINE

(COMBINE(f1,£2,n)

For this operation, n(decimal) logical records are read from file {1 and
written as one logical record (level 0) onto file f2. The file is not positioned
prior to initiating this operation. If the files f1 and f2 have not been pre-
viously defined by REQUEST cards, they will be assumed to be on mass
storage.

LOAD OCTAL CORRECTIONS

This peripheral program may be called with a control card or at a display
console. Octal corrections are read from the INPUT file and entered in
central storage. The octal correction cards must be in the following format:

E |7
[23001 145020 04000 00042 00044

Address begins in column 1; leading zeros may be dropped in the address.
The data word begins in column 7; spacing in the data word is not important
but the word must contain 20 digits.

LOC. Reads all correction cards in the next INPUT file
record and modifies central storage accordingly.

LOC, 1000, Clears central storage from the reference address
to the specified address; correction cards are then
read from the INPUT file.

LOC (2022, 3465) Clears central storage from the first specified
address to the second; correction cards are then
read from the INPUT file. This program may be
called to clear storage by providing an empty
record in the INPUT file.

60189400 Rev. I

10.4
REQUEST FIELD

LENGTH With the RFL card, the user can request a different field length during job
execution; nfl is the new octal field length.

RFL,nfl.
RFL should be employed to obtain optimal usage central memory., For

example, a FORTRAN program may require 45000 words of memory to com-
pile, but only 5000 to execute. RFL should be used as follows:

Example:

JOB, T300, CM45000, P7.

RUN(S)

RFL,5000.

LGO. (execute program with FL=5000)]

10.5
DUMP STORAGE This peripheral program may be called with a control card or from a display
console in any of the forms shown below:

DMP., Will dump the entire exchange package, RA to
RA+100, and 100 locations before and after a
stop location.

DMP,x. Will dump from the reference address to the
parameter address.

DMP (x,y) Will dump from the first specified address to
the second. The entire control point area is
dumped also if x is equal to y and non-zero.

DMP (4xxxxx,4yyyyy) Produces absolute core dumps. xxxxx defines
the lower bound, yyyyy defines the upper bound
of absolute core locations.

10.6
DUMP EXTENDED
CORE STORAGE The control card for this central program has the following calling

sequence.

DMPECS(x,y,f, lfn)

60189400 Rev. L ' 10-15

The program dumps ECS from location x' to y'. x'is the closest multiple
of 10B less than or equal to x, and y' is the (closest multiple of 10B greater
than y)-1.

f selects the print format.

f=0orl 4 words in octal and in display code per line.

f=2 2 words in octal parcels and in display code per line.
f=3 2 words in octal bytes and in display code per line.
t=4 2 words in octal and in display code per line.

lin Specifies the dump file; if absent or zero, file OUTPUT is assumed.

10.7

COMPARE One or more consecutive records on one file may be compared with the same
number of consecutive records on another file to determine if they are identi-
cal. The control card format is:

COMPARE(f1,f2,n,l,e, 1)

1,2 Files to be compared

n Number (decimal) of records in f1 to be compared to f2
1 End--of-record level number (octal)
e Number (decimal) of non-comparison words to be written

to the OUTPUT file

T Number (decimal) of counted records to be processed during
the comparison. Included in non-comparison record
OUTPUT file if e parameter is given.

Comparison begins at the current position of each file and continues until the
number of ends-of-records of the level specified or a higher level has been
passed over. If all pairs of records are identical, the dayfile message is
GOOD COMPARE; otherwise, it is BAD COMPARE. Discrepancies listed
on file OUTPUT depend on parameters on the COMPARE card. Examples
follow:

COMPARE(RED, BLUE)

Compares next record on file RED with next record on file BLUE.

COMPARE(RED, BLUE, 6)

Compares next six records regardless of level of end-of-record marks; but
each end-of-record on file RED must have the same level as the corresponding
end-of-record on file BLUE.

10-16 60189400 Rev. I

COMPARE(RED, BLUE, 8, 2)

Compares two files from their current positions up to and including the third
following end-of-record with level number of at least 2. Both the records and
the levels of their end-of-record must match to give GOOD COMPARE.

The only indication of bad comparison between corresponding records will
be the message BAD REC.n on OUTPUT, where n is the record number,
counting the first one read on each file as number 1. If more information
is wanted, errors and records must be specified as parameters.

Example:
COMPARE(GREEN, BLACK, 3, 2,5, 1000)

This will do the same comparison as the previous example, but for the first
five discrepancies of a word in one file with the corresponding word in the
other file, the words from each file will be listed in OUTPUT, together
with their position in the record. The position will be indicated by an octal
number, counting the first word as number 0. This will be done only for the
first 1000 records read on each file in which discrepancies are found. 1000
is chosen as an indefinitely large number, because the number of records to
be compared is rather small, and details are wanted about all discrepant
records. If two long files were to be compared, something like 20 might

be given as the records parameter, so that a reasonably large number of
discrepancies would be described in detail; but if through an error the two
files were completely different, an enormous and useless listing would not
be produced. Furthermore, the comparison will be abandoned if this limit
is exceeded, and the files will be left positioned where they stand.

A discrepancy between the levels of corresponding ends-of -records will be
listed on OUTPUT, and the comparison will be abandoned, leaving the files
positioned immediately after the disagreeing ends-of -records.

Mode need not be specified in the COMPARE card. It is handled in the
following manner.

The first record of the first-named file (GREEN) is first read in the binary
mode. If this produces a redundancy check, it is backspaced and re-read

in coded mode. If this still produces a redundancy check, the fact is noted
in file OUTPUT, the corresponding record of the second-named file (BLACK)
is skipped over, and the process begins again. If the coded read is success-
ful, the corresponding record of file BLACK is read in coded mode. If this
record of BLACK gives a redundancy check, the fact is noted in file OUT-
PUT, and nothing further is done with that record. Each record of file

60189400 Rev. I 10-17

10.8

AUTOMATIC
PROGRAM
SEQUENCER (APR)

10-18

BLACK will be read in the same mode as that in which the corresponding
record of GREEN was successfully read; but if the record of GREEN was
unsuccessfully read ir both modes, the record of BLACK will be read in the
same mode as the preceding record of BLACK. Once a record of GREEN has
been read without redundance in one mode or the other, following records of
GREEN are read in the same mode until a change is forced by a redundancy
check.

Mass storage records can be read in either mode; the above strategy imposes
no difficulty if a tape file is being compared with a mass storage file, as long
as the tape file is named first on the COMPARE card. When tapes are com-
pared, all label inforrmation will be ignored.

The Automatic Program Sequencer (or sequencer) allows jobs to be rerun at
regular intervals and supplies necessary information to the jobs. Jobs are
entered under the sequencer with control cards and, at the completion of the
execution, are saved by the sequencer to be executed again at some future
time. The control cards place the jobs under the sequencer, supply the inter-
val or execution frequency, and provide the sequencer with certain utility
functions. The operator can control the sequencer with console entries. The
sequencer is a peripheral processor program (APR) and a table in central
memory resident (T.SEQ).

The CMR table T.SEQ is used by the sequencer program APR as a working
storage area. It contains two types of entries: the first is for the APR
program; succeeding entries are for jobs running automatically under the
sequencer. Entries are numbered 00-nn (octal) where nn is the maximum
number of jobs allowed under the sequencer, equal to one less than the length
(L.SEQ) of T.SEQ. In the released system, L.SEQ = 7 and the maximum
value of nn is 6.

60189400 Rev., K

10.8.1
CALLS FOR APR Calls to APR are processed by LOADER; two calls to APR are made as con-
trol cards in a job deck:

APR (1,xxxxnn) nn is the T.SEQ ordinal to which this job is assigned;
execution frequency is xxxx octal minutes. nn must
be two octal digits, 00<nn< L. SEQ; xxxx may be
0000-7777g. Example: a job calling APR (1,3301)
is placed under the sequencer as job number 1, to
be run every 33g minutes. If a job is already in the
table, xxxx is ignored..

APR (11,nn) Suppresses separator pages, output, and dayfile of
calling job. This affects only the control point and
has no effect on the sequencer. Usually for identifi-
cation, nn is set to the T.SEQ ordinal used to place
the job under sequencer control.

The following two calls to APR may be made by CPU programs by calling CPC:

29 17 0
RJ CPC

APR 1ir|0 0] 5 . XXXXXX

59 41 39 20

Reads real-time clock and places it in byte 4 of address xxxxxx.

29 17 0
RJ CPC

APR 1{r|0 0 10 XXXXXX
59 41 39 21

Places CMRA, ECRA, and ECFL in location xxxxxx, This word will
contain the values: byte 0 =0, byte 1 =0, byte 2 = CMRA/100g,
byte 3 = ECRA/1000g, byte 4 = ECFL/1000g.

In either call, if xxxxxx is out of range, the control point is terminated and
this message is issued: ILLEGAL ADDRESS REQUEST TO APR.

60189400 Rev. K 10-19

10.8.2
CONSOLE
ENTRIES

10.8.3
SAMPLE JOB
STRUCTURE

10-20

The operator may control the sequencer by typing in SEQ,command. The
commands are described in the SCOPE Operator's Guide (Pub. No, 60179600),

A job to be sequenced every 35g minutes would have the following structure:

JOB Card

APR(1,003502) Save job for future execution (35g min. interval).
Will be job number 2 in T.SEQ.

: } Any job deck without a JOB card and 6/7/8/9 card.
6/7/8/9

60189400 Rev., K

DEBUGGING AIDS 11

Debugging aids include SNAP, TRACE, and DUMP and are submitted as
normal jobs.

11.1

TRACE The tracing capability provides an analysis of program execution. Instructions
based on storage references, operand references, register usage and branch
instructions are analyzed. Output is written on a local file named SNACE.
If TRACE output is to be listed, SNACE must be rewound and copied to the
standard output file (OUTPUT). TRACE output always includes a dump of
the contents of the P register, all operand registers involved and the result
register. An initial message indicates where tracing begins and the range
involved. A terminal message is written when tracing stops.

Each instruction within a designated range is scanned for triggers, established
by TRACE control card parameters. Traps are placed at instructions which
contain triggers. As each trap is encountered during execution, the designated
instruction is executed and the specified output is written on SNACE. TRACE
continues until the specified parameters are satisfied and as long as the
program remains inside the designated range.

This restriction applies to IA, LA (and all related formats) and all words

Instructions that are program modified or not executable may not be traced. I
between IA and LA,

Return jump instructions outside the range must be calls to simple subroutines,

and they must return through the subroutine's entry point. Tracing stops when
the subroutine is entered and resumes when the subroutine returns to the
range, A return jump which does not return to L+1 cannot be traced. [|

Tracing ranges can overlap and multiple outputs can be triggered.

TRACE may be used with all system loading schemes except that programs
loaded entirely from the library cannot be traced. OVERLAY/SEGMENT
mode has special requirements (section 11.1.3). When TRACE cards are
encountered, the system prepares TRACE tables to be referenced during
subsequent loading. Calls for SNAP features cannot be traced.

11.1.1
SCOPE
CONTROL CARD The following SCOPE control card initiates TRACE.

(TRACE,pl,pZ, ...,pn.

60189400 Rev.. L 11-1

11-2

The order of parameters is not significant except as noted below, All para-
meters, except frequency, must appear. TRACE cards must be loaded
contiguously.

Parameter Description
Range Identification: i is an optional, alphanumeric identifier (1-7
ID=i characters) printed on TRACE output. If con-

tinuation cards are used, it must appear some-
where on the first ecard and on all continuation
cards as the first parameter.

Initial address: e is an entry point name.
IA=e or e+n ¢ is a labeled common block name.
IAl=e-n n is an octal integer = 777777.

IAC=c or ctn

IACl=c-n

Last address: The tracing range includes all instructions
from IA to LA (LA must be greater than IA),
LA=e or etn

LAl=e-n
LAC=c or ctn

LACl=c-n

Branches outside range IA-LA terminate trace output. It resumes when
control passes back into the range. Tracing for the specified range terminates
until control passes back through the address at which tracing begins.

The IAT flag, set when IA is encountered, is turned off only when 1LAT is
encountered. When a trigger is encountered, only the output specifications
with a set IAT flag are processed. The first time IA is passed through, the
trace counter is changed to 1. The counter is incremented only if control
passes through LAT of the range prior to passing through IA again. Returning
to IA before LA is encountered does not affect the frequency parameter count.
Output is dependent upon the frequency parameters.

TReferences to IA apply to IA1, IAC, IAC1 also; references to LA apply to

LA1, LAC, LAC1 also.

60189400 Rev. I

60189400 Rev. C

Parameter

Frequency:
Fl=n
F2=n
F3=n

Description
n is an octal integer; it must not be 0. If
parameter is not specified, 1 is assumed.
F1 Tracing begins Flst time IA is encountered.

F3 Thereafter, tracing takes place every
F3rd time IA is encountered.

F2 Tracing stops F2nd time IA is encountered.

Three trigger specification parameters are described below; at least one
must appear on a TRACE card.

Register trigger:
TR=P,An, Bn, or Xn

Masking trigger:

TMm,kl,kz, e ,kn

Location trigger:
TL=e or etn
TLl=e-n

TLC=c or c+n
TLCl=c-n
TLB=b

Register dump:
RD

n is the register number 0-7.

Each instruction is examined to determine
whether or not the specified register is used as
a result register. The P register measures
satisfactory completion of a conditional jump.
It must be placed before other triggers; other-
wise, traps are set for previously set traps.

m is an octal mask. (5 or 10 digits)

k is a match key associated with mask m. A

mask (Boolean AND) of each instruction in the
range is compared with all k's for that mask.

If equality to any k is found, the instruction is
used as a trigger.

e is entry point name
¢ is labeled common block name
n is octal integer =777777

b is nth location in blank common

Each instruction making an A-register reference
to the location is used as a trigger.

If RD is specified immediately following a trigger,
(TR, TM, or TL) an octal dump of all A, B and
X registers is included in the output.

The two output specification parameters are activated when one of the trigger

parameters is encountered.

11-3

Parameter Description

Storage location i is an octal integer less than 100
reference:
OL=e,i or etn,i When a trigger is encountered, i words beginning

with the specified location are written in octal

OLlZe-n,i format on SNACE. i must be specified.

OLC=c¢,i or ctn,i

OLCl=c-n,i
OLB=b,i
Register designator: When a trigger is encountered, i words beginning
OR=r.i at the location specified in the designated
L

register are written in octal format on SNACE.
i must be specified.
r is a register designator: An, Bn, Xn

n=0-7

11.1.2
TRACE EXAMPLES
AND OUTPUT

(TRACE,ID=AA, IA=ST, LA=NT, TL=NT, RD, OL=S8T, 77, F2=10.

ID=AA AA is the range identifier in messages produced
each time the start or end of range is encountered
and each time output results from trap execution.

IA=ST ST is an entry point in user's program; it
designates beginning of range.

LA=NT NT is an entry point in user's program; it
designates end of range.

TL=NT,RD Trigger which causes trap to be set each time
NT is referenced within the stated range.
At execution time, the trap in the instruction
referencing NT causes TRACE output.

RD causes a dump of the registers each time an
instruction referencing NT is executed.

OL=ST,77 Output trigger. Each time the instruction
referencing NT is executed, 77g words are
dumped beginning at the entry point ST.

F2=10 Output is produced the first eight times the
instruction is executed. (F parameters are
assumed to equal 1 if not present on a trace
card; therefore, F1 and F3=1.)

11-4 60189400 Rev. C

OUTPUT

Assume: ST=4567 (IA)

NT=4577 (LA)

The instruction SA5 NT is present at location 4571.
AA STARTS IN LOCATION 004567
TRAP FOR AA AT 4571
OPERAND REGISTERS, B0=000000

K=004577

RESULT REGISTER IS A5=004577
B0=000000
B1=054520
B2

.

X7=01040422000000000000
004567 data data data data
004573

data
004663 data data data
AA ENDS IN LOCATION 004577

TRACE,ID=REGS,IA=START, LA=NEXT, TR=P, RD, TR=X6, OR=B4, 6.

ID=REGS range identifier

IA=START limit

LA=NEXT range 1m1 s ' . .
Each time a jump occurs, a trap is set

TR=P,RD trao tricgers and the registers are dumped (RD).

TR=X6 p trigg Each time X6 is usedt as a result
register, a trap is set.

OR=B4, 6 Output consists of six words starting at

the address in B4.

In this case, only once: no frequency parameters are specified; each is assumed
to be 1.

60189400 Rev. C 11-5

11.1.3

TRACE IN OVERLAY
OR SEGMENT
MODE

1.2
SNAP

11-6

TRACE,ID=Q,1A=S, LA=E, F1=3, F2=7, F3=2, TM=00700, 00600, OR=B4, 7.

I1D=Q range identifier
1A=S | -
LA=E 5 range limits
TM=00700, . -
00600 trap trigger 00700=octal mask
00600=match key
Whenever the third digit of an instruction
is six, the designated output (OR=B4,7)
occurs if the frequency requirements
are met.
F1=3,F2=17, frequency Output is not to begin until the third
F3=2 requirements time the range is passed through. It
is to be repeated each second time
thereafter through the seventh time
the trap is encountered.
OR=B4,7 output trigger Output consists of seven words of data

starting at the address in B4 register.

In overlay or segmernt mode, the DEBUG card (11.4.1) with the T parameter
must be present when the overlay file is generated. As the TRACE routine
is loaded with SEGZERO or with the (0,0) level overlay, TRACE cards must
appear just prior to the program call card which causes loading of the (0,0)
level overlay or SEGZERO (section 11.5, Sample Deck Structures).

When TRACE cards are encountered, the system prepares TRACE tables to be
referenced during subsequent loading. The loader tables for overlays are
read from the overlay file. As each overlay is loaded, TRACE's which

apply to it are established. Similarly, segment loading causes TRACE traps
to be inserted.

The SNAP dump capability provides selective area printouts upon execution
of specified instructions. Printing frequency is established by parameters.
The dump format is variable.

60189400 Rev. C

When SNAP cards are encountered the system prépares SNAP tables (which I
are located in front of the loader tables). During subsequent loading SNAP's
are inserted which apply to the newly loaded programs. The SNAP control
card may specify an entry point to a user supplied routine which is entered
before the SNAP output is written.

Prior to execution, the instruction at a SNAP triggered address (IA) is re-
placed by a return jump to the SNAP routine or auser routine if specified. The
replaced address is savedin the SNAP tables. When the trapped addressisen- B
countered during execution, the SNAP routine stores all registers. Routine
parameters are contained in arrays;the addresses of the arrays are passed to
the specified routine. Thearrays contain: the saved registers, the parameters
from the SNAP card, and the address at which the SNAP occurs. Tollowing
return from the routine, the SNAP dump is written on the local file SNACE
or on an alternate file if an FET address is specified by the routine. To
obtain listings, the dump written on local file SNACE must be copied onto
the file OUTPUT. A user routine may set a flag to suppress output.

Following the dump, saved instructions are executed before passing control
to the trapped location + 1. If an alternate address is placed in the communi-
cations area, SNAP will return to it after executing the saved instructions.

instruction at IA must not be modified during program execution (a subroutine

SNAP cannot be used for programs loaded entirely from the library. The |
entry point called by a return jump is modified).

11.2.1

SCOPE
CONTROL CARD The following SCOPE control card initiates SNAP:

SNAP, 1) ORTRE) I

Parameters may appear in any order except as noted below. All SNAP
cards must appear contiguously.

Parameter Description
SNAP identifier: i is an optional 1-7 character alphanumeric

identifier printed with the dump. If continuation
cards are used, ID must appear somewhere on
the first card and as the first parameter on
continuation cards.

ID=i

60189400 Rev. L 11-7

Parameter
Address where trap
is planted:
IA=e,e+n, or a
IAl=e-n

TAC=c or ctn
IACl=c-n

First word address
of area dumped:

FWA=e,e+n,n, or a
FWAl=e-norn
FWAC=c, ctn, orn
FWACl=c-norn
FWAB=b

Last word address
of area dumped:

LWA
LWA1
LWAC
LWAC1
LWAB

Interval between
words dumped:

INT=n
Dump format:

F=code

Description

e is an entry point name
c is a labeled common block name
n is an octal integer

a is an absolute address (relative to RA)

b is bth location in blank common; other
symbols are as in IA,

n is assumed if e (or ¢) has appeared as a
previous parameter on the card. Thus,
address will be e+tn, e-n, c¢+n, or c-n, as
appropriate. a is assumed if e has not
appeared yet on this card.

Formatis the same as for FWA.

LWA must be = FWA,

n is a positive octal integer; if not specified,
1 is assumed. For a D dump, n is doubled.

Designated by one or two of the following codes:
One only of the characters may be:

(0} Octal dump

M Octal dump with mnemonic operation codes

I Integer dump

S Single precision floating point

F If exponent = 0, I format; otherwise, S
format.

D Double precision floating point dump (two
words)

C Display code dump

60189400 Rev. C

Parameter

Frequency:

Fl=n
F2=n
F3=n

User's entry point:

UR=p,rl,...

rn

Description

The second character is optional; it may suffix
or prefix any other designator.
R Register dump.

If FWA and LWA are present and F is not
specified, octal (O) and register (R) dumps
are given. If FWA and LWA are not present
and F is not specified, a register dump is
given,

n is an octal integer. It cannot be zero; 1 is

assumed if n is not specified.

F1 Tracing begins the Flst time IA is
encountered.

F3 Therafter, tracing takes place every F3rd
time IA is encountered.

F2 Tracing stops the F2nd time IA is
encountered.

Optional parameter; must be last on the card.

p specifies the user's entry point to be called
before SNAP dump is taken. r parameters,
passed to the routine, may be of two forms:

Alphanumeric string, 1-10 characters, termi-
nated by a zero byte. If the string contains 9
or 10 characters, an extra word is required.

Decimal integer, converted to binary, stored
right justified.

The parameter list is terminated by a -0 (word
filled with sevens) which is used optionally by
the user's routine. It has no meaning for SNAP,

SNAP enters the user entry point in the following manner:

L
L+1

L+2
L+3

60189400 Rev. C

RJ

P (user entry address)
TADR (FWA of loader SNAP tables)

User parameters begin at FWA-10B and extend
toward the reference address.

RBO (FWA of register storage area)
Return to user routine

The user program must increment the return
address by two so that return to SNAP will be
at L+3,

11-9

Registers are stored one per word in the first 24 words of the register
storage area as follows:

B0-B7, A0-A7, X0-X7

RB0+24 has the following format:

Bits

59 No-cdump flag; if bit 59 is set, SNAP output is suppressed.
This bit is cleared on entry to the user routine.

18-58 Not used

0-17 FET address can be inserted to designate an alternate file

for SNAP output.

RB0+25 has the following format:

Bits
18-59 Not used
0-17 Address to which SNAP returns (address+1 of trapped
instruction). Address return can be changed by replacing
the address in these bits.
11.2.2
SNAP CONTROL
CARD EXAMPLES (SNAP (ID=AX,1A=L, FWA=B, LWA=B+150, F1=10, F2=35, F3=2, F=0)

Produces a dump in octal format labeled AX consisting of all locations from
B to B+150g. The dump starts the 8th time the instruction at location L is
encountered, and is taken every 2nd time thereafter through the 34th8 time.

r SNAP(ID=AX, 1A=L, FWA=B, LWA=B+150,INT=5, F1=10, F2=35, F3=2, F=0)

Same as above, except every 5th word is dumped starting at location B and
ending at location B+1448.

11-10 60189400 Rev. C

(SNAP(ID=AX, 1A=L, FWA=B, LWA=B+150,INT=5)

Continuation card:

(SNAP(ID=AX, F1=10, F2=35,F3=2, F=RO)

Each dump begins with the contents of all registers at the time of entry to
SNAP.

(SNAP(IA=TAG)

The first time location TAG is executed, a dump is produced of the contents
of all registers as they appeared upon entry to SNAP,

(SNAP(IA=HOOK, F=M, FWA=C, LWA=C+30,ID=SYM, UR=IN, 1, A, 2)

When location HOOK is executed, control passes to a user subroutine (entry
poini=IN). If the user routine returns control to SNAP, and if the no-dump

flag is not set (in RB0+24, bit 59), a mnemonic dump is taken (labeled SYM

of locations C through C+30g. Parameters 1, A, and 2 are appended to the

loader SNAP tables.

11.2.3

SNAP IN OVERLAY

DR SEGMENT MODE SNAP declarations are inserted as each segment is loaded. The SNAP routine
is loaded with SEGZERO and with the (0,0) level overlay. The DEBUG card
with the S parameter must be included when the overlay file is prepared. The
DEBUG(S) card must appear immediately before the initiation of a segment
load (section 11.5)., With normal loads, the DEBUG card is not necessary.

11.3
DMP Upon normal or abnormal job termination, three dump formats are available:
octal, labeled, change.

60189400 Rev. C 11-11

11-12

Octal

Standard DMP option. If a DEBUG control card (section 11.4) is not present
in a job, an octal core dump is produced when the DMP control card is
encountered.

Labeled

If 2 DEBUG control card with no parameters is present, a labeled dump is
produced when the DMP control card is encountered. Format of the dump is
the same as for the octal dump; except as the origin of a common block or
subprogram is encountered, the associated name is printed. Also, a relative
address counter indicates the position of the first word on the line relative

to the last encountered subprogram or common block. The DEBUG file is
used to locate the origin and names of the subprogram and common blocks.

The DMP card uses symbolic names as well as octal numbers; the two may
be combined. (A common block name is preceded by an empty parameter.)
The dump begins at the origin of the first parameter name and continues
through the space occupied by the subprogram (or common block) mentioned
as the second parameter. The second parameter origin must be greater than
the first parameter origin.

Example:

(DMP(ALPHA, CAT)

Produces a labeled dump of the program ALPHA and all locations through
program CAT, Intermediate programs encountered are identified.

If a job is in overlay or segment mode, the DEBUG file is updated with the
loading of each overlay or segment.

Change

If parameter C is present on a DEBUG control card, a list of core locations
which have changed from their initial values is produced when the DMP
control card is encountered. When a job begins an execution phase, a core
image of the entire field length is written on the DEBUG file. The image is
compared with the contents of memory at the time of termination. The
contents of changed locations are listed. A labeled dump always precedes a
change dump.

60189400 Rev. C

11.3.1
DMP
CONTROL CARDS

60189400 Rev. L

Change dumps permit a swift analysis of subprograms entered, changed data,
and modified instructions. Large areas of instructions or data which have
remained constant need not be considered.

A change dump will not be produced during overlay or segment mode.

DMP.

DMP , XxXXXXX.

DMP (xxxxXX, yyyyyYy)

Dumps the exchange package, RAto RA+100, and P-77
to P+77onto OUTPUT. The exchange package dump
consists of P, RA, FL, RAECS, FLECS, EM,
A0...A7, BO...B7, X0...X7 and the contents of
locations A0-A7. Each line of the storage dump
contains an address and the contents of from one to
four central memory words starting at that address.

Dumps from the reference address through the
parameter address, XxXXxxx.

Dumps from address xxxxxx through yyyyyy. If
the high-order bit of each 18-bit address is set,
an absolute dump is given. (For example, DMP
(400300, 400450) causes absolute locations 300
through 450 to be dumped, not RA+300 through
RA+450), If a DEBUG file is created, xxxxxx and
yyyyyy may be symbolic. Printing of a central
memory word is suppressed when that word is
identical to the last word printed. Its location is
printed and marked by a right arrow. If xxxxxx
and yyyyyy are equal, DMP (1,1), the control
point will be dumped.

DMP output will be suppressed when preset core is encountered. The last

preset location will be marked by the symbol > in the output.

11-13

11.3.2
DMP EXAMPLES

11.4
DEBUG

11-14

DMP(1000) or DMP(100, 200)

Interpreted as a standard DMP request except it can be labeled (with or
without a change dump) if appropriate DEBUG cards are present. The
following dumps must be labeled by inserting a DEBUG control cards
previous to the DMDP control card:

Call
DMP(CPC,IO)

DMP(COPYL)

DMP(100, COPYL)
DMP(COPYL, 2000)
DMP(COPYL, COPYL)
DMP(, RED)

DMP(, RED, , WHITE)
DMP(, RED, , RED)
DMP(100, ,RED)
DMP(IDA, , RED)

DMP(,WHITE, ELLA)

DMP(, WHITE, 70000)

Dump Beginning

Start of program CPC

Reference address

RA+100

Beginning of COPYL

Start of program COPYL
Reference address

Start of common block RED
Start of common block RED
RA+1008

Start of program IDA

Start of common block WHITE

Start of common block WHITE

Dump End

End of program
10t

Beginning of
COPYL

End of COPYLT
RA+2000g

End of program
coPYLT

Start of common
block REDT
End of common
block WHITET
End of common
block REDT
End of common
block REDT
End of common
block REDT
End of program
ELLAT
RA+’700008

The DEBUG control card is required when debug aids are used with overlay
or segment jobs or when a labeled or change dump is requested. The DEBUG
control card applies to all subsequent loading and executions within a job.
Any absolute program loaded completely from the system library, however,

cannot use the debugging aids.

they are loaded from a user file.

T One word beyond dump end is dumped also.

Such routines can be debugged only when

60189400 Rev. G

11.4.1
DEBUG
CONTROL CARD

11.4.2
DEBUG USE

60189400 Rev. G

DEBUG (C, T, S) (Parameters are optional.)

C Labeled dump is followed by a change dump when the DMP card
is encountered; if C is absent, only a labeled dump is produced.

T In overlay mode, loads TRACE and SNAP routines with the (0,0)
overlay; in segment mode, loads TRACE with SEGZERO.

S In overlay mode, loads TRACE and SNAP routines with the (0,0)

overlay; in segment mode, loads SNAP with SEGZERO.

DEBUG cards with both C and T parameters (or with both C and S parameters)
cannot appear in the same job: a change jump is not allowed in overlay or
segment jobs. If such cards do appear, the job is not terminated, but the
change dump is not produced. DEBUG(T) or DEBUG(S) does not signal a
labeled dump. A DEBUG card with no parameters must be present to obtain
a labeled dump without a change dump.

Overlay loading T

If a DEBUG card is included when an overlay is prepared, the loader inserts
a record on the overlay file following the overlay. This record consists of the
loader table information necessary for traces, and for snapshot and formatted
dumps. When the overlay is loaded, the table information is extracted from
the overlay file and placed on the DEBUG file.

Normal loading/segment loading T

Upon completion of loading, a local file is created. This file, named DEBUG,
contains the loader table information necessary for formatted dumps. It is
updated as each segment is loaded. During user loading, execution does not
affect or is not affected by the DEBUG card except for user segment loading.

TThe change dump does not apply to overlay or segment loading.

11-15

11.5

SAMPLE
DECK STRUCTURES TRACE run:
job card
COMPASS,
TRACE (params) TRACE and SNAP cards appear immediately
LGO before program call card that initiates the
’ run.

REWIND (SNACE)
COPYCF (SNACE,OUTPUT)

7
89

(COMPASS SOURCE DECK)

11-16 60189400 Rev. C

Combined TRACE/SNAP run:
job card
COMPASS.
COPYBR(INPUT, LGO)
TRACE (params) TRACE and SNAP cards appear immediately
. before program call card that initiates the
TRACE (params) ra.

SNAP(params)

.SNAP (params)

LGO.

REWIND(SNACE)
COPYCR(SNACE,OUTPUT)

7
89

(COMPASS source deck)

7
89

(Binary of previously assembled program)

60189400 Rev. C 11-17

11-18

Normal execution with labeled dump if job aborts:

job card

DEBUG. DEBUG card remains in.force throughout
COPYBRONPUT,LGO) 1e JoP-

COMPASS.

LGO.

EXIT.

DMP(6000) Dumps locations occupied by program PA.
DMP(PA, PA) :ii; E1;:1);1.(;&1‘:;‘have been loaded for this card to be
7 89

(Binary of previously assembled program)

7
89

(COMPASS source decks including program called PA)

If COMPASS terminates abnormally, the labeled dump produces labels
reflecting programs loaded for COPYBR., COMPASS, a library overlay,
has no loader tables to update the DEBUG file.

60189400 Rev. C

SNAP run with labeled and change dump:

job card

DEBUG(C) DEBUG card must appear before the SNAP card.

SNAP(params) SNAP cards apply only to next load; they must

INPUT appear immediately before the card initiating
’ that load. (SNAP and TRACE cards do not

DMP(1000, 2000) signal the end of the current load.)

REWIND(SNACE)

COPYCF(SNACE, OUTPUT)

EXIT.

DMP(5000)

REWIND(SNACE)

COPYCF(SNACE, OUTPUT)

7 89

(Binary decks to execute)

60189400 Rev. C 11-19

11-20

Overlay run using both SNAP and labeled dumps:
job card
DEBUG.
DEBUG(S)
LOAD(FILE)
NOGO.
SNAP(params)
OVFILE.
DMP(1000)
REWIND(SNACE)
COPYCF(SNACE, OUTPUT)
EXIT.
DMP(10000)
REWIND(SNA.CE)
COPYCF(SNACE, OUTPUT)

FILE contains overlay directives and binary decks which comprise the overlays
to be written on file OVFILE when LOAD(FILE) is processed. Once execution
of the overlay file begins, dumps will be labeled because of the DEBUG card.
The following rules apply:

The DEBUG(S) card must precede the LOAD(FILE) cards so that the
loader tables will be placed on the overlay file as it is generated and
so that in (0,0) overlay the debugging routines will be loaded.

The NOGO card must appear; otherwise, the SNAP routine is loaded in
the last overlay.

The SNAP cards must appear just before the card which initiates loading
of the (0,0) overlay.

60189400 Rev. C

Segment run using both TRACE and labeled dumps:

job card

DEBUG. The DEBUG cards must appear before any
TRACE or SNAP cards; TRACE and SNAP

DEBUG(T) cards must appear immediately before the

TRACE(params) load to which they apply.

INPUT.

DMP(40000)

REWIND(SNACE)

COPYCF(SNACE, OUTPUT)

78

9
(Segmentation loader directive cards)

(Binary decks)

60189400 Rev. C 11-21

11-22

job card

REQUEST SNACE,
REWIND(SNACE)
SNAP(params)
INPUT,.

COPYBF(X, SNACE)
EXIT.

COPYBF(X, SNACE)

7
89

object deck

678
9

job card
REQUEST SNACE.
REWIND(SNACE)

SNAP run with SNACE output going to tape;
tape to be listed at a later time:

The COPYBF(X, SNACE) cards write an end-
of-file on the tape. Normally, this is a faster
method of running SNAP and TRACE when
output to SNACE is extensive.

COPYCF(SNACE, OUTPUT)

60189400 Rev. C

CUSTOMER ENGINEERING (CE) DIAGNOSTICS 12

Customer Engineering (CE) diagnostic programs available under SCOPE 3
consist of:

Four CPU tests (ALS, CT3, CU1, and FST)

Two central memory tests (CM6 and MY1)

Six peripheral equipment tests (CP1, CR1, DT2, LPT, LP1, and MTT)
One ECS test (EC2)

The System Maintenance Monitor (SMM) tape contains equivalent tests with
the same mnemonics. SMM is the system used by customer engineers to

run diagnostic programs during preventive maintenance periods. These
tests are fully described in the System Maintenance Monitor Reference Manua
(Pub. No. 60160600).

12.1

MODES OF

OPERATION The CPU tests and memory tests (except EC2) can be run in both SMM and
SCOPE modes. The peripheral equipment tests and memory test EC2 can
be run only in SMM mode.

SMM Mode

Executing a test under SCOPE in SMM mode is like executing under SMM,
except that the test has been modified slightly to interface with SCOPE,

For CPU programs, the ORG card was changed from ORG 1 to ORG 101B.
Therefore, a SCOPE listing of a test will be 100g locations higher than a
listing from the SMM tape.

For PPU programs, a call to the common deck PSSYS was substituted in

place of a call to the common deck PS. PSSYS enables a PPU program to
interface with SCOPE; PS allows interface with SMM.

60189400 Rev. K 12-1

12-2

A CE test is called to execute in SMM mode by specifying the test mnemonic

under DIS or with a program call card in a control card deck, for example:

1

(ALS.

SCOPE Mode

SCOPE mode was developed primarily to allow CE diagnostics to be run

under the Automatic Program Sequencer (APR).

section 12. 4.

Sample jobs appear in

A CE test is called to execute in SCOPE mode by specifying the test
mnemonic followed by (SEQ). This call may be made under DIS or with a
program call card in a control card deck, for example:

1

(ALS(SEQ)

SCOPE Mode and SMM Mode Differences

The modes of execution differ in three respects only:

Execution Time

Dayfile Messages

Random Number
Requests

SCOPE Mode

Tests execute for a
finite length of time
(usually 10-15 sec-
onds) and then end.

Tests send error
message to dayfile
and pauses for
operator action if a
hardware malfunction
is detected.

ALS, FST, and CT3
tests make calls to
the Automatic Pro-
gram Sequencer
(APR) for a random
number to be used
as a starter for a
random instruction
gencrator,

SMM Mode

Tests execute until a
time limit abort or an
operator DROP occurs
at the control point.

Tests merely halt the
central processor on a
program stop instruc-
tion when a hardware
error is discovered

No random number
requests are made.

60189400 Rev. K

12.2

CPU AND

MEMORY TESTS The following test descriptions summarize the purpose of each test, and
the accompanying chart gives the test calls, field lengths required, execution
times, and error messages. More detailed descriptions are in the System
Maintenance Monitor Reference Manual (Pub. No. 60160600).

The CPU and memory tests were added to SCOPE primarily for use with the
Automatic Program Sequencer (APR). The CM error dumps shown in the
chart refer to usage with APR.

Each test assumes that when it is called in SCOPE mode, the program call is
part of a JOB card deck. When the test aborts after an error is detected, it
assumes that the deck contains an EXIT card followed by DMP cards to dump
the field length of the job.

The four CPU tests also assume that MODE, 0. cards appear in the job deck.

These cards are necessary to suppress the hardware exit mode, because the
CPU tests use illegal operands to check for hardware end cases.

ALS ~ 6X00 Random Instruction Test

ALS generates random instructions. It tests the stack registers and the
scoreboard's ability to handle instructions issued at a rate faster than
possible when instructions are not issued from the stack.

Errors are detected by executing an instruction sequence twice with the same
initial register contents. The first pass terminates with a 04 jump instruction
back to the beginning to re-execute all instructions from within the stack,

The second pass terminates with a 02 jump instruction back to the beginning
to prevent instructions from being executed from the stack registers. The
answers are compared and an error message occurs if they do not agree.

ALS is intended for the 6600 computer. The 6400 computer can run the test
but cannot execute an in-stack instruction loop.

60189400 Rev. K 12-3

¥-c1

3 TA9Y 00¥68109

Test Call Field Length Req. Execution Time
Program | SMM Mode SCOPE Mode (Octal Locations) | SMM Mode SCOPE Mode Error Messages (SCOPE Mode)’f
ALS ALS. ALS(SEQ) 1500 Indefinite 40005 passes thru its SEQUENCER DIAGNOSTIC/ALS/FAILED.
instruction loop (20¢ PASS CNT. = XXXXXX
seconds on the 6400) RDN. NO. = YYYY
TYPE n.GO. SEE LINE PRINTER FOR
CM ERROR DUMP.
FST FST. FST(SEQ) 1200 Indefinite 50008 passes thru its SEQUENCER DIAGNOSTIC/FST/FAILED.
instruction loop (204 PASS CNT. = XXXXXX
seconds on the 6400) RDN, NO. = YYYY
TYPE n.GO. SEE LINE PRINTER FOR
CM ERROR DUMP.
CT3 CT3. CT3(SEQ) 4100 Indefinite 40008 passes thru its SEQUENCER DIAGNOSTIC/CT3/FAILED.
instruction loop (20, ERROR PASS XXXXXX.
seconds on the 6400) TYPE n.GO. SEE LINE PRINTER FOR
CM ERROR DUMP.
Ccu1l CU1. CU1(SEQ) 7000 Indefinite One pass thru its None.
instruction loop (40g
seconds on the 6400)
CM6 CMS6. CM6(SEQ) Any value greater | Indefinite 40,0004 passes; each checks | SEQUENCER DIAGNOSTIC/ CM6/FAILED.
than 10,000. 100g pairs of addresses in ERROR ADDRESS IN LOC. 342
each memory bank. Requires ERROR DATA IN LOC. 343
15¢ seconds on the 6400 with | TYPE n.GO. SEE LINE PRINTER FOR
field length = 20, 000. CM ERROR DUMP.
Smaller field length increases
execution time.
MY1 MY1. MY1(SEQ) Any value greater Indefinite 108 passes thru its instruc- SEQUENCER DIAGNOSTIC/MY1/FAILED.
than 1000. tion loop (108 seconds on a TYPE n.GO. SEE LINE PRINTER FOR
6400 with a field length of ERROR DUMP.
30000).
EC2 EC2. 55,000. 204 seconds for a 500,000 SEQUENCER DIAGNOSTIC/EC2/FAILED.
word ECS field length. TYPE n.GO. SEE LINE PRINTER FOR
ERROR OUTPUT.

T To call attention to the error, the final message remains at the control point and the job goes int

o recall until the operator types n.GO.

60189400 Rev. K

FST - 6X00 Random Instruction Test

FST generates a set of 108 random numbers, removes all jump instructions
from this set and runs it as a subroutine. Passes are inserted in the last
parcel in place of 30-bit instructions. All writes and reads are restricted to
specific areas.

To check results, a slow loop is also generated with the same instructions;
but it contains only one instruction for every two words of passes.

The B and X registers are loaded with random numbers and the A registers
are set to known values before each pass. The slow loop is run first, and
the results of the registers are stored, then the fast loop is run and the re-
sults compared. If the results compare, the fast loop is run and compared
31 more times. If no error occurs, the fast loop is run and compared 32
times for each set of random numbers before a new set is generated.

When an error occurs, the loops are shortened by one 60-bit word and the
test rerun. If it fails again the loops are shortened again and the test is
rerun until it does not fail. At this point, the last word removed is replaced;
the pass count is entered in the dayfile, and the program halts.

CT3 - 6X00 Random Instruction Test

CT3 uses a central processor simulator routine. It generates a set of random
instructions and forms a random instruction loop. Branch and memory ref-
erence instructions are restricted to specific areas. The random loop is
executed and the result registers saved. The simulator routine is then used
to execute the random instruction loop, and the result registers are compared
for differences.

The CT3 optional parameters described in the System Maintenance Monitor
Reference Manual are not selectable in the SCOPE version of CT3. These
parameters are automatically set for:

Central simulator

Six words in random loop

No stop on error

In-stack processing

No optimization

Try each set of random instructions twice

12-6

CU1 - 6X00 Command Test

CU1 tests central processor control hardware, central processor functional
units, etc. Test of the control hardware checks the read flag settings and the
unit reservations. Tests of the functional unit hardware check the arithmetic
operations performed in the functional unit for a number of fixed operands,

CU1 needs a basic field length of 5200g; however, the last section of the test

is for the branch unit and utilizes all available field length assigned to the
control point.

CM6 - 6X00 Central Memory Test

CM6 checks the capability of a memory stack to switch drive lines between
two addresses in the same memory bank. The first address is read many
times in an in-stack instruction loop; then the read is executed immediately
on the second address which contains all ones.

The test is more effective on the 6600 computer, as the 6400 computer cannot
drive memory as fast because it cannot execute an in-stack loop.

Test results are not as meaningful if a storage move occurs while the test is
executing.

MY1 - 6X00 Central Memory Test

MY1 checks central memory by setting each location in the field length to its
relative address; it then executes five reads for each location. The data read
back is held in X1 through X5 and is matched against X0, the current test
address. The test accumulates and holds all error bits in X7, stores the
error accumulations into memory, and rereads to check for zero. It also
checks X7 for zero prior to storing.

At the end of one sweep of memory, the test will use the complement of the
relative address and then repeat the check.

The test results are not as meaningful if a storage move occurs while the
test is executing.

EC2 - 663X Extended Core Storage Test

EC2 tests ECS by writing data patterns to the assigned field length of ECS
and then reading them back. A check is made for data differences. ECS
field length can be set to any value; the program tests only that portion of
ECS assigned to the control point. ECS is accessed in blocks of 10,0004

words.

60189400 Rev. K

EC2 is written in FORTRAN Extended with a COMPASS subroutine, The test
makes calls to the Automatic Program Sequencer (APR). The following
sense switches are used to indicate the number of ECS banks present in the

' system:

Banks of ECS Sense Switches On

1 None

2 1

4 2

8 3

16 1, 2, and 3

12.3

PERIPHERAL

EQUIPMENT TESTS The following descriptions are for tests that run in the PPU. They have
only one mode of operation and are not intended to be run with the
Automatic Program Sequencer (APR) for automatic job execution. These
tests, however, can be used with APR with an execution frequency of 000.
(See sample job 10.)

These tests have the following optional sense switch settings:

Sense Switches On
MTT DT2 LPT LP1 CPl1 CR1

Stop on Errors 1 1 1 1 1 1
Stop at End of Section 2 2 2 2 2
Repeat Subcondition 3 3 3 5&6
Repeat Test 4 4 4 4 4
Repeat Section 5 5 5 5 5
Repeat Condition 6 6 6 6 6

Stop at End of Test 3 3

Stop After Next Title Card 2
Stop After Input Tray Empty 3
Restart Test After Input Tray Empty 4
Repeat Last I/O Operation 6

60189400 Rev. K 12-7

MTT - 60X Magnetic Tape Test

MTT checks the 60X tape unit, a 3000 series tape controller, 6681 channel
converter, and 6000 series data channel. Two calls may be used.

MTT.

All sections of the test are run on the first channel found in the equipment
status table entry for the assigned tape unit.

MTT(cc , XXXXXX)

cc designates channel and xxxxxx are octal numbers; each bit represents
a section of the test. . If channel is entered, xxxxxx must be specified.

Examples:

MTT(13,000001) Run section 1 only; tape is on channel 13
MTT(000001) Run section 1 only; use first channel in EST
MTT(000277) Run sections 1 through 6 and 8

After test execution begins, the following messages appear at the control

point:
Message Operator Action
REQUEST MT. Assign device type MT to the control point.
SET PARAMS., Set sense switches for desired conditions.
ASSIGN EXTRA If desired, assign additional units to be tested.

UNITS To begin testing, enter n.GO on the keyboard.
Subsequent error messages at the control point are described in the Systems

Maintenance Monitor Reference Manual. The operator enters n.GO to con-
tinue the test after an error stop.

DT2 - 6638 Disk File Test

This test can be run cnly on a non-system disk; no other device on the same
channel as the disk can be accessed while DT2 is executing. DT2 can be
called by control cards or manually under DIS by its mnemonic DT2:

12-8 60189400 Rev. K

DT2(n) where n may have one of the following values:

1 = Run section 1
2 = Run section 2
4 = Run section 3

10 = Programmable read/write section

After test execution begins, the following messages appear at the control

point:
Message Operator Action
REQUEST xx. Assign device type xx to the control point.
A 3000 entry for hardware type xx must have
been entered already in the Equipment Status
Table.
SET PARAMS. Set sense switches for desired conditions.

To begin testing, enter n.GO on keyboard.
Subsequent error messages at the control point are described in the Systems

Maintenance Monitor Reference Manual. The operator enters n.GOQ to con-
tinue the test after an error stop.

LPT - 501 Line Printer Test

LPT checks the 501 line printer, 3659 or 3256 controller, 6681 channel
converter, and 6000 series data channel. LPT has two alternate calls:

LPT.

Run all sections of the test.

LPT (xxxxxx)

XXxXXXX are octal numbers; each bit represents a section of the test.

Examples:
LPT(000001) Run section 1 only.
LPT(000277) Run sections 1 thru 6 and 8

60189400 Rev. K 12-9

After test execution begins, the following messages appear at the control

point:
Message Operator Action
REQUEST LDP. Assign device type LP to the control point.
SET PARAMS. Set sense switches for desired conditions. To

begin testing, enter n.GO on the keyboard.
Subsequent error messages at the control point are described in the Systems

Maintenance Monitor Reference Manual. The operator enters n.GO to
continue the test after an error stop.

LPl - 512 Line Printer Test

LP1 tests the 512 line printer, 3555 controller, 6681 channel converter, and
6000 series data channel. The test is called by its mnemonic LP1. If
parameters are to be changed, enter:

LP1 (xxxx, yyyy)

xxxx are octal numbers with the following bit values:

1 10 9 8 7 6 5 4 3 2 10
[

o)
Train type: Select
0 or 1 = 63 character Sec. 14
2 = 48 AN char.
Select
3 = HN .
3 =48 char Sec. 15
No. lines per inch of Select
format tape: Sec. 16
1=6lines 0=¢ lines Select -
Sec. 17
Select
Sec. 20
yyyy are octal numbers with the following bit values:
y bits: 11 10 9 87 6 5 43 210

select sections: 13 12 11 10 7 6 5 4 3 2 1

12-10 60189400 Rev. K

Examples:

LP1(4001,0002) Selects 6 lines and sections 14 and 1.
LP1(0004,0030) = Selects sections 3, 4, and 16.
LP1(2000,7776) Selects 48 AN character and sections 1-13.

LP1. Selects all sections.

After test execution begins, the following messages appear at the control

point:
Message . Operator Action
REQUEST LQ. Assign device type LQ to the control point.
SET PARAMS. Set sense switches for desired conditions. To

begin testing, enter n.GO on the keyboard.

Subsequent error mesllgages at the control point are described in the Systems
Maintenance Monitor Reference Manual. The operator enters n.GO to
continue the test after|an error stop.

CP1 - 415 Card Punch Test

CP1 tests the 415 carq:i punch, 3446 or 3644 controller, 6681 channel con-
verter, and 6000 seri¢s data channel. The test is called by its mnemonic
CPl. If parameters a{re to be changed, enter:

CP1 (xxxx)

xxxx are octal numbers with the following bit values:

X bits: 11 10 9 8 7 6 54 3 210
select sections: 10 9 876 54321
Examples:

CP1(0002) Selects section 1,

CP1(0306) Selects se:ctions 1, 2, 6, and 7.

CcP1. Selects all sections.

60189400 Rev. K 12-11

12.4
SAMPLE JOBS

12-12

After test execution begins, the following messages appear at the control
point:

Message Operator Action
REQUEST CP. Assign device type CP to the control point.
SET PARAMS. Set sense switches for desired conditions. To

begin testing, enter n.GO on the keyboard.
Subsequent error messages at the control point are described in the Systems

Maintenance Monitor Reference Manual. The operator enters n.GO to con-
tinue the test after an error stop.

CR1 - 405 Card Reader Test

CR1 tests the 405 card reader, 3649 or 3447 controller, 6681 channel con-
verter, and 6000 serics data channel. The test is called by its mnemonic
CR1. No section select parameters are used because all cards in the card
reader are checked regardless of order. The card deck punched by CP1
should be put into the card reader assigned to the test.

After test execution begins, the following messages appear at the control
point:

Message Operator Action
REQUEST CR. Assign device type CR to the control point.
SET PARAMS. Set sense switches for desired conditions. To

begin testing, enter n.GO on the keyboard.

Subsequent error messages at the control point are described in the Systems
Maintenance Monitor Reference Manual. The operator enters n.GO to
continue the test after an error stop.

The call APR(7,xxxxnn) shown in the sample jobs is not described in
section 10.8 (APR) because it refers only to diagnostic programs.

7 is a directive to APR to set the diagnostic flag bits.

nn is the job number.

xxxx is a set of flag bits, one bit for each CPU diagnostic program in
the CE test. Bit values for xxxx are:

60189400 Rev. K

12.4.1
SAMPLE JOB 1

12.4.2
SAMPLE JOB 2

60189400 Rev. K

Value of xxxx Diagnostic

0001 CT3
0002 MY1
0004 CMs6
0010 CU1
0020 ALS
0040 FST
0100 EC2

For example, to set CT3, MY1, and CM6: xxxx = 0007.
To set CT3 and FST: xxxx = 0041,

These bits are set in the sequencer table in CMR but do not affect the
operation of the sequencer. The bits are used when the keyboard entry
SEQ, LIST,nn. is made. This entry causes the names of the diagnostics
assigned to job nn to be listed in the dayfile for reference.

Execute the diagnostic ALS every 10_ minutes.

8
MAINT, P17, T20, CM1500. ALS field length = 1500.
Time = 20 seconds.
APR(1,001001) Saves job as sequencer job 1 to be
executed every 10 minutes,
MODE, 0. ALS uses the illegal operands.
ALS(SEQ) Calls sequencer version of ALS.,

6/7/8/9

Save and execute ALS every 10 minutes; set up the diagnostic flag bit for ALS.

MAINT, P17, T20, CM1500.
APR(1,001001) See sample job 1.
MODE, 0,

12-13

APR(7,002001) Diagnostic in sequencer job 1 is ALS.

AT1S(SEQ) See sample job 1.

6/7/8/9 After job is completed, console entry:
SEQ, LIST,01. will produce dayfile
message:

DIAG.SEQ.JOB 01 CONTAINS ALS

12.4.3
SAMPLE JOB 3 Save and execute ALS every 10 minutes. If ALS fails, dump the field length.

MAINT,P17,T20,CM1500. See sample job 1.

APR(1,001001) Save job, same as sample 1; executed
if ALS does not fail.

MODE,O. See sample job 1.

ALS(SEQ) See sample job 1.

EXIT. If ALS did not fail, EXIT ends job.
Otherwise, cards after EXIT will be
executed,

DMP,1500. Gets failure data by dumping actual field
length of ALS. Since ALS failed, it
aborts to EXIT and system provided
exchange jump package.

6/7/8/9

12.4.4
SAMPLE JOB 4 Save and execute ALS every 10 minutes. Set the flag bit for ALS. I ALS

fails, dump the field length.

MAINT,P17,T20,CM1500.
APR(1,001001)
MODE, 0. See sample job 3.

APR(7,002001) Sets flag bit for ALS. After job comple-
tion, console entry SEQ, LIST, 01, will
produce dayfile message:

DIAG.SEQ.JOB 01 CONTAINS ALS

12-14 60189400 Rev. K

ALS(SEQ)

EXIT. See sample job 3.
DMP, 1500,
6/17/8/9
12.4.5
SAMPLE JOB 5 Same as sample job 4, except suppress the output if ALS executes successfully.
MAINT, P17, T20,CM1500.
APR(1,001001)
MODE, 0. See sample job 4.
APR(7,002001)
ALS(SEQ)
APR(11,01) Suppresses output, separators, and
dayfile of job MAINT.
EXIT.
DMP, 1500. See sample job 4.
6/7/8/9
12.4.6
SAMPLE JOB 6 Run ALS and CT3 every 10 minutes as sequencer job 3. Set flag bits for ALS

and CT3. Suppress output file and dump field length of failing diagnostic.

CHEK, P17, T40, CM5000. Time limit = 40 (20 seconds for each
diagnostic) ; field length = 5000 (for
largest diagnostic, CT3).

APR(1,001003) Saves CHEK as sequencer job 3; runs
every 10 minutes.

MODE, 0. See sample job 1,

APR(7,002103) Sets flag bits: ALS(0020) + CT3(0001) =
0021,

ALS(SEQ)

CT3 (SEQ) Calls sequencer version of ALS and CTS3.

60189400 Rev. K 12-15

12.4.7
SAMPLE JOB 7

12-16

APR(11,03)
EXIT.
DMP, 4000.

6/7/8/9

EC2 Jobs

Suppresses output.
See sample job 3.

Dumps field length (CT3 =5000), If
ALS fails, CT3 will not be executed.

Because EC2 is unique, three sample EC2 jobs are shown, EC2 should

be run alone. The tirme limit is 30 seconds, and 55, 000 words are needed
for central memory field length. ECS field length is specified on the JOB
card in 10008-word blocks; EC50 = 50,000 words of ECS. The SWITCH cards
specify the total number of ECS banks, as follows:

No SWITCH card = 1 bank
SWITCHI1 card = 2 banks
SWITCH2 card = 4 banks
SWITCHS3 card = 8 banks

SWITCH1
SWITCH2 ; cards = 16 banks
SWITCH3

SWITCH cards do not specify which banks of ECS to test; they merely indicate

the number of banks in the ECS unit,

The SWITCHn card turns on pseudo sense switch n at the control point.

Use EC2 to test a 1-bank ECS system.

Check an ECS field length of 50,000.

Run EC2 as sequencer job 7 every 30 minutes.

CHEKECS, P17, T30, CM55000, EC50,
APR(1,003007)

APR(7,010007)
EC2.
APR(11,07)

6/7/8/9

EC50 requests 50,000 words of ECS,

Saves CHEKECS as sequencer job 7 to
be run every 30 minutes,

Sets EC2 flag bit.

Suppresses output file on successful
execution,

EXIT and DMP cards not needed because
EC2 has an error printout routine. The
absence of a SWITCH card indicates only
one bank of ECS is present.

60189400 Rev. K

12.4.8
SAMPLE JOB 8

12.4.9
SAMPLE JOB 9

12.4.10
SAMPLE JOB 10

60189400 Rev., K

Use EC2 to test a 2-bank ECS system. Check an ECS field length of 100,000,
Run EC2 as sequencer job 7 every 30 minutes.
CHECECS,P17,T30,CM55000, EC100. Requests 100,000 words of ECS,
SWITCHL. Two banks of ECS present.
APR(1,003007)
APR(7,010007)
EC2.
APR(11,07)
6/7/8/9

See sample job 7

Use EC2 to test a 16-bank ECS system., Check an ECS field length of 250, 000,
Run EC2 as sequencer job 7 every 30 minutes.

CHECECS, P17,T30,CM55000, EC250. EC250 requests 250,000 words of ECS.
SWITCHL.

SWITCH2. 16 banks of ECS present.

SWITCHS.
APR(1,003007)
APR(7,010007)
EC2.
APR(11,07)
6/7/8/9

See sample job 7

A peripheral test is placed under the sequencer with an interval of 0000.
The test will not run unless a SEQ, RUN, nn. entry is made.

MAINT, P17, T1000, CM1000. When MAINT is loaded, MTT will
request a tape, Enter n, DROP on
keyboard. MAINT will be saved as
sequencer job 1, interval 0000,

APR(1,000001)

12-17

12.5

SYSTEM
ENGINEERING
FILE DESCRIPTION

12.5.1
ERROR| LOGGING
PROCEDURE

@12-18

MTT. Zero interval jobs are not run
unless called. To run MTT, enter

6/1/8/9 SEQ,RUN,01. MTT will be loaded.
Proceed as under SMM. When
completed, DROP control point.
MAINT will be saved again under
the sequencer,

Placing peripheral tests under the
sequencer in this manner eliminates
the need to use DIS. to call a
peripheral test.

The System Engineering File records system hardware malfunctions detected
by the SCOPE Operating System. Errors are recorded through entries from
I/0 drivers, and PP/CP program. The entry format, file construction and
file maintenance are designed to facilitate utilization in current programs as
well as future design efforts.

The file is dynamic from deadstart time; its FNT and FET entries are
assembled in CMR. If a program detects a hardware malfunction, it makes
an entry in the file by using one of the formats described in 12.5.1.

When calls are made to log an entry, the entry is placed in the engineering
file buffer in CMR. The dayfile processing routine supplements the entry
with time of day and jobname. The dayfile processing routines perform
buffer maintenance and dump the contents to disk as necessary. An entry
count is maintained (byte C.HEC of P.HEC in CMR).

An Analyzer (CEFAF) program examines the engineering file, collects the

statistical data, and outputs the results in usable form for examination by
Customer Engineering.

Programs log anomalies in the System Engineering File similarly to logging
messages in the DAYFILE.

Entries by PP Programs

Entries made by PP programs are placed in the PP message buffer.

60189400 Rev. L

A call is piaced through R.MTR in the PP output i’egister as follows:

\\‘

0001 0020
0001 Process dayfile message
0020 Flag bit for DSD
lwa LWA of entry

Entries by CP Programs

Entries made by CP programs are constructed within their field length. A
call to MSG is placed in RA+1 with the address of the message and a flag
(bits 18-23 = 02) to MSG which indicates the message is to be entered in the
engineering file. MSG assumes a six bit CM word message.

59 53 47

29 23 11

Type 1 SCOPE System Tape 1/O Driver

a Error type 000001 base 2
b Error description See error descriptions
c Program name PPU program making entry
d PPU number PPU number of logging program
e Connect code Connect code of failing device
f Channel number 1/0 channel in use
g Channel status Last 6681 status returned
h Equip status Last Equip status returned
i Channel function code Last 6681 code issued
j Equip function code Last Equipment function code issued
59 53 47 29 23 11 0
a b d e
f g h i j k
% n

60189400 Rev. L

12-19@

®12-20

59

Type 1 SCOPE System Mass Storage I/O Driver

— e gy TP O 0T

m
n

Error type 000001 base 2

Error description See error descriptions

Program name PPU program making entry

PPU number PPU number of logging program

Address of error Not supplied

Logical unit number EST number of failing device

Channel number I/0O channel in use

Channel status Not supplied

Equip status Not supplied

Channel function code Not supplied

Equip function code Not supplied

Retry count Number of attempts to perform an
operation

Last position Actual position of disk upon failure

Current position Not supplied

Type 2 SCOPE System PPU Programs (non-1/0)

47 29 23 11

LB I = P e B o A

Error code (0200 base 8)
Program name

PPU number

Address of error

Not used

Display coded message

60189400 Rev. L

60189400 Rev. L

Type 3 SCOPE System CPU Program

59 47 35 23 17 11 5 0
2 % - '
=

d d d d d

d d d d d

d d d d d

d d d d d

a Error code

b Program name, 7-characters

¢ Address of error

d Display coded message

Type 4 C E Diagnostic PPU I/O Test (Not currently used)
59 47 29 23 11 0

a b c d e

g h i j k
m m n n

o p p p p

a Error code j Channel function code

b Program name k Equipment function code

c PPU number 1 Retry count

d Address of error m Last position

e Not used n Current position

f Logical unit number o Operation code, last logical

g Channel number operation

h Channel status p Data, error data

i Equipment status

12-21@

Type 5 C E Diagnostic Non-1/O PPU Test (Not currently used)

59 47 29 23 11 0
a b c d e
f f f f f
f f f f f
a Error code
b Program name
c PPU number
d Address of error
e Not used
f Display coded message
Type 6 C E Diagnostic CPU Program
59 47 29 11
a b c d
e e e e e
f f f f f
f f f f f
f f f f f
f f f f f

Error code

Program name
Address of error

Pass count

Base random number
Display coded message

LN I o PR o BN @ i

@®12-22 60189400 Rev. L

12.5.2
ERROR CODES

60189400 Rev. L

Type 7 Remote Terminal (RESPOND, SENTRY, EXPORT/IMPORT, IOD)

Programs
59 47 35 23 11 0
a b c d e
f g h i
a Error code 0700 base 8
b Line number TTY line number
¢ LRB Line request byte
d RBB Read buffer byte
e WBB Write buffer byte
f LSB Line status byte
g TSB Terminal status byte
h RSB Reply status byte
i PNB Port Number byte
j PLB Party line byte
Type 8-11 not defined
The following 12-bit ‘error code is the first byte of every entry:
211 20
I XxXC I cce l ddd I ddd]
SR N . ‘\,\C
f/\ _ Error Description
Format Type
Not used
xx Not used
¢ Format type used in entry
d Error description of type error
Error Code Definitions
210, 211 Not used
6 9
2" -2 Format types as follows:
00 not used
01 Type 1 System 1I/0 driver
02 Type 2 System PPU program non-I/O
03 Type 3 System CPU program
04 Type 4 C E Diagnostic PPU I/0 test
05 Type 5 C E Diagnostic Non-1/O PPU test
12-23 @

12.6
SYSTEM

ENGINEERING
FILE ANALYZER
(CEFAP)

@®12-24

06 Type 6 C E Diagnostic CPU Program
07 Type 7 Control Message (RESPOND or EXPORT/
IMPORT)

10 not used

11 not used

12 not used

13 not used

14 not used

15 not used

16 not used

17 not used

2" -2 Error Descriptions for Format Type 1

00 not used
01 Channel active, should be inactive
02 Channel inactive, should be active
03 Channel full, should not be
04 Channel empty, should not be
05 Non-zero accumulator upon exit from an OAM
instruction (lost data suspected)
06 Memory parity error during loading MMTC
07 Memory parity error during data flow in MMTC
10 Read parity error
11 Write parity error
12 Function reject
13 XMSN parity error
14 Compare error
15 Fail to feed
16 Lost data
17 RMS address error
20 RMS checkword error
21 Print error
22—27 not used

Error descriptions for Format types 2 - 11 are not defined.

CEFAP formats and prints raw data in the System Engineering File. The
main program CEFAP is written in FORTRAN. A COMPASS PPU routine
IEF performs utility functions for CEFAP. CEFAP is edited into the system
library. CEFAP may then be called by job deck or console command under
DIS. Once activated, CEFAP attaches the System Engineering File to its con-
trol point and reads the file and generates output. Output consists, basically,
of a list of everything in the engineering file plus statistical tables plotting
common error data against time. Also, a parameter may be entered on the
CEFAP call to specify output sorting.

60189400 Rev. L

12.6.1
PARAMETERS

12.6.2
INSTALLATION

60189400 Rev, L

Three parameters may be entered on the CEFAP call in the order shown

below:

CEFAP (pl, p2, p3)

S or SORT

P or PURGE

CEFAP sorts data in the output list according to

error type, PPU number, channel number,
equipment EST ordinal.

and

CEFAP clears the error count in central memory
and purges the engineering file after analysis. A
new engineering file will be created by the system.

E or EXPAND CEFAP prints every error entry in chronological
order. Normally, repeated errors will be printed
once with an indication as to how many times it

occurred.

If CEFAP is dropped from a control point before normal comple-
tion after assigning the L display, a subsequent CEFAP run may
give false or erroneous output.

The CEFAP FORTRAN deck and COMPASS PPU deck both reside on the
PL7 tape. CEFAP may be added to SCOPE with the following job deck:

Card No.

00 =1 O U WD

DO b= E2 b b e e
S W~ U R WN RO

Content

Job Card (CM50000)

REQUEST OLDPL. ASSIGN PL7
UPDATE(Q)

COMPASS(I=COMPILE, S=SCPTEXT, B=IEF)
RUN(S,,,COMPILE,,,100000)
LOAD(LGO)

NOGO

REWIND(CEFADP)

REWIND(IEF)

EDITLIB.

EOR

*COMPILE, CEFAP, IEF.

EOR

READY (SYSTEM)

DELETE(CEFAP)

DELETE (IEF)

ADD(CEFAP, CEFAP)

ADD(IEF, IEF)

COMPLETE.

EOF

12-25@

12.7

1IEF DESCRIPTION IEF is called by the System Engineering File Analyzer Program (CEFAP).
Upon entrance to the program, the PPU input register has the following
format:

1105 06cc xxxx ffpp pppp
cc Control point number
f Function code
xxxx Function parameter (used only by function code 02)
pppppp Relative address of replay register in CM

IEF performs the following functions:

Function Code 00

1. Copies date from CMR to PPPPPP+1

Copies EST from CMR to PPPPPP+2

3. Dumps engineering file buffer (CERFILE) and creates a duplicate
engineering file (FNT/FST local to control point

4. Sets reply register (pppppp) to:

Do

0077 0000 aaaa 0000 1111
0077 Function complete status
aaaa Duplicate error file FNT address

1111 Length of CERFILE buffer

Function Code 01 Purge CERFILE

Same as function code 00 except the FST for CERFILE is zeroed so that a
new engineering file will be created by system.

Function Code 02

1. Removes the duplicate engineering file FNT/FST entry created by a
function code 00 call. The FNT/FST address is given by xxxx in
input register.

2. Sets reply register (pppppp) to:

0077 0000 0000 0000 0000

0077 Tunction complete status

@12-26 60189400 Rev. L

12.8

OPERATION If purge is not specified in the CEFAP call, IEF is called initially with func-
tion 00; and after the run it is called again with a function 02. This procedure
allows CEFAP to read the engineering file with the duplicate FST, while the
system continues to log anomalies. The function 02 call is necessary to pre-
vent disk storage from being released at end of job; the System Engineering
File remains intact. If purge is specified, IEF is called initially with function
01. The system then terminates error logging on the original engineering
file (blanked FST) and creates a new one. On end of run, CEFAP does not
recall IEF; thus disk storage associated with the original engineering file is
released by IEJ at end of job; the error file is purged.

IEF DAYFILE MESSAGES

The starred me ssages denote conditions which cause IEF to abort at control
point.
*IEF -- REPLAY REG ADDRESS OUT OF RANGE
The pointer in the IEF call was beyond the control point FL. Call
register bits 20 -2
*IEF -- CERFILE NOT IN SYSTEM
CERFILE FNT/FST not present in file name table.

IEF -- WAITING FOR FNT SPACE

IEF is waiting for space in the file name table to place a duplicate
CERFILE FNT.

IEF -- CERFILE PURGED
Placed in DAYFILE when function 01 is in process.
The CERFILE FST is cleared.
*IEF -- ILLEGAL FUNCTION CODE
Function code field in call was not recognized by IEF. Call
register bits 218 - 223,

*IEF -- DUPLICATE CERFILE NOT PRESENT
On function 02 call, a duplicate CERFILE FNT/FST was not found
in file name table.

*IEF -- NOT CALLED BY AN ABSOLUTE LIBRARY PROGRAM

On entry, IEF checks the control point area for a flag indicating
the last program loaded was a system library program.

60189400 Rev, L 12-27@

12.8.1

EXECUTING CEFAP After running the job in section 12.6.2, CEFAP is ready for execution.
CEFAP may be executed (called) in two ways:

x.DROP.cr x=Control point number
x.XCEFAP.cr x=Control point number
L=x.cr x=Control point number
XXXXX. XCT XXXxX.x=gite location number
GOcr

Parameters pl, p2, or p3 may not be entered directly under a control
point entry. 7.XCEFAP(S) will not work as SCOPE does not recognize
the parentheses.

x.DIS.cr x=Control point number

x. CEFAP(pl, p2. p3)cr

* Depress asterisk KEY
L=x.cr x=Control point number
XXXXX.XCY xxxxx.x=site location number

In addition to the on-line diagnostics, SCOPE 3.2 PL7 tape has CEFAP
with correction identifiers CFAP001 and CFAP002. The EXPAND para-
meter and the site location number features have been added via correction
identifiers CFAP003 and CFAP004.

EXAMPLE OUTPUT DEFINITIONS

Line 1

TIME=xX. XX. XX. Error entry time.

JOB NAME=xXXXXXX Name of job which had error.

PROG NAME=XXXXXXX Name of program that issued error
entry.

C C=xxxx Connect code of offending device.

P=XXXXXX Program address on error (issuing
program).

ER CODE=xxxx 12-bit error code.

Message Error message furnished in entry

or determined by error code.

@12-28 60189400 Rev. L

Line 2

XXXX Equipment mnemonic and EST ordinal
of offending equipment.

PPxx PPU number driver is running in.

CHxx Channel number.

STAT C/E=xxxx/XXxX Last channel (6681) and equipment
status.

FUNC C/E=xxxx/Xxxx Last function issued to channel (6681)
and equipment.

RETRYS=xx Number of retrys before reporting
error.

RMS LP/CP=xxxXxXXX/XXXXXXX Last position and current position of
RMS device.

60189400 Rev. L 12-29@

@12-30

Flow Diagram of Error Logging

CP Program PPU Program

Anomaly
Detected

Anomaly
Detected

Format
Form at. Entry in
Message in PPU Message
Field Length buffer
Call PP Place call
Routine in PPU
MSG output reg
MTR
Add time,
job name
Transmit
Entry to
CM buffer
Is v Dump
puffer ——t buffer to
full disk

N
1 EXIT)

60189400 Rev. L

PERMANENT FILES 13

13.1
TERMS AND
CONCEPTS DEFINED

60189400 Rev. K

A permanent file is a mass storage file cataloged by the system so that its
location and identification are always known to the system. Permanent files
cannot be destroyed accidentally during normal system operation (including
deadstart) and they are protected by the system from unauthorized access
according to privacy controls specified when they are created (section 13.2).

Any random or sequential file on a valid rotating mass storage device, which
is not already permanent or common, can be made permanent at the option of
the user regardless of mode or content. Unless the system is explicitly re-

quested to catalog a file, it will not be made permanent.

The following functions are available under the permanent file system:
CATALOG an existing local mass-storage file, thereby making it a
permanent file,

ATTACH a previously cataloged file to a control point.

EXTEND a currently attached file by making permanent an extension
to it.

PURGE a currently attached file from the directory of permanent
files.

These functions are available as control card commands and as run-time
program calls (system macros). The CLOSE, UNLOAD macro or the
RETURN control card allows a permanent file to be logically detached
prior to end of job.

Terms and concepts used throughout this chapter are defined as follows:

PERMANENT FILE

A mass storage file (of any standard mode, content, length) locatable by the
systemvia a searchof the system-maintained Permanent File Directory, and
protected from unauthorized access and from accidental destruction in any
normal running environment of any version of SCOPE that supports perma-
nent files.

13-1

13-2

CATALOG

The function that enters a file's identification and location in the system-
maintained Permanent File Directory. The CATALOG control card or
system macro requests the system to catalog a file, thereby making it
permanent.

SUBDIRECTORY

The directory of permanent files is divided into a number of subdirectories
to expedite searching for files. Each permanent file has a subdirectory
reference which the user may specify when requesting system action on
that file.

REWRITE

Any action which modifies the content of an existing file including REWRITE,
REWRITER, REWRITET, or WRITIN macros.

WRITE

Enables normal writing at end-of -information of a file. When a permanent
file is attached to a control point, any write function, except a rewrite, will
cause data to be added at its end-of-information., Information added with
write functions to an attached permanent file is considered temporary; it is
released when the job is terminated unless EXTEND is used to make it a
permanent extension.

CYCLE

Up to five files may be cataloged under one permanent file name and set of
passwords; each is called a cycle. No restrictions are imposed on the con-
tent or size of any of these cycles; each is a unique file. Each cycle is
identified by the combination of permanent file name and cycle number.
Cycle numbers from 1 to 63; are assigned by the creator of the file.
Default value is 1 when cataloging. If cycle is not specified on the ATTACH
card, it is assumed to be the largest cycle.

ATTACH .
Causes a permanent file to be assigned to a control point. No user may

access a permanent file until he attaches it to a control point, thereby
establishing his right to read and/or write the file.

60189400 Rev. K

13.2
PRIVACY

13.2.1
STANDARD PRIVACY
PROCEDURE

60189400 Rev. K

EXTEN

Makes permanent an appendage to a file. Any write results in an extension
to a file; however, an extension will not be reflected in the permanent file
directory unless the user specifies that it be made permanent. EXTEND
permission must have been granted by ATTACH before the user can write
on the file.

PURGING/RETENTION

Purging causes a permanent file to be removed from the directory and its
mass storage space to be released. Purging is done only when the file owner
directs it, with the PURGE function. A retention period may be specified
when a permanent file is cataloged, but the file will not be purged automati-
cally when its expiration date is reached. An installation can obtain a listing
of all expired files. Only one cycle at a time may be purged.

MULTIPLE-READ ACCESS

Any number of users may attach simultaneously a permanent file for read-
only access. This is possible only if all passwords are defined at CATALOG
time and only the read password is specified at ATTACH time. ATTACH
requests are honored in the order submitted.

The permanent file privacy feature is designed to prevent access to and
alteration of permanent files by non-authorized central processor programs.
However, it offers no protection against threats by operational personnel or
hardware interference. This kind of threat is dependent on the installation
environment.

It is responsibility of the installation to ensure the integrity of the operating
system at deadstart time and prevent any subsequent alteration.

The permanent file system offers a standard set of privacy controls. If an
installation requires a different kind of protection for one or more files,
it can define a privacy procedure to replace the standard.

The system automatically ensures that no normal operation will cause perma-
nent mass storage files to be overwritten or otherwise destroyed, and that the
directory of permanent files will not be destroyed.

13.2.2
USER PRIVACY
PROCEDURE

13.2.3
PASSWORDS AND
PERMISSIONS

In addition to normal system protection of permanent files, the individual
file owner is given the means to prevent unauthorized access to his perma-
nentfile. He can stipulate, when he catalogs a file, the degree to which the
file is to be protected from read, write, rewrite access. Once a file is
cataloged, it cannot be used by any job unless the necessary passwords are
given when a request is made to attach the file.

Provision has been made for an installation privacy procedure to be substi-
tuted for the system-provided privacy checking. This procedure must be a
PP routine in the running system. An installation has ultimate control over
the use of privacy procedures, since it may determine the content of its
system, and controls the installation parameter, which when non-zero,
allows use of privacy procedures.

Privacy procedures are called at CATALOG time and at ATTACH time.

When a file is cataloged, the file owner may specify up to five passwords to
be associated with that file. Subsequent cycles assume the same passwords
as the first cycle. Each password implies one type of access or permission
allowed for use on subsequent ATTACH or new cycle CATALOG attempts.
The passwords can by any string of 1-9 alphanumeric characters.

When a permanent file is attached, READ (RD) permission is required to
read the file. EXTEND (EX) permission is required to write at end-of-
information. MODITY (MD) permission allows the user to change the text
on an existing permanent file with REWRITE. CONTROL (CN) permission
is required to PURGE a cycle, or to catalog an additional cycle. The turn-
key password provides an extra measure of control over file usage. When
the turnkey password is specified on the CATALOG card, no permission is
granted unless the user includes the turnkey on the ATTACH card.

The password for the permission type defined by CATALOG must be given on
the ATTACH card to access that particular function.

Example: If the CATALOG card contains RD=ALPHA and EX=BETA, the

password ALPHA must be included on the ATTACH card to gain
permission to read the file, and BETA is necessary to write it.

60189400 Rev. K

When a permission type is not defined on the CATALOG card, it is granted
automatically,

Example: If the CATALOG card contains only read (RD) and modify (MD)
passwords and the ATTACH card contains the modify password,
control permission and extend permission are granted automati-
cally.

1. On the CATALOG card of a file:

TK=JIM, EX=JOHN, MD=MINE, RD=YES

On subsequent ATTACH cards:

Passwords Permissions granted
PW=JIM, JOHN Extend, control
PW=JIM, MINE Control, modify
PW=YES, JOHN None

no password None

PW=JIM,YES Read, control

2. On the CATALOG card of a file:
EX=JACK, CN=CONT

On subsequent ATTACH cards:

Passwords Permissions granted

PW=CONT Control, modify, read
PW=JACK Extend, read, modify
no password Read, modify

3. On the CATALOG card of a file:
TK=MYFILE, EX=PASS

On subsequent ATTACH cards:

Passwords Permisgsions granted

PW=MYFILE Read, control, modify
PW=MYFILE, PASS Read, extend, modify, control
no password None

PW=PASS None

60189400 Rev. K 13-5

13.2.4
UNIVERSAL
PERMISSION

13-6

4. On the CATALOG card of a file:
CN=A, MD=B, EX=C, RD=D

On subsequent ATTACH card:

Passwords Permissions granted
PW=D Multi-read access
PW=C,D Read, extend

On the CATALOG card of a file:
CN=A,MD=B,EX=C

S}

On subsequent ATTACH card:

Passwords Permissions granted
no password Multi-read access
PW=C Read, extend

6. On the CATALOG card of a file:
CN=A, MD=A, EX=A

On subsequent ATTACH card:

Passwords Permissions granted
no password Multi-read access
PW=A Read, extend, modify, control

Any attempted breach of privacy causes immediate job termination with a
dayfile message. If permission is not granted when ATTACH is requested,
the job is terminated. After a permanent file is attached, any attempt to
perform an operation not permitted will cause job termination.

The universal permission feature is an installation option. If this option
has been activated, the installation must define a nine-character password
as the universal permission password. SCOPE will grant CONTROL per-
mission if the universal permission password is given by a user.

60189400 Rev. L

To use this option, the file must first be attached as follows:

JOB
ATTACH(LFN, FILES, CY=10, PW=UNIVE PERM)
PURGE(LFN)

6-7-8-9

UNIVEPERM is the universal permission password and IP, UP is set to one.

13.3

PERMANENT FILE

CALLS Permanent file functions described in this section are available as control
cards or running program calls (macros). The same parameters are used
for both; the difference is in the format of the call, and in the ability to test
status in the running program.

13.3.1

PARAMETERS The parameters described below are common to both control card and macro

functions. Parameters (except Ifn and pfn) may appear in any order on con-
trol cards or macros. Each is written cc (value or password) where cc is
the two-letter code; only 1fn and pfn are order dependent and if left blank,
commas must be inserted.

lfn Logical file name, 1-7 alphanumeric name (first character
alphabetic) by which file is known and referenced at a control
point. Once a permanent file is attached to a control point, it
is referenced by this name.

pfn Permanent file name, 1-40 alphanumeric characters assigned
by file creator under which a file is catalogued.

RP Retention period (days), 0-999, specified by creator; indefinite
retention indicated by 999. The installation defines default value.

PP Privacy procedure parameter; 1-9 characters, used by installa-
tions to pass information to installation-defined procedure.

CY Cycle number (1-63) assigned by creator. The default value on

initial CATALOG is 1, and on ATTACH, the highest number
cataloged.

60189400 Rev. K 13-7

PW The list of passwords indicated on ATTACH card to establish
user's access permission; written as:

PW=psw1,psw2,psw3, P ,pswn
PW is also used on CATALOG card when a new cycle is added.
TK Turnkey password
CN Control password
MD Modify password
1-9 alphanumeric
EX Extend password characters
RD Read password

1D Identifies file creator at catalog time

SD Subdirectory number, 1-999

If a user assigns parameter values other than those specified above, the
results will vary depending upon the parameter and value selected.

13.3.2

MACRO EXPANSION

AND FDB Each permanent file macro expansion contains a call to CPC (central pro-
gram control). CPC, in turn, calls for execution of the function by the
system routine PFx. Parameters necessary for execution of a function
are contained in a central memory table called the file definition block
(FDB).
The macro for generating an FDB has the format:

I fdbaddr FDB ifn,pfn,parameter list.

fdbaddr is the symbol to be associated with word 5 of the FDB and must be
present in the location field. Parameters are separated by commas, and
the list is terminated by a blank. Parameters may include any of the
2-letter codes in section 13.3.1. Parameters will be entered into the FDB
in the order listed.

The FDB will be generated in-line during assembly whenever the macro is
called.

if the RC parameter is specified in the function call referencing an FDB, a

return code will be available to the user in word 5 of the FDB which is equal
to fdbaddr. These codes are listed in section 13.3.4.

13-8 60189400 Rev. L

13.3.3
CONTROL CARDS

CATALOG

60189400 Rev. K

Control card requests take the forms:

name(1fn)

name(lfn, pfn, parameters)
Ifn (logical file name) and pfn (permanent file name) identified by position.
Parameters may be listed in any order, separated by commas, and termin-

ated with a right parenthesis. Each parameter is identified by its 2-character
code. For example:

ATTACH(OLDPL, PROGRAMLIBRARYDEC13 , PW=OPLREAD, SD=6)
Continuation control cards may be supplied as needed. If a card has no

terminator, column 1 of the next card is considered the immediate continua-
tion of column 80,

This request is used to catalog (make permanent) a newly created, local file
attached to the control point. Cataloging consists of locking out the record
blocks on which the file resides, and entering the file's location and identi-
fication into the permanent file directory.

A CATALOG request may create the first cycle (CY 1 assumed) of a new
permanent file with a unique name (initial mode); or it may create a new
cycle of an existing permanent file (newcycle mode).

The mode of operation is determined by the CATALOG call. Newcycle
mode is signalled by the presence of the CY parameter, and initial mode

by its absence.

control card CATALOG(lfn, pfn, parameters)
macro CATALOG fdbaddr, RC

Required parameters are Ifn and pfn, or fdbaddr. The parameters may be
included on the control card or in the FDB.

ID Creator identification (1-9 characters)

PW Password list (has meaning only when a new cycle is cataloged)
RP Retention period

CY Cycle number

TK Turnkey password

13-9

RD Read password .

EX Extend pasgword

MD Modify password

CN Control password
&
PP Privacy procedure parameter
SD Subdirectory has meaning only for newcycle mode

If RC is specified, the user is notified by a return code on a non-fatal error
I condition, at fdbaddr,

The CATALOG process always searches for a duplicate name. If the SD
parameter is given on a CATALOG, that subdirectory is searched first.
When a duplicate name occurs, the action taken depends on the CY param-
eter, in the following instances, and on the 1P.RNF installation parameter.

1. No CY parameter is specified for a new file.
2. CY number is a duplicate of an existing file.

3. No room in existing directory entry for a new cycle (maximum
of five).

In each instance IP. RNF is examined. If IP.RNF=0, the job is terminated.
If IP. RNF=1, the permanent file name is modified, a new permanent file
name is created and rsturned to the user via the FDB, and a message is
output to the dayfile.

For random files, the user must ensure that the index has been written out
as the last logical record of the file before requesting CATALOG; the file
must be closed.

To catalog a new cycle of an existing permanent file, the user must provide
the password necessary to obtain control permission.

Once a file is cataloged, it remains attached to the controi point as a local

file as if it were an attached permanent file with all access permissions
granted to it.

13-10 60189400 Rev. L

60189400 Rev. K

Examples:

1.

N

Initial Mode CATALOG

JOB.
REQUEST (FILE1)
COMPASS.
LGO.
CATALOG(FILE1, PFILE, CN=XXX, MD=Y YY)
7/8/9

. COMPASS program to create FILEL
6/%/8/9

In the above, a COMPASS program is assembled and
executed. This job writes on FILE1 which has been
assigned to a permanent file (mass storage) device by
the REQUEST card.

After the COMPASS program is completed, the CATALOG
control card makes FILEL a permanent file named PFILE.
Since no CY parameter is specified, cycle 1 is assumed
and initial mode CATALOG is attempted. If a file named
PFILE already exists, and IP, RNF=1, the system will
generate a new name for the file to catalog it. The file
will be assigned a control password (XXX), and a modify
password (YYY); no protection is given on READ or WRITE
functions.

Initial mode CATALOG:

JOB.

REQUEST(TAPE1,MT)

REQUEST(OLDPL) Assign mass storage
COPYBIF(TAPE1,OLDPL)

CATALOG(OLDPL, PROGLIB1, CY=50, CN=XX)
REWIND(TAPEL)

6/17/8/9

This job copies a program library from tape (TAPE1) to
mass storage and makes it a permanent file. The file
OLDPL is assigned to a permanent file (mass storage)
device. The CATALOG card causes the file OLDPL to

be made permanent under the name PROGLIBIL, cycle 50.
If a file of the same name already exists in the system and

13-11

13-12

neither a CONTROL or TURNKEY password was defined,
an attempt is made to CATALOG in newcycle mode. The
latter is possible only if there is space for an additional
cycle, and a cycle 50 does not already exist.

Assuming an initial CATALOG is executed, the file will be
cataloged with CONTROL permission. If a newcycle
CATALOG is executed, it will assume the passwords of
the other cycles of the file and the CN parameter will be
ignored.

Initial mode CATALOG:

FDBA FDB LF1,MFILE1l,CN=Z, MD=X, TK=Y

CATALOG FDBA,RC

The ahove assumes file LF1 exists, local to this control
point, on a valid permanent file device.

The CATALOG macro references FDBA which contains the
parameters necessary to make LF1 permanent. As CY is
not specified, an initial mode CATALOG is attempted. The
RC parameter on the CATALOG indicates that on a non-fatal
error, control will be returned to the user (a return code is
available in location FDBA). If RC is not specified, the
user's job is terminated with a diagnostic message on
detection of a non-fatal error.

Newcycle mode CATALOG

FDB5 FDB LF16, PFILE, CY=12, PW=XXX)

CATALOG FDB5

60189400 Rev. K

60189400 Rev. K

This job adds a second cycle to the permanent file PFILE
created by example 1. LF16 is again assumed to be a
valid file on a valid device. The PW password is used to
submit passwords to establish control permission. XXX is
the only password required, as no TURNKEY was defined
on the initial CATALOG in example 1.

If for any reason, the CATALOG in example 1 failed, PFILE
would not exist and a newcycle CATALOG not executed. In
this event, an initial CATALOG would be attempted. How-
ever, as no passwords are defined on the FDB, the file
would be cataloged unprotected. If this is undesirable, an
alternative form of the FDB follows:

FDB5 FDB LF16,PFILE, CY=12, PW=XXX, TK=ZZZ

The above FDB would perform the same as for a newcycle
CATALOG as the TK parameter would be ignored. However,
if an initial CATALOG occurred under the circumstances
described above, the PW parameter would be ignored and
the file would be protected by the TK password (or any

other passwords specified).

Assuming the installation has more than one subdirectory,
the user would have been informed of the subdirectory num-
ber after the successful CATALOG in example 1. He would
have specified this number to expedite any subsequent
attempts to perform a newcycle CATALOG of the file,

JOB.

REQUEST(LOC) Assign mass storage
REQUEST(TAPEX,MT)

COPYBR(TAPEX, LOC)

CATALOG(LOC, PROBLIB1, SD=6, CY=21, PW=XX)

EXIT,

CATALOG(LOC, SCRATCH, TK=ABC, RD=DEF,RN=1)
6/7/8/9

This job copies a file from tape to a file on a permanent file
device. Assuming example 2 was successful, a newcycle
CATALOG is attempted. First, subdirectory 6 is scanned
for the entry. CONTROL permission is established by the

PW parameter, and the newcycle CATALOG is executed.
If errors are encountered, the statements after the EXIT

13-13

13-14

ATTACH

card will be executed. This will cause an attempt to
CATALOG the file under a different name (SCRATCH).
The latter is an initial CATALOG and the file will be
given TURNKEY and READ protection.

ATTACH must be used to access an existing permanent file. The ATTACH
procedure ensures that the user has legal access to the permanent file and
makes it a local file.

control card ATTACH (lfn, pfn,parameters)
macro ATTACH fdbaddr,RC

Required parameters are Ifn and pfn, or fdbaddr; pertinent optional param-
eters are:

CY The cycle of the file to be used

PP Privacy procedure parameter

PW 1 to 5 passwords to establish access permissions

SD Number of the subdirectory of this file's entry
The RC parameter is used the same as for CATALOG.

If the CY parameter is not present and the file has multiple cycles, the
default cycle is the one with the highest cycle number, presumably the
latest. If the CY parameter is present and the cycle number is not known
to the system, the request cannot be honored.

System evaluation of passwords establishes the type of access granted to the
user for each file. Subsequent to ATTACH, the user cannot access the file
in any way for which he does not have permission. For example, if ATTACH
results in READ permission only, the user cannot subsequently use MODIFY
or EXTEND.

Multi-read access is possible by generating READ permission only. If
another control point also has this file attached and multiread access is not
possible, the permanent file manager will wait for access to the file.

If SD is present, but the file is not found in the specified subdirectory, the
entire directory will be searched; and a dayfile message will advise the user
of the correct subdirectory.

Before a file can be used after an ATTACH, the file must be opened. ATTACH
does not imply opening the file. The success of an OPEN request depends
upon the permissions granted when the file is attached.

An incomplete cycle may be attached if the cycle parameter has been specified
with a cy keyword. Control will be the only permission granted in this case.

60189400 Rev. L

Examples: 1. JOB.
ATTACH(LFILE, PFILE, PW=XXX,ZZZ)
. remainder of job

6/7/8/9

The permanent file PFILE (as created by example 1 under
CATALOG) is attached by control card. It is given the
logical file name LFILE and will be referenced subsequently
as such. As no SD parameter was specified, all subdirec-
tories will be searched for the file. Because only control
and modify passwords were defined at CATALOG time (in
example 1 under CATALOG), EXTEND and READ permis-
sions will be granted by default. In addition, since the
control password XXX was included in the password list,
CONTROL permission is also granted. The extra password
ZZ7Z7Z will be ignored, but will not cause an error.

CY is not specified in the ATTACH so the cycle with the
highest number will be attached.

2. FDBZ FDB LF, PFILE,SD=5,CY=1 |

.

ATTACH FDBZ,RC

This sequence illustrates an ATTACH by system macro
using the file created in example 1 under CATALOG.

Subdirectory five (if it exists) will be scanned first for the
file. If itis not found, or if the subdirectory does not exist,
all subdirectories will be scanned. If example 1 under
CATALOG executed correctly and the file has not been
purged, it will be found., Setting CY to 1 ensures that cycle 1
is attached (compare with example 1 under ATTACH).

PW is not specified in the FDB, so READ and EXTEND
permissions are granted by default. There is no multi-
read access.

The RC parameters are also specified causing the immediate

return of an error code to the user at FDBZ on non-fatal |
error detection.

60189400 Rev., L 13-15

3. JOB.
ATTACH(OLDPL, PROGLIB1)
UPDATE(Q)
RETURN(OLDPL)
COMFASS(I=COMPILE)
7/8/9
*IDENT ABC

*COMPILE DEF
6/7/8/9

This job uses the file created by examples 2 and 5 under
CATALOG. As no cycle number was specified, the file
created in example 2 (cycle 50) will be attached. As only
the CONTROL password was defined, MODIFY, EXTEND,
and READ will be granted.

This ATTACH causes the permanent file PROGLIBL to be
available at this control point under the logical file name
OLDFL. This is a relatively simple example of an UPDATE
operation. (Note that the RETURN detaches the file logically.)

4. FDBl1 FDB LF1,PERM,TK=T,MD=M, EX=E,CN=C, PW=T

CATALOG FDB1
CLOSE LF1,UNLOAD, RECALL
ATTACH FDB1

This sequence assumes initially that a local file LF1 has
been created, and then cataloged with the name PERM
(cycle 1 by default) with TURNKEY, CONTROL, MODIFY
and EXTEND passwords. The PW parameter is ignored
on a CATALOG operation.

After the CATALOG is completed, a CLOSE UNLOAD is

performed, causing a logtcal detach as does the RETURN
control card.

13-16 60189400 Rev. K

The file PERM can now be re-attached with the same FDB
(although it is not mandatory) to conserve CM space. Cycle 1
is assigned as the default value, since it is the only (and high-
est number) cycle present. The PW parameter obtains TURN-
KEY permission, and READ is granted by default. This is an
example of an implicit READ only type of ATTACIH.

5. JOB.
REQUEST(LF1) Assign mass storage
COMPASS.
LGO.
CATALOG(LF1, PERM, TK=T,MD=M, EX=E, CN=(C)
RETURN(LF1)
ATTACH(LF1, PERM, PW=T)
7/8/9

. program to create LF1

6/7/8/9

This example is the control card version of example 4 and
illustrates the same points without the multiple use of an
FDB.

6. FDB1 FDB LFl,PERM,TK=T,MD=M, EX=E, CN=C
FDB2 FDB LF1,PERM,PW=T

CATALOG TFDB1
CLOSE LF1,UNLOAD,RECALL
ATTACH IFDB2

This is the same as examples 4 and 5, except that it uses
two FDB's.

60189400 Rev. K 13-17

13-18

EXTEND

This function extends the length of a permanent file. The file must be
attached to the control point, and EXTEND permission must be granted.
A file cataloged by a given job may be extended also by that job. EXTEND
makes permanent only the information that has been added to the end of the
file (data written normally at end-of-information).

control card EXTEND(1fn)

macro EXTEND fdbaddr,RC
Required parameters are lfn or fdbaddr. In the macro form, the FDB

references may be either a new FDB containing only the lfn or the FDB
used at ATTACH time. RC is used the same as for the CATALOG function.

The newly written section will acquire the privacy controls of the permanent
file. If Ifn is an indexed file, the current index will be rewritten at the end
of the file, invalidating any prior indexes. Random files must be closed
before an EXTEND is issued.
Examples: 1. JOB.,

ATTACH(LF1, PROGLIBI1)

COMPASS.

LGO.

EXTEND(LF1)

7/8/9

. program

6/7/8/9

In the above, the file created in example 2 under CATALOG,

is attached. A program to write at end-of-information of

LF1 is compiled and executed. Prior to terminating the

job, the EXTEND function will make permanent any data
written at end-of -information of LF1.

60189400 Rev. K

2. JOB.
ATTACH(LF1,PROGLIB1)
COMPASS.
LGO.
7/8/9

FDBX FDB LF1

EXTEND FDBX,RC

6/7/8/9
This example is similar to example 1, except the EXTEND is
performed by system macro prior to the end of the program.
The RC parameter is also specified on the EXTEND. The
EXTEND references an FDB containing the logical file name.

PURGE PURGE removes a file from the catalog of permanent files.

control card PURGE (1fn)
macro PURGE fdbaddr, RC

Required parameters are lfn and fdbaddr. CONTROL permission must be
established.

PURGE operates in two modes, complete or partial. Each is executed by
logical file name.

Complete PURGE

1f, when the PURGE is issued, the user has all four permissions from the
previous ATTACH, a complete PURGE is attempted. If successful, the file
becomes a normal logical file without the restraints of permanency.

If the file is returned, close unloaded, or the job ends, the file will disappear.

However, if prior to these three possibilities a CATALOG is successfully
issued, the file can again be made permanent.

60189400 Rev. K 13-19

Partial PURGE

A partial PURGE is attempted if all four permissions are not granted.

This type of PURGE preserves the original privacy controls until the file
disappears at job termination or by a return or close unload. If a file is
partially purged, it cannot be re-cataloged. The partial PURGE possibility
is necessary since there is no hierarchy of permissions. If a file were
completely purged on the control password only, a user could then read or
write the file.

The partial purge is also useful for preserving file privacy when the universal
permission password is used. The latter can be set to grant only CONTROL
permission thereby allowing the file to be purged. No other action on the file
is possible. Activation of the universal permission option for control threat-
ens permanency only and not data privacy.

Examples: 1. JOB,
ATTACH(LF1,PFILE,CY=1,PW=XXX)
PURGE(LF1)

6/7/8/9

Using the file created in example 1 under CATALOG, this
job initially attaches LF1, generates CONTROL permission
by specification, and READ and EXTEND permission by
default.

The FURGE card referencing this logical file name then
executes a partial purge of the file. That is, in the pro-
gram following the PURGE, LF1 can be read or written,
but not modified or re-cataloged. When the job terminates,
the file will disappear.

FDB1 FDB LF1,PFILE,CY=1,PW=XXX,YYY
FDBZ FDB LF2,QFILE

ATTACH FDB1
PURGE FDB1

CATALOG FDB2

13-20 60189400 Rev. K

13.3.4
RETURN CODES

60189400 Rev, L

This is similar to example 1 except that on the ATTACH
the MODIFY password is given also; thus all four permis-
sions are granted. The PURGE which follows is complete,
and the file can be recataloged subsequently, as shown.

Codes for the 18-bit code/status word in FDB+4=fdbaddr are listed below.
(Bits 9-17 are error codes; codes greater than 027 cause job termination.)

User Return Code
(Octal)

0

1
2
3

b B =P RN) BN

10

11
12
13
14
15
16
20
21
22
23
24

Meaning
Function successful

Not used
Logical file name already assigned (ATTACH)

Logical file name not found (CATALOG, EXTEND,
PURGE, RENAME)

Blank permanent file name (CATALOG, ATTACH)
Directory full (CATALOG)

Catalog full (CATALOG, EXTEND)

Permanent file device unavailable

Index not written for a random file on CATALOG
or EXTEND.

Illegal device for file residence (CATALOG)
ATTACH request for unknown file

Cycle referenced does not exist (ATTACH)
Invalid cycle number

Duplicate name/cycle or not slot on CATALOG
Attempt to CATALOG non-local file
Function attempted on non-permanent file
Function attempted on purged file
CATALOG attempt, no word pair

Cycle incomplete on ATTACH

Duplicate ATTACH request

All errors are fatal on control card requests and on macro requests unless the
RC parameter is specified.

13-21

13.4
PERMANENT FILE
UTILITY ROUTINES Three utility routines are associated with the permanent file system:

DUMPF dumps permanent files to tape
LOADPF loads these files from the dump tape
AUDIT provides printed reports on the status of each file

These routines are described in the SCOPE Operator's Guide.

13-22 60189400 Rev. K

APPENDIX SECTION

CHARACTER SET

CHAR DIS- HOLLERITH EXT CHAR DIS- HOLLERITH EXT

(printed) PLAY (punched) BCD (printed) PLAY (punched) BCD
A 01 12-1 61 0 33 0 12
B 02 12-2 62 1 34 1 01
C 03 12-3 63 2 35 2 02
D 04 12-4 64 3 36 3 03
E 05 12-5 65 4 37 4 04
F 06 12-6 66 5 40 5 05
G 07 12-7 67 6 41 6 06
H 10 12-8 70 7 42 7 07
I 11 12-9 71 8 43 8 10
J 12 11-1 41 9 44 9 11
K 13 11-2 42 + 45 12 60
L 14 11-3 43 - 46 11 40
M 15 11-4 44 * 47 11-8-4 54
N 16 11-5 45 / 50 0-1 21
0 17 11-6 46 (51 0-8-4 34
P 20 11-7 47) 52 12-8-4 74
Q 21 11-8 50 $ 53 11-8-3 53
R 22 11-9 51 = 54 8-3 13
S 23 0-2 22 blank 55 space 20
T 24 0-3 23 y 56 0-8-3 33
U 25 0-4 24 . 57 12-8-3 73
v 26 0-5 25 = 60 0-8-6 36
W 27 0-6 26 [61 8-7 17
X 30 0-7 27] 62 0-8-2 32

Y 31 0-8 30 : 63 8-2 oof
y/ 32 0-9 31 # 64 8-4 14

TWritten as 12 on magnetic tape

60189400 Rev. G

CHAR DIS- HOLLERITH EX1

(printed) PLAY (punched) BCD
- 65 0-8-5 35
v 66 11-0 527
A 67 0-8-7 37
t 70 11-8-5 55
i 71 11-8-6 56
< 72 12-0 7211
> 73 11-8-7 57
= 74 8-5 15
= 75 12-8-5 75
- 76 12-8-6 76
H 77 12-8-7 77
end-of- 0000 1632
line
00xx 71t 71T
blank 55 6-8 167111
T

1
71t

TT1T A 6-8 punch is converted to a display code 55 with no diagnostic given.

11-0 and 11-8-2 are equivalent

12-0 and 12-8-2 are equivalent

Since the display character 00 has no BCD or Hollerith equivalent, it may be used as a flag
character. The flag character together with the character immediately fotlowing it (xx) have

special interpretations.

60189400 Rev.1

FET EXTENSION FOR COBOL AND SORT/MERGE USAGE

14

15

16

17

18

19

20

1 W SN e

13 WORDS of SCOPE-FET

59 56 53 417 41 29 23 17 13 8 b5 0
Blocker Address Deblocker Address
D Recorc'l Length ST U Record
(logical) Type
R I
ecord Maximum Record Blocker Size of Single
Mark Length (logical) Bytes o f Trail
Value g g | ccurrence of Trailer
1
Deblocker
M BCP Key Position ' Key Length

Bytes
I

i

Spacing Control

Label Address

Record Count

Fixed record Length
(Logical)

Record Count Rerun Period

tfor Depending on

BLOCKER ADDRESS (18 bits)

This is the address of a routine which packs logical records into an output buffer. The routine
determines if there is room in the buffer to receive the logical record. If so, the BLOCKER

routine transfers the logical record to the buffer and updates OUT. If not, the BLOCKER routine
calls SCOPE to write the buffer area onto an external device before transferring the logical records
to the output buffer.

transfer.

60189400 Rev. C

BLOCKER routines go into RECALL status while SCOPE is processing the data

DEBLOCKER ADDRESS (18 bits)

This is the address of a routine which unpacks logical records from an input buffer into a user's
record area, or which supplies the user with the record's address in the input buffer. This routine
determines if the input buffer already contains another logical record. ¥ so, the DEBLOCKER
processes it as required; if not, the DEBLOCKER calls SCOPE to fill the buffer. DEBLOCKER
goes into RECALL status during the SCOPE operation.

D = Disposal Code

This field for magnetic tape files assumes the following values:

100 REWIND (release)
010 LOCK (save)
001 NO REWIND

RECORD LOGICAL LENGTH (18 bits)

This field is the number of 6-bit bytes in the records for fixed length records; for OCCURS (trailer)
records, it is the size of the fixed portion (length if no trailer items exist); for all other types of
variable length records, this field contains the minimum record size.

ST = Logical Status (4 bits)

This field indicates the logical status of a file:

IXXX file is currently open

X1XX file is an optional file

XX10 records must be counted to control restart dump
XX01 end of reel condition controls restart dump

U = Use Code (3 bits)

This field used by SORT/MERGE, contains an indicator as to the use of the file described by this
FET. Its values are:

001 sort input
010 merge input
100 output

B-2 60189400 Rev. C

RECORD TYPE (6 bits)
This field describes the kind of records in the file:

000001 fixed length record
000010 variable length records (length controlled by key field)
000100 variable length records (length determined by presence of a record mark character)

001000 variable length records (fixed portion plus a variable number of fixed length trailer
items). This is the COBOL OCCURS DEPENDING ON type of variability.

010000 universal record. The BLOCKER prefixes each logical record with one word
containing the number of 6-bit bytes in the record and the DEBLOCKER removes this
word. Each of the other record types can be mapped into the universal record format.

RECORD MARK VALUE (6 bits)
This field contains the octal value of the record delimiter for record mark types.

MAXIMUM LOGICAL RECORD LENGTH (18 bits)

This field contains maximum size for variable records of all types as the number of 6-bit bytes in
the record. It is not used for fixed length records.

BLOCKER/DEBLOCKER BYTES (12 bits)

Used in combination with IN (word 3) and OUT (word 4) to specify the next logical record position in
the CIO buffer to be blocked or deblocked.

SIZE OF SINGLE OCCURRENCE (18 bits)
size of one trailer item

This field contains the number of 6-bit bytes in a single occurrence of the trailer item. It is
meaningful only for trailer type variable length records.

M = Mode (2 bits)

This field indicates the recording format of the length key field:
0 binary number
1 decimal number
2 floating point integer

BCP

Beginning character position for variable length records.

60189400 Rev. C B-3

KEY POSITION (18 bits)
This field is interpreted by SORT/MERGE as the position of the first 6-bit byte in the length key
field. If the length key field begins in the first 6-bit byte of the record, this field contains the value
of 1.
This field is interpreted by COBOL as the CM address of the length key field.
KEY LENGTH (18 bits)
This field contains the number of 6-bit bytes in the length key field. The length key field contains the
number of 6-bit bytes in the record for key field variable records and it contains the number of trailer
items with the record for variable trailer records (OCCURS DEPENDING ON records). This field
must begin within the first n 6-bit bytes when n is MINIMUM LOGICAL RECORD LENGTH less the
KEY LENGTH.
t = label type (2 bits)y

0 standard labels

1 non-standard labels

2 omitted labels
IN (1 bit)
Set if file is opened for input or input-output processing.
OUT (1 bit)
Set if file is opened for output or input-output processing.

SPACING CONTROL (18 bits)

This field contains the count of the number cf lines to advance the pointer when the WRITE BEFORE
ADVANCING or the WRITE AFTER ADVANCING option is used in COBOL.

LABEL ADDRESS (18 bits)

The address of a 120-character area where the user places the value to be checked against the value
in the first physical record of a file declared as having a non-standard label.

RECORD COUNT (42 bits)

This field is used to count the records that have been processed in the file described by this FET.

FIXED RECORD LENGTH (Logical) (18 bits)

Contains zero for variable length records or the number of characters in fixed length records.

60189400 Rev. C

FIXED COUNT RERUN PERIOD (30 bits)

When the ST (logical status field) indicates that a restart dump is to be taken every n records (speci-
fied by user), this field contains n (the number of records to be processed between restart dumps).

The following macro generates the FET appendix.
RECORDT, O, C, E, L, D, U
The RECORD macro generates FET +13 and FET +14.

T Record type = F, V, T, R, S

F fixed length records
\% variable length records (key field type)
T trailer item variable length records (OCCURS DEPENDING ON)
R record mark variable length records
S systems record format
(6] Optional file indicator
blank mandatory file

non-blank optional file

C Restart dumps controlled by record count
blank not controlled by

non-blank controlled by record count

E Restart dumps controlled by end of reel condition
blank not controlled by end of reel condition

non-blank controlled by end of reel condition

L Record length, number of 6-bit bytes in the record
D Disposal Code

R REWIND (release)

L LOCK (save)

N NO REWIND
U Usage

S sort input

M merge input

(6] output

60189400 Rev. C B-5

VARIABL L, M, P, K, §, R

The VARIABL macro creates FET +15 and FET +16.

L Maximum record length as the number of 6-bit bytes in the largest record
M Key mode
B binary
D decimal
F floating point integer
P Key position, position in record of leftmost 6-bit byte in the key field
K Key length as the number of 6-bit bytes in the key field
S Size of a single trailer item as number of 6-bit bytes in item
R Record mark value as octal representation of delimiting character

CONTROL P, t, LA
The CONTROL macro creates FET +17, +18, and +19.

P Number of records to be processed between restart dumps
t Label type
LA Label address for files with non-standard labels

B-6 60189400 Rev. C

STANDARD LABELS C

Standard Labels are all recorded in the BCD mode at a density defined by an installation parameter;
they are 80 characters in length.

The labels, as described, are designed to conform to the proposed USA Standard for Magnetic Tape
Labels and File Structure for Information Interchange submitted by the x.3.2/457 Committee on
November 28, 1966.

In this appendix, "n'' means any numeric digit, 0 through 9; and "a' means any of the 6-bit charac-
ters of the character set in Appendix A.

An optional field may, but does not necessarily, contain the information described. If an optional

field does not contain the designated information, it should contain blanks. Fields not described as
optional are considered to be mandatory and must be written as specified.

60189400 Rev. I C-1

VOLUME HEADER LABEL

Field Name Length Position Description
1 Label Identifier 3 1-3 Must be VOL
2 Label Number 1 4 Must be 1
3 Visual Reel 6 5-10 Six n characters ;
Number
4 Security 1 11 ~ Blank = not secyrity protected
Non-blank = security protected
5 Volume Density 1 12 Density of file information on tape
blank or 00 = 556 bpi
1 =200 bpi
, 2 =800 bpi
6 Reserved for 19 13-31 Must be blank
operating system
7 Reserved for 49 32-80 Must be blank
future standard-
ization

C-2 60189400 Rev. C

FILE HEADER LABEL

Field Name

1 Label identifier

2 Label number

3 File label name

4 Multi-file
identification

5 Reel number

6 Multi-file
(position-number)

7 Reserved for future
standardization

8 Edition number

9 Reserved for future
standardization

10 Creation Date

11 Reserved for future
standardization

12 Expiration date

13 Security

14 Block ACount

15 Reserved for future

standardization

60189400 Rev. I

Length Position
3 1-3

1 4

17 - 5-21
6 - 22-27
4 28-31
4 32-35
4 36-39
2 40-41
1 42

5 43-47
1 48

5 49-53
1 54

6 55-60
20 60-80

Description
Must be HDR

Must be 1
Any a characters to identify this file

Any a characters to identify the set of
files that includes this one. This ID
must be the same for all files of a
multi-file set (mfn)

4 n characters. Incremented by one
immediately after trailer label is
written on the volume

4 n characters denoting position
number of file within the set of files.

Must be blank

Two n characters distinguishing
successive iterations of same file

Must be blank

Date file was created; YYDDD, which
is 2n characters for year and 3n
characters for Julian date (001 to 366)

Must be space

Same format as Field 10. This file is
regarded as expired when today's date
is equal to or later than the date given
in this field. When this condition is
satisfied, the remainder of this volume
may be overwritten. To be effective on
multi-file volumes, therefore, the ex-
piration date of a file must be less than
or equal to the expiration date of all
previous files on the volume

Same as field 4 of the Volume Header
Label

Must be zeros

Must be spaces

FILE TRAILER LABEL

Field Name

1 Label Identifier
2 Label Number
3-13 Same as corre-

sponding fields
in File Header

(optional)

14 Block Count

15 Reserved for future
standardization

VOLUME TRAILER LABEL

Field Name

1 Label Identifier
2 Label Number
3-12 Same as corre-

sponding fields in
File Header

(optional)
13 Block count
14 Reserved for future

Length

50

20

Length

50

20

Position Description

1-3 Must be EOF

4 Must be 1

5-54 Same as corresponding fields in
File Header

55-60 Six n characters, number of data
blocks (including labels and tape
marks) written since last File Header
Label

61-80 Must be blank

Posgition Description

1-3 Must be EOV

4 Must be 1

5-54 Same as corresponding field in
file header

55-60 6 n characters, number of data blocks
(excluding labels and tape marks)
written since preceding volume
label

61-80 Must be blanks

The volume trailer label format is identical to file trailer label format except for the third

character.

60189400 Rev. I

The 3000 series labels has the following format:

Header 80 BCD characters

Character Position

1

2-3
4-5
6-8
9-22
23-24
25-30
31-32
33-80

Recording density, 2, 5, or 8, indicating 200, 556, or 800 bpi
Unique label identifier () A
Logical unit number, 2 digits

Retention cycle, 3 -digits

File name, 14 alphanumeric charaéters

Reel number, 2 digits ‘

Date written; Month, Day, Year (mmddyy) in File ID
Edition number, 2 digits

User supplied information

Trailer 80 characters, EOF or EOT, each followed by block count

EOT, block count

EOF, block count

EOS

Two tape marks

60189400 Rev. I

Indicates end of reel for multi-reel files; it is preceded by one and
followed by two tape marks.

Ends a file or multi-files; it is preceded by one and followed by one or two

tape marks.

3600 SCOPE end-of-system label

RELOCATABLE SUBROUTINE FORMAT D

The deck of one subprogram (subroutine) as it is output from an assembler or compiler comprises
one logical record. Each logical record is made up of an indefinite number of tables. Each table is
preceded by an identification word which specifies to the loader the procedure to be followed in
loading the table. The identification word has the format:

CN wC LR L
59 53 47 35 26 17 0

CN = Code number identifying type of data in table (text, entry points, external references, etc).
WC = Word count in table excluding identification word

LR = Method of relocation for the load address

L = Load address, 18-bits as defined for each type of table

LR and other relocation fields in the tables are nine bits long. Six of the nine are used currently;
the other three are reserved for future expansion.

Prefix Table

The prefix table, if present, is the first table in a subroutine. It is bypassed by the loader. The
prefix table is used by EDITLIB in constructing or modifying the SCOPE library. The format of
the table is:

CN = 778 LR and L are ignored.

word 1 name of subprogram

date typed by operator at deadstart time, one leading
and one trailing blank.
59 17 0

word 2

The binary output from an assembly consists of all loader control cards (LCC) written as individual
records, then an identification table of 14 words is written (77-table), followed by the deck. If
errors occur in assembly, no binary output, except the 77-table and any LCC records, will appear.

60189400 Rev. I D-1

Tor absolute programs, following the 77 table is another control word followed by the absolute

program. This control word contains:

CP Programs:

5000 Lle £fff fftt titt

L; = primary overlay level number
Ly, = secondary overlay level number
Ly L2 = 00 for first overlay
£iffff = origin -1 as specified on the IDENT line
tttttt = entry point address as specified on IDENT line

PP Programs:

nnnn nn00 ffff 0000 ccce

nnnnnn = program name
ffff = origin -5 as specified on the IDENT line
ccee =

PIDL

program length (including this control word) in central memory: (program

length+9)/5

Program identification and Length table cortains the subprogram identification and declarations

concerning common block allocation.

Identification Word

CN 34g
LR Unused
L 0
word 1 name of subprogram PL
59 17 0
PL Program length
words 2-WC name of common block BL
59 17 0

If blank common, name is 7 display code blank characters.

BL Block length

60189400 Rev.

L

If WC=1, no common references appear in the program. Subprogram length is relevant only in the
first PIDL table. All PIDL tables must appear before any other tables for a given subprogram. The
names of common blocks may not be duplicated in a PIDL table. The list of common block names is
called the Local Common Table (LCT). Since relocation of addresses relative to common blocks is
designated by positions in LCT, the order of the common block names is significant.

The first word in the LCT is referred to as position 1.

ENTR

The entry point table contains a list of all the named entry points to the subprogram and its
associated labeled common blocks. The ENTR table must immediately follow the PIDL table.

Identification Word

CN = 363
LR = Ignored
L. = Ignored

Words 1 through WC

Each entry in the table is 2 words long. The first word contains the name of the entry point.
The second word contains the location of the entry point.

first word entry point name
59 17 0
second RL LO
word C
59 26 17 0
RL = relocation of the address specified by LOC;
0 absolute, relative to RA (no relocation)

1 program relocatable

3—778 relative to common block M, where M is in position RL-2 of LCT. M must
not refer to blank common.

LOC= address of entry point

60189400 Rev. C D-3

TEXT

Text and data tables contain data comprising the subprogram and information necessary for properly
relocating the data. The table consists of: an origin for the data, the data itself, and indicators
describing relocation (if any) of the three possible locations in a data word which may refer to
addresses in memory. TEXT tables may appear in any order and any numbers.

WC must be in the range 2 through 20g.

Identification word

CN = 404
LR = relocation of load address (L)
0 absolute, relative to RA
1 relative to program origin

3-T7g relative to labeled common block M; M is in position LR-2 of LCT. Values of
2 and n, where n refers to blank common, are not permitted.

L = load address. Initial location of data appearing in the second word of the table. L will
be relocated using LR.

First Word

Relocation word consists of a series of 4-bit bytes describing the relocation of each of the three
possible address references in a 60-bit data word. The first byte (bits 56-59) describes the re-
location for the data word in the second word of the TEXT table, etc. The number of relevant
bytes and data words is determined by WC. Relocation is relative to program origin or the comple-
ment of the program origin (negative relocation). The value and relocation for each byte follows:

000X no relocation

10XX upper address, program relocation

11XX upper address, negative relocation

010X middle address, program relocation

011X middle address, negative relocation

1X10 lower address, program relocation

1X11 lower address, negative relocation

0010 same as 1X10

0011 same as 1X11

The above designations permit independent and simultaneous relocation of both upper and lower
addresses.

D-4 60189400 Rev., C

Words 2 through WC

Data words are loaded consecutively beginning at L. Their addresses are relocated as specified by
the corresponding byte in the relocation word. With the text table, all addresses are relocated
absolute or relative to program origin, never relative to a labeled common block. As a result,
addressing relative to labeled common for text must be accomplished through FILL tables.

FILL

The FILL table contains information necessary to relocate previously loaded address fields.'
References to common are relocated through this table. Program relocation may also be effected
using the FILL table, although the usual method (with fewer words) is to use the TEXT table. Re-
location specified by FILL tables is accomplished after all programs from the input file are loaded;
so that text referenced by the FILL table may appear after it. Since FILL tables are processed in
order, the results of a FILL table will be preset when subsequent relocation is specified. For
example, multi-loads into labeled common should be avoided as the result will be unpredictable.

Identification Word

CN = 42¢
LR=0
L =0

Words 1 through WC

All remaining words are partitioned into sets of 30-bit contiguous bytes, each set is headed
by one control byte and followed by an indefinite number of data bytes. The last byte may be
zero. The control byte contains information concerning each of the subsequent data bytes
until another control byte is encountered.

A zero byte is treated as a control byte in the format:

0 AR
29 8 0

AR is the relocation of the value in the address position of a word specified in the succeeding data
bytes. AR has the value:

0 absolute, relative to RA (no relocation)

1 program relocation
2 negative relocation
3-

778 relative to common block M where M is in position AR-2 of LCT.

60189400 Rev. G D-5

One control byte suffices for several data bytes. The format of the data byte is:

1P RL LOC
29 26 17 0
P = Position within word of address specified by RL and LOC.
10 upper
01 middle
00 lower
RL = Relocation of address specified by LOC.

RL has the same range of values as AR in the control
byte except that 2 and any reference to blank common
are illegal.

LOC = Address of data word to be modified.
The contents of address field position (P) at location
LOC relative to RL is added to the origin as specified
by AR in the control byte.

LINK

The LINK table indicates external references within the subprogram. Each reference to an external
symbol must appear as an entry in LINK.

Identification Word

CN = 44g
LR = Ignored
L =0

All remaining words are partitioned into sets consisting of one 60-bit name word and a series of
30-bit contiguous data bytes indicating address positions which refer to the external symbol described
in the name word. It is possible for the name word to be split between two computer words.

name of external symbol

59 17 0

D-6 60189400 Rev. C

Names of external symbols (7 characters) must begin with a character for which the display code
representation has a high order bit equal to zero. The data bytes have the form:

1P RL LOC
29 26 17 0

P = Position within the word of the reference to the external symbol:
10 upper
01 middle
00 lower
R = Relocation of address specified by LOC
0 absolute, relative to RA
1 program relocation

3—778 relative to common block M where M is in position RL-2 of L.CT.

LOC = Address of the word containing the reference to the external symbol

REPL — Replication Table

The REPL table permits the repetition of a block of data without requiring one word per location in
a TEXT table.

Identification Word

CN = 43¢
LR =Ignored

I, =1if replication 1s not to be deferred until all text is loaded. (Instant replication)

Words 1 through WC .

Each entry in the table consists of two words in the format:

word 1 I SR

word 2 C B DR D
59 41 26 17 0

60189400 Rev. C D-7

]
wn
It

Initial address of the source data, should be non-zero

SR = Relocation of the address specified by S.
0 Absolute, relative to RA
1 Program relocation

3-77g Relative to common block M, where M is in position SR-2 of LCT. M must
not refer to blank common

D = Initial address of destination of data

DR = Relocation of address specified by D; range of values same as SR-
= Size of data block

C = Number of times data block is to be repeated

= Increment to be added to D before each data block is repeated, first repetition of
block is at D, second at D+I, etc. The data block (B-long) with origin at S is
repeated C times beginning at D the first time, and beginning at the previous
origin plus I thereafter.

IfC=0 C is interpreted as 1
If B=0 B is interpreted as 1
If1=0 I is interpreted as B
IfD=0 D is interpreted as S+B

XFER — Transfer Table

The XFER table indicates the end of a subroutine and a pointer address.

Identification Word

CN = 46
LR = Ignored
L. = Ignored
entry point name
59 17 0

The entry point name need not be in the subprogram. If name is blank, there is no named XFER.

The location of the entry point is returned following a loader request. If a named XFER is en-
countered prior to an EXECUTE, control is transferred to that entry point. Otherwise, the job
is aborted with the comment NO TRANSFER ADDRESS. If more than one subprogram has a
named XFER, control is given to the last encountered XFER name.

D-8 60189400 Rev. L

SYSTEXT — Systems Text

Normally, systems text is derived from the library overlay named SYSTEXT, and is assembled prior
to assembly of the source program, although this may be changed through the S option. Systems text
overlays on the library look like loader overlays with the following control word:

5000 0101 0000 0000 0000

Data consists of coded lines. A minus zero word follows the last coded line.

Systems text can be deleted by using the S option with a dummy (non-existent) record name. A non-
fatal loader message is produced when COMPASS attempts to load the overlay.

60189400 Rev. C D-9

CARD FORMAT E

Column 1
7,8,9 End of logical record
6,7,8,9 End of file
7,9 Binary card
7 and 9 not both in column 1 Coded card
Columns
1 2 3 4 5 7 80
2/
11] | < <
0 *5 Column Binary Information -— -
133 @
o3 3
1
21%| 2 2
23|58 <<
o : <)
M4 =
5| | & o F
6 4 g8
13 5.
7 = &
© F
8 < < Eg
9| SZ

A binary card can contain up to 15 central memory words starting at column 3. .Column 1 also
contains a central memory word count in rows 0, 1, 2 and 3 plus a check indicator in row 4. If
row 4 of column 1 is zero, column 2 is used as a checksum for the card on input; if row 4 is one,
no check is performed on input.

Columns 79 and 80 contain a binary serial number. If a logical record is output on the card punch,
each card has a checksum in column 2 and a serial number in column 80, which orders it within
the logical record.

Coded cards are translated on input from Hollerith to display code, and packed 10 columns per
central memory word. A central memory word with a lowest byte of zero marks the end of a coded
card (it is a coded record), and the full length of the card is not stored if it has trailing blanks. A
compact form is thereby produced if coded cards are transferred to another device.

60189400 Rev. J E-1

Card Files

Any punched cards can be read: standard types or free-form cards.

Four types of cards are considered standard:

A card with 0017 octal in column 1 is recognized as an end-of-file marker.

A card with 0007 octal in column 1 is recognized as an end-of-record marker. The level is
assumed to be zero unless columns 2 and 3 contain a level number punched in Hollerith form.
The level number is read as octal. The following are valid punches (b represents a blank):

00 or 0b 04 or 4b 10 14

01l or 1b 05 or 5b 11 15

02 or 2b 06 or 6b 12 16

03 or 3b 07 or 7b 13 17
Any card other than the above with 7,9 punches in column 1 is assumed to be binary. It must
contain 0105, 0205, 0305....... 1605, or 1705 in column 1 and a correct checksum in column
2; or 0145, 0245...... 1645, or 1745 in column 1, in which case column 2 is ignored. The

first two digits, 01 or 17, give the word count of the card. Each word occupies 5 columns, and
the first word of information begins in column 3. Columns after the last word of information,
up to and including column 78, are ignored. The lower 5 bits of column 79, and all 12 bits of
column 80 constitute a 17-bit serial number for the card within its record. If the cards of a
binary record do not have these numbers in correct sequence (beginning at 1 for the first card),
a message is given but the cards are accepted. The checksum is the one's complement of the
sum of all information columns, this sum is formed as if in a 12-bit accumulator with circular
carry. Checksums 7777(octal) and 0000 are equivalent.

Any card that does not have 7 and 9 punched in column 1 is assumed to contain Hollerith-punched
information, one 6-bit character per column, or eight 60-bit words per card. Any column that
does not contain a valid Hollerith combination is read as a blank, and a message containing the
record number and the card number within the record is given. To be a valid Hollerith combina-
tion, a column must contain one of the following:

12 and 0, or 11 and 0, and no other punches
or
Not more than one of the punches 12, 11, and 0, with
No additional punch, or any one punch from 1 to 9
or

An 8 punch with one more punch from 2, 3, 4, 5, 6, 7

Binary and Hollerith-punched (coded) cards may be mixed within one record, but a message is
given containing the number of any record containing one or more mode changes.

60189400 Rev. L

Free-form cards

It is also possible to set up a record of one or more cards that will be read as sixteen 60-bit words
per card (80 12-bit columns), with no format checking; except that a card with octal 0017 in column 1
with no other punches, will be interpreted as an end-of-file no matter where it occurs. This rule
prevents the separator between jobs in the input stack from being accidentally missed. A card with
0017 in column 1, if it has at least one punch in at least one other column, can be read as 16 words
without format control, though normally it would be an end-of-file separator.

Such a special record can be set up as follows:
1. A card with octal 7777 in column 1, and 7777 in column 2, and no other punches. No

information is read into memory from this card; it signals that free-form cards will follow.

2. Any number of cards punched in any manner, except that none must be identical to the
above card, and none must be an absolute end-of-file card. These cards are read as
binary cards, each containing 16 words of information.

3. A card identical with card 1. No information is read into memory from this card; it
signals the end of free-form cards. Normal binary or coded cards, or an end-of-record,
should follow.

4. An end-of-record card. This is interpreted normally, because free-form reading has
terminated.

If it should be necessary for the record of free-form cards to include a card identical to the card
described in 1 above, a slightly different card could be chosen to begin and end free-form reading.
Any card with octal 7777 in column 1 and in one other column with no other punches is recognized
as signalling that free-form cards follow until an identical card or an absolute end-of-file is read.
Therefore, there are 79 possibilities to choose from.

A series of free-form cards will normally be organized into one record; however, it can be preceded
and/or followed by binary and/or coded cards within the same record. The information will be
read but a mode-change message will be issued for the record. Thus a record might validly consist
of the following:

1. A series of Hollerith punched cards. Read as 10 words each.

2. A start-free-form card, e.g., 7777 in columns 1 and 80, and no other punches.

3. A series of cards not including an absolute end-of-file, nor any card identical with 2. Read
as 16 words each.

4. A cardidentical with 2, acting as a close-free-form card.
5. A start-free-form card, which might be either the same as or different from 2 and 4.

6. A series of cards not including an absolute end-of-file, nor any card identical with 5.
Read as 16 words each.

7. A card identical with 5, acting as a close-free-form card.

60189400 Rev. C E-3

8. A series of standard binary cards. Each card contains 1 to 15 words, established by the
word count in column 1. A serial nurnber check message would be given unless the serial
number in columns 79-80 of each binary card correspond with the position of that card in
the record as a whole, not merely with its position in the current group of binary cards.

9. An end-of-record card, closing the record. The record would produce a mode change
message.

Cards can be punched by programs under SCOPE 3.1 in three different formats corresponding with
the modes of reading described above, If the disposition code of an output file is octal 0010, each
record will be punched as one or more cards, with 80 valid Hollerith coded characters per card.
Unused columns at the end of the last card will be blank, and an end-of-record card will close the
record. Such a record could be read in without producing any messages.

If the disposition code of a file is octal 0012, aach record will be punched as a standard format
binary record, which could be read in without producing any messages; the serial numbers in
columns 79 and 80 of the cards would all be correct. (Since a deliberate mixture of standard binary
cards with other types of cards inside a single record is rare, as is the deliberate withdrawal or
rearrangement of standard binary cards in one record, the serial number check message will
normally indicate that cards of a standard binary record have been accidentally misarranged.)

If the disposition code of an output file is octal 0014, each record is punched as one or more cards,
with 16 words of information, five columns to a word, on each card. If the record does not contain
an exact multiple of 16 words, the unused columns on the right of the last card remain blank. An
end-of-record card follows the last information card; but such a record probably could not be read
in. It would be necessary:

® To make certain that the record contained no absolute end-of-file card (0017 in column 1
and 0000 in all other columns). Such a card cannot be read as anything but an end-of-file.

® To put a start-free-form card ahead of the first card of the record, and an identical end-
free-form card between the last information card and the end-of-record card. The punches
for these two cards must not be identical with any of the information cards.

E-4 60189400 Rev. C

FIELD LENGTH CALCULATION IN OCTAL
The Field Length (memory requirements) for a program during execution after it has been loaded is:
LWA LOAD (rounded up to the nearest 100)

However, loading a program may require more memory space for the loader program and its
tables. This value, rounded up to the nearest 100, is the larger of the two quantities:

LWA LOAD
or

BLNK COMN + field length - FWA TABLES
(If BLNK CMN address = 0 or is less than LWA LOAD, replace BLNK COMN with LWA LOAD informula. ! |

Field length is obtained from the JOB card or RFL card. LWA LOAD, BLNK COMN, and FWA
TABLES values are obtained from the core map.

Example:

For the example program used in this appendix:
Field Length 40000
LWA LOAD 7316

BLNK COMN = 7314
FWA TABLES = 34023

The field length required for execution is 7400 (7316 rounded up to the nearest 100).
The field length required for loading is 13300 (13273 rounded up to the nearest 100).

LWA LOAD + field length - FWA TABLES
7316 40000 34023 = 13300 (13273 rounded)

NOTE: This value does not reflect the memory required by CP LOADER for the

Entry Point/External Reference Tables. If there is insufficient space to
contain the Entry Point Table, loading will be aborted.

60189400 Rev. L -7

SYSTEM SYMBOL DEFINITIONS G

System symbol
entry points an

s (for installation parameters, CMR table lengths, locations, pointers, PP resident
d monitor functions) consists of three parts:

o Identifier of one or two characters, denoting the group to which it belongs

® A period following the identifier to indicate that it is a system symbol

® Mnemonic

of 1-6 characters which suggest the meaning of the symbol

When SCPTEXT and IPARAMS are to be used, the definition of symbols of the above form is to be

avoided.

System
Symbols

Definition

CH.x
CP.x
C.x

60189400 Rev. I

Psuedo-channel numbers
Locations within the central processor resident program area

Byte positions (12-bit) within central memory words; bytes are numbered from left
to right as 0-4. x represents the name of a field within the specified byte. For
example, a central memory word containing a field called QQQ has been read into
PP memory at location fwa. The following instruction would load QQQ into the A
register:

LDD FWA+C.QQQ

This symbol form is used when the specified location is either a scratch cell or a
location used in a typical manner.

Each of the 1004 core (direct) locations within PP memory is assigned at least one
symbolic label in the form:

D.mn
m Locations
Z 00-07
T 10-17
™ 20-27
TH 30-37
FR 40-47
FF 50-57
8X 60-67
sv 70-77

The value of n may range from 0 to 7. Thus location 278 is referred to as D. TWT.

System
Symbols

Definition

E.x

F.x
IP.x
LE.x
L.x
M.x

N.x

0.x

P.x

R.x
S.x

This form is used to define symbols for the BNL ECS mods.T It occurs in SCPTEXT
and ECSCOM,

Error flag values

Miscellaneous values which may vary each installation within certain limitations
Length of entries within tables

Table length

Monitor functions such as values transmitted to MTR through PP resident to cause
MTR action

Quantities

Stack processor orders (commands). These orders do not correspond to values used
in the code and status FET field; stack processor orders are designated for ease of
use by the stack processor.

Locations of central memory pointer words. Most such words contain initial and
terminal addresses of tables located elsewhere in central memory.

Entry points within PP resident

Right offset of a field within a PP word (byte). The number of bit positions which
must be right shifted to right justify the field to bit 0. Six symbols may also be used
in the address field of the BIT macro to generate a 1-bit mask.

First word addresses of central memory tables. When a table has a pointer word,
the address of the table should be obtained from the pointer rather than directly from
the T.x symbol value. A pointer word has the same name as the table except that
the identifier is P rather than T,

Equated to values representing the relative position of central memory words within
tables. For example, if the address of a control point area is contained in the PP
A register, the following code would obtain the word containing the job name.

ADN W.CPJNAM
CRD D.TO

T The Interim ECS System was developed by Graham Campbell, Kurt Fuchel, and Sidney Heller, of
the Brookhaven National Laboratory, Upton, New York. Work performed at Brookhaven National
Laboratory is supported by the U.S. Atomic Energy Commission.

60189400 Rev. 1

ERROR MESSAGES H

Messages produced by the SCOPE operating system are listed below. All
messages appearing in the system and job dayfiles are included. Most
messages that appear on the displays are also included, but some, such as
indications of system status which do not require operator response are
omitted. Messages that appear at the console during the initial deadstart
process have been omitted, except those which indicate error conditions.

Messages are listed in alphabetical order, Items in which the first
characters will change according to the parameters of the job in progress
are arranged according to the second word of the message. Items beginning
with numbers follow the alphabetical 1lists, and th¢se Dbeginning with
asterisks appear last. The routine that produces each message is listed on
the right margin,

Abbreviations that commonly appear in this section:

CH Channel FNT/FST File name/status table
CM Central memory MLRS Maximum logical record size
CMR Central memory resident MT Magnetic tape
CP Central processor unit, PF Permanent file

or card punch PFD Permanent file directory
ECS Extended core storage PP Peripheral processor unit
EOF End-of-file PRU Physical record unit
EOI End-of-information RBR Record block reservation table
EQ Equipment RBT Record block table
EST Equipment status table RBTC Record block table catalog
FET File environment table
FL Field length

60189400 Rev, I H-1

l A DOUBLE EOF WAS FOUND BEFORE A / COPYN

A NUMERIC EXTENDS BEYOND AN END OF FILE COPYN
A PARAMETER BEGINS BEYOND AN EOF-EOF COPYN
A PARAMETER IS GREATER THAN 7 CHARACTERS COPYN
ABOVE IS ILL-FORMED AND IGNORED EDITLIB

Preceded by reproduction of the control card in question.
EDITLIB does not abort, but proceeds to the next control
card. Possible reasons for rejection of a control card
are given below:
Contains more than 30 elements (words and/or numbers).
First element is not an EDITLIB function.,

Any other element exceeds seven characters,

An element begins with two or more digits and contains
a letter.

An element which should bs a name is a number,

An element which should be a residence code is not
CM or DS,

On a SKIPB card, the file name is not followed by a
number,

On a SKIPF card, the file name is followed by an
asterisk or dash; it should be a name or number.

ADDRESS xxxxxxx IS UNDEFINED TRACE

Output specification address xxxxxxx is unsatisfied,
output for that specification is ignored.

H-2 60189400 Rev. K

AN ID(P1) IS REQUIRED ON ALL TEXT CARDS COPYN
ARG ERROR LocC

Last word address of area to be cleared (LOC control
card) equals or exceeds field length, or last word
address is less than first word address; job
terminated.

AUDIT ABORT - READ PAST EOR ON ORBTC AUDPP

AUDIT routine for permanent files read end-of-record on
record block table catalog file before RBTC entry was
complete,

AUTO-RECALL ERROR 1EJ
Job terminated because completion bit was already set when
job went into auto-recall.

BACKUP GO WHEN CORRECTED (RESTART) RESTART
Checkpoint number specified exceeds that in first leader
record on checkpoint tape. Dayfile message requires oper-
ator action; mount earlier checkpoint tape or rewind.

BAD COMPARE COMPARE
Displayed on console, system and job dayfile if discrepancy
occurs during COMPARE. 1If fatal, operator may drop job.

BAD FILE NAME ON REQUEST 5DA
File name on REQUEST or REMOVE control card has bad
format, Job terminated.

BAD LABEL SDA
Unrecognizable label on disk pack read in response to
RPACK control card or a DEVADD type-in; label with wrong
name read in response to RPACK control card. Job terminates
from DEVADD error; otherwise system waits for operator

to assign another disk pack drive, assign same drive with
different pack, or drop job.

60189400 Rev, I

BAD NAME CHECK xxx EDITLIB
Program name xxx from input file is not same as first
program name on ADD, ADDBCD, ADDCOS, or ADDTEXT control
card, If source is running system library, xxx program
not found in directory.

BAD PACK NAME IN REQUEST 5DA
Name on RPACK or REQUEST control card has bad format; or
REMOVE card file name on private pack differs from param-
eter, Job terminates.

BAD TEXT LDR,2LA
Illegal TEXT table entry; relocation code is illegal,

No image is produced.

BCD RECORD FOR ADD IS ILLEGAL EDITLIB

EDITLIB found that the record was in BCD while trying to
do an ADD. Either ADDBCD or ADDTEXT should be used,.

BINARY CARD READ AS FUNCTION CARD EDITLIB
First record on input file must contain all, and only,

control cards for EDITLIB. Card is assumed binary if
character other than letter, digit, blank, or - . , ()

/ * $ appears.

BINARY RECORD MISSING FROM INPUT COPYN

Logical records requested fron system INPUT file must begin
with the next logical record on INPUT file.

BKSP (TAPE) 1TD,1DF
BKSP HIT EOF EDITLIB
BLANK 1BT

1BT was called to write blank label on tape.

BLANK COMMON EXCEEDS AVAILABLE CORE, TRUNCATED LOADER
Puring blank common allocation, no length can exceed FL or

overlap 20-word LOADER residence. No reference is trunca-
ted, only the allocation for core map.

H-4 60189400 Rev.

BLANK PERMANENT FILE NAME PFC,PFA
At least first two characters of permanent file name are
blank,
BLANK TAPE READ 1Rs,1RT,1TF ||
Reading of blank tape caused run away. EOI status is
returned to FET.
BUFFER ARG ERROR 2BP

FET address is not in field length, or buffer parameters
are not within limits;job terminates.

FET(1) + 4 + L < FL, LIMIT < FL,
FIRST= IN < LIMIT, FIRST =O0UT< LIMIT,

BUFFER PARAMETER ERROR 18X

Called by error code 11, Circular buffer pointers in FET
fail to satisfy: O0 = FIRST < LIMIT = FL, FIRST = IN < LIMIT,
FIRST = OUT < LIMIT,

C OPTION DOES NOT START WITH C LDR, 2LA

C must be first character of OVERLAY control card option
which allows user to designate how many words above
blank common overlay should be loaded,

C OPTION NOT LAST PARAMETER LDR, 2LA
Termination character does not follow C option on OVERLAY
card.

C OPTION USED ON OVERLAY (0,0) LDR, 2LA

This option cannot be used on level 0,0 overlay card.

CALL IGNORED, COMMON DECK NOT IN DICTIONARY EDITSYM

*CALL,dn does not name a common deck,

60189400 Rev. K H-5

CALLING ERROR (CKP) CKP

Bit 0 of param is not zero, RECALL bit is not set in call
to CKP, or param list is outside field length. Fatal day-
file message, job terminated.

CANNOT CATALOG OPEN RANDOM FILE PFC

Message is followed by logical file name,
CANNOT COMMON P.F, 1AJ,CTS

CANNOT COMPLETE LOAD, JOB ABORTED LOADER

Intended to correct fatal error conditions in control card
mode when LOADER requests LDR to load library routines,
Since such a request appears to LDR as a user request,
2LE, a fatal error message does not abort, but returns to
LOADER. An error message from 2LE appears before this
message.,

CANNOT COMPLETE THIS OVERLAY, BAD INPUT LOADER

During overlay generation, if LDR encounters difficulty in
loading text or tables, it produces a message such as USER
ERROR, BAD TEXT TABLE. When LOADER attempts to complete
the overlay, the fatal error bit (set by LDR) is detected,
this message is output, and job is terminated. Core map
will contain last good overlay generated,

CANNOT EXTEND OPEN RANDOM FILE PFE

Message is followed by logical file name,

CANNOT LOAD TEXT INTO xxxxxXx LDR

Overlay that first declared labeled common at XXXXXX
has already been written out,

CANT (ADDTEXT) FROM SYSTEM EDITLIB

ADDTEXT reads and formats records into an overlay for
system file. This is not possible if SYSTEM is specified
as the input file. This would require running system as
defined by current CMR directory. A simple ADD can prob-
ably get relevant record from SYSTEM.

H-6 60189400 Rev.

CANT ADD WITHOUT READYING EDITLIB

ADD, ADDBCD, ADDCOS, or ADDTEXT control cards cannot be
executed by EDITLIB unless a file has been named by a
preceding READY card with no intervening COMPLETE card.

CANT ASSIGN xx 4ES

XX = equipment type (0 for any mass storage). Require-
ments for device type, allocation style, or EST ordinal
are not satisfied. Operator should type n.GO or n.DROP.

CANT FIND DIRECTORY RECORDS ON INPUT FILE EDITLIB

EDITLIB cannot locate records that comprise directory on
system file (should be in two records immediately following
DSD); presumably this is not a system file,

CANT GET PACK ASSIGNED 1BT

Disk pack named in a BLANK type-in is eligible to be
blank labeled, but monitor refuses to assign pack to
control point. Report this message to a system analyst,

CANT GET PACK ASSIGNED TO C.P, S5DA

Monitor refused a request to set EST status of a disk pack
to 402n, (n is control point number). Unless system

error occurred, system has assigned pack to another con-
trol point., If RPACK control card was processed, system
waits for operator to drop or re-assign job; otherwise

job terminates.

CANT LIST BETWEEN READY AND COMPLETE EDITLIB
EDITLIB cannot list programs in a file while it or another

file is being constructed (READY card executed more recently
than COMPLETE card).

CANT MOVE WHILE READY PENDING EDITLIB
After READY card is read, location of a program in

running system cannot be changed by MOVE card before
file named in READY is written out by COMPLETE card.

60189400 Rev. K

H-7

CANT SET PACK AVAILABLE 5DA
Monitor refused request to set EST status of disk pack
to 4000. Unless system error occurred, system assigned
pack to another PP before DEVADD type-in was completely
processed., Job terminates.

CANT TRANSFER WITHOUT READYING EDITLIB
EDITLIB can execute TRANSFER card only after file is named
by preceding READY card with no intervening COMPLETE card.

CANT UNLOAD PACK 5DA

Monitor refused request to set EST status of a disk pack
to 4040 because of system error. Job terminates.

CANT UNLOAD PACK AFTERWARDS 1BT
A pack was blank labeled, but monitor refuses to restore
pack status to unloaded. Report this message to system
analyst.

CARD ERROR, CANNOT FIND FILE NAME LDR, 2LA

A control card call for loader does not contain a file name,
or the file name cannot be found.

CARD ERROR, FIELD LENGTH TOO SMALL LDR,2LA
Control card call for loader specified inadequate field
length,

CARDS MISSING FROM OBJECT DECK LDR,2LA

Word count for loader table not satisfied, Word count in
a text table greater than 20 (octal).

H-8 60189400 Rev.

CATALOG 4/5 FULL PFC
Warning to the operator that the permanent file catalog
is 80 per cent full.

CATALOG ATTEMPT ON NON-LOCAL FILE PFC

Message is followed by logical file name,

CATALOG FULL, CYCLE NOT EXTENDED PFC

CATALOG FULL, FILE NOT PERMANENT PFC

Cycle of file specified on preceding line has not been
made permanent because of current catalog condition.

CHECKPOINT xxxx ON 1fn
Specified checkpoint completed on checkpoint dump tape;
informative dayfile message,

CHECKSUM ERROR IN XXXXXXXX
During deadstart loading computed checksum of some
physical record unit did not agree with that appended

to PRU during preloading. Indicates trouble with the
device identified on the display. Deadstart ceases.

CIO CODE NOT DEFINED ON DEVICE CIO

Either function code issued to CIO does not exist, or it
is not applicable to present device,

60189400 Rev. L

CIO ERROR.n 1RI

Followed immediately on console display, system and job
dayfile by ROLLIN ABORTED. 1RI, called by type-in or
roll in, is about to abort a job. If n =1, QROLOUT file
was not at control point, presumably not properly rolled
out. If n =2, 3, or 4, QROLOUT was at control point,
but did not read correctly.

CKP FILE UNKNOWN (RST) RST
FNT does not contain checkpoint file name given to RST at
RA+4. Fatal dayfile message; job terminated.

CKP REQUESTED CKP
CKP has received control from a user call. Informative
dayfile message,

CKP TAPE INVALID (RESTART) | RESTART
Tape supplied was not a checkpoint tape or it was partly
destroyed after checkpoint was taken. Fatal dayfile
message; job terminated.

CKSUM ERROR RC.xxxx, CD.yyyy 2RC
Appears at beginning of OUTPUY file if input card has invalid

checksum and no checksum suppress punch in row 4 of column 1.
Job was terminated as soon as it was brought to a control

point. Record number is decimal xxxx, counting first record
(control card) in file as 0000; card number is decimal yyyy,
counting first card of record as 0001,

CLOSE ILLEGAL ON NON-EXISTENT FILZE CLO

CLOSE request was issued for a non-existent file.

CODED INF EDITLIB

H-10 60189400 Rev,

COMMON DECK EDITING MUST PRECEDE TEXT EDITING

*COMDECK control card occurred after text deck correction
or a *DECK control card. EDITSYM run terminated.

COMMON EQUIPMENT nn ASSIGNED

Local file on a non-allocatable equipment with EST ordinal

nn has been made common.,

COMMON SECTION TOO LARGE

Space available for common decks has been exceeded,

COMPARISON ABANDONED BECAUSE OF E-0-R LEVEL

DIFFERENCE AFTER RECORD n FILE x

LEVEL p FILE y LEVEL q

Message appears on OUTPUT file and run ends if nth pair
of records do not both terminate with same level end-of-
record; level numbers are octal,

((COMPLETE)) FINDS REC.MSG. IN FILE sssssss

Fault in disk file used by EDITLIB; sssssss is a local

file.

CONFLICTING RECORD COUNT EXHAUSTED

Run ends if number specified

in control card is such that

comparison would be abandoned if a higher number of record

pairs were in conflict. For
RECORD n is written for five
card has no sixth parameter,
IN RECORD n has been written

60189400 Rev. J

instance, if CONFLICT IN
pairs of records and control
run terminates after CONFLICT
30000 times,

EDITSYM

1AJ,CTS

EDITSYM

COMPARE

EDITLIB

COMPARE

CONFLICT IN RECORD n COMPARE

nth pair of records are not identical, word-for-word.

When one record is longer, a separate message appears.
Depending on parameters, this message may be followed by

a listing of some or all words which differ. For example:
0020,00000000000000000000/00000000000000000001, The

17th word (octal 20) of record n of first file named

on COMPARE control card was 0 and the corresponding word in
the second file named is 1, First word of record

would be 00000, Words are printed as 20 octal digits

each. Comparison continues after message.

CONTROL CARD ERROR COMPARE
Console display, system and job dayfile. COMPARE
control card contains fewer than 2 parameters or
parameter required to be a number, implied by fewer
than 2, contains a non-numerical character. Job
terminated.

CONTROL CARD ERROR COPYBCD
Console, system and job dayfiles if parameter that

begins with digit contains non-digit character,

CONTROL CARD ERROR 1AJ
COPYBF
Job terminated; card display immediately precedes
this message.
CONTROL CARD ERROR, NO CKPFILE (RESTART) RESTART
RESTART card has two numbers instead of a number and file
name, Job terminated.

CONTROL CARD ERROR, NUMBER ERR (RESTART) RESTART

Checkpoint number must be unsigned decimal integer greater
than zero. Job terminated.

H-12 : 60189400 Rev. I

CONTROL CARD ERROR PARAM CNT (RESTART) RESTART

More than two parameters on RESTART card., Job terminated.

CONTROL CARD REWIND (INPUT) IS ILLEGAL COPYN

System INPUT cannot be rewound.

CONTROL POINT ABORTED } 1LT

Operation error was detected and FNT was not full,

jobnameCONTROL POINT DROPPED 1EJ

System job named jobname was dropped and control point
cleared in response to n.DROP. or n.KILL.

CONTROL POINT ERROR 1LT

Control point error detected following storage relocations.

CONTROL POINT IN USE 1LT

LOAD or LOADX was called to an occupied control point,

CONTROL POINT OCCUPIED 1DF

Operator tried to dump dayfile from occupied control
point; control point must be vacant (have no job name),

COPY REQUESTED BUT NO OLD PROGRAM LIBRARY EDITSYM

*COPY read from correction input but no old program library
requested on EDITSYM call card. Run terminated.

COPYBCD (DAYFILE,TAPE) 1DF

COPYBCD (xxxxxx,TAPE) 1TD

COPYL DID NOT FIND XxXXXXXX. COPYL

COPYL DONE COPYL

COPYLAB INCORRECT COPYCR,COPYCF,

COPYBR,COPYBF

60189400 Rev. K H-13

CORE OVERFLOW UPDATE
Cos EDITLIB
CP xxxxxx.xxx SEC 1EJ

Central processor running time for job.

CPnn COMPARE ERROR 2PC
Console and system dayfile., Card punch with nn EST
ordinal mispunched a card. Operator action not re-
quired, as punch offsets bad card and one after it and
repunches both cards.,

CPnn NOT READY 2PC

Displayed on console only. Card punch unit with nn EST
ordinal is not ready; when ready; punching begins,

CPnn REJECT 2PC
Displayed on console when card punch with nn EST ordinal
rejects a function code. No operator action.

CP 00000, 000 SEC 1AJ

CPnn XMSN PARITY ERROR 2PC
Console and system dayfile when card punch with nn EST

ordinal finds a function transmission parity error. No
operator action,

CP PROG EDITLIB

H-14 60189400 Rev. I

CRnn CKSUM ERROR RC.xxxx, CD.yyyy 2RC

System and job dayfiles., User local file assigned to
reader with nn EST ordinal contains binary card with bad
checksum and no checksum suppress punch in row 4 of column
1. Job terminated. Record number is decimal xxxx, count-
ing first record as 0000, Card number is decimal yyyy,
counting first card of record as 0001,

CRnn COMPARE ERROR 2RC

System dayfile and console display; on display, it is
followed by CR nn RE-READ LAST CARD. Card reader with
nn EST ordinal misread last card in output stack and
stopped.

CRnn FORMAT ERROR RC.xxxx, CD.yyyy 2RC

System and job dayfiles. User local file assigned to card
reader with nn EST ORDINAL CONTAINs 7-9 card, presumably
binary, with unrecognizable format, and not included in
cards for 80-column binary reading. Job terminated. Record
number is decimal xxxx, counting first record in the file
as 0000; card number is decimal yyyy, counting first card
record as 0001,

CRnn FUNC XMSN PARITY ERROR 2RC

Console and system dayfile, Card reader with nn EST
ordinal found function code parity error., No operator
action,

CRnn HOLL.CHECK RC.xxxx, CD.yyyy 2RC

System and job dayfiles, User local file assigned to

card reader with nn EST ordinal contains a card without
7-9 in column 1, presumably Hollerith, with invalid punch
combination in at least one column., It was read as a
blank column., Record number is decimal xxxx, counting
first record in file as 0000; card number is decimal yyyy,
counting first card of record as 0001,

60189400 Rev, I H-15

' CRnn MODE CHANGE RC.xxxX, CD.yyyy 2RC

System and job dayfiles., User local file assigned to
card reader with nn EST ordinal had mixed cards (binary,
Hollerith, 80-column) in a single record, Record number
is decimal xxxx, counting first record as 0000; first
change of type occurred at card number yyyy decimal,
counting first card as 0001,

CRnn NOT READY o 2RC

Displayed on console only, Card reader with nn EST ordinal
is not ready, When ready, cards are read.

CRnn REJECT 2RC

5

: §
Console and system dayfile, Card reader with nn EST
ordinal rejected a function code. No operator action.

CRnn RE-READ LAST CARD . 2RC

Displayed on console when CRnn COMPARE ERROR is sent to
system dayfile, Card reader with nn EST ordinal misread
last card in output stack and stopped. Operator should
back up any card waiting in the reader, back up last card
in output stack to head of input queue, and press CLEAR
MEMORY and START on the reader. Reading will continue.

H-16 60189400 Rev. K

CRnn RE-READ 2 CARDS, TYPE GO.

Follows CRnn 6681 XMSN PARITY ERROR. nn is card reader
in octal. Both messages are written on
system dayfile, but only this one will persist on console
Operator should back up the card waiting in the
reader, move last two cards in output stack back to head

EST ordinal,

display.

of input queue,
point number),

CRnn SERIAL CHK,RC.xxxx,

System and job dayfiles.
card reader with nn EST ordinal has at least one binary

card out of sequence.

and type n.GO. (n is relevant control
Card reading will resume,

CD.yyyy

User local file assigned to

Record number is decimal xXxx,

counting first record of file as 0000; position of first

card in record is yyyy,

0001,

CRnn 6681 XMSN PARITY ERROR

counting first card in record as

System dayfile and console display; followed by CRnn
RE-READ 2 CARDS, TYPE GO,
parity error between the 6681 and card reader with
nn EST ordinal,

CTS CALL ON PROTECTED FILE

Indicates a transmission

User tried to make COMMON a system file. Job terminated.

60189400 Rev,

J

2RC.

2RC

2RC

CTS

CYCLE xx, pfn LPF,LOADPF
Permanent file pfn cycle xx is being loaded,
CYCLE xx pfn LPF,PFC,PFE,
PFP,PFA
Permanent file pfn cycle number xx. If xx is **, cycle
has not yet been determined by system or is in error.
CYCLE HAS BEEN DUMPED PFA
Cycle of permanent file on preceding line was dumped
by DUMPF routine but not released,
CYCLE INCOMPLETE PFA
Cycle indicated on preceding line is incomplete because
another control point is cataloging it, or a job termin-
ated while cataloging. For the latter, initial deadstart
required to reload all files,
CYCLE NOT IN SYSTEM PFE,PFP,PFA
Requested cycle of permanent file specified in preceding
line not presently cataloged.

CYCLE SUCCESSFULLY PURGED LPF,PFP

Requested cycle of permanent file specified in preceding
line has been purged; other cycles still remain.

DAYFILE 1DF
DAYFILE DUMPED 1DF
DEBUG CARD OUT OF ORDER 1AJ

Issued if DEBUG card appears after TRACE or SNAP cards
during load. Job terminated.

H-18 60189400 Rev. I

DECK DOES NOT END WITH *END EDITSYM

Text deck ended, but no *END card appeared. Run terminated.

DECK -NOT ON OLD PROGRAM LIBRARY EDITSYM
Deck specified by *EDIT or *COPY card is not on old
program library. Run terminated.
DECK STRUCTURE CHANGED UPDATE
((DEL)) EXHAUSTS PNT BEFORE SATISFACTION EDITLIB

*DELETE (P1-P2) card used, but P2 parameter does not appear
after Pl in program name table,

jobname DELETED FROM QUEUE, PARITY ERROR XXXRESQ

Parity error detected when restoring a job; job named will
be deleted; job in question should be rerun.

DELETION EDITSYM
DEVICE LOST DATA

Lost data status detected during deadstart preloading,
Deadstart again.

DEVICE NOT AVAILABLE 4ES

Result of operator decision to drop a job in answer to
CANT ASSIGN xx message.

DEVICE REJECT
Device rejected during deadstart preloading. Deadstart
again,
DIAG. SEQ. ALREADY ON, APR

Result of console entry SEQ,ON.
DIAG. SEQ. HAS NO SUCH JOB. APR

Result of console entry SEQ,RUN,nn. Sequencer does not
contain job nn,

60189400 Rev. K

DIAG. SEQ. IS ON.

Result of console entry SEQ,ON.

DIAG. SEQ. JOB nn CONTAINS CU1l. FST. ALS, MYl. CM6. CT3

APR

APR

Result of keyboard entry SEQ,LIST,nn. None, some, or all

diagnostics may appear in the list,

DIGITS IS NOT OCTAL

DIRECTORY ALMOST FULL

LDR,2LA

LPF

Warning that permanent file directory is 80 percent full.

DIRECTORY IS 4/5 FULL

Warning that the permanent file directory is 80 percent
full,

DIRECTORY FULL, FILE NOT PERMANENT

File specified on preceding line was not made permanent
because directory is full.

DIRECTORY UNDER CONSTRUCTION GETS TCO BIG - TOO MUCH
CM RESIDENCE

Directory to replace SCOPE system directory in central
memory exceeds field length of EDITLIB control point,
30000 (octal) words. Too many programs are assigned to

CM residence. Trv EDITLIB again with LENGTH(n) as first

PFC

PFC

EDITLIB

control card; n is 4-9, for 46000 (octal), 110000 (octal)

words.,
DISK PARITY ERROR

. Parity error encountered when loading from disk;
loading terminates.

H-20

60189400

Rev.

I

DOUBLE EOF WAS FOUND BEFORE A / COPYN

DMP

DPF

DPF

DPF

DPF

DPF

Double EOF encountered before zero length record was
copied,

ARG ERROR DMP

Console, system and job dayfiles, Starting address for
CM dumps greater than final address or relative to RA,
rather than absolute, and final address greater than
field length,

ABORT - NO ENTRY IN FNT FOR 0SD0OO DPF

Dump routine called into system that does not define
permanent file system,

ABORT - NO RBTC ENTRY IN FNT DPF

Dump routine called into system that does not define
permanent file system RBTC file,

ABORT - SYSTEM ERROR NO., xx DPF

DPF found a dump or permanent file manager system error,
xx interpreted:

1 Bad address for CM write.

2 APF pointer does not point within PFD chain,

3 Bad RBT chain word; no RB pointer after header
information.

CM write beyond LIMIT of tape buffer.

PFD pointer does not point to PFD header word.
RBTC pointer in PFD does not point to correct

RBTC entry.

v

ABORT - UNIT SPECIFIED NON-ALLOCATABLE DPF

EST ordinal in dump control card points to non-allocatable
device, Permanent files are only on allocatable devices,

ABORT - UNIT SPECIFIED = ECS DPF

EST ordinal specified on dump control card points to ECS,
Permanent files cannot be assigned to ECS,

60189400 Rev, I

DPF NOT CALLED BY DUMP ROUTINE DPF

PP program DPF called to a control point not attached to
DUM, dump permanent file.

DPF STOPPED BY SYSTEM DPF

Error flag on in control point area.

DPF STOPPED - FULL AND UNIT DUMPS RUNNING TOGETHER DPF

Full dump conflicts with a copy of a unit dump. Unit
dump is terminated.

DPF STOPPED - PARITY ERROR ON DUMF TAPE DPF

Parity error on dump tape; tape was positioned to end of
previous file dumped. DPF called to terminate dump program.

DUMPING pfn DUMPF

pfn is permanent file name of job being dumped.

DUMPF ABORT - IO ERROR RETURN DUMPF

1/0 error code other than parity error caused dump program
to terminate.

DUMPF - BAD TAPE - MOUNT ANOTHER TAPE DUMPF
Parity error during OPEN. Bad tape will be unloaded by

system. OPEN will be issued by system after operator
mounts new tape,

DUMPF FINISHED DUMPF

H-22 60189400 Rev,

I

DUMPF - PARITY ERROR ON CLOSE - DUMP RISKY
Two attempts to close dump tape failed because of parity
errors, Status of last file on dump tape is questionable;
reloading of this dump tape is risky.

DUMPF - PARITY ERROR ON DISC PF NAME - pfn DUMPF
Disk parity error while copying permanent file pfn;
copying continues.

DUMPF - PARITY ERR WHILE IN OWNCODE DUMPF
Dump program found a second parity error while trying to
reposition tape back to previous file because of first
parity error.

DUMPF SIMULATE EOT DUE TO PARITY ERROR DUMPF
Parity error on dump tape, System will issue request to
close reel to simulate end-of-tape and issue open reel
for new tape. Dump program will then continue to
copy file.

DUP COMMON FILES OF XXXXXXX 1AJ
Local and common file in FNT named (xXXxXXXX) same as on
COMMON card. Job terminated with control card error,

DUPLICATE CYCLE PFC

Cycle of permanent file specified on preceding line already

exists.
DUPLICATE ENTRY POINT xXxXXXXX LOADER
DUPLICATE FILE NAME 5DA,REQ

Job terminated because name of file at control point was
duplicated in label of a private pack being attached as

a result of RPACK control card or in parameter of REQUEST
control card,

DUPLICATE FILE NAME (RESTART) RESTART

The requested tape is already assigned to this control
point. Job aborts. ’

60189400 Rev. K

DUPLICATE PACK NAME 5DA

Pack name on RPACK control carc same as a pack name already
at that control point, Job terminated.

ECS EST BAD, CANNOT CONTINUE IRCP

ECS EST is improperly defined on deadstart tape., Deadstart
with another tape.

ECS PARITY ERROR 1EJ
ECS parity error during a system storage move terminated

job. Job may be active at a control point or in job
initialization phase requesting storage at a control point,

ECS PARITY, RESTART AND OFF ECS IRCP

Parity error detected in first 100 (octal) words of ECS.
Operator should deadstart again, OFF ECS, and continue.
Notify customer engineer of this message,

ECS READ ERROR (CKP) CKP

Irrecoverable parity error or error hang encountered
while trying to read ECS. Job terminated.

ECS WRITE ERROR (RESTART) RESTART
[rrecoverable parity error or error hang encountered while
trying to write ECS. Job terminated.

EDIT CONTROL CARD SET MUST BE FOLLOWED BY A *EDIT CARD EDITSYM

*INSERT, *DELETE, *ADD, *CANCEL, or *RESTORE control caxrd
sets follow *DECK, *COMDECK, *COPY, *WEOR instead of a
*EDIT card. Run terminated.

EDITION EDITSYM

EDITLIB-CTS FAULT IN INITIALIZING COMMON FILES EDITLIB

Program fault in EDITLIB, or CTS that is not expected.

H=24 60189400 Rev.

EDITLIB PROG.FAULT IN SUBRT.MAKE

EDITLIB is trying to ADD a record which begins like a
binary CP program, but is badly formatted. Such a
binary program must be organized in tables, and EDITLIB
checks organization to get entry point names, If record

EDITLIB

appears to end in middle of a table, this message is issued,

EDITLIB PROGRAM FAULT I SUBRT,SQB
EDITSYM CONTROL CARDS
EDITSYM ERRORS

Dayfile message.

EDITSYM LIST

*********END OF FILE*********

EOF was read on 1fn specified by a *CATALOG,l1fn control
card,

END OF FILE IMPROPERLY READ ON INPUT FILE
Transfer card directed copying one or more records from
input file to system file, End-of-file was read before
all records were found.

END-OF-INFO ON FILE x AS RECORD y
Program compared y-1 pairs of records from two files but
read end-of-information on x file before specified number
of record pairs was reached. Written on job output file,
and run terminated,

END OF REEL - MOUNT NEXT REEL AND TYPE GO

Instruction to operator during deadstart preloading of
system,

60189400 Rev, I

EDITLIB

EDITSYM

EDITSYM

EDITSYM

EDITSYM

EDITLIB

COMPARE

ENTER DATE mm/dd/yy
Appears at deadstart time., Operator must type in
current date in specified format before beginning
operation.
EQOF TAPE MARK READ AT OPEN 1MF
End-of-file tape mark read while positioning logical byte

on multifile tape.

EOF/EOI DETECTED COPYCR,COPYCF,
COPYBR,COPYBF
End-of-file encountered before record count on control
card was exhausted, or end-of-information was encountered
before file count was exhausted.
EOR APPEARS BEFORE *END IN *DECK ADDTION EDITSYM

EOR read before *END in *DECK addition. Run terminated,

EOR REQUESTED BUT COMPILE FILE NOT REQUESTED EDITSYM
*WEOR read, but compile file not requested on EDITSYM
call card. Run terminated.

EPF ABORT - NO ENTRY IN FNT FOR 0SD00O EPF

AUDIT routine called into system that does not define
directory header permanent file.

EPF ABORT - NO RBTC ENTRY IN FNT EPF

AUDIT routine called into a system that does not define
permanent file system RBTC file.

H-26 60189400 Rev., I

EPF ABORT - NO. OF RBRS EXCEEDS RBRWD BY xx EPF

Number of record block reservation table entries in
system exceeds CM array size in AUDIT routine by xx
words, CM array must be large enough to contain first
RBR header word for each record block reservation table

entry.

EPF ABORT - SYSTEM ERROR NO., xx EPF
AUDIT routine or permanent file manager system error,
xx = 1, indicates bad address for central memory write,.

EQ xx NOT READY 2LP

EQ xx REJECT 2LP,1SX

(1) Card reader connect function is rejected. (2) Equip-
ment cannot be connected., Compare xx entry with installation
equipment select code, If possible, change equipment or unit
select code; otherwise drop the control point.
EQ xx RESERVED 2LP
EQ xx XMSN PARITY ERROR 1LP,2LP
Transmission parity error during card reader connect
function,
EQUIPMENT IS PHYSICALLY UNAVAILABLE REQ
Requested equipment does not exist in system, is logically
off, or is already assigned to this job.

EQUIPMENT OFF - REASSIGN REQ

A1l equipment of the type assigned in DEVTYPE type-in
is off. REQ waits for new assignment.

60189400 Rev, I

ERROR CONDITION NOT CLEARED LAST REQUEST CIo

Previous I/0 operation terminated abnormally, error

processing bit was set, but error number was not cleared
in FET.

ERROR IN ABS OVERLAY FILE FORMAT LDR,2LA

Identification code of subroutine does not equal 50B.

ERROR IN FL (1RC) 1RC

Field length not large enough to accommodate memory dump.
Fatal dayfile message; job terminated.

ERROR IN LOADING LOADER LOD

LOADER routine has been destroyed on system.

ERROR IN PARAD (1RC) 1RC

Address of parameter list is outside tield length. Fatal
dayfile message; job terminated.

ERROR MODE = x. ADDRESS = XXXXXX 1EJ
Program terminated because of address or operand error.
If x = 0, program attempted to jump to location 0 when address
=0; or an attempt was made to execute an invalid instruction.

ERROR ON TRACE OR SNAP CARD DEBUG

Parameter errors on TRACE/SNAP card or no parameters. In
latter case, job terminated.

ERROR ON TRACE xxxxxxx CARD TRACE

Error on TRACE card with xxxxxxx ID.

H-28 60189400 Rev.

EST

EST

ORDINAL OUT OF RANGE 1BT

EST ordinal specified by BLANK type-in exceeds table
length.

ORDINAL TOO HIGH 5DA

EST ordinal specified by a DEVADD, UNLOAD, or ASSIGN type-

in exceeds table length, When ASSIGN was a response to RPACK
control card, system waits for operator to drop job or

try another assignment, Otherwise, job terminated,

EVICT NOT ALLOWED ON PERMANENT FILES 4ES

EXTEND PERMISSION NOT SET FOR WRITE ON P.F. 4ES

FET

Correct password for receiving permission to extend
permanent file was not on ATTACH card.

LESS THAN 7 WORDS, xxxXXxx IMT
On attempt to read or write an L tape FET at xxxxxx is

less than 7 words. Request is terminated with message
DEVICE CAPACITY EXCEEDED, and no data is transferred.

FD-ALL CYCLES FULL LPF

Full reload, no spare cycles available for this file,
File is skipped.

FD-CYCLE ALREADY IN PFD LPF

Full reload-cycle already exists in system., File is
skipped.

FD-FILE ASSIGNED TO ANOTHER DEVICE LPF

FDB

Full reload-allocation type not available on original
device.

ADDRESS INVALID PFC,PFA,

PFP,PFE

60189400 Rev., I

FET MULTI-FILE POSITION INVALID 1IMF

Specified position number is less than first position
number on first reel of file.

FET OUTSIDE FL CIO
Address of file environment table outside user field
length,.

FIELD GREATER THAN 80 CHARACTERS LDR,2LA

Loader directive improperly implemented.

FIELD LENGTH NOT SUFFICIENT FOR OVERLAY GENERATION LOADER

Minimum field length is 26000 (octal) for the loader
plus sufficient additional length to accommodate loader
tables and core map,

FIELD IS NON NUMERIC ILLEGAL TEXT CARD COPYN
FILE ALREADY AT THIS CPT PFA
FILE DEVICE NOT ALLOCATABLE IORANDM

Console, system and job dayfiles. TIORANDM was called to
read or write beginning of random access record; but file
is assigned to non-allocatable equipment, Job terminated,

FILE EXTENDED PFE

Permanent file indicated on preceding line has been
extended.

FILE HAS BEEN ATTACHED PFA

Cycle of permanent file indicated on preceding line has
been attached,

H-30 60189400 Rev.

FILE HAS BEEN CATALOGED AS CYCLE xx, pfn IN SD xxx PFC

Signifies successful cataloging of a permanent file giving
cycle, permanent file name, and subdirectory.

FILE IN SUBDIRECTORY xxx LPF

FILE NAME ERROR 2BP

Name in FET does not start with a letter or all characters
are not alphanumeric.

FILE NAME ERROR ON EDITSYM CALL CARD EDITSYM

Parameter error on EDITSYM call card. The first character
must be alphabetic, Job tzrminated,

FILE NAME NOT FOUND 1LT

1LT did not find TAPE in the FNT; can occur only when
external tape is used.

FILE NAME OR SL ILLEGAL OVERLOG

Bad load sequence parameter list entry. 1fn = zero or
S{ non-zero,

FILE NAME TOO BIG (RESTART)’ RESTART

File name on RESTART card exceeds seven characters., Fatal
dayfile message; job terminated.

FILE NAME ON UPDATE CARD GR 7 CHAR, UPDATE ABORTED UPDATE
FILE NOT FOUND

System cannot find file specified in ENPR or EVICT type-in,

FILE NOT IN SYSTEM PFA

Permanent file specified on the preceding line not known
to systemn,

FILE NOT IN USERS FL CTS
Address of request word is outside user's field length, Job

terminated.

FILE NOT ON MASS STORAGE DEVICE pfn PFC

60189400 Rev. L H-31

FILE NOT ON PRIVATE PACK S5DA
A REMOVE control card named a file at control point, but
file was not assigned to a private pack. Job terminated.

FILE NOT OPEN FOR WRITE CIO

Write attempted on a file opened for READ ONLY.

FILE x RECORD y HAS PHYS., REC. LONGER THAN 1024 WORDS COMPARE

Appears on job output file. lun ends when record y on
file x contains too long PRU., Condition is detected by
a PP program (not by COMPARE). Limit accepted by PP
program is probably 512 words; but COMPARE buffer limit
is 1024 words,

FILE xxxxxx RECORD xxxxxx HAS PHYS, REC. LONGER THAN COMPARE
1024 WORDS
FILE RECORDS NOT NAMED IORANDM

Console, system and job dayfiles. TIORANDM called to read
or write beginning of random access record, identified by
record name, If record was first written by number it must
be addressed by number. Job terminated.

FILE SUCCESSFULLY PURGED PFD

Last cycle of a file has been purged.

FILE VACUOUS LDR,2LA

Input file initially positioned at EOF mark. Job terminated,

H-32 60189400 Rev.

FIXED PRIORITY JOB jobname WAITING FOR STORAGE 1RA

Storage not sufficient to bring this job to control
point. Message appears on B display at a NEXT control
point,

FL TOO SMALL FOR LOADER LOD

A minimum of about 4000 (octal) CM words is required for
CM LOADER and a small relocatable program.

FNT FULL 1EJ

Output file cannot be created as FNT is full, Loop
will continue until empty entry is found.

FNT IS FULL REQ

REQ cannot assign requested file, as FNT is full, It
will loop until it finds an empty entry.

FNT NAME ERROR (1RC) _ 1RC

Memory dump file name not correct. Fatal dayfile message;
job terminated,

FORMAT ERROR RC.,xxxx, CD.yyyy 2RC

Appears at beginning of job output if a 7-9 card, presumably
binary, has no recognizable format and is not included in a
group of cards for 80- column binary reading. Job termin-
ated as soon as it was brought to a control point, Record
number in input file is decimal xxxx, counting first (control
card) record as 0000; the card number is decimal yyyy, count-
ing first card of record as 0001,

FORMATS INCOMPATIBLE***COPY UNCERTAIN*** COPYCR,COPYCF
COPYBR,COPYBF
Tape formats selected for input/output files can cause
a possible loss of data significance. Job continues,

FOURTH PARAMETER SHOULD BE "B" OR '"C" SKIPF,
SKIPB
Control card did not indicate B for binary or C for coded
file.

60189400 Rev. I

2

FWA-LWA ERROR 10
Console, system and job dayfile. READIN or WRITOUT
macro is being executed; workspace, according to sixth
word of FET, has a negative length, Job terminated.

GOOD COMPARE COMPARE
Console display, system and job dayfiles just before run
ends. COMPARE executed with no discrepancies found.

HDR REC MISSING ON FILE INCORRECTLY POSITIONED 1IMR
Labeled tape file missing header or file may be improperly
positioned to call OPEN.

HOLL. CHECK RC.xxxx, CD.yyyy 2RC
Appears at the beginning of job output file if an input
card did not contain 7-9 in column 1 and at least one
column contained an invalid punch combination. Record
number is decimal xxxx, counting first (control card)
record as 0000; card number is decimal yyyy, counting
first card of record as 0001.

IID NAME NOT IN INPUT FILES SEARCHED COPYN

Either P1 or P2 cannot be located by the COPYN routine.

ILLEGAL ADDRESS REQUEST TO APR APR
The address xxxxxx in an APR 5 or APR 10 call is

out of range for the control peint. APR will abort
the control point.

ILLEGAL COPYL PARAMETER COPYL
ILLEGAL DEVICE TYPE SPECIFIED OPE

Specified device not found in table of valid types.

H~34 60189400 Rev.

ILLEGAL DIAG. SEQ. PARAMETER APR

Diagnostic sequencer received unacceptable parameter for
console entry or program call card.

ILLEGAL ENTRY

Execution of command typed is illegal.

ILLEGAL EOF EDITSYM

EOF appears before EOR in common section. Run terminated.

ILLEGAL EOR OR EOF EDITSYM
EOR or EOF appears before *END in copying a deck, Run
terminated.

ILLEGAL EQUIPMENT REQUEST 1DF
Operator did not request MT, CP, or LP on a request to
dump dayfile.

ILLEGAL FILE NAME CIO
File name has embedded blanks, does not begin with
alphanumeric character, or is longer than 7 characters.

ILLEGAL FUNCTION LFN CLO
Function code in FET is not processed by CLO,

ILLEGAL FUNCTION CODE CIOo
Function code in FET not allowed for assigned device, file

is closed, or a read was requested immediately following a
write on a sequential device.

ILLEGAL LEVEL NUMBER SKIPF,SKIPB

ILLEGAL PARAM OPTION COPYCR,COPYCF,
COPYBR,COPYBF
Illegal parameter on *COPYLAB control card.

60189400 Rev, J H-35

ILLEGAL PRU COUNT AT OPEN REEL OPE

PRU count not zero or minus at call to OPEN REEL rewind,

ILLEGAL RECATALCG ATTEMPT pfn PFC

File specified is already permanent,

ILLEGAL REQ FUNCTION REQ

The REQ routine was called by a central program without
auto-recall, with a non-zero status, or with an EST
ordinal not in range of EST tszble,

ILLEGAL REQUEST 4ES
1, Function code is illegal on allocatable device.
2. Erroneous disk address specified for a random read.
3. Read with release issued on a random file.
4. Device type is unrecognizable.

ILLEGAL REQUEST FUNCTION (RESTART) RESTART

An error occurred when RESTART attempted to request a
tape. Job aborts.

ILLEGAL SEQUENCE NUMBER ON EDITSYM CONTROL CARD EDITSYM

Sequence number contains alphabetic or special character.

ILLEGAL TERMINATOR 1DF

Operator did not use period to end dayfile dump request.

IMPROPER UPDATE PARAMETER,UPDATE ABORTED UPDATE
INCORRECT DUMP TAPE MOUNTED LOADPF
INCORRECT IDENTIFIER, START OVER IRCP

Message to operator during ECS deadstart.

INCORRECT OPERATOR ACTION

H-36 60189400 Rev.

K

INCORRECT OPERATOR ASSIGNMENT
Assigned equipment does not match type requested; operator
should re-assign correct type.

INDEX ADDRESS NOT SPECIFIED ON RANDOM FILE

INDEX ADDRESS NOT IN FIELD LENGTH

INDEX BUFFER PARAMETER ERROR
FET index address not specified,or outside user field
length, or FET not long enough. CLOSE request for
random file could not be processed,.

INDEX FULL AT OPEN

INDEX LENGTH + INDEX ADDRESS .GT. FL

INPUT FILE ENDED BEFORE ((ADD)) CARD SATISFIED
EDITLIB is trying to execute ADD, ADDBCD, ADDCOS, or
ADDTEXT; input file ended before last or only program
named in control card was found.

INPUT FILE ENDED PREMATURELY
EOR appears before *END in a *COMDECK addition. Run
terminated,

INPUT REC., FOR ((ADDBCD)) HAS IMPROPER NAME CARD
EDITLIB is trying to add record to system file, Input
record does not begin with Hollerith card containing
record name starting in column 1, or the name is not
acceptable,

INPUT REC. MISPREFIXED FOR ((TRANSFER))
EDITLIB is trying to copy records from input file to new
system file. TRANSFER card specified program name and
input record had no prefix or a prefix contained different

name, or control card did not specify a program name but
input record did have prefix.

60189400 Rev., I

REQ

OPE
OPE

CLO

OPE
OPE

EDITLIB

EDITSYM

EDITLIB

EDITLIB

INSUFFICIENT FIELD LENGTH

A program call card initiated the load of a 0,0 overlay,
but there was not enough field length to load it. The
job is terminated.

INVALID CYCLE

Cycle number requested for permanent file specified in
previous line is invalid.

INVALID CHARACTER

Illegal character on a loader directive card.

INVALID CONTROL CARD

Program call card for a PP program did not meet all
requirements. Program name must begin with letter,
cannot exceed three characters; no more than two
parameters allowed,

INVALID DEVICE TYPE FOR OPEN ALTER

Non-allocatable device type specified.

INVALID DEVICE TYPE FOR OPEN READ

Used for line printer, card punch, etc.

INVALID DEVICE TYPE FOR OPEN WRITE

Used for card reader,

INVALID FET ADDRESS NxxxXx

1AJ

PFC,PFA

LDR,2LA

LOD

OPE

OPE

OPE

2CA

60189400

Rev,

I

INVALID L CHAR COPYCR,COPYCF,

COPYBR,COPYBF
Fourth parameter on a copy control card can be L only;
signifies presence of a label card.
INVALID LOADER DIRECTIVE PFC, PFA

First seven characters on a loader directive card do not
match any of following: SEGZERO, SECTION, SEGMENT, OVERLAY.

INVALID OPEN PARAMETER OPE

Z parameter not recognizable.

INVALID OVERLAY - LEVEL OR FWA 1AJ
Program call card initiated overlay load not of level

0,0 or first word address was not 100(octal). Job
terminated.

INVALID PRIVACY PROCEDURE PFC, PFA

INVALID RECORD READ 1IMEF

Invalid record where label was expected while positioning
multifile tape.

INVALID REQUEST TO CPC CpC

Bits 54-59 of request word are 0, so it cannot contain
PP program name in bits 42-59., Bits 42-59 can contain
only number below 00010 (octal) as part of file action
macro. Console, system and job dayfiles. Job terminated.

INVALID STACK ENTRY 18X

Called by error code 22 (octal). Request stack entry
contains an undefined order code or an out-of-range RBT
address, or points to an FNT/FST that contains an out-
of-range RBT address.

60189400 Rev. K H-39

1/0

1/0

1/0

ERROR (CKP) CKP

An I1/0 error other than redundant OPEN or CLOSE on any
file., Fatal dayfile message; job is terminated.

ERROR (1RC) 1RC
Any I/0 error on any file. Fatal dayfile message; job

is aborted.

ERROR

DEVICE REJECT

1/0

During deadstart loading a device reject occurred while
reading from device identified on display. Deadstart
ceases.,

ERROR

PARITY ERROR OR LOST DATA

1/0
RMS

JOB

JOB

H-40

During deadstart loading, parity error or lost data
error occurred while reading from device identified on
the display. Deadstart ceases,

ERROR

DRIVER OVERLAY NOT FOUND

Driver overlay for device identified on display could

not be found during deadstart loading. Deadstart ceases.

CARD ERROR 1EJ
Job terminated because of incorrect job card; 20 characters
from card are displayed after message.

HUNG IN AUTO-RECALL 1EJ

This job terminated because completion bit was not set
and there was no activity at control point.

60189400

Rev,

I

JOB

JOB

JOB

JOB

KILLED 1EJ
The operator typed in n,KILL, for the job. This message

will appear only in the system dayfile since the output

file for the job is dropped.

PRE-ABORTED 2RC,1EJ
Appears at beginning of job output file if input card

caused CHSUM ERROR RC.xxxx, CD.yyyy or FORMAT ERROR

RC.xxxx, CD.yyyy. Job terminated when brought to control
point.

RERUN 1EJ
Appears in first of two dayfiles for a job rerun (operator
typed in n,RERUN,)

WAS RERUN 1RA

Message appears in second dayfile of job rerun by operator.

LABEL MISSING ON DECLARED LABELED TAPE UNIT xx 1MR

LABELED TAPE NOT DECLARED ON MULTIFILE OPE

Multifile request entry did not contain label parameter,

LEVEL NUMBER GREATER THAN 17B or 15D SKIPF,SKIPB

Third parameter on a skip control card exceeded 17 (octal)
or 15 (decimal).

LEVELS NOT PERMITTED IN STANDARD CALL LOADER

LFN

If S and V bits are not ON in user call, load is interpreted

as normal, If L1 and L2 are nonzero, it may have been over-
lay or segment call but appropriate bit is missing. Processing
continues as for normal load.

ALREADY IN USE PFA

Logical file name on next message line is already in use
at this control point,

60189400 Rev, I

LFN GREATER THAN 7 CHARACTERS SKIPF,SKIPB

Logical file name parameter of a skip control card is too long.

LIST OF PROGRAMS IN FILE EDITLIB
LOAD 1LT

1LT called to load jobs from standard SCOPE 3 tape.

lLOADER BY THIS NAME NOT IN SYSTEM. 1AJ

User request or control card selected loader but format
or name was illegal.

LOADER CONTROL CARD OUT OF SEQUENCE LOD

NOGO or EXECUTE card before LOAD card.

LOADER NOT FOUND IN LIBRARY LOD

CM LOADER not found in library directory.

LOADER TABLES GARBAGE, OR OVERLAY SEQ ERROR LOADER

LOADER tables are threaded in a list below LOADER in CM.
If tables are destroyed by user program (in normal mode
only) and job terminates or secondary overlay is attempted
without first generating corresponding primary overlay (of
zero level), THREAD routine cannot execute properly.

LOADER, xxxx ERROR FLAG SET. LDR,2LA
Precedes all error messages issued by LDR or 2LA, (2LE

overlay is called to issue message). xxxx is FATAL or
NON-FATAL.

LOADPE ABORTED - SYSTEM ERROR xx LOADPF
LOADPF

LOADPF FINISHED

H-42 60189400 Rev. L

LOADX

LOC

LOD

1LT called to load jobs from external tape.

ARG ERROR

Incorrect parameter, such as last word address greater
than field length.

SYSTEM WAIT

To load LOADER from disk, LOD references FNT/FST entry
for file SYSTEM (SSSSSSU if LOADER was modified by
EDITLIB). If SYSTEM or SSSSSSU is associated with con-
trol point other than zero, EDITLIB is modifying system.
LOD displays message and pauses until file returns to
control point zero. This message can occur only when CM
LOADER is disk resident,

60189400 Rev. K

1LT

LOC

LOD

LOD CANNOT FIND SYSTEM IN FNT

If program declares SYSTEM as common file,
assignment of SYSTEM changes.
when CM LOADER is read from disk.
with correct FNT entry,

point zero is verified.

LOST FILE (CY1)

FNT entry not defined by RESTART.

job terminated.

LP nn NOT READY

Displayed on console when printer nn EST ordinal is not

ready. When it becomes ready, printing will continue.

LP nn REJECT

Displayed on console when printer with nn EST ordinal

rejects function code. No operator action.

LP nn XMSN PARITY ERROR

LPF

LPF

LPF

LPF

LPF

Console and system dayfile when printer with nn EST

ordinal shows transmission parity error; no operator

action., For local file, message also appears in job
dayfile,

ABORT - BAD ADDRESS

Address specified outside user field length,

ABORT - NO ENTRY IN FNT FOR 0Oxxxx

Subdirectory xxxx or RBTC xxxx had no entry in file name

table.

ABORT - NO RBTC SPACE

FINDS NO FENT SPACE

H-44

FINISHED LOADING

control point
LOD uses the FNT for SYSTEM
To determine a match
entry association with control

Fatal dayfile message;

LOD

cYy1

2LP

2LP

2LP

LPF

LPF

LPF

LPF

LPF

60189400

Rev.

I

LPF STOPPED BY SYSTEM LPF

Operator should drop job.

L.SEQ LESS THAN 2CM WORDS APR

Diagnostic sequencer lacks sufficient table space in CM.

MDF NOT MASS STORAGE (1RC) 1RC

Memory dump file not mass storage., Fatal dayfile message;
job terminated,

MEM ARG ERROR STATUS ALREADY COMPLETE MEM
Request made to MEM when completion bit was set in status
word.

MESSAGE ARG ERROR MSG

Address given to MSG is out of user's field length,
Job terminated,

MESSAGE FORMAT ERROR MSG

Character in message is 60 (octal) or over. Job terminated,
MESSAGE LIMIT MSG

Number of messages issued by job exceeds installation
maximum, Job terminated.

MF DISPOSITION OF UNLABELED TAPE REQ

REQUEST card specifies multifile disposition of unlabeled
tape.

60189400 Rev, I

MODE CHANGE RC.xxxx, CD.yyyy 2RC

Appears at beginning of output file for job if input record
contained cards of mixed format (binary, Hollerith, 80-column).
Record number is decimal xxxx, counting first (control card)
record of file as 0000; card number at which first change
occurred is decimal yyyy, counting first card as 0001.

MLRS CHANGED TO MAX BUFFER SIZE, XXXXXX IMT

File with FET at xxxxxx contains zero MLRS field, This
field was replaced with maximum buffer size for that
file.

MODIFY PERMISSION NOT SET FOR RE-WRITE ON P.F,. 4ES

Permanent file cannot be modified because correct password
was not given on the ATTACH card. Job terminated.

MOUNT REEL SHOWN ON UNIT xx IMF

MOVE ROUTINE FINDS CANT READ PROG. IN SYSTEM FILE EDITLIB

MT

MT

MT

MT

Fault in disk file used by EDITLIB (not expected to occur).

xx BLANK TAPE READ 1TF
Appears if no data is received from the channel after
one second; exit procedures are performed.

xx ENTER VISUAL REEL NO. ON UNIT xx 4LB
Operator should respond with n,VRN,xxxxxx, Sticker
number pasted on tape reel.

xx EOT CLO
Processing on magnetic tape xx is terminated because of
end-of-reel condition or CLOSER request,

xx FET TOO SHORT 1RS

FET is less than 7 words on attempt to read S tape.
Request is terminated with status DEVICE CAPACITY
EXCEEDED and no data is transferred,

H-46 60189400 Rev.

MT xx FILE POSITION UNCERTAIN 1PE

During write parity error recovery, tape backed to
position which may destroy last good record written,
Operator may drop job, or may type n.GO. and WPE recovery
will proceed as though file were positioned properly.

MT xx LABEL INFO ERR IN FET 4LB
Numeric field in 33 label area of FET contains non-numeric
data.

MT xx LABEL PARITY ERROR 4LB

Irrecoverable parity error while trying to read tape label.

MT xx LABEL UNRECOGNIZABLE CLO

Trailer label of MT xx is not EOFl1 or EOV1 as expected,.
Operator action requested by additional message.

MT xx MLRS INVALID, 512 USED 1RS

MLRS field in FET word 7 exceeds device capacity; processing
continues with capacity assumed (for execution) as the MLRS,

MT xx NO WRITE ENABLE 4LB, 1WX,
1WI, 1WS
Message displayed until ring is inserted or job is dropped.

MT xx NOT READY 4LB,1TF,2TB,
1RT, IRS,1WI,
Message displayed until unit is readied or job is 1WX,1WS,1PE
dropped.
MT xx PARITY ERROR 1RT, 1RS

Read parity error irrecoverable; to continue type n.GO. or
terminate with n,DROP.

60189400 Rev. K H-47

MT

MT

MT

MT

MT

MT

xx POSSIBLE RECORD FRAGMENT

Completing WPE recovery may leave data fragment greater
than noise record. Operator may drop the job or type
n.GO. If job is continued, attempt to recover WPE will
continue as though file were positioned properly.
xx REJECT

Tape unit xx cannot be connected, Compare xx entry with
installation equipment select code. If possible, change
equipment or unit select code; otherwise type n,DROP.

xx RESERVED

Displayed until condition is corrected or job is dropped

1PE

4LB,1TF,2TB,
1RT, 1RS,1WI,
1WX, 1WS,1PE

4LB,1RT,1RS,
1WI,1WS,1WX,
ITF

if attempt is made to connect *o tape xx reserved by another

channel.

xx WPE BAD SPOT
Record was written successfully following skip bad spot,
but parity error occurred in re-reading record preceding
the skip bad spot. Operator may drop job, or type n.GO.
and job will continue, but record with parity error will
not be rewritten.
xx WPE RECOVERED
Write parity error encountered and recovered; job
continues,
xx WPE UNRECOVERED
Write parity error could not be corrected by erasing and
rewriting. Operator can continue or drop job.

xx WPE WRITE FILE MARK ERROR

Unable to write file mark on external tape.
Operator can type n.GO. or drop job.

1PE

1PE

1PE

1PE

60189400 Rev. K

MT

MT

MT

MT

MT

MT

MT

xx XMSN PARITY ERROR 4LB,1TF,

2TB,1RT, 1RS,
Transmission parity error in 6681 data channel converter. IWI,1WS, 1WX

xx labl BLOCK COUNT SHOULD BE xxxxXXx, is XXXXXX, 4LB

Number of physical records written on tape with label
identifier labl does not agree with number read.

xx labl CREATION DATE SHOULD BE xxxxxx, 1iIs xxxxxxX. 4LB

Label labl does not contain specified creation date., First
xxxxxx obtained from central memory; second xxxxxx from
label., Operator may type in n.RECHECK. or n.GO. or n.DROP.

xx labl EDITION NUMBER SHOULD BE xx, IS xx, 4LB

Tape label labl does not contain expected expiration date.

First number is from FET, the second from label, Operator

may provide another tape and type in n,RECHECK. or n.GO. or
n,DROP,

xx labl EXPIRATION DATE SHOULD BE xxxxx, IS xxxxx. 4LB

Tape label labl does not contain expected expiration date.
First xxxxx is from FET; second is from tape label,.
Operator may accept tape by typing n.GO. He may mount

a different tape and type n,RECHECK. or he may drop

the job by typing n.DROP.

xx labl FILENAME READ WAS XXXX...XX 4LB

XXXXaeooeXX is label name of first file of label identified
as labl.

xx labl FILE NAME SHOULD BE XxXX...XX, IS XXX...XX. 4LB

File name error in label identified as labl, First 20
characters are FET file name and second set are tape label's
file name entry; n.GO. or n.DROP, or n,RECHECK. may be typed.

60189400 Rev. K

MTxx CHxx 1MT
NOT READY

Operator should make unit ready or drop job.
MTxx CHxx IMT
PARITY ERROR

Irrecoverable parity error while writing L tape.

Operator can continue or drop job.
MTxx CHxx IMT
READ PARITY ERROR

Irrecoverable parity error while reading L tape.

Operator can continue or drop job.
MTxx,CHxx 1MT
RESERVED

Magnetic tape xx is reserved by another channel.

Message persists until condition is corrected or
operator drops job.

MT xx CHxx IMT
WPE RECOVERED

Write parity error encountered and recovered.

MTxx CHxx 1MT
XMSN PARITY ERROR

Transmission parity error on 6681 or 6684 data channel
converter on channel xx.

MTR DEAD

Monitor did not respond to a monitor function issued
by DSD. Notify a system analyst of this message.

60189400 Rev, I

H-51

MULTI-FILE DISPOSITION ON UNLABELED FILE REQ
Multi-file disposition should occur only on labeled
files.

MULTIPLY DEFINED OUTPUT xxxxxXxX LDR
LDR loaded this routine previously and cannot load it

again,

N EQUAL INVALID CHAR COPYCR,COPYCF,

COPYBR,COPYBF
Number of records/files to be copied is zero, a letter,

or special character on the copy control card.

NAME GREATER THAN 7 CHARACTERS LDR,2LA

Name on a loader directive card is too large. (Usually
caused by assembly or compilation errors.)

NEW ECS FE TOO SMALL, REQUEST xxxx (RESTART) RESTART
The ECS field length at restart time must be greater than or
equal to that at checkpoint time. xxxx is the minimum field

length, /1000 (octal), which should be on the restart job
card.

NEXT 1EJ

Job name at a control point walting for a job,

NEXT .CONTROL POINT CLEARED 1EJ

Appears in system dayfile when NEXT control point is
cleared because the clear flag was set.

NO aa AVAILABLE

Job is waiting for equipment, Operator should turn on
equipment of allocation style aa. If equipment is
logically off but operative, type ONxx; xx is EST
ordinal. If equipment is available but assigned to
another control point, job must wait until equipment
is released,

NO CORRECT PASSWORDS SUBMITTED PFA

H-52 60189400 Rev.

NO CHECKPOINT TAKEN

No checkpoint dump because job is: rolled out,

RESPOND job,

uses ECS, or uses READ-RELEASE.

Informative dayfile message.

NO E OR N ON CONTROL CARD

RPACK control card does not specify E or N parameter
for operator assignment of private disk pack. Job
terminated.

NO EOR,EOF, OR EOI

End-of-record, end-of-file, or end-of-information is
Loading terminates,

missing.

NO EQUIPMENT AVAILABLE WITH ALLOCATION TYPE FOR FILE

File is skipped.

NO EXTEND PERMISSION

NO FNT SPACE

UP parameter in FET is zero and no space is available
in FNT to create requested entry; job terminated. If
UP is nonzero, FNT full code (24) is returned to FET.

NO INDEX POINTER IN FET, OR O LGTH. INDEX

Put on the console display, system dayfile and job day-
file, TIORANDM has been called by a READIN or WRITOUT
macro to read or write the beginning of a randomly
located record, But the FET is either too short to
contain pointers to the record index or apparently
points to an index of length zero. The job is aborted.

60189400 Rev,

I

CKP,1RC

SDA

LOADPF

LPF

PFE

2BP

IORANDM

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

INPUT FILE ON THE COPYN CONTROL CARD

At least one input file must be specified in the COPYN
card,
OUTPUT FILE ON THE COPYN CONTROL CARD

An output file must be specified in the COPYN control
card,

PERMISSION GRANTED
PERMISSION TO ADD CYCLE

PERMISSION TO PURGE

PF DEVICE
Installation error. Report this message to a system
analyst.

PFM ACTION, WHILE UTILITY RUNS

PRIVACY PROCEDURE
No privacy procedure specified on ATTACH, when
required.
PROGRAM LIBRARY INPUT TO BE EDITED
Correction input encountered but no old program library
specified on EDITSYM control card. Run terminated.
PROGRAMS FOUND FOR SEGMENT

Not one program requested by user call could be found.

RBR FOR THIS PACK

The system cannot find RBR for disk pack EST ordinal
referenced in an ASSIGN, DEVADD, or UNLOAD type-in.
Report this message to a system analyst,

COPYN

COPYN

PFA
PFC

PFP

PFA,PFC,
PFE,PFP

PFA,PFC,
PFE,PFP

PFA

EDITSYM

LOADER

SDA

60189400 Rev,

NO RBR TABLE FOR PACK
Disk pack named by BLANK type-in is on and unloaded,
but it does not have RBR table in central memory.
Report this message to a system analyst,

NO READY

A READY card did

NO REQUEST ENTRY

No request entry

(no FNT entry).

NO REQUEST ENTRY FOR MULTIFILE

No request entry

(no ENT entry).

NO ROOM FOR NEW CYCLE

not precede this control card.

was made for file with device type 240

was made for specified multifile name

Not possible to add new cycle to permanent file speci-
fied in previous line,

NO ROOM IN INDEX FOR NEW NAME

Console, system and job dayfiles,
to write beginning of random access record named.
Name is not in file index and no vacant slot is

available,

Job terminated.

NO SUCH FILE NAME

WRITOUT macro called

REQUEST or REMOVE card names a private pack that is not
at control point, Job terminated.

60189400 Rev.

I

1BT

EDITLIB

OPE

OPE

PFC

IORANDM

5DA

NO SUCH PRIVATE PACK 5DA

This message is sent to the dayfile by 1AJ when a
REQUEST or REMOVE card names & private pack that
is not at the control point., The job is terminated.

NO TERMINATION FOUND LDR, 2LA
Sent to dayfile when loader directive card is not
terminated by period or right parenthesis,
NO TRANSFER ADDRESS LOADER
At completion of load, no program provides a transfer
address, Error condition is overridden by NOGO. card
or EXECUTE,ent., card. Job terminates.
NO WORD PAIRS ASSIGNED PFC
NON-EXISTENT RBR REQUESTED 18X
Called by error code 05, RBR pointer in RBT is greater
than number of RBR's in system.
NON-PERMANENT FILE CANNOT BE EXTENDED PFE
1£fn
File with name 1fn is not permanent file,
NOT AVAILABLE
Equipment indicated by ASSIGN type-in is off, already
assigned, or does not exist.,
NOT DISK PACK SDA
DEVADD, UNLOAD, or ASSIGN type-in specified EST ordinal
which is not disk pack. For ASSIGN in response to
RPACK control card, system waits for operator to drop
the job or try another assignment, Otherwise, job
terminated.
NOT DISK PACK, OR OFF 1BT
Equipment named by BLANK type-in cannot be blank labeled
because it is not disk pack or it is off to system,
H-56 60189400 Rev.

I

NUMBER OF RECORDS GREATER THAN 777777B SKIPF,SKIPB
Second parameter of a skip control card exceeded
maximum number of allowable records.

ONE OR MORE OVERLAPPING CORRECTIONS UPDATE

ONLY 1 OVERLAY DESIGNATOR USED LDR,2LA
Overlay card does not specify both primary and
secondary levels,

ONLY ONE PARAMETER LDR, 2LA

Overlay loader directive has only one level parameter.

OPEN REEL CALLED ON UNOPENED OR CLOSE FILE OPE
File must have been opened before OPEN REEL call.
OPERATOR DROP 1EJ

The operator typed in n.DROP, to terminate job,

OVERLAY EDITLIB
OVERLAY CALL FROM RELOCATABLE LOADER

Relocatable program called for overlay load, Redundancy
check to validate user call is illegal; once overlay
loading is initiated, control is taken from user call
and returned to called overlay. If file named in user
call contains all absolute overlays and OVERLAY 0,0

has not been called, control will return to the user
call.

P.F. DEVICE DOWN PFA,PFC,
PFE,PFP

60189400 Rev. J H-57

P.F. NAME ALREADY IN SYSTEM PFC
Permanent file indicated on previous line already exists
in system,

PACK FILE COUNT ALREADY O 5DA
In response to REMOVE control card (with or without
pname parameter) file was removed from private pack;
however, when system tried to reduce file count in
the FNT entry, count was already zero. Job
terminated.

PACK LABEL NOT BLANK 5DA
Private disk pack label read should have been blank.
If in response to DEVADD type-in, job terminates.
Otherwise, system waits for operator to drop job or
try another assignment,

PACK NOT PUBLIC AND EMPTY 5DA
Only disk packs with an EST status of 4000 can be
unloaded by an UNLOAD type-in, Job terminated.

PACK STATUS NOT UNLOADED 1BT
BLANK type-in named disk pack that is on and in
use as a public or private pack; therefore, it cannot
be logically unloaded.

PACKED CARD LONGER THAN 13 WORDS EDITSYM

Input error; run terminated.

PAGE NO. EDITSYM
PARAM LIST TOO LONG (CKP) CKP

The value of n in the user parameter exceeds 42
(decimal). Job terminated.

H-58 60189400 Rev,

WAITING FOR xx) REQ

Requested equipment is logically off; operator should
turn equipment on or drop job.

WAITING FOR STORAGE 1BT,RST,
1RI,RFL
Occurs if MTR does not immediately grant request for
ECS or CM storage. PP enters recall. Required storage
not available., Job waits, Operator can create space
by rolling out another job.

WAITING - RBT STORG 18X

No empty chain members exist.

WAITING ON STORAGE LDR

During program loading from tape, LDR request for
additional storage has not been fulfilled.

WAITING PFM IDLE DPF

DPF waiting for all permanent file activity to cease
before dump execution begins. On B display only.

WARNING BLANK COMMON GREATER THAN PREVIOUS DECL LOADER

Subsequent references to blank common in a set of pro-
grams (segment, overlay, or a file loaded as a result of
control card) cannot exceed first allocation. Job

does not terminate; however, as no reference to blank
common is truncated, it is possible for a program to
destroy itself.

60189400 Rev, I

WARNING NO MATCHING ENTRY FOR XFER LOADER

When nonzero or nonblank entry point occurs in XFER
table, all available entries in LOADER table are
searched., If this warning results from EXECUTIVE
or PROGRAM CALL card job is terminated; otherwise,
nonfatal error bit is returned to user,

WPE UNRECOVERED, EOT FORCED, TYPE GO xxxDMPQ

Permanent write error. Typing n.GO. will force EOT
on bad reel and continuation reel will be assigned.
Both reels must be read back in when queue is restored.

WRONG TAPE, GO WHEN CORRECTED (RESTART) RESTART

Name on checkpoint tape leader record does not match
name on RESTART card. Dayfile message requires
operator action,

WRONG VRNO 5DA

Type-in response to RPACK control card specified correct
pack name but wrong visual identification number.

System waits for operator to drop job or try another
assignment,

xx ASSD. 5DA
xx BLANKED
xxxxxxx CONTROL POINT DROPPED 1EJ

The system job named xxxxxxx was dropped and the
control point cleared as a result of the oper-
ator entering n.DROP or n.KILL.
xxxx KILLED MTR MTR
xxx NOT IN PPLIB PP RESIDENT
Resident called to load overlay not named in library.

Job terminated,

xx NOT READY REQ

H-82 60189400 Rev. I

xx RESERVED REQ

xx XMSN PARITY ERROR REQ

IMT

18T

18T

18T

8DX

9DM

ARG ERROR 1MT
Routine for reading and writing L TAPES WAS LOADED WITH

jllegal function code, or function code it cannot
process.

OVERLAY CARD HAS NO FILE NAME LDR,2LA

First character of first parameter on initial overlay
card is not alphabetic,

OVERLAY CARD LACKS 0,0 LDR,2LA
First overlay card does not designate level (0,0)

overlay.,

PARAMETER MAY NOT EQUAL ZERO LDR,2LA

Overlay level (0,0) may not have secondary overlay levels
(0,1 is illegal).

NOT IN LIB

DSD could mot find one of its overlays in PP library.
Notify system analyst of this message.

ABORTED

PP routine DSD calls to load mass storage resident
overlays terminated because it is not in PP library;
or it encountered parity error in loading overlay.
Operator should dump last 1000 (octal) locations of all
PP's and first 12000 (octal) words of CM. Notify
system analyst of this message.

60189400 Rev. I H-83

63 FILES ALREADY ON PACK SDA
REQUEST card called for new file on private pack, but
pack has maximum of 63 files zlready. Job terminated.
xxx ERRORS IN UPDATE INPUT UPDATE
*COPYLAB INCORRECT COPYCR,COPYCF
COPYBR,COPYBF
*COPYLAB control card is misspelled or next record in
job stream is not *COPYLAB as expected,
EC STATS xXx aaaaaaaaaaaa bbbbbbbtbbbb EC1
a...a last 12 octal digits of word xx. b.,..b last 12
octal digits of word xx+1, Gives ECS statistics
accumulated since last call. Dayfile message.

EC STATS DISCONTINUED., EC1

Dayfile message if ECS is off or delay interval 7777,

EC STATS INTERVAL xxxx SECONDS, EC1

Dayfile message issued each time delay interval xxxX
is changed.

GO OR DROP EC STATS DELAY BEING SET, EC1

Dayfile message informs operator of impending change
in delay interval and requests approval,

NO ECS, OR ECS TURNED OFF. EC1

Dayfile message. EC1 cannot find EST entry for ECS
or ECS is turned off.

NOT AN ECS SYSTEM. EC1
Dayfile message. ECl initiated in system that does not

define ECS.

**DUPLICATE PARAMETER cc PF MACROS

**DUPLICATE PARAMETER ON PF CONTROL CARD PFCCP

H-84 60189400 Rev.

I

**FOLLOWING PF CONTROL CARD IN ERROR
**ILLEGAL OPTION cc = cccc

**ILLEGAL OPTION ON PF CONTROL CARD
**MISSING NAME FOR OPTION cc =
**PARAMETER VALUE EXCEEDS NINE CHARS
**PERMANENT FILE NAME EXCEEDS xx CHARS
**PW OPTION HAS TOO MANY PARAMETERS

***ADDFILE FIRST CARD MUST BE *DECK OR
*COMDECK BUT WAS:....

***ADDFILE INVALID FROM *READ FILE

***ADDFILE INVALID WITH Q-OPTION

*** ABOVE CARD ILLEGAL DURING CREATION RUN
*%**CARD LENGTH ERROR ON OLD PROGRAM LIBRARY
%%*CARD NUM ZERO OR INVALID CHAR IN NUM FIELD
***CONTROL CARD INVALID OR MISSING

***DECK NAMES SEPARATED BY PERIOD IN WRONG ORDER
***DUPLICATE DECK NAME

***DUPLICATE IDENT NAME

***ERROR xxxxxxx DECK DOES NOT EXIST

***FILE NAME LONGER THAN 7 CHARACTERS

*%%*TDENT xxxxxXxX UNKNOWN

***TDENTIFIER LONGER THAN 7 CHARACTERS

*** TDENTIFIERS SEPARATED BY PERIOD IN WRONG ORDER

***TNVALID NUMERIC FIELD

***NO DECK NAME

60189400 Rev, I

PFCCP

PF MACROS
PFCCP

PF MACROS
PFCCP
PFCCP,MACROS

PFCCP

UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE

UPDATE

***NO SUCH COMMON DECK UPDATE
***NOT ALL MODS WERE PROCESSED UPDATE
***NULL ADDFILE UPDATE
***ON THE ABOVE CARD THE FIRST LIMIT EXCEEDS TERMINAL LIMIT

***QR A REFERENCE IS MADE TO DECK NOT MENTIONED
ON COMPILE CARD

Second line of this message appears only if
Q-option is in effect.

#%*PREMATURE END OF RECORD ON OLD PROGRAM LIBRARY UPDATE

***RESERVED FILE NAME UPDATE

«**THESE MAY BE MODS TO DECKS NOT MENTIONED ON

COMPILE CARD OR AN INCOMPLETE ADDFILE UPDATE

#**UNKNOWN IDENTIFIER UPDATE

#%**xxx ERRORS IN INPUT: NEWPL, COMPILE SOURCE

SUPPRESSED UPDATE

#%**DEVICE CAPACITY EXCEEDED**** COPYCR,COPYCF,
COPYBR,COPYBF

Tape physical record size is greater than buffer on
read or write or physical record size is greater than
data format declared on REQUEST control card.

H-86 60189400 Rev,

I

MAGNETIC TAPE 1/O 1

This appendix describes in detail the operations which take place on 1/2 inch magnetic tape files
during file action requests, data functions, and position functions.

DEFINITIONS
Physical Record: Continuous data on tape between two successive inter-record gaps.

Noise Record: A physical record of 6 characters or less (or as defined by IP.NOISE) is considered
to be noise on SCOPE and X tapes and is discarded without notification to the user. On Sand L
tapes, noise record size is set by the installation parameter IP. NOISE and will not exceed 621
bytes (124 characters).

Physical Record Unit (PRU): Some data formats of tapes acceptable to SCOPE are defined in terms
of a maximum size physical record. A PRU is a physical record of the maximum size for that
format. Operations terminate with an error indication if tapes have physical records greater
than the maximum size allowed. A short PRU is a physical record of size less than the maxi~-
mum. A zero length PRU is a special physical record containing no data; it is 8 characters in
length and contains a level number, if appropriate. Zero length PRU's appear only on SCOPE
tapes and on binary X tapes.

PRU sizes: SCOPE Standard Tape Binary 512 CM words
Coded 128 CM words

X Tape Binary 512 CM words
Coded 136 characters
S Tape 2 to 5120 characters
L Tape 2 to n characters (n is size of user buffer)

Logical Record: A logical record is written on a standard SCOPE tape or binary X tape as one or
more PRU's, the last of which is a short or zero length PRU. A zero-length PRU is written if
the logical record size is a multiple of the PRU size. The term logical record is used to mean
either one physical record or the above mentioned multiple of PRU's. The declared data format
of the tape defines precisely the exact format of the logical record. The logical record defini-
tion is normally considered a block by the user, e.g., COBOL BLOCK CONTAINS clause.

End of Line Terminator: A 12-bit zero byte in the low order byte of a CM word is the end-of-line
for coded records on SCOPE standard or X tapes, but is not applicable to S or L tapes. During
conversion from display code to BCD on SCOPE standard tapes, the zero byte terminator
becomes external 1632. If the file is destined for an X tape, SCOPE writes each line as a
136-character physical record with blank fill and converts the zero byte to blanks.

60189400 Rev. I I-1

TAPE FILE STRUCTURE

Label Formats

SCOPE standard, S and L tape files may be unlabeled (assumed if not declared otherwise) or contain
SCOPE standard labels (E or N declaration cn the REQUEST card). X tapes cannot be labeled.

Data Formats

SCOPE Standard: (Assumed if no other declaration is given). A logical record is one or more
PRU's. A level number is appended to the last PRU. A PRU is 5120 characters in binary mode
or 1280 characters in coded mode. A short PRU is 10n + 8 characters where 0 =n = 511 in
binary mode or 0 =n =< 127 in coded mode; the last eight characters, containing the logical
record level number, are not transmitted to or from the user's CM buffer. Physical records
must contain a multiple of ten characters. ‘

S (Stranger Tapes): A logical record is equivalent to a physical record. Physical records contain
multiples of two characters with a maximum of 5120 for a binary or a coded file. No level
numbers are appended to data, and no line terminators are recognized in data.

L (Long Record Stranger Tapes): Data format for the L tape is identical to the S tape except the
size of a physical record is not restricted. The method of conversion depends on the data
channel converter in use. With the Control Data 6681 Data Channel Converter conversion takes
place in central memory; with the 6684, conversion is done by the hardware. L tapes
should be specified only when the files are being processed by specially designed routines which
can also handle "long" records. Routines which cannot handle long records can find an indica-
tion in the FET in the device field that the L tape format is being used. Care should also be
taken not to write records that are longer than the length of tape from the end of reel reflective
spot to the physical end of tape. In such a case 1MT is unable to detect end of tape before it
writes off the end of the reel.

X (External Tapes): Retained for compatibility with tapes created under SCOPE 2.0 and earlier
systems. For binary files, a logical record is one or more PRU's terminated by a short or
zero-length PRU; no level number is appended. Physical records contain exact multiples of 10
characters. TFor coded files, a logical record is a physical record of up to 136 characters.

If a line terminator occurs before 136 characters are written, remaining characters are blank.
If 136 characters occur before a line terminator, the last four characters in the last CM word
are lost. No level number is appended.

END POINT PROCESSING

End-of-File (Tape Mark) Procedures

A physical end-of-file (tape mark) can appear on a SCOPE standard tape only as part of a label, the
WRITEF function writes a zero-length logical record with level 17. End-of-file marks may be
written on X, L and S tapes with the WRITEF function. On labeled tapes, end-of-file marks are

1-2 60189400 Rev. I

written as part of the label. On an input tape, the I/O system determines whether it is part of the
label. For a SCOPE standard tape, the end-of-file mark indicates a label, since trailer labels are
always written on SCOPE standard tapes (labeled or unlabeled). X tapes cannot be labeled. For S
or L tapes, SCOPE determines whether a labeled tape has been declared. If so the I/0O system
determines if a label record is next. If so, end-of-reel or end-of-information procedures are per-
formed. If the next record is not a label record or if the tape is not labeled, the end-of-file mark is
treated the same as a zero-length record of level 17; the end-of-file bit is set in the FET status field
and the function encountered is completed normally. Since X tapes cannot be labeled, when an end-
of-file mark is read, the end-of-file bit is set in the FET status field and the function is completed.

60189400 Rev, I I-3

End-of-Reel Procedures

End-of-reel procedures for an output tape are performed when the end-of-reel reflective spot is
encountered according to the following table.

SCOPE Standard y y n n
Labeled n njy n y
UP bit set n v]y y y
Backspace over last physical record | x

Write EOV trailer label X

Write 4 tape marks

Rewind unload reel X

Locate next reel X

Write header label

Continue function X

Set end-of-reel bit in FET X | x X X
Exit to user X | X X X

yes

no

End-of-reel procedures for an input tape are performed when an EOV label is encountered on a
labeled or SCOPE standard tape or when the end-of-reel reflective spot is encountered on an un-
labeled tape. If the UP bit is not set the next reel is obtained, label checking is performed if the

tape is labeled and the function continues normally on the next reel.

WARNING: When the UP bit is set and control is given to the user, the zero length PRU may
not have been written if the longest record was anexact multiple of the PRU size. Any
further writing may appear as part of the previous record. The user is responsible and
should terminate his file with an end~of-file mark or some other action which will permit

proper reading of the file.

End of Information Procedures

For an output tape, before backward motion takes place, an EOF trailer label is written on labeled

or SCOPE standard tapes or four end-of-file marks are written on unlabeled tapes.

Tor an input tape, end of information is defined only for labeled and SCOPE standard tapes when
the EOF trailer label is encountered. The end-of-information bit is set in the FET as long as the
file remains positioned at the end of information. End of information for unlabeled tapes is not
defined. It is the user's responsibility to determine by some other means when he has processed

to the end of information.

DEFINITION OF I/0 REQUESTS

The following tables specify the logical occurrence of events during various I1/0 operations. In
every case of conversion between BCD and Display Code, code is not converted if the tape is

connected to a 6684 data channel converter.

60189400 Rev. 1

READ o o
e o s > =l
L o o)5 g b5 o 3
By s bt s
ShSg 8| 2| 8| E| ¥
Sg8fg Pl oAl o] A ©
o 4
n Al O] X b w0 w - [
1. Exit if not enough room in buffer for one maximum b4 X X X
size physical record.
2. Exit if not enough room in buffer for MLRS words. X X X. 1 x
3. Read one physical record into PP, X X X X X X
4. Read one physical record into CM. X X
5. If physical record exceeds maximum allowable X X b4 X
return error status DEVICE CAPACITY EXCEEDED
and perform error procedures.
6. If physical record exceeds maximum logical record X X X X
size, return error status DEVICE CAPACITY
EXCEEDED and perform error procedures.
7. If end-of-file mark was read, perform end-of-file X X X X b X b4 X
mark procedures.
8. If noise records encountered, go to 3. X b4 X b4 b4 X X X
9. If parity error, perform parity procedures. X X X b4 X X X X
10. If end-of-tape reflective spot was encountered and b4 b4 X b4 b4 X
tape is unlabeled, perform end-of-reel procedures,
11, If short PRU was read, strip level number. X X
12. If zero length PRU was read, go to 21, X X X
13. When 6681 present, convert data in PP from BCD to X X x
Display Code.
14. When 6681 present, convert data in CM from Ext. X
BCD to Display Code. ’
15. Convert 1632 line terminator to 0000, X
16. Transmit data to CM. X X X X X X
17. Update IN. X X b4 X X X X X
18, TFetch OUT from CM. b4 X X b4
Note: Event 6 above is a change in specification from
SCOPE 3.1, Currently, if a long record is
encountered, the information past the PRU size
is discarded without notification to the user.
1-5

60189400 Rev. K

READ (CONT'D)
- D 2l =l 2l | B =
8 bl | S| 3] of | &
FEIER R R - R
AR Ol K| K| n| n]| A A
19. Place in word 7 of FET the number of unused bits X X X b4
in the last data word.
20. If full PRU go to 1. X X X X
21. If last record was level 17 of tape mark, set end- X X X X .4 X X X
of-file status.
22, Set end-of-record in status field of FET and exit. X X X X X X p:d X

60189400 Rev. L

READN

g1zl |3
21 %8| 5 %®
Mm O M @)
w /)] - =
1. TFetch size of MLRS from word 7 of FTET. b4 X b4 X
2. Exit if not enough room in the circular buffer for one logical record plus | x | X b4 b4
header word. The buffer sizemust > f(record) + 1 (header) to avoid
OUT=IN when buffer is full.
3. Read one physical record into PP. b4 X
4. Read one physical record into CM. b4 X
5. If physical record exceeds maximum allowable, return error status b:4 X
DEVICE CAPACITY EXCEEDED and perform error procedures.
6. If logical record exceeds MLRS, return error status DEVICE CAPACITY]
EXCEEDED and perform error procedures. b4 X
7. If end-of-file (tape mark) was read, perform end-of-file mark proce- X b4 X X
dures. Go to 18,
8. If noise records encountered, go to 3. b4 X X b4
9, If parity error, perform parity procedures. b4 X X X
10. If end-of-tape reflective spot was encountered and tape is unlabeled, X X X X
perform end-of-reel procedures.
11. When 6681 present, convert data in PP from BCD to Display Code. X
12. When 6681 present, convert data in CM from BCD to Display Code. X
13. Transmit data to CM. X X
14, Update IN in PP memory. X b4 X X
15. Place in buffer header word, length of record and number of unused bits | x X b4 X
in last data word.
16. Update IN X X X X
17. TFetch OUT. b4 b4 b4 X
18. If last record was tape mark, set end-of-file status and exit. b4 b4 X X
19. Go to 2. X X X X
60189400 Rev. I I-7

READSKP v |e 3 IR S R Y
¥}
seg 2|5 2] 2] 4]
§ S|IgE Ao A| o] A| O
AR X[H| | wf A 4
1. Read one physical record into PP, X X X X | x b4
2. If physical record exceeds maximum allowable (i.e. X | x x| x| x X
512 CM words, etc.), return error status DEVICE
CAPACITY EXCEEDED and perform error proce-
dures.
3. Read one physical record directly from tape to CM b 4 X
buffer, stopping without error when available buffer
space is full.
4, If end-of-file (tape mark) was read, perform end-of-
file mark procedures. b4 b4 X x| x X X X
5. If noise records encountered, go to 1. X b4 X X | X X X X
6. If parity error, perform parity procedures. X b4 X X | x X X X
7. If end-of-tape reflective spot was encountered and X X | x X b4 X
tape is unlabeled, perform end-of-reel procedures.
8. If short PRU was read, strip level number. X X
9. If zero length PRU was read, go to 10. X X
10. When 6681 present, convert data in PP from BCD to X X X
Display Code.
11. When 6681 present, convert data in CM from BCD to X
Display Code.
12. Convert 1632 line terminator to 0000. X
13.. Transmit data to CM. If entire record does not fit X X X X | x X
in circular buffer, stop without error at buffer full.
14. Place in word 7 of FET the number of unused bits in X X X X
the last data word.
15, Update IN X X b4 X | X X X b4
16. Tetch OUT from CM. X X X X
17. If any unused space in circular buffer, go to 1. X X X
18. If last record was full PRU, set n=1 and proceed to X X X
SKIPF.
19. If L is less than 17 set L=0. X x| x X X b4
20. If record was end of file mark (tape mark), assume
level= 17. X x| x b4 X X

1-8 60189400 Rev. I

READSKP (CONT'D)
AR | Bl sl Bl gl B ®
s Pla gl S 2z b} o} ®)
SHIZ 5| 8| 5| 5| £ ¥
§ g § glalo|l Al o A ©
wn Ay O] K > w 1} - =
91. 1II level number is less than L, sef n =1 and proceed| x X X X X X
to SKIPF.
22. If level number is less than L,-set n =1 and skip X b4
down tape to first end-of-file mark (tape mark).
23. If last record was level 17, set end-of-file status X b4 X X X X b4 X
and exit.
24. If last record was not level 17, return end-of- X b4 X X X X X X
record status and exit.
I-9

60189400 Rev. I

RPHR

i) gl o]
EiEd B| B
cHey £ 8
(=
f589 4| ©°
®m Mlw Of K <
1. Set OUT =1IN. X X X X
2. Exit if not enough room in buffer for one maximum size physical record.| X X X X
3. Read one physical record into PP. X X X b4
4. If physical record exceeds maximum allowable, return error status ‘
DEVICE CAPACITY EXCEEDED and perform error procedures. x | X x| x
5. If end-of-file mark was read, perform end-of-file mark procedures.
X X X b4
6. If noise records encountered, go to 3.
X X X X
7. 1If parity error, perform parity procedures.
X X b4 X
8. If end-of-tape reflective spot was encountered and tape is unlabeled,
perform end-of-reel procedures. X X
9. If zero length PRU was read, go to 13.
X X X
10. Transmit data to CM.
X X X X
11, Update IN.
X X X X
12, If last record was level 17 or tape mark, set end-of-file status.
X X X X
13. Exit.
b X X b
Note: Event4 above is a change in specification from SCOPE 3.1. Currently,

1-10

if a long record is encountered, the information past the PRU size is
discarded without notification to the user.

60189400 Rev. I

WRITE o | o o
el 2 el
SelEo | S| 8| B 2| &
S H<TE £ 8| £] 3| & B
SEfg @alo|lA| of @] ©
DARBO K| K| w| w| A A
1. Exit if not full PRU. X X X
2. If data from OUT to IN exceeds maximum logical X X X X
record size from FET, return DEVICE CAPACITY
EXCEEDED and perform error procedures.
3. TFetch number of unused bits in last data word from X X b 4 X
FET and adjust record length. If record length
constitutes a noise record, return DEVICE
CAPACITY EXCEEDED and perform error proce-
dures.
4. Read one PRU of data starting at OUT from CM to X X b4 b4
PP,
5. Read data contained between OUT and IN from CM X b4
to PP. Adjust by unused bit count.
6. When 6681 present, convert Display Code to BCD in b4 b4 X
PP memory.
7. When 6681 present, convert from Display Code to X
BCD in CM.
8. Convert zero byte line terminator to 1632. X
9. Convert zero byte line terminator to blanks. If less X
than 136 characters, fill record with blanks to 136.
10, Write record to tape. X X X X b'e X
11, Write,from CM to tape, data contained between OUT b4 X
and IN, adjusted by unused bit count.
12. When 6681 present, convert data in CM buffer back X
to Display Code.
13. If parity error, perform parity procedures. X X X X X X X X
14. If end-of-tape reflective spot, perform end-of-reel X X X X b4 X X X
procedures.
15. Update OUT. X X X b'd X X X b4
16. Exit. X X X b4
17. Fetch IN from CM. b4 X b4 X
18, Go to 1. X b4 b4 X
In events 1 and 5, a PRU for coded X tapes is 136 characters or less than 136 terminated by zero

bytes.

60189400 Rev. I

I-11

WRITER - o
EAE | 5| 3| Bl 8| §] 3
Sheg 2| 2| 2| 8| &| ¥
ﬁ S g b (&) I3} [&) [as] &)
hAho K| X w] w| A 4
1. If IN = OUT exit. X X X X X X
2. If PRU not full, insert level number in PP buffer. | x X
3. If data from OUT to IN exceeds maximum logical X X X X
record size from FET, return DEVICE CAPACITY
EXCEEDED and perform error procedures.
4. Fetch number of unused bits in last data word from X X X X
FET and adjust record length. If record length con-
stitutes a noise record, return DEVICE CAPACITY
EXCEEDED and perform error procedures.
5. Read one PRU of data starting at OUT or data X X b4 X
between OUT and IN, whichever is smaller, from
CM to PP,
6. Read data between OUT and IN from CM to PP. X X
Adjust by unused bit count.
7. When 6681 is present, convert Display Code to BCD X X X
in PP memory.
8., When 6681 is present, convert Display Code to BCD X
in CM.
9. Convert zero byte line terminator to 1632, X
10. Convert zero byte line terminator to blanks. If less X
than 136 characters, fill record to 136 with blanks.
11, If IN = OUT, write zero length record. Go to 12, X X | x
12. Write record to tape. X X X b4 X X
13. Write, from CM to tape, data contained between X X
OUT and IN, adjusted by unused bit count,
14. When 6681 is present, convert data in CM buffer to X
Display Code.
15. If parity error, perform parity procedure. b4 X X | X X X X X
16. If end-of-tape reflective spot, perform end-of-reel b4 X x| x X X b4 X
procedures.
17. Update OUT X X X X X X X X
18. Exit. b4 X X b4
19. If full PRU not written, exit. X X X X

I-12 60189400 Rev. I

WRITER (CONT'D) D ol ol | B o
5 23 sl 2| 8| e | 3
SHTSE £E| B8] 28| &] 9
SEg8lA|olalol AC
BAGBO %| k]] | Al 42

20. Go to 1. X b4 X

In events 1 and 5, a PRU for coded X tapes is 136 char- .

acters or less than 136 terminated by a zero byte.

1-13

60189400 Rev. I

WRITEF . o o
B o el
§pEo 92 P3| B3
SsHTel £ 3| 8| 8| 8] 9
S5/ A|o|@|o|®|©
wn Ay Of K i] wn = e
1. If no data from OUT to IN, go to 23. X X X
2. If no data from OUT to IN, go to 19. X X X b4 X
3. If not full PRU, insert 0 level number. X X
4., If data from OUT to IN exceeds maximum logical X X X X
record size, return DEVICE CAPACITY EXCEEDED)
and perform error procedures.
5. Fetch number of unused bits in last data word from b4 b 4 X X
FET and adjust record length. If record length con-
stitutes a noise record, return DEVICE CAPACITY
EXCEEDED and perform error procedures.
6. TFetch one PRU of data starting at OUT or data X X X | x
between OUT and IN, whichever is smaller, from
CM to PP.
7. If OUT =IN insert 4 zero bytes in the PP buffer. X
8. Read data contained between OUT and IN from CM X b4
to PP. Adjust by unused bit count.
9. When 6681 present, convert Display Code to BCD in x x x
PP memory.
10. When 6681 present, convert Display Code to BCD in x
CM.,
11, Convert zero byte line terminator to 1632, b4
12. Convert zero byte line terminator to blanks, If less X
than 136 characters, fill record to 136 with blanks.
13. Write record to tape. b4 X X X X X
14. Write, from CM to tape, the data contained between x x
OUT and IN, adjusted by unused bit count.
15. When 6681 present, convert data in CM buffer to x
Display Code.
16. If parity error, perform parity procedures. X X X X X X X X
17. If end-of-tape reflective spot, perform end-of-reel X b4 X X b4 X X X
procedures.
18. Update OUT. x| x| x| x x| x x| x
19. Write end-of-file mark and exit. X b4 b 4 X

1-14

60189400 Rev, I

WRITEF (CONT'D)

s | 2l > Pl o
o o = & i
< o o} a o
SHS 21 8| 8| 2| &| %
§ 9| s B oM &) m O M &}
w M| Of K e 105! 9! (| ~
20, TIf full PRU not written, write zero length Ievel 17 X | x
record and exit.
21, If full PRU not written, write ftle mark and exit. X X
22, Go to 3. b4 b4 X X
23. If last operation was WRITE, write zero length b4 X X
PRU.
24. Go to 17. b4 X b4

60189400 Rev. I I-15

WRITEN

S Binary
S Coded

L Binary
L Coded

1. 1If OUT = 1IN, exit. X X X X
2. Fetch header word from OUT. Set PPOUT =OUT +1. Set PPIN = X X b4 X
PPOUT +no. of CM words in logical record. If PPIN has passed IN,
exit.
3. If data from PPOUT to PPIN exceeds maximum physical record size, X X
return DEVICE CAPACITY EXCEEDED and perform error procedures.
4., Adjust record length by number of unused bits in last data word (from X X X | X
header word). If record length constitutes a noise record, return
DEVICE CAPACITY EXCEEDED and perform error procedures.
5. Fetch data contained between PPOUT and PPIN. Adjust by unused bit X X
count,
6. When 6681 present, convert Display Code to BCD in PP memory. X
7. When 6681 present, convert Display Code to BCD in CM. X
8. Write record to tape. b4 X
9. Write, from CM to tape, the data contained between OUT and IN, X X
adjusted by unused bit.
10. When 6681 present, convert data in CM buffer back to display code. X
11. If parity error, perform parity procedures. X X bid X
12. If end-of-tape reflective spot, perform end-of-reel procedures. X X X X
13. Update PPOUT. b4 X
14, TUpdate OUT. Fetch IN. Go to 1. b 4 X b 4 X

I1-16

60189400 Rev. 1

WPHR

] ko] :’ L]
sl 2| 3
he} a o O E o)
535 Ao
h i Of K|
1. I IN =O0UT, exit. X X x | x
2. If more than 512 words in buffer, return DEVICE CAPACITY X b x | x
EXCEEDED to FET.
3. Fetch data from OUT to IN, or 512 words from OUT, whichever is b4 X X | x
smaller.
4. Write record to tape. b4 X X X
5. If parity error, perform parity procedures. X X X X
6. If end-of-tape reflective spot, perform end-of-reel procedures. X X X X
7. Update OUT and exit. X X X X

60189400 Rev, I

I-17

SKIPF

el e > s o
EE | Bl 3| 5| 3| §] 3
=] ’5 g o &) k= '8 = =
§ gl§gm|ol@lof A O
2ARA0 K| Xl | | A] 4
1. Ifn=0,setn=1, X b4 X X X X X X
2. If Lis less than 17, interpret L as being equal to 0," x | x X X X b
3. Read a physical record. X b4 X X X b4 X X
4. If noise record encountered, go to 3. X b4 b4 X b4 X X b. 4
5. If end-of-tape reflective spot encountered and tape X X X X b4 X
is not labeled, perform end-of-reel procedures.
6. If record is full PRU, go to 3. X b4 X
7. If end-of-file mark encountered and tape is not X X X X X X
labeled, assume level number equals 17.
8. If record is not end-of-file mark, assume level X X X X X X
number equals 0.
9. If end-of-file mark encountered and tape is labeled, | x X X X X b4
perform end-of-file procedures.
10. If level number is less than L, go to 3. X X X X X X X X
11. Subtract 1 from n., If n # 0, go to 3. X X X X X b'4 X X
12. Return end-of-record to status. If last level num- X X b4 X X X b4 X

ber was 17 return end-of-file to status. Exit,

Events 2, 7, and 8 differ from SCOPE 3.1, Currently
L is assumed equal to zero for X tapes,

Event 4 is not done in SCOPE 3. 1.

I-18

60189400 Rev. I

SKIPB
T B Elel gl =l Bl 3
@ Pl gl S 5 « Q < i
o Y9 S| 8| 5|8 S| 8
SE83 Ao |Aa|o|l A O
NARO| K K|l w|wn| A A
1. Ifn=0,setn=1. X X X X X X X X
2, If Lis less than 17, interpret L as being equal to 0. b X X X b4 X
3. If reel is at beginning of data (either physical load X X X b4 b4 X b4 X
point or zero physical record count), set beginning
of information and exit.
4. Read one physical record backwards. X X X X X X X X
5. If noise record encountered, go to 4, X X X X be b4 X X
6. If record was full PRU, go to 3. X X X X
7. If this is first read backwards, go to 3. X b4 X
8. Position forward over short PRU. X b4 X
9. If end-of-file mark encountered, assume level num- b4 X X X X X
ber = 17. If not end-of-file mark, assume level
number = 0,
10. If level number is less than L, go to 3. X X X b4 X | X X X
11. Subtract 1 from n. If n is not equal to zero, go to 3.| x X X X X X b'¢ X
12, Exit. X X X X b4 X
In SCOPE 3.1 the beginning of information is not set as
specified in event 3.
Event 5 is not performed in SCOPE 3.1,
Event 9 differs from SCOPE 3.1; the system level num-
bers are ignored for files other than standard files.
60189400 Rev. I 1-19

BKSP
The BKSP function is identical to SKIPB with n = 1 and

L =0,
= T > g > g
o [H gl o]
< @ o) < L
SEIg Al 3| 2| 3| 8| 3
SEgg @l ol @] o| A| ©
B
n MM O K Xl | wm H =
BKSPRU
1. If at load point or PRU count = 0, set beginning of X X X X X X b4
information in FET and exit.
2. Backspace one physical record. b’s X x | x X X x | x
3. Subtract 1 from n, If n not equal to 0, go to 1. X X b4 X X X X X
4. Exit. X X X X X b4 X b4

SCOPE 3.1 does not set beginning of infermation as
specified in event 1,

1-20 60189400 Rev. 1

PRINT FILE CONVENTIONS J

Files with a print disposition (including OUTPUT) and files assigned to a printer, must adhere to
specific format rules as follows:

1. All characters must be in display code.

2. The end of a print line must be indicated by a zero byte in the lower 12 bits of the last
central memory word of the line. Any other unused characters in the last word should
be filled with display code blanks (55g). TFor example, if the line has 137 characters
(including carriage control), the last word would be aabbccddeeff550000 in octal; the
letters represent the last seven characters to be printed in the line. No line should be
longer than 137 characters.

3. Each line must start in the upper 6 bits of a CM word.

4. The first character of a line is the carriage control, which specifies spacing as shown in
the following table. It will never be printed, and the second character in the line will
appear in the first print position; therefore a maximum of 137 characters can be specified
for a line, 136 is the number of characters that will be printed. All characters apply to
both the 501 and the 512 unless they are specifically designated otherwise.

Carriage Control Characters

Character Action Before Printing Action After Printing

A Space 1 Eject to top of next paget

B Space 1 Skip to last line of paget

C Space 1 Skip to channel 6

D Space 1 Skip to channel 5

E Space 1 Skip to channel 4

F Space 1 Skip to channel 3

G Space 1 Skip to channel 2

H Space 1 Skip to channel 1 (501)
Skip to channel 11 (512)

I Space 1 Skip to channel 7 (512)

J Space 1 Skip to channel 8 (512)

K Space 1 Skip to channel 9 (512)

L Space 1 Skip to channel 10 (512)

1 Eject to top of next page No spaceT

2 Skip to last line on page No space T

3 Skip to channel 6 No space

T The top of a page is indicated by a punch in channel 8 of the carriage control tape for the 501
printer and channel 1 for the 512 printer. The bottom of page is channel 7 in the 501 and 12 in
the 512,

60189400 Rev. I J-1

Character Action Before Printing Action After Printing

4 Skip to channel 5 No space
5 Skip to channel 4 No space
6 Skip to channel 3 No space
7 Skip to channel 2 No space
8 Skip to channel 1 (501) No space

Skip to channel 11 (512) No space
9 Skip to chanmnel 7 (512) No space
X Skip to channel 8 (512) No space
Y Skip to channel 9 (512) No space
Z Skip to chanmel 10 (512) No space
+ No space No space
0 (zero) Space 2 No space
- (minus) Space 3 No space
blank Space 1 No space

When the following characters are used for carriage control, no printing takes place. The remainder
of the line will not be printed.

Q Clear auto page eject

R Select auto page eject

S Clear 8 vertical lines per inch (512)

T Select 8 vertical lines per inch (512)

PM Output remainder of line (up to 30 characters) on the B display and the dayfile

(col 1-2) and wait for the JANUS typein /OKuu. For files assigned to a printer, n.GO.
must be typed to allow the operator to change form or carriage control tapes.

any other Acts as a blank

Any pre-print skip operation of 1, 2 or 3 lines that follows a post skip operation will be reduced to
0, 1 or 2lines.

The functions S and T should be given at the top of a page; in other positions, S and T can cause

spacing to be different from the stated spacing. Q and R need not be given at the top of the page
aseach will cause a page eject before performing its function.

J-2 60189400 Rev. L

GLOSSARY OF SCOPE TERMS

Active file
A file immediately available to the system because of its location on a mass storage device,
tape, or extended core storage. Any file with an entry in the file name tgble is an active file.

Allocatable device
A mass storage device such as a disk, drum, or extended core storage which can be shared by
more than one job.

Central memory resident (CMR)
Variable length low core area of central memory reserved for tables, pointers, and subroutines
necessary for operation of the SCOPE system.

Central program control (CPC)
A SCOPE subroutine which the system loads into the field length of every user program that con-
tains a file action request or a system action request. Its function is to communicate central
processor requests to the peripheral processors by way of the system monitor routine.

CIO
A SCOPE peripheral processor routine which directs the processing of input/output function
requests according to the parameters established by the user in the file environment table.

Code and status field (CS)
A field in the file environment table, the file status table, or in the permanent file definition

block., SCOPE establishes the CS field and uses it to communicate information about functions
requested by the user program and to return information to the user.

Coded file

A file whose contents are assumed to be alphanumeric characters and special characters such as
=, +, and $.

60189400 Rev. I Glossary-1

Common file
A file in the system that any job at a control point may attach and use as a part of that job. The
file remains in the system until it is released by a control card or file action request, or until
the system is deadstarted.

Control points
The concept by which the multiprogramming capability of the 6000 series computers is exploited.
Assigning a control point number to a job results in allocation of some of the resources of the
system to that job.

Control point area
A 200g word area of central memory resident for each control point, It contains the exchange
jump package, flags, pointers and other information pertinent to each job assigned to a corres-
ponding control point number.

Cycle

One of the five files that may be cataloged under one permanent file name.

Data channel
One of the twelve 12-bit bi-directional channels by which information passes between the peri-
pheral processors and peripheral devices.

Dayfile
A chronological file maintained on system mass storage device which forms a permanent account-
ing and job history file. Entries, called dayfile messages, are generated by operator action or
by the system when control cards are processed or other significant action occurs. A portion of
the most recent system dayfile is displayed at the console; a copy of the job dayfile is printed
with the output for each job.

Deadstart

The process of initializing the system by loading the SCOPE library programs from magnetic
tape or mass storage. Deadstart recovery is re-initialization after system failure.

Glossary-2 60189400 Rev. I

DSD (system display)
The SCOPE system program that provides communication between the operator and the system
by accepting control information typed on the console keyboard and by driving the displays to
present the operator with information pertinent to all jobs known to the system. DSD is perma-
nently assigned to peripheral processor 9.

Device status table (DST)
A central memory resident table, with entries for each mass storage device controller, that
gives the current position of the heads of a device and other information. It is used by the stack
processor to determine which request for the device can be most easily satisfied.

Device type code (dt)
An optional parameter on a REQUEST card or in the file environment table which specifies the
type of device to be used for that file.

DIS (job display)
A system peripheral processor program similar to system display DSD that provides for commu-
nication between a job in central memory and the user at console, and permits the user to control
execution of the program by means of the keyboard.

Disposition code (dc)
An optional parameter on a REQUEST card or in the file environment table that indicates how a
file is to be processed after the job is terminated or the file is closed.

EDITLIB
A library maintenance program that allows insertion, replacement, and deletion of object lan-
guage programs in the system library during normal system operation.

End-of-file (EOF)

A short physical record unit or zero-length physical record unit containing a level number of 17g
or a card or card image with 6-7-8-9 punches in column 1 that indicates the logical file end.

60189400 Rev., I Glossary-3

End-of-information (EOI)
The physical end of data in a file, Some files may have more than one end-of-file indication,
but no file may have more than one end-of-information.
End-of-record (EOR)
A short physical record unit or a zero-length physical record unit containing a level number less
than 16g or a card or card image containing 7-8-9 punches in column 1.
Equipment number

A number from 0-7 which identifies the setting on a peripheral device controller.

Equipment status table (EST)
A table within central memory resident, with an entry for each hardware device attached to the
system, that shows the data channel assignment and whether the equipment is currently in use.

EST ordinal
The number designating the position of an entry within the equipment status table established at
each installation.

Field length (FL and FE)
FL is the number of central memory words a job requires, as established by the user in a JOB
card or by an RFL control card parameter or by a MEMORY system action request. FE is the
number of words in extended core storage that a job requires. Within central memory or
extended core storage, the field length added to the reference address defines the upper address:
limit of a job,

File definition block (FDB)
A table used for communication between a user program and the permanent file manager portion

of the SCOPE system. An FDB for each permanent file in the user program must reside in the
field length.

Glossary-4 60189400 Rev. 1

File environment table (FET)

A table used for communication between a user program and the operating system when files are
processed. An FET created by a compiler or by the user is required within the user field length
for each file in the program.

File name table/file status table (FNT/FST)

A table within central memory resident with a three-word entry for each file known to the sys-
tem. The first word (the file name table entry) consists of the logical file name and control
information; the second and third words (the file status table entry) show the current use being
made of the file,

Hang

A system stop that may be caused by hardware failure or by an error in a peripheral processor
program.

JANUS

The SCOPE peripheral processor routine which controls the processing of up to 4 card readers,
3 card punches, and 12 line printers, It normally functions at control point 1, but may be
assigned to another control point by the operator.

Labeled tape

A magnetic tape with header and trailer labels having the format of the 6000 series standard
labels or the 3000 series labels,

Level

An indicator specifying relative position in a hierarchy. For priority considerations, level 0 is
the lowest priority. For segment loading, level 0 is the initial segment loaded. For overlay
loading, both primary and secondary designations are required, with level (0,0) being the main
overlay.

Level number

A number from 0-17g that the user appends to a short physical record unit or places in a zero-
length physical record unit to form logical record groups within files, Level number 17g
indicates a logical end-of-file, Level number 164 is used by checkpoint/restart and should not
otherwise be specified by the user.

60189400 Rev. I Glossary-5

Local file
A file attached to a job assigned to a control point, Unless a local file is to be processed further
(because it has a user-declared non-zero disposition code, is a system output file, or is
declared to be a common file or a permanent file), it vanishes when the job is terminated.

Locked file
A local file with the lock bit set in its file name table entry. The file cannot be processed fur-
ther by the system until the lock bit is cleared.

Logical file name (lfn)
The 1-7 alphanumeric display coded characters by which the operating system recognizes a file.
The name is taken from the file environment table or from a REQUEST card parameter and
placed in the file name table when the file is established.

Logical record
A grouping of data consisting of one or more physical record units immediately followed by a
short physical record unit or a zero-length physical record unit.

L tape
A tape containing physical records whose size ranges from one central memory word to an upper
limit specified by the size of the buffer for that tape.

Monitor (MTR)
The SCOPE routine which coordinates and controls all activities of the system. It occupies
peripheral processor 0, It schedules the use of the central processor and the other peripheral
processors.

Non-allocatable device
A device such as a magnetic tape or a private disk pack which can be used by only one job at a
given time.

Overlay

A block of absolute object code called by a user program and loaded into a specified area of the
field length at the time it is needed for execution,

Glossary-6 60189400 Rev, I

Owncode
An optional parameter of the file environment table which specifies the address of a user-supplied
routine to be used when an end-of-information or an error is encountered.

Permanent file
A file on a mass storage device which is protected from unauthorized access and accidental des-
truction. Unlike a common file, it is not destroyed by normal deadstart.

Permanent file directory (PFD)
A mass storage resident directory of all permanent files with their passwords and other perti-
nent information. It cannot be accessed by any central processor program.

Permanent file manager (PFM)
Peripheral processor programs corresponding to permanent file functions which implement user
requests for permanent file processing.

Physical record unit (PRU)
The smallest amount of information transmitted by a single physical operation of a specified
equipment, measured in central memory words. A PRU for mass storage devices is 641 words
long; that for SCOPE binary magnetic tape is 5121 words; etc.

Program library
The source language programs which compile or assemble into the SCOPE system library. The
program library is maintained by using the UPDATE program.

Recall
The state of a program when it has released control of the central processor until a fixed time
has elapsed or until a requested function is complete, Recall is a system action request, as
well as an optional parameter of some file action requests.

Record block

A storage area of a fixed size, relative to specific mass storage devices, which is the smallest
division of the device that can be assigned to a file.

60189400 Rev. I Glossary-T7

Record block reservation table (RBR)
A central memory resident table for each allocatable device. It is used during input/output pro-
cessing to indicate whether a given record block of the device is available for assignment to a
file.

Record block table (RBT)
A chain of two-word entries determining the record blocks occupied by each file on an allocatable
device. It resides in high central memory when the file is active.

Record block table catalog (RBTC)
A mass storage resident table of entries for each permanent file containing the owner identifica-
tion, pointers, and record block chain for the file. It cannot be accessed by any central proces-
sor program.

Reference address (RA and RE)
RA is the central memory address that is the starting, or zero, address for a program, RA +1
is used as the communication word between the user program and monitor. RE is the extended
core storage starting address used by a program.

S tape (stranger tape)
A magnetic tape (labeled or unlabeled) containing physical records ranging in size from 2 charac-
ters to 512010 characters. This tape does not contain any level numbers.

SCOPE
The operating system for the CONTROL DATA 6400/6500/6600 computers. The name is derived
from Supervisory Control of Program Execution.

SCOPE tape
A tape created under SCOPE 3 with fixed length physical record units: for coded tape, 128,

central memory words; for binary tape, 5121 central memory words. A SCOPE tape may be
labeled or unlabeled.

Glossary-8 60189400 Rev. I

Segment

A group of relocatable subprograms which may be loaded or removed from memory as a unit.

Short PRU
A physical record unit containing fewer than normal words, and to which a level number has
been appended to indicate the end of a logical record.

Stack processor
A group of peripheral processor routines which processes the requests for all mass storage
functions and efficiently sequences execution of these requests.

Standard labeled tape
A tape with labels conforming to the proposed USA Standard for Magnetic Tape Tables and File
Structure for Information Interchange. Also called a system labeled tape.

System library
The collection of object language programs residing in central memory or on mass storage which
are necessary for running the SCOPE system and its product set.,

Transient program
A program which occupies a peripheral processor only for the time it is needed to perform a
task assigned by the monitor.

Unlabeled tape
A magnetic tape that does not have a header label. Unlabeled tapes generated by SCOPE contain
a trailer label similar to the trailer for a standard labeled tape for the 6000 series computers.

Unsatisfied external

An external reference in a user program for which the system does not have a link to a user
program or a system library program after the user program is loaded.

60189400 Rev. I Glossary-9

UPDATE

A library maintenance program that allows a program library to be modified or a new program
library to be created. It maintains a record of the changes made to individual cards in the

library by using correction history bytes.

X tape

An external tape in SCOPE 2 format which: in BCD mode, consists of physical records of 1367
characters including any blank fill; in binary mode, has a logical record structure with a physical

record unit size of 5124 words.

7ero length PRU

A physical record unit containing only a level number that is used to terminate a logical record;
it does not contain any data.

Glossary-10 60189400 Rev. I

MT

xx labl FILE NAME WRITTEN WAS xXxX...XX. 4LB

XXX...XX is the name in the tape label for this file,.
labl is label identifier.

MT xx labl MULTIFILE NAME SHOULD BE xxx, IS xxx. 4LB
Multiple file name of assigned tape does not agree with
request. First xxx is in FET; second is in tape label, labl.
Tape may be accepted by typing n.GO. Different tape may
be mounted and checked by typing n,RECHECK. Job may
be dropped by typing n.DROP,.

MT xx labl REEL NUMBER WAS xxxxXX 4LB
XXXXxXX is visual reel numbers for tape being read.
labl is label identifier,

MT xx labl REEL NUMBER SHOULD BE xxxx, IS xxxx 4LB
Requested tape reel number does not agree with that
specified in tape file label, labl.

MT xx labl REEL NUMBER WRITTEN WAS xxxxxx 4LB
xxxXxxx is visual reel number in tape volume header,
labl is label identifier,

MTxx CHxx IMT

EQUIPMENT REJECT

Hardware rejected equipment connection, Message persists
until condition is corrected or operator drops job.

MTxx CHxx 1IMT

NO

RESPONSE

Equipment cannot be connected because of hardware failure.

MTxx CHxx 1IMT
NO WRITE ENABLE

H-50

Message persists until operator inserts write ring or
drops the job,

60189400 Rev.

I

INDEX

ABORT macro 3-54
Absolute index bit (FET) 3-12
Access, random 1-10
Active files 1-4

ADD (EDITLIB) 5-6

*ADD (EDITSYM) 7-7
ADDBCD (EDITLIB) 5-6
ADDCOS (EDITLIB) 5-7
*ADDFILE (UPDATE) 6-14
ADDTEXT (EDITLIB) 5-7
Allocatable devices 3-8

ALS - 6X00 random instruction test 12-3

APR calls 10-19

Arithmetic error 2-3

Assembly directive control cards
(UPDATE) 6-5

Assembly errors 4-13

ATTACH 13-2, 14

AUDIT routine 13-22

Automatic Program Sequencer (APR) 10-18

calls to APR 10-19
console entries 10-20
sample job structure 10-20

Basic FET 3-5

Backspace logical record 10-14
BKSP macro 3-48; 10-14
BKSPRU macro 3-48

Buffer emptying 3-T71

*CALL (UPDATE) 6-18
Call cards

EDITLIB 5-2

EDITSYM 7-4
Calling sequence, CPC 3-24
*CANCEL (EDITSYM) 7-7
CARD

control 2-2

files E-2

format E-1

free-form E-3

identification, program libary 6-3

Cards, program, utility 10-1

60189400 Rev. L

CATALOG (permanent files) 13-2, 9
*CATALOG (EDITSYM) 7-6
CE diagnostics, See customer engr. diagnostics
CEFAP Execution 12-28
CEFAP Operation 12-27
Central memory usage, multiprogramming 1-2
Central program control

subroutine 3-24

calling sequence 3-24
Character set A-1
CHECKPT macro 3-52
Checkpoint REQUEST 8-1
Checkpoint, unrestartable dumps 8-6
CIO codes 3-7
CKP 2-4
CLOCK macro 3-55
CLOSE macro 3-29, 70
CLOSER macro 3-31
CM6 - 6X00 central memory test 12-6
Code and status field (FET) 3-6
COMBINE 10-14
*COMDE CK

EDITSYM 7-5

UPDATE 6-7, 15
COMMENT card 2-4
COMMON card 2-15
Common decks, program library 7-2
Common file 1-5; 3-66
Common macro 3-70
COMMON macro 3-50
COMPARE routine 10-16
COMPARE, utility program 10-16
Compilation errors 4-13
*COMPILE

EDITSYM 7-6

UPDATE 6-18
Compile output,

program library 7-3
COMPLETE (EDITLIB) 5-8
Compressed deck,

program library 7-3
CONTRC macro 3-31
Control card fields 2-2

Index-1

Control cards

*ADD (EDITSYM) 7-4
*ADDFILE (UPDATE) 6-14
Assembly directive (UPDATE) 6-5
BKSP (utility) 10-14

Call (EDITSYM) 7-4

Call (job) 2-7

*CALL (UPDATE) 6-18
*CANCEL (EDITSYM) 7-7
*CATALOG (EDITSYM) 7-6
CHECKPT 8-1

CKP 2-4; 8-1

COMBINE 10-14

*COMDECK (EDITSYM) 7-5
*COMDECK (UPDATE) 6-7, 15
COMMENT 2-4

COMMON 2-15

COMPARE (utility) 10-16
*COMPILE (EDITSYM) 7-6
*COMPILE (UPDATE) 6-18
*COPY (EDITSYM) 7-5

COPY (utility) 10-2

COPYN (utility 10-6.1
Correction directive (UPDATE) 6-9
Creation directive (UPDATE) 6-7
*CWEOR 6-16

DEBUG 11-15

*DECK (EDITSYM) 7-5
*DECK (UPDATE) 6-7, 15
Deck sequence (EDITSYM) 7-5
*DELETE (EDITSYM) 7-7
*DELETE (UPDATE) 6-12
Demonstration program F-1
DMP (utility) 10-15

*EDIT (EDITSYM) 7-6
EDITSYM 7-5

Edit control (EDITSYM) 7-6
*END (EDITSYM) 7-5

*END (UPDATE) 6-7
EXECUTIVE 2-7

EXIT 2-4

File manipulation (UPDATE) 6-6
*IDENT (UPDATE) 6-9
*INSERT (EDITSYM) 7-6
*INSERT (UPDATE) 6-12

Job 2-2

*LABEL (UPDATE) 6-6

LGO (Program Call)y 2-7

LOAD 2-7

Index-2

LOADER 2-6

LOC (utility) 10-14

Map control 2-9

MAP (ON) 2-9

MAP (OFF) 2-9

MAP (PART) 2-9

MODE 2-3

name (program call) 2-7

New decks (EDITSYM) 7-5

NOGO 2-8

Output directive (UPDATE) 6-11

OVERLAY 4-8

Program 2-5

Program call 2-7

*PURGE (UPDATE) 6-9

REDUCE 2-8

RELEASE 2-16

REQUEST 2-10

RESTART 8-6

*RESTORE 6-12

RETURN 2-16

REWIND (COPYN) 10-7

REWIND (utility) 10-13

RFL (utility) 10-15

*SKIP (UPDATE) 6-6

*Slash (UPDATE) 6-14

SNAP 11-7

SWITCH 2-3

TRACE 11-1

UPDATE 6-5

Utility 10-1

*WEOR (EDITSYM) 7-6

*WEOR (UPDATE) 6-16

*YANK (UPDATE) 6-13
Control point job display 9-1
Control point number (FNT) 3-2
Control points,

multiprogramming 1-2
Control statements

COMMON 1-6

RELEASE 1-6
COPY (EDITSYM) 7-5
COPY routines

COPY 10-2

COPYBCD 10-6.1

COPYBF 10-3

COPYBR 10-3

COPYCF 10-3

COPYCR 10-3

60189400 Rev. L

Copy routines (Cont'd)
COPYLAB 10-5
COPYL 10-11
COPYN 10-6.1
COPYSBF 10-6
Record identification 10-8
REWIND 10-13
SKIPB 10-13
SKIPF 10-13
SKIPR 10-8
UNLOAD 10-13
WEOF 10-8
Correction directive control cards
(UPDATE) 6-9
Corrections, overlapping (UPDATE)
CPC 3-24
CPLOADR 4-1, 3
CPLPARM 4-8
CP1 - 415 card punch test 12-11
Creation directive control cards (UPDATE) 6-7
CR1 - 405 card reader test 12-12
CT3 - 6X00 random instruction test 12-5
Customer Engineering (CE) Diagnostics 12-1
ALS - 6X00 random instruction test 12-3
CM6 - 6X00 central memory test 12-6
CPU and memory tests 12-3
CP1 - 415 card punch test 12-11
CR1 - 405 card reader test 12-12
CT3 - 6X00 random instruction test 12-5
CU1 - 6X00 command test 12-6
DT2 - 6638 disk file test 12-8
EC2 - 663X extended core storage test 12-6
FST - 6X00 random instruction test 12-5
LPT - 501 line printer test 12-9
LP1 - 512 line printer test 12-10
modes of operation 12-1
MTT - 60X magnetic tape test 12-8
MY1 - 6X00 central memory test 12-6
peripheral equipment tests 12-7
sample jobs 12-12
CU1 - 6X00 command test 12-6
*CWEOR 6-16
Cycles 13-2

6-13

Data function macros 3-20
DATE macro 3-55
DEBUG control card 11-15

60189400 Rev. K

Debugging 11-1
*DECK
EDITSYM 7-5
UPDATE 6-7, 15
Deck grouping (UPDATE) 6-7
Decks 7-2
Common, program library 7-2
Compressed program library 7-3
New (EDITSYM) 7-5
Overlay 4-8
Sequence control cards (EDITSYM) 7-5
Text, program library 7-2
Definitions, system symbols G-1
DELETE card (EDITLIB) 5-3, 7
*DELETE
EDITSYM 7-7
UPDATE 6-12
Device type (FET) 3-8
labels C-1
Directives, loader 4-5
DIS 9-1
DIS display 9-16
Disk pack
device label C-1
file 1-14
displays 9-1
Display characters A-1
Display keyboard entries 9-1
Displays 9-1
Disposition code (FNT) 3-3
Disposition code (FET) 3-11
DMP routine 10-11; 11-11
DSD 9-1
DT2 - 6638 disk file test 12-8
DUMPF routine 13-22
Dump storage, utility program 10-15
Dumps
Checkpoint 8-1
TRACE 11-1
Unrestartable checkpoint 8-6

ECS
dump 10-15
EC2 - 663X extended core storage test 12-6
*EDIT (EDITSYM) 7-6
Edit control cards (EDITSYM) 7-6
Edition number 3-16

Index-3

EDITLIB 5~1
call card 5-2
examples 5-9
EDITLIB function cards 5-2.1
ADD 5-6
ADDBCD 5-6
ADDCOS 5-7
ADDTEXT 5-7
COMPLETE 5-8
DELETE 5-3, 7
LENGTH 5-7
Library revision 5-4
LIST 5-4
MOVE 5-3
position functions 5-8
READY 5-4
REWIND 5-8
SKIPB 5-8
SKIPF 5-8
system modification 5-3
TRANSFER 5-5
EDITSYM 7-1
call card 7-4
control cards 7-4
deck sequence control 7-5
edit control 7-6
examples T7-8
Effects, Q option 6-12
*END
EDITSYM 7-5
UPDATE 6-T7
ENDRUN macro 3-54
ENTR table D-2
EOI address (FET) 3-19
Equipment assignment control cards 2-9
Equipment type (FNT) 3-2
Equipment type mnemonics 2-9; 9-8
Error address (FET) 3-19
Error bypass bit (FET) 3-12
Error Logging Procedure 12-18
Error Codes 12-23
Error messages H-1
COPYN 10-11
Error Modes 2-3
Error processing bit (FET) 3-11
Errors in assembly/compilation 4-13
EVICT macro 3-31
Examples
EDITLIB 5-8

Index~4

EDITSYM 7-8

UPDATE 6-15
EXECUTE card 2-6
Execution

loader 4-7

program 2-5
EXIT card 2-4, 4-13
EXPORT/IMPORT jobs 38-11
EXTEND 13-3, 18

FDB 13-7

FET, absolute index bit 3-12

FET address (bit) 3-4

FET creation macros 3-22
random binary file 3-22
random coded file 3-22
sequential binary file 3-22
sequential coded file 3-22

FET error bypass bit 3-12

FET extension B-1

Field length calculation F-7

Field length request, utility program 10-16

Fields, control card 2-2

File Environment Table Fields 3-4
device type 3-8
disposition 3-65, 68
disposition code 3-12
EOI address 3-19
error address 3-19
error processing bit 3-11
file indexing 3-17
FIRST 3-14
FNT pointer 3-13
IN 3-14
length 3-13
LIMIT 3-14
ouT 3-14
OWNCODE routine activity 3-14
physical record unit size 3-9
random access bit 3-13
record block size 3-10
release bit 3-10
user processing bit 3-10
working storage 3-14

File manipulation 10-13

File name (FNT) 3-1

60189400 Rev. L

File name table 1-4; 3-1 Free-form cards E-3

control point number 3-2 F8T - 6X00 random instruction test 12-5
disposition code 3-3 Function, position (EDITLIB) 5-7
equipment type 3-2 Function cards (EDITLIB) 5-3

FET address 3-4 Functions (EDITLIB)

file name 3-1 library revision 5-4

file type 3-2 system modification 5-3

last code and status 3-3
permissions 3-3

security code 3-3 Hardware device 3-8
File positioning (COPYN) 10-9 Hollerith punched characters A-1
Files 1-5

action request macros 3-26

*IDENT card (UPDATE) 6-9
Identifiers, structure 6-3

IEF Description 12-26

Input file 8-64

IN (FET) 3-14

Input/output routines, utility 10-14
*INSERT

active 1-4

common 3-66

edition number 3-21

File Environment Table 3-14
header label 1-13; C-2
indexing (FET) 3-17

i:gg; n:j: 3-21 EDITSYM 7-6
labels 1-11 UPDATE 6-12

manipulation control cards (UPDATE) 6-6 1/0 request 1-4

non-allocatable 3-66

non-zero disposition 3-65 JDATE macro 3-55
output 3-65 Job

permanent 3-66 card 2-2

private disk pack 3-67 control cards 2-1
processing 3-63 flow 2-1

purging 13-3, 14 priority 3-63
random access 1-10; 3-67 termination 3-68

reel number 3-21
retention 13-3
special name 3-65 Keyboard entries 9-1
trailer label 1-14; C-3 KILL 3-69
type (FNT) 3-2
Files, card E-2

FILL table D-5 *LABEL card (UPDATE) 6-6

FIRST (FET) 3-14 Label

Flag words 2-2 file 1-11

Flow, job 2-1 file header 1-13; C-2

FNT 1-4 file trailer 1-13; C-3

FNT entries 3-63 standard C-1

FNT pointer 3-13 volume header 1-13; C-1

Format volume trailer 1-13; C-3
card E-1 Labeled tape files 3-20
program library 7-1 creation date 3-21
relocatable subroutine D-1 edition number 3-21

60189400 Rev. L Index-5

Labeled tape files (Cont'd)
label name 3-20
multi-file name 3-21
multi-file tapes 3-21
reel number 3-21
retention cycle 3-21

Labels, tape file
file header 1-13; C-2
file trailer 1-13; C-3
volume header 1-13; C-1
volume trailer 1-13; C-3

Last code and status (FNT) 3-3

Length (FET) 3-13

LENGTH card (EDITLIB) 5-7

Level 1-7
marks 1-9
numbers 1-7

Library revision functions (EDITLIB) 5-4

Library tape structure 5-1
LIMIT (FET) 3-14
LINK table D-6
LIST card (EDITLIB) 5-4
Listable output, (UPDATE) 6-12
Logical file mme (FET) 3-5
Logical records 1-7

level marks 1-10

level numbers 1-8

termination 1-10
LOAD card 2-7
Load octal corrections 10-14
Loader

card 2-6

directives 4-7

overlays 4-8

sections 4-9

segments 4-9
Loader execution 4-7
LOADER macro 3-56

reply 3-59
Loading

octal correction routines 10-14

sequence 4-1
LOADPF 13-22
LPT - 501 line printer test 12-9
LP1 - 512 line printer test 12-10

Index-6

Macros, FET creation 3-22
Macros, system communication 3-26

ABORT 3-54
BKSP 3-48
BKSPRU 3-48
CHECKPT 3-52; 8-2
CLOCK 3-55
CLOSE 3-29
CLOSER 3-31
COMMON 3-49
data function 3-26
DATE 3-55
ENDRUN 3-54
EVICT 3-31

file action requests 3-26
JDATE 3-55
LOADER 3-56
LOADREQ 3-62
MEMORY 3-51
MESSAGE 3-53
OPEN 3-27
position functions 3-46
READ 3-32
READIN 3-35
READN 3-33
READNS 3-35
READPP J-5
READSKP 3-34
RECALL 3-52
REQUEST 3-26
REWIND 3-49
REWRITE 3-42
REWRITEF 3-42
REWRITER 3-42
RPHR 3-34
SKIPB 3-48
SKIPF 3-46
System action requests 3-51
TIME 3-54
WPHR 3-39
WRITE 3-37
WRITEF 3-38
WRITEN 3-39
WRITER 3-38
WRITIN 3-44
WRITOUT 3-39

60189400 Rev. K

Magnetic tape I/O I-1
definitions I-1
tape file structure I-2
label formats I-2
data formats I-2
end point processing I-2

end-of-file (tape mark) procedures I-2

end-of-reel procedures I-4
end of information procedures I-4
definition of I/O requests I-4
READ I-5
READN I-7
READSKP I-8
RPHR I-10
WRITE I-11
WRITER I-12
WRITEF I-14
WRITEN I-16
WPHR I-17
SKIPF I-18
SKIPB I-19
BKSP I1-20
BKSPRU I-20
Map, memory 4-10
MAP control cards 2-9
Marks, level 1-10
Maximum logical record size 3-18, 23
Memory allocation 4-9
segment 4-12
system 4-9
user 4-12
MEMORY macro 3-51
Memory map 4-12
MESSAGE macro 3-53
Messages
COPYL 10-12
COPYN 10-10
error H-1
UPDATE 6-20
MLRS 3-18, 23
MODE card 2-3
MOVE card (EDITLIB) 5-3
MTT - 60X magnetic tape test 12-8
Multi-file 3-21
names 3-21
tapes 3-21
Multiple read access 13-3

60189400 Rev. K

Multiprogramming 1-2
central memory usage 1-2
control points 1-2

Multi-reel file 1-12

Multi-reel multi-file 1-12

MY1 - 6X00 central memory test 12-6

NOGO card 2-8

Non allocatable files 3-66
Non-zero disposition files 3-65
NORERUN 3-69

OPEN macro 3-27
OUT (FET) 3-14

Output directive control cards (UPDATE) 6-11

Output file 3-65
Output, listable (UPDATE) 6-12
Cutput queue 3-63

Overlapping corrections (UPDATE) 6-13

OVERLAY 4-8
checkpoint requests 8-4
decks 4-8
format 4-8
Overlays 4-6
DEBUG 11-15
SNAP 11-11
TRACE 11-7
OWNCODE routine activity (FET) 3-19

Parameters
call (UPDATE) 6-~1

Passwords 13-4

PBC routine 10-9

Permanent files
control cards 13-9
definitions 13-1
FD3 13-7
functions 13-7
macro expansion 13-8
multiple read access 13-3
parameters 13-7
passwords 13-4
permissions 13-4
privacy procedures 13-3
return codes 13-21
utility routines 13-22

Index-7

Permissions (FNT) 3-3; 13-4
PIDL table D-1
Physical record unit size (FET) 3-6
Position function 3-46
(EDITLIB) 5-8
PPLOADR 4-1
Prefix table, subroutine D-1
Print file conventions J-1
Printed character sets A-1
Priority, job 3-63
Privacy procedures 13-3
Private disk pack files 3-67
Procedure
checkpoint 8-1
RESTART 8-6
Program call card 2-7
Program cards (utility) 10-1
Program control cards 2-6
call card 2-7
EXECUTE card 2-7
LOAD card 2-7
NOGO card 2-8
Program execution 2-6
Program library
compile output 7-3
Program library format 7-1
common decks 7-2
compressed decks 7-3
text decks 7-2
Program libraries, structure 6-1
card identification 6-3
deck list 6-1
directory 6-1
text stream 6-2
PURGE (permanent files) 13-3, 19
*PURGE card (UPDATE) 6-9

Q option effects (UPDATE) 6-12
Queue, input 3-63

Random access 1-11

Random access bit (FET) 3-13
Random access file 3-67
Random binary file macro 3-22
Random coded file macro 3-22
*READ (UPDATE) 6-6

Index-8

READ macro 3-32

READIN macro 3-35

READN macro 3-33

READNS macro 3-35
READSKP macro 3-34

READY card (EDITLIB) 5-4
RECALL macro 3-52

Record identification card 10-8
Record block size (FET) 3-10
Recording technique 3-8
REDUCE card 2-8

Reel number, file 3-21
Release bit (FET) 3-8
RELEASE card 2-16
Relocatable subroutine format D-1
REMOVE card 2-15

REPL table D-6

REQUEST 1-4;2-10

Request cards (utility) 10-1
REQUEST checkpoint 8-1
Request field length 10-15
REQUEST macro 3-26
Request macros, file action 3-26
Request, RESTART 8-6

Request, utility program field length 10-15

RERUN 3-69
RESPOND jobs 3-T71
RESTART card 2-4
RESTART procedure 8-6
RESTART request 2-4; 8-6
*RESTORE

EDITSYM 7-7

UPDATE 6-12
Retention cycle 3-21
RETURN 2-16; 3-70
REWIND card (COPYN) 10-7
REWIND card (EDITLIB) 5-8
*REWIND (UPDATE) 6-6
REWIND file 10-13
REWIND macro 3-49
REWRITE 3-42; 13-2
REWRITEF 3-42
REWRITER 3-42
RFL routine 10-15
RPACK card 2-14
RPHR macro 3-34
RTIME macro 3-26
Routines, utility, see Utility routines

60189400 Rev. K

Sample source listing F-1 Table, File'Environment 3-4

SCOPE CIO codes 3-7 Tables, subroutine D-1
Scopes, console and display 9-3- ENTR D-2
Sections 4-7 FILL D-5
Security code (FNT) 3-3 LINK D-6
Segment loading PIDL D-1
DEBUG 11-15 Prefix D-1
SNAP 11-6 REPL D-6
TRACE 11-6 TEXT D-3
Segment memory allocation 4-12 XFER D-8
Segmentation 4-4 Tape file labels 1-13
Sequence, loading 4-1 Tape file structure 1-12; I-2
Sequential binary file macro 3-22 labels 1-13
Sequential coded file macro 3-22 multi-file reel 1-12
Single reel file 1-12 multi-reel file 1-12
*SKIP (UPDATE) 6-6 multi-reel multi-file 1-12
SKIPB card (EDITLIB) 5-8 single reel file 1-12
SKIPB macro 3-48 Tapes, multi-file 3-21
SKIPB routine 10-13 Termination, logical records 1-9
SKIPF card (COPYN) 10-13 Text deck, program library 7-2
(EDITLIB) 5-8 Text stream, structure 6-2
SKIPF macro 3-46 TEXT table D-3
SKIPR card (COPYN) 10-8 TIME macro 3-54
*Slash card (UPDATE) 6-14 TRACE 11-1
SNACE 11-1 TRANSFER card (EDITLIB) 5-5
SNAP 11-7 Type-ins, see display keyboard entries

Software, integration, hardware G-1
Special name files 3-65

Standard labels C-1 UBC 3-19
Storage, utility program dump 10-17 UNLOAD macro 3-50, 70
Structure Unload file 10-13

identifiers 6-3 Unrestartable checkpoint dumps 8-6

library tape 5-1 Unused bit count 3-17

program library 6-1 UPDATE 6-1

tape file 1-12 card identification 6-3

text stream 6-2 compressed card 6-3
Subdirectory 13-2 control and data cards 6-5
Subroutine deck list 6-1

central program control 3-19 directory 6-1

format, relocatable D-1 examples 6-23

prefix table D-1 files 6-21
SWITCH card 2-3 listable output 6-19
Symbol definitions, system G-1 messages 6-31
System action macros 3-51 options 6-4, 19
System display 9-1 User memory allocation 4-12
System Engineering File Analyzer (CEFAP) 12-24 User processing bit (FET) 3-10
System Engineering File Description 12-18

System memory allocation 4-7
System modification function (EDITLIB) 5-3
System symbol definitions G-1

60189400 Rev., L Index~-9

Utility routines 10-1
COMPARE 10-16
copy 10-2
copy binary file 10-3
copy binary record 10-3
copy coded file 10-3
copy coded record 10-3

copy to offline listable form 10-6.1

COPYL 10-11
COPYN 10-6.1

dump extended core storage 10-15

dump storage 10-15

file manipulation 10-13
octal correction 10-14
permanent file 13-22
request field length 10-15

Volume header label, tape file 1-13; C-1
Volume trailer label, tape file 1-13; C-3

WEOF (COPYN) 10-8
*WEOR

EDITSYM 7-6

UPDATE 6-16
Words, flag 2-2
Working storage (FET) 3-14
WPHR macro 3-39
Write 13-2
WRITE macro 3-37
WRITEF macro 3-38
WRITEN 3-38
WRITER macro 3-38
WRITIN 3-44
WRITOUT macro 3-40
WPHR macro 3-39

XFER table D-8

*YANK card (UPDATE) 6-13

Index-10

60189400 Rev. K

CUT ON THIS LINE

COMMENT SHEET | CONT
[corporaTion]

CORPORATION
TITLE: 6400/6500/6600 SCOPE 3 Reference Manual

PUBLICATION NO. 60189400 REVISION 1,

Control Data Corporation solicits your comments about this manual with a view to improving its usefulness in later
editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements do you recommend to better serve your purpose?

Note specific errors discovered {please include page number reference).

General comments:

FROM nNAME: v POSITION:

BUSINESS
ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE
FOLD - o ____FOLD _ |
FIRST CLASS
PERMIT NO. 8241
'MINNEAPOLIS, MINN.

—

BUSINESS REPLY MAIL S—

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. L]
SEE—

—

POSTAGE WILL BE PAID BY EE—
CONTROL DATA CORPORATION S—
Documentation Department —

215 Moffett Park Drive S

Sunnyvale, California 94086 ——

E—

SeE—

S

—

— % — T T T T T TFop
STAPLE

"APLE

STAPLE

CUT ON THIS LINE

CuUt ourt FO'R”l‘JSE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 60189400

CONTROL DATA

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN. 55420
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

0
A
o)
O
~
)]
(0]
o)
0]
<
(0)]
)]
0]
0]
()]
0
o)
1Y)
m
A
m
|
m
A
m
Z
0
m
<
>
Z
C
>
—

-~

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02.0
	05-02.1
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06.0
	10-06.1
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	E-01
	E-02
	E-03
	E-04
	F-07
	F-08
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	H-29
	H-30
	H-31
	H-32
	H-33
	H-34
	H-35
	H-36
	H-37
	H-38
	H-39
	H-40
	H-41
	H-42
	H-43
	H-44
	H-45
	H-46
	H-47
	H-48
	H-49
	H-51
	H-52
	H-53
	H-54
	H-55
	H-56
	H-57
	H-58
	H-81
	H-82
	H-83
	H-84
	H-85
	H-86
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	J-01
	J-02
	glossary-01
	glossary-02
	glossary-03
	glossary-04
	glossary-05
	glossary-06
	glossary-07
	glossary-08
	glossary-09
	glossary-10
	h-50
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	replyA
	replyB
	xBack

